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Abstract 30 

Human gut microbiome research focuses on populations living in high-income 31 

countries or on the other end of the spectrum, namely non-urban agriculturalist and 32 

hunter-gatherer societies. The scarcity of research between these extremes limits our 33 

understanding of how the gut microbiota relates to health and disease in the majority 34 

of the world's population. We present the first study evaluating gut microbiome 35 

composition in transitioning South African populations using short- and long-read 36 

sequencing. We analyzed stool samples from adult females (age 40 - 72) living in rural 37 

Bushbuckridge municipality (n=118) or urban Soweto (n=51) and find that these 38 

microbiomes are taxonomically intermediate between those of individuals living in high-39 

income countries and traditional communities. We demonstrate that reference 40 

collections are incomplete for characterization of microbiomes of individuals living 41 

outside high-income countries, resulting in artificially low species-level beta diversity 42 

measurements. To improve reference databases, we generated complete genomes of 43 

undescribed taxa, including Treponema, Lentisphaerae, and Succinatimonas species. 44 

Our results suggest that the gut microbiome in South African populations do not exist 45 

along a simple “western-nonwestern” axis and that these populations contain microbial 46 

diversity that remains to be described.  47 
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Introduction 48 

Comprehensive characterization of the full diversity of the healthy human gut 49 

microbiota is essential to contextualize studies of the microbiome related to diet, 50 

lifestyle, and disease. To date, substantial resources have been invested in describing 51 

the microbiome of individuals living in the global industrialized “west” (United States, 52 

northern and western Europe; also sometimes referred to as the “Global North”), 53 

including efforts by large consortia such as the Human Microbiome Project1 and 54 

MetaHIT2. Though these projects have yielded valuable descriptions of human gut 55 

microbial ecology, they survey only a small portion of the world’s citizens at the 56 

extreme of industrialized, urbanized lifestyle. It is unclear to what extent these results 57 

are generalizable to non-western and non-industrialized populations across the globe. 58 

At the other extreme, a smaller number of studies have characterized the gut 59 

microbiome composition of individuals practicing traditional lifestyles3,4, including 60 

communities in Venezuela and Malawi5, hunter-gatherer communities in Tanzania6–9, 61 

non-industrialized populations in Tanzania and Botswana10, and agriculturalists in 62 

Peru11 and remote Madagascar12. However, these cohorts are not representative of 63 

how most of the world lives either. Many of the world’s communities lead lifestyles 64 

between the extremes of an urbanized, industrialized and relatively high-income 65 

lifestyle and traditional subsistence practices. It is a scientific and ethical imperative to 66 

include these diverse populations in biomedical research, yet dismayingly many of 67 

these intermediate groups are underrepresented in or absent from the published 68 

microbiome literature. 69 

This major gap in our knowledge of the human gut microbiome leaves the 70 

biomedical research community ill-poised to relate microbiome composition to human 71 

health and disease across the breadth of the world’s population. Worldwide, many 72 

communities are currently undergoing a transition of diet and lifestyle, characterized by 73 

increased access to processed foods, diets rich in animal fats and simple 74 

carbohydrates, and more sedentary lifestyles13. This has corresponded with an 75 

epidemiological transition in which the burden of disease is shifting from predominantly 76 

infectious diseases to an increasing incidence of noncommunicable diseases (NCDs)  77 

like obesity and diabetes14. The microbiome has been implicated in various NCDs15–17 78 
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and may mediate the efficacy of medical interventions including vaccines18,19, but we 79 

cannot evaluate the generalizability of these findings without establishing baseline 80 

microbiome characteristics of communities that practice diverse lifestyles and by 81 

extension, harbor diverse microbiota. These understudied populations, which are more 82 

representative of the majority of the world’s population, offer a unique opportunity to 83 

examine the relationship between lifestyle (including diet), disease, and gut microbiome 84 

composition, and to discover novel microbial genomic content that may associate with 85 

or drive disease biology. 86 

Some previous studies have probed the relationship between lifestyle and 87 

microbiome composition in transitional communities3,20–22. However, substantial gaps 88 

remain in our description of the microbiome in these populations. In particular, 89 

knowledge of the gut microbiota within the African continent is sparse. Of the 64 90 

studies surveying the gut microbiome of individuals living within Africa as of January 91 

2021 (Supplementary Table 1) only 25 of the 54 countries (46%) on the continent are 92 

represented. Of these studies, 34 of 64 (53%) have focused entirely on children or 93 

infants, whose disease risk profile and gut microbiome composition can vary 94 

considerably from adults5,23. Additionally, 52 of 64 (81%) of studies of the gut 95 

microbiome in Africans employed 16S rRNA gene sequencing or qPCR, techniques 96 

which amplify only a small portion of the genome and therefore lack genomic 97 

resolution to describe species or strains which may share a 16S rRNA sequence but 98 

differ in gene content or genome structure. To our knowledge, only nine published 99 

studies to date have used shotgun metagenomics to describe the gut microbiome of 100 

adults living in Africa. Eight of these studies described the bacterial microbiome6,7,12,24–101 
28, while one29 exclusively described the viral metagenome. 102 

To address this major knowledge gap, we designed and performed the first 103 

research study applying short- and long-read DNA sequencing to study the gut 104 

microbiomes of South African individuals for whom 16S rRNA gene sequence data has 105 

recently been reported30. South Africa is a prime example of a country undergoing 106 

rapid lifestyle and epidemiological transition. With the exception of the HIV/AIDS 107 

epidemic in the mid-1990s to the mid-2000s, over the past three decades South Africa 108 

has experienced a steadily decreasing mortality rate from infectious disease and an 109 
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increase in NCD31,32. Concomitantly, increasingly sedentary lifestyles and changes in 110 

dietary habits, including access to calorie-dense processed foods, contribute to a 111 

higher prevalence of obesity in many regions of South Africa32, a trend which 112 

disproportionately affects women33,34. 113 

This study presents the largest shotgun metagenomic dataset of African adults 114 

in the published literature to date. In this work, we describe microbial community-scale 115 

similarities between urban and rural communities in South Africa, as well as distinct 116 

hallmark taxa that distinguish each community. Additionally, we place South African 117 

populations in context with microbiome data from other populations from countries 118 

around the world, revealing the transitional nature of gut microbiome composition in 119 

the South African cohorts. We demonstrate that metagenomic assembly of short reads 120 

yields novel strain and species draft genomes. Finally, we apply Oxford Nanopore 121 

long-read sequencing to samples from the rural cohort and generate complete and 122 

near-complete genomes. These include genomes of species that are exclusive to, or 123 

more prevalent in, traditional populations, including Treponema and Prevotella species. 124 

As long-read sequencing enables more uniform coverage of AT-rich regions compared 125 

to short-read sequencing with transposase-based library preparation, we also generate 126 

complete metagenome-assembled AT-rich genomes from less well-described gut 127 

microbes including species in the phylum Melainabacteria, the class Mollicutes, and 128 

the genus Mycoplasma. 129 

Taken together, the results herein offer a more detailed description of gut 130 

microbiome composition in understudied transitioning populations, and present 131 

complete and contiguous reference genomes that will enable further studies of gut 132 

microbiota in nonwestern populations. Importantly, this study was developed with an 133 

ethical commitment to engaging both rural and urban community members to ensure 134 

that the research was conducted equitably (additional details in Supplemental 135 

Information). This work underscores the critical need to broaden the scope of human 136 

gut microbiome research and include understudied, nonwestern populations to 137 

improve the relevance and accuracy of microbiome discoveries to broader populations.  138 
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Results 139 

 140 

Cohorts and sample collection 141 

We enrolled 190 women aged between 40-72, living in rural villages in the 142 

Bushbuckridge Municipality (24.82°S, 31.26°E, n=132) and urban Soweto, 143 

Johannesburg (26.25°S, 27.85°E, n=58) and collected a one-time stool sample, as well 144 

as point of care blood glucose and blood pressure measurements and a rapid HIV test. 145 

As HIV status and exposure to antiretroviral medications can alter the microbiome and 146 

potentially confound analyses, only samples from HIV-negative individuals were 147 

analyzed further (n=118 Bushbuckridge, n=51 Soweto). Participants spanned a range 148 

of BMI from healthy to overweight; the most common comorbidity reported was 149 

hypertension, and many patients reported taking anti-hypertensive medication (18 of 150 

118 (15%) in Bushbuckridge, 15 of 51 (29%) in Soweto) (Table 1, Supplementary Table 151 

2). Additional medications are summarized in Supplementary Table 2. We extracted 152 

DNA from each stool sample and conducted 150 base pair (bp) paired-end sequencing 153 

on the Illumina HiSeq 4000 platform. A median of 34.6 million (M) raw reads were 154 

generated per sample (range 11.4-100 M), and a median of 14.9 M reads (range 4.2-155 

33.3 M) resulted after preprocessing including de-duplication, trimming, and human 156 

read removal (Supplementary Table 3). 157 

 158 

Gut microbial composition 159 

We taxonomically classified sequencing reads against a comprehensive custom 160 

reference database containing all microbial genomes in RefSeq and GenBank at 161 

“scaffold” quality or better as of January 2020 (177,626 genomes total). Concordant 162 

with observations from 16S rRNA gene sequencing of the same samples30, we find that 163 

Prevotella, Bacteroides, and Faecalibacterium are the most abundant genera in most 164 

individuals across both study sites (Figure 1A, Supplementary Fig. 1, Supplementary 165 

Table 4; species-level classifications in Supplementary Table 5). Additionally, in many 166 

individuals we observe taxa that are uncommon in western microbiomes, including 167 

members of the VANISH (Volatile and/or Associated Negatively with Industrialized 168 

Societies of Humans) taxa (families Prevotellaceae, Succinovibrionaceae, 169 
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Paraprevotellaceae, and Spirochaetaceae) such as Prevotella, Treponema, and 170 

Succinatimonas, which are higher in relative abundance in communities practicing 171 

traditional lifestyles compared to western industrialized populations8,35 (Figure 1B, 172 

Supplementary Table 4). The mean relative abundance of each VANISH genus is higher 173 

in Bushbuckridge than Soweto, though the difference is not statistically significant for 174 

Paraprevotella or Sediminispirochaeta (Figure 1B, two-sided Wilcoxon rank sum test). 175 

Within the Bushbuckridge cohort, we observe a bimodal distribution of the genera 176 

Succinatimonas, Succinivibrio, and Treponema (Supplementary Fig. 2A). While we do 177 

not identify any clinical or demographic features that associate with this distribution, 178 

we observe that VANISH taxa are weakly positively correlated with one another in 179 

metagenomes from both Bushbuckridge and Soweto (Supplementary Fig. 2B-C). 180 

Intriguingly, we observed that an increased proportion of reads aligned to the 181 

human genome during pre-processing in samples from Soweto compared to 182 

Bushbuckridge (Supplementary Fig. 3, two-sided Wilcoxon rank sum test p < 0.0001). 183 

This could potentially indicate higher inflammation and immune cell content or 184 

sloughing of intestinal epithelial cells in the urban Soweto cohort compared to rural 185 

Bushbuckridge. 186 

 187 

Rural and urban microbiomes cluster distinctly in MDS 188 

We hypothesized that lifestyle differences of those residing in rural 189 

Bushbuckridge versus urban Soweto might be associated with demonstrable 190 

differences in gut microbiome composition. Bushbuckridge and Soweto differ markedly 191 

in their population density (53 and 6,357 persons per km2 respectively as of the 2011 192 

census) as well as in lifestyle variables including the prevalence of flush toilets (6.8 vs 193 

91.6% of dwellings) and piped water (11.9 vs 55% of dwellings) (additional site 194 

demographic information  in Supplementary Table 6)36. Soweto is highly urbanized and 195 

has been so for several decades, while Bushbuckridge is classified as a rural 196 

community, although it is undergoing rapid epidemiological transition37,38. 197 

Bushbuckridge also has circular rural/urban migrancy typified by some (mostly male) 198 

members of a rural community working and living for extended periods in urban areas, 199 

while keeping their permanent rural home39. Although our participants all live in 200 
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Bushbuckridge, this migrancy in the community contributes to making the boundary 201 

between rural and urban lifestyles more fluid. Comparing the two study populations at 202 

the community level, we find that samples from the two sites have distinct centroids 203 

(PERMANOVA p < 0.001, R2 = 0.037) but overlap (Figure 2A), though we note that the 204 

dispersion of the Soweto samples is greater than that of the Bushbuckridge samples 205 

(PERMDISP2 p < 0.001). Across the study population we observe a gradient of 206 

Bacteroides and Prevotella relative abundance (Supplementary Fig. 4). This may be the 207 

result of differences in diet across the study population at both sites, as Bacteroides 208 

has been proposed as a biomarker of westernized lifestyles while Prevotella has been 209 

proposed as a biomarker of nonwestern lifestyles5,40,41. 210 

To determine if medication usage was associated with gut microbiome 211 

composition, we included each participant’s self-reported concomitant medications 212 

(summarized in Supplementary Table 2) to re-visualize the microbiome composition of 213 

samples in MDS by class of medication (Supplementary Fig. 5A,B). We find that self-214 

reported medication is not significantly correlated with community composition in this 215 

cohort after multiple hypothesis correction (PERMANOVA q > 0.05, Supplementary Fig. 216 

5C), though two drug classes are nominally significant before controlling the false 217 

discovery rate: proton pump inhibitors (PPIs) (p = 0.036) and anti-hyperglycemics (p = 218 

0.041). We note that both drug classes have previously been found to associate with 219 

changes in gut microbiome composition42–44: as only two participants self-report taking 220 

PPIs at the time of sampling, additional data are required to evaluate whether PPIs 221 

associate with microbiome composition in these South African populations. 222 

 223 

Rural and urban microbiomes differ in Shannon diversity and species 224 

composition 225 

Gut microbiome alpha diversity of individuals living traditional lifestyles has been 226 

reported to be higher than those living western lifestyles9,11,40. In keeping with this 227 

general trend, we find that alpha diversity (Shannon) is significantly higher in individuals 228 

living in rural Bushbuckridge than urban Soweto (Figure 2B; two-sided Wilcoxon rank 229 

sum test, p < 0.01). Using DESeq2 to identify microbial genera that are differentially 230 

abundant across study sites, we find that genera including Bacteroides, 231 
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Bifidobacterium, and Streptococcus are more abundant in individuals living in Soweto 232 

(Figure 2C, Supplementary Table 7, species shown in Supplementary Fig. 6). 233 

Interestingly, we find microbial genera enriched in gut microbiomes of individuals living 234 

in Bushbuckridge that are common to both the environment and the gut, including 235 

Streptomyces and Paenibacillus (Supplementary Table 7). Typically a soil-associated 236 

organism, Streptomyces encode a variety of biosynthetic gene clusters and can 237 

produce numerous immunomodulatory and anti-inflammatory compounds such as 238 

rapamycin and tacrolimus, and it has been suggested that decreased exposure to 239 

Streptomyces is associated with increased incidence of inflammatory disease and 240 

colon cancer in western populations45. In addition, we find enrichment of genera in 241 

Bushbuckridge that have been previously associated with nonwestern microbiomes 242 

including Succinatimonas, a relatively poorly-described bacterial genus with only one 243 

type species, and unclassified species of the phylum Elusimicrobia, which has been 244 

detected in the gut microbiome of rural Malagasy12. Additionally, Bushbuckridge 245 

samples are enriched for Cyanobacteria as well as Candidatus Melainabacter, a 246 

phylum closely related to Cyanobacteria that in limited studies has been described to 247 

inhabit the human gut46,47. 248 

In terms of the non-bacterial microbiome, we identify the bacteriophage 249 

crAssphage and related crAss-like phages48, which have recently been described as 250 

prevalent constituents of the gut microbiome globally49, in 32 of 51 participants (63%) 251 

in Soweto and 88 of 118 (75%) in Bushbuckridge (difference in prevalence between 252 

cohorts not significant, p = 0.14 Fisher’s exact test) using 650 sequence reads or 253 

roughly 1X coverage of the 97 kb genome as a threshold for binary categorization of 254 

crAss-like phage presence or absence. Prototypical crAssphage has been 255 

hypothesized to infect Bacteroides species and a crAss-like phage has been 256 

demonstrated to infect Bacteroides intestinalis. Though crAss-like phages do not differ 257 

between cohorts in terms of prevalence (presence/absence), we observe that 258 

crAssphage clade Delta from Guerin et al.48 is enriched in relative abundance in the gut 259 

microbiome of individuals living in Bushbuckridge compared to Soweto, supporting 260 

previous observations of geographic patterns of crAssphage clades (Figure 2C)49. 261 
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Our custom reference database of GenBank genomes paired with the kraken2 262 

classifier optimizes for sensitivity; thus, this approach was selected as the initial tool for 263 

classification of the sequencing data given the genomic novelty anticipated in this 264 

cohort. We note that broadly similar microbiome profiles are obtained using 265 

MetaPhlAn3, a marker-gene based tool with high specificity, (Supplementary Fig. 7) as 266 

well as classifications obtained using kraken2 and a publicly available build of the 267 

Genome Taxonomy Database (GTDB) release 9550,51. Notably, we observe higher 268 

Shannon diversity with the GTDB compared to both MetaPhlAn3 and our custom 269 

database, likely due to the fact that clades containing a large amount of genomic 270 

diversity (e.g. Escherichia coli) are split into separate clades in the GTDB. 271 

 272 

Differences in functional potential of the gut microbiome between populations 273 

Recognizing that functional annotations are likely biased toward well-studied 274 

organisms, we sought to identify differentially abundant functions in the gut 275 

microbiome of participants in Bushbuckridge and Soweto. 276 

We functionally profiled unassembled metagenomic reads to detect antibiotic 277 

resistance genes in these communities. Tetracycline resistance genes (tetW, tetQ, 278 

tetO, tetX, tet32, tet40) are broadly prevalent in both populations (Supplementary Fig. 279 

8) as is the CfxA6 beta-lactamase. We find that Soweto and Bushbuckridge differ in 280 

the distribution of relative abundance of 30 of 113 (27%) antibiotic resistance genes 281 

(Supplementary Fig. 8). Several multidrug efflux pump components and regulators 282 

(mdtB, mdtC, mdtF, mdtG, mdtL, mdtP, CRP) are enriched in participants in 283 

Bushbuckridge, whereas genes including SAT-4, which is a plasmid-encoded 284 

streptothricin resistance determinant, and CblA-1, which encodes a class A beta-285 

lactamase, are enriched in Soweto participants (Supplementary Fig. 8). 286 

We additionally annotated MetaCyc pathway abundance using HUMAnN v352 287 

(Supplementary Table 8). We find 68 MetaCyc pathways that are differentially abundant 288 

between Soweto and Bushbuckridge (q < 0.05) (Supplementary Fig. 9A). Some of 289 

these pathways correspond clearly to observed taxonomic differences between study 290 

sites, including enrichment of the Bifidobacterium shunt, a pathway for degradation of 291 

hexose sugars into short chain fatty acids53, in Soweto. Other differentially abundant 292 
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pathways include anaerobic degradation of 4-coumarate, a phenylpropanoid 293 

compound produced by plants and by catabolism of the amino acid tyrosine54.  294 

Additionally, the superpathway of phenylethylamine degradation is enriched in 295 

Bushbuckridge. Intriguingly, phenylethylamine is a central nervous system stimulant in 296 

humans and increased abundance of phenylethylamine has been observed in Crohn’s 297 

disease patients55. Peptidoglycan biosynthesis V pathway, involved in microbial 298 

resistance to beta-lactam antibiotics, is enriched in Soweto, consistent with results 299 

from antibiotic resistome profiling. 300 

In general, HUMAnN was only able to ascribe functions to taxonomy for a few 301 

well-studied genera including Escherichia and Klebsiella (Supplementary Fig. 9B). We 302 

hypothesize that this is due to gaps in reference genome collections as well as 303 

dissimilarity between strains of species that are common to reference collections and 304 

metagenomic data from this cohort. 305 

 306 

No strong signals of interaction between human DNA variation and microbiome 307 

content detected 308 

All participants in this study were recruited based on their participation in the 309 

first phase of the Africa Wits-INDEPTH partnership for Genomic Studies (AWI-Gen) 310 

study, which evaluated genomic and environmental risk factors for cardiometabolic 311 

disease in sub-Saharan African populations56. This study included human genome 312 

profiling of all participants using the Human Heredity and Health in Africa (H3Africa) 313 

single nucleotide polymorphism (SNP) array. While we have a very small sample size to 314 

assess interaction between human genetic variation and microbiome population, our 315 

study is one of the relatively few to characterize both human and microbiome DNA. 316 

Therefore, we performed association tests between key microbiome genera 317 

abundance levels and human SNPs. After correcting for multiple testing there were 318 

only a few human genomic SNPs with borderline statistically significant association 319 

with microbial genera abundance levels (Supplementary Table 9). These SNPs occur in 320 

genomic regions with no obvious connection to the gut microbiome (see Methods, 321 

Supplementary Information). Additionally, we observe that microbiome samples do not 322 

cluster by self-reported ethnicity of the participant (Supplementary Fig. 10). 323 
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 324 

South African gut microbiomes share taxa with western and nonwestern 325 

populations yet harbor distinct features 326 

To place the microbiome composition of South African individuals in global 327 

context with metagenomes from healthy adults living in other parts of the world, we 328 

compared publicly available data from five cohorts (Figure 3A, Supplementary Table 329 

10) comprising adult individuals living in the United States1, northern Europe 330 

(Sweden)57, agriculturalists living in Burkina Faso28 and rural Madagascar12, and the 331 

Hadza hunter-gatherers of Tanzania7. We grouped these datasets by lifestyle into the 332 

general categories of “nonwestern” (Tanzania, Madagascar, Burkina Faso), “western” 333 

(USA, Sweden), and South African (Bushbuckridge, Soweto). We note the caveat that 334 

these samples were collected at different times using different approaches, and that 335 

there is variation in DNA extraction, sequencing library preparation and sequencing, all 336 

of which may contribute to variation between studies. Recognizing this limitation, we 337 

observe that South African samples cluster between western and nonwestern 338 

populations in MDS (Figure 3B) as expected, and that the first axis of MDS correlates 339 

well with geography and lifestyle (Figure 3C). The relative abundance of 340 

Spirochaetaceae, Succinivibrionaceae, Bacteroidaceae, and Prevotellaceae are most 341 

strongly correlated with the first axis of MDS (Spearman’s rho > 0.75): Bacteroidaceae 342 

decreases with MDS 1 while Spirochaetaceae, Succinivibrionaceae, and Prevotellaceae 343 

increase (Figure 3B). We observe a corresponding pattern of decreasing relative 344 

abundance of other VANISH taxa across lifestyle and geography (Supplementary Fig. 345 

11). These observations suggest that the gut microbiome of South African cohorts is to 346 

some extent “intermediate” in composition when compared to cohorts at the extremes 347 

of western and nonwestern lifestyle. 348 

The two South African cohorts also have distinct differences from both 349 

nonwestern and western populations, as evidenced by displacement along the second 350 

axis of MDS (Figure 3B,C). To identify the taxa that drive this separation, we performed 351 

statistical analysis using DESeq2 to identify microbial genera that differed significantly 352 

in the South African cohort compared to both nonwestern and western categories (with 353 

the same directionality of effect in each comparison, e.g. enriched in South Africans 354 
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compared to both western and nonwestern groups) (Supplementary Fig. 12). We 355 

observe that taxa including Lactobacillus, Lactococcus, and Eggerthella are lower in 356 

relative abundance in South Africans compared to both western and nonwestern 357 

microbiomes. Conversely, Klebsiella and unclassified Christensenellaceae are enriched 358 

in South Africans. 359 

 360 

Within-species diversity across cohorts 361 

Having observed taxonomic differences at the species level between South 362 

Africans and other global populations, as well as between Soweto and Bushbuckridge, 363 

we hypothesized that strains of some species may differ between populations. We 364 

annotated the pangenome of the top six most abundant species on average across our 365 

cohorts and assessed whether pangenome content is significantly different between 366 

study sites (Supplementary Fig. 13). Interestingly, we find that F. prausnitzii, B. 367 

vulgatus, and E. siraeum indeed differ in pangenome content between Bushbuckridge 368 

and Soweto. Prevotella copri strains exhibit visible heterogeneity, but a PERMANOVA 369 

test is not significant after false discovery rate correction. 370 

 371 

Decreased sequence classifiability in nonwestern populations 372 

Given previous observations that gut microbiome alpha diversity is higher in 373 

individuals practicing traditional lifestyles3,6,58 and that immigration from Southeast Asia 374 

to the United States is associated with a decrease in gut microbial alpha diversity13, we 375 

hypothesized that alpha diversity would be higher in nonwestern populations, including 376 

South Africans, compared to western populations. We observe that Shannon diversity 377 

of the Tanzanian hunter-gatherer cohort is uniformly higher than all other populations 378 

(Figure 3D; q < 0.05 for all pairwise comparisons; FDR-adjusted two-sided Wilcoxon 379 

rank sum test) and that alpha diversity is lower in individuals living in the United States 380 

compared to all other cohorts (Figure 3D; q < 0.0001 for all pairwise comparisons; 381 

FDR-adjusted two-sided Wilcoxon rank sum test). Surprisingly, we observe 382 

comparable Shannon diversity between Madagascar and Sweden (q > 0.05, two-sided 383 

Wilcoxon rank sum test). However, this could be an artifact of incomplete 384 

representation of diverse microbes in existing reference collections. 385 
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Existing reference collections are known to be limited in their ability to classify 386 

metagenomic sequences from nonwestern gut microbiomes12,59, and we observe low 387 

sequence classifiability in nonwestern populations (Figure 4A). Therefore, we sought 388 

orthogonal validation of our observation that South African microbiomes represent a 389 

transitional state between traditional and western microbiomes and employed a 390 

reference-independent method to evaluate the nucleotide composition of sequence 391 

data from each metagenome. We used the sourmash workflow60 to compare 392 

nucleotide k-mer composition of sequencing reads in each sample and performed 393 

ordination based on angular distance, which accounts for k-mer abundance. Using a k-394 

mer length of 31 (k-mer similarity at k=31 correlates with species-level similarity61), we 395 

observe clustering reminiscent of the species ordination plot shown in Fig. 3, further 396 

supporting the hypothesis that South African microbiomes are transitional (Figure 4B). 397 

Previous studies have reported a pattern of higher alpha diversity but lower beta 398 

diversity in nonwestern populations compared to western populations9,62. 399 

Hypothesizing that alpha and beta diversity may be underestimated for populations 400 

whose gut microbes are not well-represented in reference collections, we compared 401 

beta diversity (distributions of within-cohort pairwise distances) calculated via species 402 

Bray-Curtis dissimilarity as well as nucleotide k-mer angular distance (Figure 4C-E). Of 403 

note, beta diversity is highest in Soweto irrespective of distance measure (Figure 4C). 404 

Intriguingly, in some cases we observe that the relationship of distributions of pairwise 405 

distance values changes depending on whether species or nucleotide k-mers are 406 

considered. For instance, considering only species content, Bushbuckridge has less 407 

beta diversity than Sweden, but this pattern is reversed when considering nucleotide k-408 

mer content (Figure 4D). Further, the same observation is true for the relationship 409 

between Madagascar and the United States (Figure 4E). Additionally, we compared 410 

species and nucleotide beta diversity within each population using Jaccard distance, 411 

which is computed based on shared and distinct features irrespective of abundance. In 412 

nucleotide k-mer space, all nonwestern populations have greater beta diversity than 413 

each western population (Supplementary Fig. 14), though this is not the case when 414 

species annotations are considered. This indicates that gut microbiomes in these 415 
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nonwestern cohorts have a longer “tail” of lowly abundant organisms which differ 416 

between individuals. 417 

These observations are critically important to our understanding of beta diversity 418 

in the gut microbiome in western and nonwestern communities. In summary, we find 419 

evidence to refute the existing dogma of an inverse relationship between alpha and 420 

beta diversity, and note that in some cases this existing generalization represents an 421 

artifact of limitations in reference databases used for sequence classification. 422 

 423 

Improving reference collections via metagenomic assembly 424 

Classification of metagenomic sequencing reads can be improved by 425 

assembling sequencing data into metagenomic contigs and grouping these contigs 426 

into draft genomes (binning), yielding metagenome-assembled genomes (MAGs). 427 

Notably, MAGs enable investigation of the genomes of uncultivatable organisms. While 428 

MAGs can suffer from incompleteness and contamination due to limitations of 429 

assembly and binning, software tools exist for evaluating MAG quality63. The majority of 430 

publications to date have focused on creating MAGs from short-read sequencing 431 

data12,59,64, but generation of high-quality MAGs from long-read data from stool 432 

samples has been recently reported65. To better characterize the genomes present in 433 

our samples, we assembled and binned shotgun sequencing reads from South African 434 

samples into MAGs. We generated 2419 MAGs (39 high-quality, 2038 medium-quality, 435 

and 342 low-quality)66 from 169 metagenomic samples (Supplementary Fig. 15A). 436 

Applying the criteria for near-complete genomes proposed by Nayfach et al. (≥90% 437 

complete, ≤5% contaminated, N50 ≥ 10 kb, average contig length ≥5 kb, ≤500 438 

contigs, ≥90% of contigs with ≥5X read depth), 832 of these genomes (34%) are 439 

designated near-complete. Filtering for completeness greater than 75% and 440 

contamination less than 10% and de-replicating at 99% average nucleotide identity 441 

(ANI) yielded a set of 1342 non-redundant medium-quality or better representative 442 

strain genomes. This de-replicated collection includes VANISH taxa genomes, 443 

including 94 Prevotella, 41 Prevotellamassilia, 39 Succinivibrio, and 10 Spirochaetota (4 444 

Treponema_D, 6 UBA9732) (Fig. 5A, Supplementary Fig. 15, Supplementary Table 11). 445 
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To assess the novelty of this collection compared to known diversity of MAGs, 446 

we compared our de-replicated MAG set to the Unified Human Gastrointestinal 447 

Genome Collection (UHGG)67. Of these 1342 representative strain genomes, 16 (1.2%) 448 

had less than 95% ANI to any genome in the full UHGG (Supplementary Fig. 15B) and 449 

15 of these were retained in the final species set when de-replicated at 95% ANI 450 

against UHGG species representatives (Supplementary Table 11) (two genomes with 451 

less than 95% ANI to the UHGG species representatives were within 95% ANI of each 452 

other and thus only one was retained after dereplication). These 15 genomes represent 453 

7 GTDB phyla (Supplementary Fig. 15C) and 13 of 15 genomes (87%) are from 454 

Bushbuckridge participants. 455 

An additional 38 of 1332 genomes (2.9%) were not novel when compared to the 456 

UHGG species representatives, but were assigned a higher genome quality score by 457 

dRep than the corresponding UHGG representative (Supplementary Table 11, genome 458 

scoring metrics in Methods and Olm et al. 2017). We note that ANI is calculated on the 459 

basis of regions that align between genomes, and therefore may systematically 460 

underestimate genomic novelty in this genome collection. 461 

Interestingly, many MAGs within this set represent organisms that are 462 

uncommon in Western microbiomes or not easily culturable, including organisms from 463 

the genera Treponema and Vibrio. As short-read MAGs are typically fragmented and 464 

exclude mobile genetic elements, we explored methods to create more contiguous 465 

genomes, with a goal of trying to better understand these understudied taxa. We 466 

performed long-read sequencing on three samples from participants in Bushbuckridge 467 

with an Oxford Nanopore MinION sequencer (taxonomic composition of the three 468 

samples shown in Supplementary Fig. 16). Samples were chosen for nanopore 469 

sequencing on the basis of molecular weight distribution and total mass of DNA (see 470 

Methods). One flow cell per sample generated an average of 19.71 Gbp of sequencing 471 

with a read N50 of 8,275 bp after basecalling. From our three samples, we generated 472 

741 nanopore MAGs (nMAGs), which yielded 35 non-redundant genomes when filtered 473 

for completeness greater than 50% and contamination less than 10%, and de-474 

replicated at 99% ANI (Table 2, Supplementary Fig. 17, Supplementary Table 12). 475 

Single-contig nMAGs were evaluated for GC skew to detect possible misassemblies. 476 
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All of the de-replicated nMAGs contained at least one full length 16S sequence, and 477 

the contig N50 of 28 nMAGs was greater than 1 Mbp.  478 

We compared assembly statistics between all MAGs and nMAGs, and found 479 

that while nMAGs were typically less complete when evaluated by CheckM, the 480 

contiguity of nanopore medium- and high-quality MAGs was an order of magnitude 481 

higher (mean nMAG N50 of 260.5 kb compared to mean N50 of medium- and high-482 

quality MAGs of 15.1 kb) at comparable levels of average coverage (Supplementary 483 

Fig. 17, Supplementary Fig. 18). We expect that CheckM under-calculates the 484 

completeness of nanopore MAGs due to the homopolymer errors common in nanopore 485 

sequencing, which result in frameshift errors when annotating genomes. Indeed, we 486 

observe that nanopore MAGs with comparable high assembly size and low 487 

contamination to short-read MAGs are evaluated by CheckM as having lower 488 

completeness (Supplementary Fig. 18).  489 

 490 

Novel genomes generated through nanopore sequencing 491 

When comparing the de-replicated medium- and high-quality nMAGs with the 492 

corresponding short-read MAG for the same organism, we find that nMAGs typically 493 

include many mobile genetic elements and associated genes that are absent from the 494 

short-read MAG, such as transposases, recombinases, phages, and antibiotic 495 

resistance genes (Figure 5A). Additionally, a number of the nMAGs are among the first 496 

contiguous genomes in their clade. For example, we assembled two single contig, 497 

megabase-scale genomes from the genus Treponema, a clade that contains various 498 

commensal and pathogenic species. Notably, Treponema is a genus within the 499 

Spirochaetes phylum, a VANISH taxa member that is often considered to be 500 

completely lost with industrialization9,11. While some members of the genus are known 501 

pathogens (T. pallidum), Treponema in non-industrialized communities is thought to 502 

serve as a mutualistic fiber degrader in response to different fiber-rich nonwestern 503 

diets9. The first of these genomes is a single-contig Treponema succinifaciens genome, 504 

classified as Treponema_D succinifaciens by GTDB. The type strain of T. 505 

succinifaciens, isolated from the swine gut68, is the only genome of this species 506 

currently available in public reference collections. Our T. succinifaciens genome is the 507 
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first complete genome of this species from the gut of a human. We assembled a 508 

second Treponema sp. (GTDB Treponema_D sp900541945; Supplementary Fig. 19), 509 

which contains a candidate natural product synthetic biosynthetic gene cluster (aryl 510 

polyene cluster) and shares 92.1% ANI with T. succinifaciens. Additionally, we 511 

assembled a 5.08 Mbp genome for Lentisphaerae sp., which has been shown to be 512 

significantly enriched in traditional populations69. This genome also contains an aryl 513 

polyene biosynthetic gene cluster and multiple beta-lactamases, and shares 94% 16S 514 

rRNA identity with Victivallis vadensis and is classified as Victivallis sp900550905 by 515 

the GTDB, suggesting a new species or genus of the family Victivallaceae and 516 

representing the second closed genome for the phylum Lentisphaerae.  517 

Other nMAGs represent organisms that are prevalent in western individuals but 518 

challenging to assemble due to their genome structure. Despite the prevalence of 519 

Bacteroides in western microbiomes, only three closed B. vulgatus genomes are 520 

available in RefSeq. We assembled a single contig, 2.68 Mbp Bacteroides vulgatus 521 

(GTDB Parabacteroides sp900549585) genome that is 65.0% complete and 2.7% 522 

contaminated and contains at least 16 putative insertion sequences, which may 523 

contribute to the lack of contiguous short-read assemblies for this species. Similarly, 524 

we assembled a single-contig genome for Catabacter sp., a member of the order 525 

Clostridiales (GTDB CAG-475 sp900550915 of the Christensenellales order); the most 526 

contiguous Catabacter genome in GenBank is in five scaffolded contigs70. The putative 527 

Catabacter sp. shares 85% ANI with the best match in GenBank, suggesting that it 528 

represents a new species within the Catabacter genus or a new genus entirely, and it 529 

contains a sactipeptide biosynthetic gene cluster. Additionally, we assembled a 3.29 530 

Mbp genome for Prevotella sp. (N50 = 1.14 Mbp), a highly variable genus that is 531 

prevalent in nonwestern microbiomes and associated with a range of effects on host 532 

health71. Notably, the first closed genomes of P. copri, a common species of Prevotella, 533 

were only recently assembled with nanopore sequencing of metagenomic samples; 534 

one from a human stool sample 65 and the other from cow rumen72. P. copri had 535 

previously evaded closed assembly from short-read sequence data due to the dozens 536 

of repetitive insertion sequences within its genome65. This Prevotella assembly contains 537 
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cephalosporin and beta-lactam resistance genes, as well as an aryl polyene 538 

biosynthetic gene cluster. 539 

Many long-read assembled genomes were evaluated to be of low completeness 540 

despite having contig N50 values greater than 1 Mbp. Analysis showed that many of 541 

these genomes had sparse or uneven short-read coverage, leading to gaps in short-542 

read polishing that would otherwise correct small frameshift errors. To polish genomic 543 

regions that were not covered with short-reads, we performed long-read polishing on 544 

assembled contigs from each sample, and re-binned polished contigs. Long-read 545 

polishing improved the completeness of many organisms that are not commonly 546 

described in the gut microbiota, due perhaps to their low relative abundance in the 547 

average human gut, or to biases in shotgun sequencing library preparation that limit 548 

their detection. For example, we generated a 2 Mbp Melainabacteria genome (GTDB 549 

species UMGS1477 sp900552205 of the family Gastranaerophilaceae). 550 

Melainabacteria is a non-photosynthetic phylum closely related to Cyanobacteria that 551 

has been previously described in the gut microbiome and is associated with 552 

consuming a vegetarian diet47. Melainabacteria have proven difficult to isolate and 553 

culture, and the only complete, single-scaffold genome existing in RefSeq was 554 

assembled from shotgun sequencing of a human fecal sample47. Interestingly, our 555 

Melainabacteria genome has a GC content of 30.9%, and along with assemblies of a 556 

Mycoplasma sp. (GTDB CAG_460 sp000437315 of class Bacilli) (25.3% GC) and 557 

Mollicutes sp. (GTDB Tener-01 sp001940985 of the class Bacilli) (28.1% GC) 558 

(Supplementary Fig. 20), represent AT-rich organisms that can be underrepresented in 559 

shotgun sequencing data due to the inherent GC bias of transposon insertion and 560 

amplification-based sequencing approaches73 (Supplementary Fig. 21, Supplementary 561 

Fig. 22). Altogether, these three genomes increased in completeness by an average of 562 

28.5% with long-read polishing to reach an overall average of 70.9% complete. While 563 

these genomes meet the accepted standards to be considered medium-quality, it is 564 

possible that some or all of these highly contiguous, megabase scale assemblies are 565 

complete or near-complete yet underestimated by CheckM, for example due to 566 

incomplete polishing.  567 
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Altogether, we find that de novo assembly approaches are capable of 568 

generating contiguous, high-quality assemblies for novel organisms, offering potential 569 

for investigation into the previously unclassified matter in the microbiomes of these 570 

nonwestern communities. In particular, nanopore sequencing produced contiguous 571 

genomes for organisms that are difficult to assemble due to repeat structures 572 

(Prevotella sp., Bacteroides vulgatus), as well as for organisms that are AT-rich 573 

(Mollicutes sp., Melainabacteria sp.). We observe that long-reads capture a broader 574 

range of taxa both at the read and assembly levels when compared to short-read 575 

assemblies, and that short- and long-read polishing approaches yield medium-quality 576 

or greater draft genomes for these organisms. This illustrates the increased visibility 577 

that de novo assembly approaches lend to the study of the full array of organisms in 578 

the gut microbiome.  579 

  580 
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Discussion 581 

Together with Oduaran et al., we provide the first description of gut microbiome 582 

composition in Soweto and Bushbuckridge, South Africa, and to our knowledge, the 583 

first effort utilizing shotgun and nanopore sequencing in South Africa to describe the 584 

gut microbiome of adults. In doing so, we increase global representation in microbiome 585 

research and provide a baseline for future studies of disease association with the 586 

microbiome in South African populations, and in other transitional populations. 587 

We find that gut microbiome composition differs demonstrably between the 588 

Bushbuckridge and Soweto cohorts, further highlighting the importance of studying 589 

diverse communities with differing lifestyle practices. Interestingly, even though gut 590 

microbiomes of individuals in Bushbuckridge and Soweto share many features and are 591 

more similar to each other than to other global cohorts studied, we do observe 592 

hallmark taxa associated with westernization are enriched in microbiomes in Soweto. 593 

These include Bacteroides and Bifidobacterium, which have been previously 594 

associated with urban communities3, consistent with Soweto’s urban locale in the 595 

Johannesburg metropolitan area.  596 

We also observe enrichment in relative abundance of crAssphage and crAss-like 597 

viruses in Soweto relative to Bushbuckridge, with relatively high prevalence in both 598 

cohorts yet lower abundance on average of crAssphage clades alpha and delta 599 

compared to several other populations. This furthers recent work which revealed that 600 

crAssphage is prevalent across many cohorts globally49, but found relatively fewer 601 

crAssphage sequences on the African continent, presumably due to paucity of 602 

available shotgun metagenomic data. Just as shotgun metagenomic sequence data 603 

enables the study of viruses, it also enables us to assess the relative abundance of 604 

human cells or damaged human cells in the stool. Surprisingly, we observe a high 605 

relative abundance of human DNA in the raw sequencing data. We find a statistically 606 

significantly higher relative abundance of human DNA in samples from Soweto 607 

compared to those from Bushbuckridge. Future research may help illuminate the 608 

potential reason for this finding, which may include a higher proportion of epithelium 609 

disruption by invasive bacteria or parasites in Soweto vs. Bushbuckridge, and in South 610 

Africa, in general, compared to other geographic settings. Alternatively, this may also 611 
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be attributable to a higher baseline of intestinal inflammation and fecal shedding of 612 

leukocytes. Without additional information, it is difficult to speculate the reason for this 613 

finding. 614 

We find that individuals in Bushbuckridge are enriched in VANISH taxa including 615 

Succinatimonas, which was recently reported to associate with microbiomes from 616 

individuals practicing traditional lifestyles12. Intriguingly, several VANISH taxa 617 

(Succinatimonas, Succinivibrio, Treponema) are bimodally distributed in the 618 

Bushbuckridge cohort. We hypothesize that this bimodality could be caused by 619 

differences in lifestyle and/or environmental factors including diet, history of 620 

hospitalization or exposure to medicines, physical properties of the household 621 

dwelling, differential treatment of drinking water across the villages comprising 622 

Bushbuckridge. Additionally this pattern may be explained by participation in migration 623 

to and from urban centers (or sharing a household with a migratory worker). A higher 624 

proportion of men in the community engage in this pattern of rural-urban migration39, 625 

but it is possible that sharing a household with a cyclical worker could influence gut 626 

microbiome composition via horizontal transmission74. 627 

Despite the fact that host genetics explain relatively little of the variation in 628 

microbiome composition75, we do observe a small number of taxa that associate with 629 

host genetics in this population. Future work is required for replication and to 630 

determine whether these organisms are interacting with the host and whether they are 631 

associated with host health. 632 

Additionally, we demonstrate marked differences between South African cohorts 633 

and other previously studied populations living on the African continent and western 634 

countries. Broadly, we find that South African microbiomes reflect the transitional 635 

nature of their communities in that they overlap with western and nonwestern 636 

populations. Tremendous human genetic diversity exists within Africa76, and our work 637 

reveals that there is a great deal of as yet unexplored microbiome diversity as well. In 638 

fact, we find that microbiome beta diversity within communities may be systematically 639 

underestimated by incomplete reference databases: taxa that are unique to individuals 640 

in nonwestern populations are not present in reference databases and therefore not 641 

included in beta diversity calculations. Though it has been reported that nonwestern 642 
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and traditional populations tend to have higher alpha diversity but lower beta diversity 643 

compared to western populations, we show that this pattern is not universally upheld 644 

when reference-agnostic nucleotide comparisons are performed. By extension, we 645 

speculate that previous claims that beta diversity inversely correlates with alpha 646 

diversity may have been fundamentally limited by study design in some cases. 647 

Specifically, the disparity between comparing small, homogenous African populations 648 

with large, heterogenous western ones constitutes a significant statistical confounder, 649 

potentially preventing a valid assessment of beta diversity between groups. 650 

Furthermore, alpha and beta diversity comparisons based on species-level taxonomic 651 

assignment may be further confounded due to the presence of polyphyletic clades in 652 

organisms like Prevotella copri26,77 which are highly abundant in gut microbiomes of 653 

nonwestern individuals. Notably, we also demonstrate that the notion of a “western-654 

nonwestern” axis of microbiome variation is over-simplified: we find taxa that are 655 

enriched in South Africans relative to both western and hunter-gatherer/agriculturalist 656 

cohorts. 657 

Advances in sequencing technology are enhancing our ability to more 658 

thoroughly characterize microbiomes using culture-free approaches. Through a 659 

combination of short-read and long-read sequencing, we successfully assembled 660 

contiguous, complete genomes for many organisms that are underrepresented in 661 

reference databases, including genomes that are commonly considered to be enriched 662 

in or limited to populations with traditional lifestyles including members of the VANISH 663 

taxa (e.g., Treponema sp., Treponema succinifaciens). The phylum Spirochaetes, 664 

namely its constituent genus Treponema, is considered to be a marker of traditional 665 

microbiomes and has not been detected in high abundance in human microbiomes 666 

outside of those communities11,69. Here, we identify Spirochaetes in the gut microbiome 667 

of individuals in urban Soweto, demonstrating that this taxon is not exclusive to 668 

traditional, rural populations, though we observe that relative abundance is higher on 669 

average in traditional populations. Generation of additional genomes of VANISH taxa 670 

and incorporation of these genomes into reference databases will allow for increased 671 

sensitivity to detect these organisms in metagenomic data. Additionally, these 672 

genomes facilitate comparative genomics of understudied gut microbes and allow for 673 
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functional annotation of potentially biologically relevant functional pathways. We note 674 

that many of these genomes (e.g., Melainabacteria, Succinatimonas) are enriched in 675 

the gut microbiota of Bushbuckridge participants relative to Soweto, highlighting the 676 

impact of metagenomic assembly to better resolve genomes present in rural 677 

populations. 678 

In addition to investigating members of the VANISH taxa, long-read sequencing 679 

enables the study of AT-rich genomes, which are difficult to sequence using 680 

transposon-based library construction approaches common in short-read studies. 681 

Thus, using long-read sequencing, we produced genomes for organisms that exist on 682 

the extremes of the GC content spectrum, such as Mycoplasma sp., Mollicutes sp., 683 

and Melainabacteria sp. We find that these organisms are sparsely covered by short-684 

read sequencing, illustrating the increased range of non-amplification based 685 

sequencing approaches, such as nanopore sequencing. Interestingly, these 686 

assemblies are evaluated as only medium-quality by CheckM despite having low 687 

measurements of contamination, as well as genome lengths and gene counts 688 

comparable to reference genomes from the same phylogenetic clade. We hypothesize 689 

that sparse short-read coverage leads to incomplete polishing and therefore retention 690 

of small frameshift errors, which are a known limitation of nanopore sequencing78. 691 

Further evaluation of 16S or long-read sequencing of traditional and western 692 

populations can identify whether these organisms are specific to certain lifestyles, or 693 

are more prevalent but poorly detected with shotgun sequencing. 694 

While we find that the gut microbiome composition of the two South African 695 

cohorts described herein reflects their lifestyle transition, we acknowledge that these 696 

cohorts are not necessarily representative of all transitional communities in South 697 

Africa or other parts of the world which differ in lifestyle, diet, and resource access. 698 

Hence, further work remains to describe the gut microbiota in detail of other such 699 

understudied populations. This includes a detailed characterization of parasites 700 

present in microbiome sequence data, an analysis that we did not undertake in this 701 

study but would be of great interest. These organisms have been detected in the 702 

majority of household toilets in nearby KwaZulu-Natal province79, and may interact with 703 

and influence microbiota composition80.   704 
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Our study has several limitations. Although the publicly available sequence data 705 

from other global cohorts were generated with similar methodology to our study, it is 706 

possible that batch effects exist between datasets generated in different laboratories 707 

that may explain some percentage of the global variation we observe. Additionally, 708 

while nanopore sequencing is able to broaden our range of investigation, we illustrate 709 

that our ability to produce well-polished genomes at GC content extremes is limited. 710 

This may affect our ability to accurately call gene lengths and structures, although 711 

iterative long-read polishing improves our confidence in these assemblies. Future 712 

investigation of these communities using less biased, higher coverage short-read 713 

approaches or more accurate long-read sequencing approaches, such as PacBio 714 

circular consensus sequencing, may improve assembly qualities. Additionally, long-715 

read sequencing of samples from a wider range of populations can identify whether the 716 

genomes identified herein are limited to traditional and transitional populations, or 717 

more widespread. Further, future improvements in error rate of long-read sequencing 718 

may obviate the need for short-read polishing altogether.  719 

Taken together, our results emphasize the importance of generating sequence 720 

data from diverse transitional populations to contextualize studies of health and 721 

disease in these individuals. To do so with maximum sensitivity and precision, 722 

reference genomes must be generated to classify sequencing reads from these 723 

metagenomes. Herein, we demonstrate the discrepancies in microbiome sequence 724 

classifiability across global populations and highlight the need for more comprehensive 725 

reference collections. Recent efforts have made tremendous progress in improving the 726 

ability to classify microbiome data through creating new genomes via metagenomic 727 

assembly12,59,64, and here we demonstrate the application of short- and long-read 728 

metagenomic assembly techniques to create additional genome references. Our 729 

application of long-read sequencing technology to samples from South African 730 

individuals has demonstrated the ability to generate highly contiguous MAGs and 731 

shows immense potential to expand our reference collections and better describe 732 

microbiomes throughout diverse populations globally. In the future, microbiome 733 

studies may use a combination of short- and long-read sequencing to maximize 734 

information output, perhaps performing targeted nanopore or other long-read 735 
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sequencing of samples that are likely to contain the most novelty on the basis of short-736 

read data. 737 

The present study was conducted in close collaboration between site staff and 738 

researchers in Bushbuckridge and Soweto as well as microbiome experts both in 739 

South Africa and the United States, and community member feedback was invited and 740 

incorporated at multiple phases in the planning and execution of the study (see 741 

Oduaran et al. 2020 and Supplemental Information for additional detail). Tremendous 742 

research efforts have produced detailed demographic and health characterization of 743 

individuals living in both Bushbuckridge and Soweto32,56,81,82 and it is our hope that 744 

microbiome data can be incorporated into this knowledge framework in future studies 745 

to uncover disease biomarkers or microbial associations with other health and lifestyle 746 

outcomes. More broadly, we feel that this is an example of a framework for conducting 747 

microbiome studies in an equitable manner, and we envision a system in which future 748 

studies of microbiome composition can be carried out to achieve detailed 749 

characterization of microbiomes globally while maximizing benefit to all participants 750 

and researchers involved. 751 

  752 
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Methods 753 

Cohort selection 754 

Stool samples were collected from women aged 40-72 years in Soweto, South 755 

Africa and Bushbuckridge Municipality, South Africa. Participants were recruited on the 756 

basis of participation in AWI-Gen1, a previous study in which genotype and extensive 757 

health and lifestyle survey data were collected. Human subjects research approval was 758 

obtained (Stanford IRB 43069, University of the Witwatersrand Human Research Ethics 759 

Committee M160121, Mpumalanga Provincial Health Research Committee 760 

MP_2017RP22_851) and informed consent was obtained from participants for all 761 

samples collected. Stool samples were collected and preserved in OmniGene Gut 762 

OMR-200 collection kits (DNA Genotek). Samples were frozen within 60 days of 763 

collection as per manufacturer's instructions, followed by long-term storage at -80°C. 764 

As the enrollment criteria for our study included previous participation in a larger 765 

human genomics project1, we had access to self-reported ethnicity for each participant 766 

(BaPedi, Ndebele, Sotho, Tsonga, Tswana, Venda, Xhosa, Zulu, Other, or Unknown). 767 

Samples from participants who tested HIV-positive or who did not consent to an HIV 768 

test were not analyzed.  769 

Metagenomic sequencing of stool samples 770 

DNA was extracted from stool samples using the QIAamp PowerFecal DNA Kit 771 

(QIAGEN) according to the manufacturer’s instructions except for the lysis step, in 772 

which samples were lysed using the TissueLyser LT (QIAGEN) (30 second 773 

oscillations/3 minutes at 30Hz). DNA concentration of all DNA samples was measured 774 

using Qubit Fluorometric Quantitation (DS DNA High-Sensitivity Kit, Life Technologies). 775 

DNA sequencing libraries were prepared using the Nextera XT DNA Library Prep Kit 776 

(Illumina). Final library concentration was measured using Qubit Fluorometric 777 

Quantitation and library size distributions were analyzed with the Bioanalyzer 2100 778 

(Agilent). Libraries were multiplexed and 150 base pair paired-end reads were 779 

generated on the HiSeq 4000 platform (Illumina). Samples with greater than 780 

approximately 300 ng remaining mass and a peak fragment length of greater than 781 
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19,000 bp (with minimal mass under 4,000 bp) as determined by a TapeStation 2200 782 

(Agilent Technologies, Santa Clara, CA) were selected for nanopore sequencing. 783 

Nanopore sequencing libraries were prepared using the 1D Genomic DNA by Ligation 784 

protocol (ONT, Oxford UK) following standard instructions. Each library was sequenced 785 

with a full FLO-MIN106D R9 Version Rev D flow cell on a MinION sequencer for at least 786 

60 hours.  787 

Literature review 788 

Literature review criteria based on Brewster et al. 2019 2 were employed: PubMed, 789 

EMBASE, SCOPUS, and Web of Science were queried for observational and 790 

interventional research involving the human gut microbiome through January 2021. 791 

Terms including “gut microbiome” and “gut microbiota” and names of each of the 54 792 

African countries were included in the search. Primary reports on the gut microbiome in 793 

African children and/or adults, utilizing either 16S rRNA or shotgun metagenomic 794 

sequencing and written in English, were included. Abstracts, secondary reports, poster 795 

presentations, reviews or editorials, and in vivo and in vitro studies were excluded. The 796 

list of relevant articles yielded by this search strategy was manually reviewed. 797 

Computational methods 798 

Preprocessing and taxonomy profiling 799 
Stool metagenomic sequencing reads were trimmed using TrimGalore v0.6.53 800 

with a minimum quality score of 30 for trimming (--q 30) and minimum read length of 801 

60 (--length 60). Trimmed reads were deduplicated to remove PCR and optical 802 

duplicates using htstream SuperDeduper v1.2.0 with default parameters. Reads 803 

aligning to the human genome (hg19) were removed using BWA v0.7.17-r11884. 804 

Taxonomy profiles were created with Kraken v2.0.9-beta with default parameters5 and 805 

(i) a comprehensive custom reference database containing all bacterial and archaeal 806 

genomes in GenBank assembled to “complete genome,” “chromosome,” or “scaffold” 807 

quality as of January 2020, and (ii) the pre-built Struo6 GTDB release 95 database 808 

containing one genome per species. Bracken v2.2.0 was then used to re-estimate 809 
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abundance at each taxonomic rank7. MetaPhlAn38 taxonomy profiles were also 810 

generated. 811 

 812 

Additional data 813 

Published data from additional adult populations were downloaded from the 814 

NCBI Sequence Read Archive (SRA) or European Nucleotide Archive (Supplementary 815 

Table 9) and preprocessed and taxonomically classified as described above. The study 816 

by Backhed et al. sampled both mothers and infants: only the maternal samples were 817 

retained in this study. For datasets containing longitudinal samples from the same 818 

individual, one unique sample per individual was chosen (the first sample from each 819 

individual was chosen from the United States Human Microbiome Project cohort). 820 

 821 

K-mer sketches 822 

K-mer sketches were computed using sourmash v2.0.09. Low abundance k-823 

mers were trimmed using the “trim-low-abund.py” script from the khmer package10 824 

with a k-mer abundance cutoff of 3 (-C 3) and trimming coverage of 18 (-Z 18). 825 

Signatures were computed for each sample using the command “sourmash compute” 826 

with a compression ratio of 1000 (--scaled 1000) and k-mer lengths of 21, 31, and 51 (-827 

k 21,31,51). Two signatures were computed for each sample - one signature tracking 828 

k-mer abundance (--track-abundance flag) for angular distance comparisons, and one 829 

without this flag for Jaccard distance comparisons. Signatures at each length of k were 830 

compared using “sourmash compare” with default parameters and the correct length 831 

of k specified with the -k flag. 832 

 833 

Functional annotation 834 

Unassembled metagenomic reads were functionally profiled using ShortBRED11 835 

v0.9.3 with a pre-built antibiotic resistance database based on the Comprehensive 836 

Antibiotic Resistance Database12. Features were pre-filtered for >10% prevalence and 837 

statistical analysis was performed using MaAsLin v213 using the compound Poisson 838 

linear model (CPLM) and total sum scaling normalization with “site” as a fixed effect. 839 
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Pangenomes were calculated with PanPhlAn v3.1 8 using parameters for 840 

increased sensitivity recommended by the authors of the tool: “--min_coverage 1 --841 

left_max 1.70 --right_min 0.30”. 842 

MetaCyc pathways were profiled with HUMAnN v3.0.08 with default parameters, 843 

using the mpa_v30_CHOCOPhlAn_201901 database. Forward and reverse reads were 844 

concatenated into one file per sample prior to processing. Pathway abundances were 845 

normalized to copies per million (CPM) and statistical analysis was performed using 846 

MaAsLin v2 using the compound Poisson linear model (CPLM) and total sum scaling 847 

normalization with “site” as a fixed effect. 848 

 849 

Genome assembly, binning, and evaluation 850 

Short-read metagenomic data were assembled with SPAdes v3.1514 and binned 851 

into draft genomes using a publicly available workflow 852 

(https://github.com/bhattlab/bhattlab_workflows/blob/master/binning/bin_das_tool_ma853 

nysamp.snakefile, commit version bbe6511 as of Apr 20, 2021). Briefly, short reads 854 

were aligned to assembled contigs with BWA v0.7.174 and contigs were subsequently 855 

binned into draft genomes with MetaBAT v2.1515, CONCOCT v1.1.0 16, and MaxBin 856 

v2.2.717. Default parameters were used for each binner, with the following exceptions: 857 

For the jgi_summarize_bam_contig_depths step of MetaBAT, minimum contig length 858 

was set at 1000 bp (--minContigLength 1000), minimum contig depth of coverage of 1 859 

(--minContigDepth 1), and a minimum end-to-end percent identity of reads of 50 (--860 

percentIdentity 50). Bins were aggregated and refined with DASTool v1.1.118. Bins were 861 

evaluated for size, contiguity, completeness, and contamination with QUAST v5.0.219, 862 

CheckM v1.0.1320, Prokka v1.14.621, Aragorn v1.2.3822, and Barrnap v0.9 863 

(https://github.com/tseemann/barrnap/). We referred to published guidelines to 864 

designate genome quality23. Individual contigs from all assemblies were assigned 865 

taxonomic classifications with Kraken v2.0.95,23. To create de-replicated genome 866 

collections, genomes with completeness greater than 75% and contamination less 867 

than 10% (as evaluated by CheckM) were de-replicated using dRep v3.2.024 with ANI 868 

threshold to form secondary clusters (-sa) at 0.99 (strain-level) or 0.95 (species-level). 869 

For comparison to UHGG species representatives secondary ANI was set to 0.95. 870 
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dRep chooses the genome with the highest score as the cluster representative 871 

according to the following formula: dRep score = A*Completeness - B*Contamination + 872 

C*(Contamination*(Strain heterogeneity / 100)) + D*log(N50) + E*log(size) + F*(centrality- 873 

secondary ani). A through F are values which can be tuned by the user to change the 874 

relative importance of each parameter in choosing representative genomes. Default 875 

parameters (A=1, B=5, C=1, D=0.5, E=0, F=1) were used herein. 876 

Long-read data were assembled with Lathe25 as previously described. Briefly, 877 

Lathe implements basecalling with Guppy v2.3.5, assembly with Flye v2.4.226, short-878 

read polishing with Pilon v1.2327, and circularization with Circlator28 and Encircle25. 879 

Contigs greater than 1,000 bp were subsequently binned into draft genomes with 880 

MetaBAT v2.13 using minimum contig depth coverage of 1, minimum end-to-end 881 

percent identity of reads of 50, and otherwise using default parameters, then classified, 882 

and de-replicated as described above. Additional long-read polishing was performed 883 

using four iterations of polishing with Racon v1.4.1029 and long-read alignment using 884 

minimap2 v2.17-r94130, followed by one round of polishing with Medaka v0.11.5 885 

(https://github.com/nanoporetech/medaka). Single-contig genomes were analyzed for 886 

GC skew using SkewIT31. Genomes of interest were plotted with the DNAPlotter GUI 32. 887 

Draft genomes were additionally classified with GTDBtk v1.4.1 (classify_wf)33 888 

using release 95 reference data. 889 

Direct comparisons between nMAGs and corresponding MAGs were performed 890 

by de-replicating high- and medium-quality nMAGs with MAGs assembled from the 891 

same sample. MAGs sharing at least 99% ANI with an nMAG were aligned to the 892 

nMAG regions using nucmer v3.1 and uncovered regions of the nMAG were annotated 893 

with prokka 1.14.6, VIBRANT v1.2.134, and ResFams v1.235.  894 

 Phylogenetic trees for all dereplicated short- and long-read MAGs were 895 

constructed with GTDBtk v1.4.1. To construct phylogenetic trees for taxa of interest, 896 

reference 16S sequences were downloaded from the Ribosomal Database Project 897 

(Release 11, update 5, September 30, 2016)37 and 16S sequences were identified from 898 

nanopore genome assemblies using Barrnap v0.9 899 

(https://github.com/tseemann/barrnap/). Sequences were aligned with MUSCLE 900 

v3.8.155138 with default parameters. Maximum-likelihood phylogenetic trees were 901 
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constructed from the alignments with FastTree v2.1.1038,39 with default settings (Jukes-902 

Cantor + CAT model). Support values for branch splits were calculated using the 903 

Shimodaira-Hasegawa test with 1,000 resamples (default). Trees were visualized with 904 

FigTree v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/). 905 

 906 

Statistical analysis and plotting 907 

Statistical analyses were performed using R v4.0.240 with packages MASS v7.3-5341, 908 

stats40, ggsignif v0.6.042, and ggpubr v0.4.043. Alpha and beta diversity were calculated 909 

using the vegan package v2.6.044. Two-sided Wilcoxon rank-sum tests were used to 910 

compare alpha and beta diversity between cohorts. Count data were rarefied and 911 

normalized via cumulative sum scaling and log2 transformation45 prior to MDS. Data 912 

separation in MDS was assessed via PERMANOVA (permutation test with pseudo F 913 

ratios) using the adonis function from the vegan package. Differential microbial features 914 

between individuals living in Soweto and Bushbuckridge were identified from 915 

unnormalized count data output from kraken2 classification and bracken abundance 916 

re-estimation and filtered for 20% prevalence and at least 500 sequencing reads using 917 

DESeq2 with the formula “~site”46. Plots were generated in R using the following 918 

packages: cowplot v1.0.047, DESeq2 v1.28.046, genefilter v1.70.048, ggplot2 v3.3.249, 919 

ggpubr v0.4.0, ggrepel v0.8.250, ggsignif v0.6.0, gtools v3.8.251, harrietr v0.2.352, MASS 920 

v7.3-53, reshape2 v1.4.453, tidyverse v1.3.054, and vegan v2.6.0. 921 

Data availability 922 

All shotgun sequence data generated by this study, as well as metagenome-923 

assembled genome sequences are deposited in the NCBI Sequence Read Archive 924 

under BioProject PRJNA678454. Participant-level metadata (age, BMI, blood pressure 925 

measurements, and concomitant medications) and human genetic data will be 926 

deposited in the European Genome-phenome Archive (EGA) under Study ID 927 

EGAS00001002482 and dataset ID EGAD0000100658. 928 
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Code availability 929 

R code for analysis and figure generation is available at 930 

https://github.com/bhattlab/SouthAfrica. Data analysis workflows referenced in 931 

Methods are available at https://github.com/bhattlab/bhattlab_workflows.  932 
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Main Tables 981 

Table 1. Participant characteristics 982 

 983 

 Site Mean Standard deviation Range 

Age Bushbuckridge 55.2 7.9 43.0 - 72.0 

Soweto 54.1 5.9 43.0 - 64.0 

BMI* Bushbuckridge 32.4 8.0 21.2 - 59.0 

Soweto 36.1 9.3 20.4 - 58.6 

Systolic blood 
pressure** 

Bushbuckridge 137.0 18.3 101.3 - 189.3 

Soweto 134.5 22.5 96.0 - 193.0 

Diastolic blood 
pressure** 

Bushbuckridge 83.7 12.1 54.0 - 119.0 

Soweto 90.0 14.4 58.0 - 119.0 

*One Bushbuckridge participant’s BMI measurement was excluded as the recorded value was too low to 984 
be physiologically possible and deemed to have been recorded in error. We could not validate the 985 
correct BMI for this participant and thus have omitted them from the BMI summary statistics. 986 
**A second participant from Bushbuckridge had missing blood pressure measurements and is not 987 
included in blood pressure summary statistics 988 
 989 
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 990 
Table 2. Medium- and high-quality genomes assembled from nanopore sequencing 991 

 992 

Classification GTDB Classification Size (Mb) Contigs N50 (Mb) Quality 16S rRNAs GC % GC Skew Polishing 

Alistipes putredinis 
d__Bacteria;p__Bacteroidota;c__Bacteroidia;o__Bacteroidales;f__Rikenellac
eae;g__;s__ 1.91 1 1.91 Medium-quality 2 53.1 0.96 Short Read Only 

Anaerotruncus sp. 
d__Bacteria;p__Firmicutes_A;c__Clostridia;o__Oscillospirales;f__Acutalibact
eraceae;g__Eubacterium_R;s__Eubacterium_R sp000433975 2.04 1 2.04 Medium-quality 2 43.71 0.94 Short Read Only 

Bacilli bacterium 
d__Bacteria;p__Firmicutes;c__Bacilli;o__RF39;f__CAG-302;g__CAG-
302;s__CAG-302 sp900548425 1.46 1 1.46 Medium-quality 1 26.19 0.93 Short Read Only 

Bacteroidales 
bacterium 

d__Bacteria;p__Bacteroidota;c__Bacteroidia;o__Bacteroidales;f__Paludibact
eraceae;g__RF16;s__RF16 sp900556095 2.67 2 1.8 High-quality 3 47.31 NA Short Read Only 

Bacteroidales 
bacterium 

d__Bacteria;p__Bacteroidota;c__Bacteroidia;o__Bacteroidales;f__Muribacula
ceae;g__CAG-279;s__CAG-279 sp000437795 2.79 1 2.79 High-quality 4 49.82 0.92 Short Read Only 

Bacteroidales 
bacterium 

d__Bacteria;p__Bacteroidota;c__Bacteroidia;o__Bacteroidales;f__Rikenellac
eae;g__Alistipes;s__Alistipes sp900546065 1.7 1 1.7 Medium-quality 1 56.6 0.7 Short Read Only 

Bacteroides sp. 
d__Bacteria;p__Bacteroidota;c__Bacteroidia;o__Bacteroidales;f__UBA932;g
__RC9;s__RC9 sp000432655 2 2 1.59 High-quality 3 48.24 NA Short Read Only 

Bacteroides sp. 
d__Bacteria;p__Bacteroidota;c__Bacteroidia;o__Bacteroidales;f__Bacteroida
ceae;g__Phocaeicola;s__Phocaeicola sp000434735 2.82 2 2 Medium-quality 6 43.31 NA Short Read Only 

Bacteroides vulgatus 
d__Bacteria;p__Bacteroidota;c__Bacteroidia;o__Bacteroidales;f__Tannerella
ceae;g__Parabacteroides;s__Parabacteroides sp900549585 2.68 1 2.68 Medium-quality 3 42.71 0.84 Short Read Only 

Candidatus 
Melainabacteria 

d__Bacteria;p__Cyanobacteria;c__Vampirovibrionia;o__Gastranaerophilales;f
__Gastranaerophilaceae;g__UMGS1477;s__UMGS1477 sp900552205 2 1 2 Medium-quality 1 30.9 0.32 Short and Long 

Catabacter sp. 
d__Bacteria;p__Firmicutes_A;c__Clostridia_A;o__Christensenellales;f__CAG
-917;g__CAG-475;s__CAG-475 sp900550915 1.65 1 1.65 Medium-quality 1 46.4 0.87 Short and Long 

Clostridiales 
bacterium 

d__Bacteria;p__Firmicutes_A;c__Clostridia_A;o__Christensenellales;f__CAG
-74;g__UBA11524;s__UBA11524 sp000437595 2.03 4 0.6 Medium-quality 4 57.9 NA Short Read Only 

Clostridiales 
bacterium 

d__Bacteria;p__Firmicutes_A;c__Clostridia_A;o__Christensenellales;f__CAG
-917;g__CAG-349;s__CAG-349 sp003539515 1.53 1 1.53 Medium-quality 1 47.28 0.94 Short Read Only 

Clostridiales 
bacterium 

d__Bacteria;p__Firmicutes_A;c__Clostridia_A;o__Christensenellales;f__CAG
-138;g__PeH17;s__PeH17 sp000435055 1.95 4 0.73 Medium-quality 3 49.59 NA Short Read Only 

Clostridiales 
bacterium 

d__Bacteria;p__Firmicutes_A;c__Clostridia;o__Oscillospirales;f__CAG-
272;g__CAG-724;s__ 2.24 5 0.58 Medium-quality 2 48.65 NA Short Read Only 

Clostridiales 
bacterium 

d__Bacteria;p__Firmicutes_A;c__Clostridia;o__UMGS1810;f__UMGS1810;g
__;s__ 2.65 1 2.65 Medium-quality 3 42.82 0.69 Short Read Only 
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Clostridiales 
bacterium 

d__Bacteria;p__Firmicutes_A;c__Clostridia_A;o__Christensenellales;f__Borkf
alkiaceae;g__UBA1259;s__ 1.32 2 0.79 Medium-quality 1 45.19 NA Short Read Only 

Clostridiales 
bacterium 

d__Bacteria;p__Firmicutes_A;c__Clostridia_A;o__Christensenellales;f__CAG
-917;g__CAG-349;s__CAG-349 sp003539515 1.61 1 1.61 Medium-quality 1 46.9 0.94 Short Read Only 

Clostridium sp. 
d__Bacteria;p__Firmicutes;c__Bacilli;o__RF39;f__CAG-1000;g__CAG-
1000;s__ 1.53 1 1.53 Medium-quality 1 25.24 0.89 Short Read Only 

Clostridium sp. 
d__Bacteria;p__Firmicutes_A;c__Clostridia_A;o__Christensenellales;f__CAG
-917;g__CAG-349;s__CAG-349 sp003539515 1.3 1 1.3 Medium-quality 1 46.87 0.8 Short Read Only 

Clostridium sp. 
d__Bacteria;p__Firmicutes;c__Bacilli;o__Acholeplasmatales;f__Anaeroplasm
ataceae;g__;s__ 2.01 1 2.01 Medium-quality 3 28.81 0.92 Short Read Only 

Clostridium sp. 
d__Bacteria;p__Firmicutes;c__Bacilli;o__RF39;f__CAG-1000;g__CAG-
533;s__CAG-533 sp000434495 1.14 1 1.14 Medium-quality 1 29.09 0.7 Short Read Only 

Clostridium sp. 
d__Bacteria;p__Firmicutes_A;c__Clostridia;o__Oscillospirales;f__Acutalibact
eraceae;g__CAG-177;s__CAG-177 sp000431775 2.44 2 2.23 High-quality 3 52.53 NA Short Read Only 

Eubacterium 
d__Bacteria;p__Firmicutes_A;c__Clostridia;o__Oscillospirales;f__Acutalibact
eraceae;g__UMGS1532;s__UMGS1532 sp900552605 2 4 0.63 Medium-quality 2 44.52 NA Short Read Only 

Lachnospiraceae 
bacterium 

d__Bacteria;p__Firmicutes_A;c__Clostridia;o__Lachnospirales;f__Lachnospir
aceae;g__CAG-95;s__ 3.38 2 1.94 Medium-quality 4 43.55 NA Short Read Only 

Lachnospiraceae 
bacterium 

d__Bacteria;p__Firmicutes_A;c__Clostridia;o__Lachnospirales;f__Lachnospir
aceae;g__CAG-95;s__CAG-95 sp000438155 3.81 7 2.83 Medium-quality 4 43.56 NA Short Read Only 

Lentisphaeria 
bacterium 

d__Bacteria;p__Verrucomicrobiota;c__Lentisphaeria;o__Victivallales;f__Victiv
allaceae;g__Victivallis;s__Victivallis sp900550905 5.08 1 5.08 Medium-quality 3 57.5 0.69 Short and Long 

Mollicutes bacterium 
d__Bacteria;p__Firmicutes;c__Bacilli;o__ML615J-28;f__CAG-698;g__Tener-
01;s__Tener-01 sp001940985 1.68 2 1.49 Medium-quality 2 28.1 NA Short and Long 

Mycoplasma sp. 
d__Bacteria;p__Firmicutes;c__Bacilli;o__RF39;f__CAG-1000;g__CAG-
460;s__CAG-460 sp000437315 1.17 3 1.12 Medium-quality 2 25.3 NA Short and Long 

Oscillibacter sp. 
d__Bacteria;p__Firmicutes_A;c__Clostridia;o__Oscillospirales;f__Oscillospira
ceae;g__Oscillibacter;s__Oscillibacter sp001916835 1.13 10 0.17 Medium-quality 1 57.37 NA Short Read Only 

Porphyromonadacea
e bacterium 

d__Bacteria;p__Bacteroidota;c__Bacteroidia;o__Bacteroidales;f__Muribacula
ceae;g__C941;s__C941 sp004557565 2.97 1 2.97 Medium-quality 5 47.43 0.76 Short Read Only 

Prevotella sp. 
d__Bacteria;p__Bacteroidota;c__Bacteroidia;o__Bacteroidales;f__Bacteroida
ceae;g__Prevotella;s__Prevotella sp000434515 3.29 3 1.14 Medium-quality 6 43.6 NA Short and Long 

Ruminococcaceae 
bacterium 

d__Bacteria;p__Firmicutes_A;c__Clostridia;o__Oscillospirales;f__Acutalibact
eraceae;g__Ruminococcus_E;s__Ruminococcus_E sp003526955 1.95 3 0.8 Medium-quality 4 38.35 NA Short Read Only 

Ruminococcaceae 
bacterium 

d__Bacteria;p__Firmicutes_A;c__Clostridia_A;o__Christensenellales;f__QAL
W01;g__UMGS1338;s__UMGS1338 sp900550805 2.27 1 2.27 High-quality 3 51.43 0.91 Short Read Only 

Ruminococcaceae 
bacterium 

d__Bacteria;p__Firmicutes_A;c__Clostridia;o__Oscillospirales;f__CAG-
272;g__CAG-448;s__ 1.78 1 1.78 Medium-quality 3 58.25 0.63 Short Read Only 

Treponema sp. d__Bacteria;p__Spirochaetota;c__Spirochaetia;o__Treponematales;f__Trepo 2.06 1 2.06 Medium-quality 3 41.55 0.93 Short Read Only 
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nemataceae;g__Treponema_D;s__Treponema_D sp900541945 

Treponema 
succinifaciens 

d__Bacteria;p__Spirochaetota;c__Spirochaetia;o__Treponematales;f__Trepo
nemataceae;g__Treponema_D;s__Treponema_D succinifaciens 2.55 1 2.55 High-quality 4 39.12 0.82 Short Read Only 

uncultured 
Ruminococcus 

d__Bacteria;p__Firmicutes_A;c__Clostridia;o__Oscillospirales;f__Acutalibact
eraceae;g__CAG-180;s__CAG-180 sp004556705 1.59 2 1.34 Medium-quality 2 44 NA Short Read Only 

uncultured 
Ruminococcus 

d__Bacteria;p__Firmicutes_A;c__Clostridia;o__Oscillospirales;f__Ruminococ
caceae;g__CAG-353;s__CAG-353 sp900066885 2.08 1 2.08 Medium-quality 5 46.85 0.69 Short Read Only 

993 
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 994 

Figures 995 

 996 
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Figure 1. Taxonomic composition of South African study participants 997 

Sequence data were taxonomically classified using Kraken2 with a database 998 

containing all genomes in GenBank of “scaffold” quality or better as of January 2020. 999 

 (A) Top 20 genera by relative abundance for samples from participants in 1000 

Bushbuckridge and Soweto, sorted by decreasing Prevotella abundance. Prevotella, 1001 

Faecalibacterium, and Bacteroides are the most prevalent genera across both study 1002 

sites. 1003 

 (B) Relative abundance of VANISH genera by study site, grouped by family. A 1004 

pseudocount of 1 read was added to each sample prior to relative abundance 1005 

normalization in order to plot on a log scale, as the abundance of some genera in some 1006 

samples is zero. Relative abundance values of most VANISH genera are higher on 1007 

average in participants from Bushbuckridge than Soweto (Two-sided Wilcoxon rank-1008 

sum test, significance values denoted as follows: (*) p < 0.05, (**) p < 0.01, (***) p < 1009 

0.001, (****) p < 0.0001, (ns) not significant). For box plots, lower and upper hinges 1010 

correspond to the first and third quartiles, upper and lower box plot whiskers represent 1011 

the highest and lowest values within 1.5 times the interquartile range, and the 1012 

horizontal line represents the median.  1013 
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 1014 

 1015 
Figure 2. Comparison of Bushbuckridge and Soweto microbiomes 1016 

 (A) Multidimensional scaling of pairwise Bray-Curtis distance between samples 1017 

(rarefied to 1.44M counts per sample to control for read depth and CSS normalized). 1018 

Soweto samples have greater dispersion than Bushbuckridge (PERMDISP2 p < 0.001). 1019 
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 (B) Shannon diversity calculated on rarefied species-level taxonomic classifications for 1020 

each sample. Samples from Bushbuckridge are higher in alpha diversity than samples 1021 

from Soweto (Two-sided Wilcoxon rank-sum test, p < 0.05). For box plots, lower and 1022 

upper hinges correspond to the first and third quartiles, upper and lower box plot 1023 

whiskers represent the highest and lowest values within 1.5 times the interquartile 1024 

range, and the horizontal line represents the median. 1025 

 (C) DESeq2 identifies microbial genera that are differentially abundant in rural 1026 

Bushbuckridge compared to the urban Soweto cohort. Features with log2 fold change 1027 

greater than one are plotted (full results in Supplementary Table 7). 1028 
  1029 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2021. ; https://doi.org/10.1101/2020.05.18.099820doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.18.099820
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

43 
 

 1030 
Figure 3. Community-level comparison of global microbiomes 1031 

Comparisons of South African microbiome data to microbiome sequence data from 1032 

four publicly available cohorts representing western (United States, Sweden) and 1033 

nonwestern (Tanzania, Madagascar, Burkina Faso) populations. 1034 

 (A) Number of participants per cohort. 1035 

 (B) Multidimensional scaling of pairwise Bray-Curtis distance between samples from 1036 

six datasets of healthy adult shotgun microbiome sequencing data. Western 1037 
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populations (Sweden, United States) cluster away from African populations practicing a 1038 

traditional lifestyle (Madagascar, Tanzania, Burkina Faso) while transitional South 1039 

African microbiomes overlap with both western and nonwestern populations. Shown 1040 

below are scatterplots of relative abundance of the top four taxa most correlated with 1041 

MDS 1 (Spearman’s rho, Spirochaetaceae -0.824, Succinivibrionaceae -0.804, 1042 

Bacteroidaceae 0.769, and Prevotellaceae -0.752) against MDS 1 on the x-axis. 1043 

 (C) Box plots of the first axis of MDS (MDS 1) which correlates with geography and 1044 

lifestyle, and the second axis of MDS (MDS 2) which shows a distinct separation of 1045 

South African cohorts. 1046 

(D) Shannon diversity across cohorts. Shannon diversity was calculated from data 1047 

rarefied to the number of counts of the lowest sample. 1048 

For box plots in (C) and (D), lower and upper hinges correspond to the first and third 1049 

quartiles, upper and lower box plot whiskers represent the highest and lowest values 1050 

within 1.5 times the interquartile range, and the horizontal line represents the median. 1051 

 1052 

  1053 
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Figure 4. Comparison of beta diversity between communities calculated by 1055 

taxonomy versus nucleotide k-mer composition 1056 

 (A) Percentage of reads classified at any taxonomic rank, by cohort, based on a 1057 

reference database of all reference genomes of “scaffold” quality or higher in GenBank 1058 

and RefSeq as of January 2020. Western microbiomes have a higher percentage of 1059 

classifiable reads compared to nonwestern microbiomes (Two-sided Wilcoxon rank-1060 

sum test p < 0.001). 1061 

 (B) Nucleotide sequences of microbiome sequencing reads were compared using k-1062 

mer sketches. This reference-free approach is not constrained by comparison to 1063 

existing genomes and therefore allows direct comparison of sequences. Briefly, a hash 1064 

function generates signatures at varying sequence lengths (k) and k-mer sketches can 1065 

be compared between samples. Data shown here are generated from comparisons at 1066 

k=31 (approx. species-level)61. Non-metric multidimensional scaling (NMDS) of angular 1067 

distance values computed between each pair of samples. 1068 

 (C-E) Comparison of pairwise beta diversity within communities assessed by Bray-1069 

Curtis distance based on species-level classifications and angular distance of 1070 

nucleotide k-mer sketches. (C) All populations. (D) South African populations 1071 

(Bushbuckridge and Soweto) compared to the Swedish cohort. Beta diversity 1072 

measured by Bray-Curtis distance is higher in Soweto but lower in Bushbuckridge 1073 

compared to the United States. However, reference-independent k-mer comparisons 1074 

indicate that nucleotide dissimilarity is higher within both South African populations 1075 

compared to the Swedish cohort. (E) Species-based Bray-Curtis distance indicates 1076 

that there is more beta diversity within the United States cohort compared to 1077 

Malagasy, but k-mer distance indicates an opposite pattern. 1078 

For all box plots in (A), (C), (D), and (E), lower and upper hinges correspond to the first 1079 

and third quartiles, upper and lower box plot whiskers represent the highest and lowest 1080 

values within 1.5 times the interquartile range, and the horizontal line represents the 1081 

median. Significance values for two-sided Wilcoxon rank sum tests denoted as follows: 1082 

(*) p < 0.05, (**) p < 0.01, (***) p < 0.001, (****) p < 0.0001. 1083 

  1084 
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 1085 
Figure 5. Complete and contiguous genomes of South African microbiota 1086 

(A) Phylogenetic tree of dereplicated short-read MAGs and medium- and high-quality 1087 

nanopore MAGs (green circles). Innermost ring indicates GTDB phylum, middle ring 1088 

indicates study site associated with each MAG, and outer ring indicates the highest 1089 

average nucleotide identity between each MAG and genomes from UHGG. 1090 

(B) A selection of MAGs assembled from long-read sequencing (green) of three South 1091 

African samples compared contigs assembled from corresponding short read data 1092 

(grey). Third track (pink) indicates sliding genomic GC content, and fourth track (yellow) 1093 

indicates sliding genomic GC skew. Breaks in circles represent different contigs. 1094 

Genomic information within plots refer to assembly statistics of nanopore MAGs.  1095 

 (C) Number of additional genomic elements present in medium- and high-quality 1096 

nanopore MAGs that are absent in corresponding short-read MAGs for the same 1097 

organism, as diagrammed in the left hand panel. Box plot lower and upper hinges 1098 
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correspond to the first and third quartiles, upper and lower box plot whiskers represent 1099 

the highest and lowest values within 1.5 times the interquartile range, and the 1100 

horizontal line represents the median. 1101 

 (B) Taxonomic of de-replicated medium- and high-quality nanopore MAGs. Black 1102 

circles represent nanopore MAGs, at the highest level of taxonomic classification by 1103 

GTDB. 1104 

  1105 
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Supplementary Figures 1106 

 1107 
Supplementary Figure 1. Most abundant species and genera 1108 
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Most abundant taxa by mean relative abundance (total sum scaling) shown for samples 1109 

from Bushbuckridge (n=117) and Soweto (n=51). Taxa are plotted in decreasing order 1110 

of mean relative abundance (vertical line) calculated across both cohorts combined. 1111 

Lower and upper box plot hinges correspond to the first and third quartiles, upper and 1112 

lower box plot whiskers represent the highest and lowest values within 1.5 times the 1113 

interquartile range, and the vertical line represents the median. 1114 

 (A) The most abundant species are Prevotella copri, Faecalibacterium prausnitzii, and a 1115 

bacterium from the family Ruminococcaceae. 1116 

 (B) Prevotella, Bacteroides, and Faecalibacterium are the most abundant genera 1117 

across both study sites.  1118 
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 1119 
Supplementary Figure 2. Bimodal distribution of three VANISH taxa 1120 

 (A) Succinatimonas, Succinivibrio, and Treponema relative abundance values follow a 1121 

bimodal distribution in Bushbuckridge. 1122 
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Across all South African samples, several VANISH families (B) and genera (C) are 1123 

correlated, with the exception of Prevotella and genera of the family Spirochaetaceae 1124 

which are not correlated with Prevotella (Treponema) or weakly anti-correlated with 1125 

Prevotella (Spirochaeta, Sphaerochaeta, Sediminispirochaeta).  1126 
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 1127 
Supplementary Figure 3. Abundance of human reads in metagenomic sequencing 1128 

 (A) Histogram and (B) box plots indicating that the proportion of human reads removed 1129 

after deduplication was found to be higher in the Soweto cohort compared to 1130 

Bushbuckridge (Two-sided Wilcoxon rank sum test, p = 1.661e-12). Significance 1131 

values for Wilcoxon rank sum tests denoted as (****) for p < 0.0001. Lower and upper 1132 

box plot hinges correspond to the first and third quartiles, upper and lower box plot 1133 
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whiskers represent the highest and lowest values within 1.5 times the interquartile 1134 

range, and the vertical line represents the median. 1135 
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 1137 

 1138 
Supplementary Figure 4. Bacteroides/Prevotella gradient across study population 1139 

Multidimensional scaling ordination of Bray-Curtis distance calculated from species 1140 

classifications in South African microbiome samples (CSS normalized) colored by log2 1141 

ratio of the relative abundance of the genera Bacteroides and Prevotella. Bacteroides 1142 

and Prevotella are major axes of variation across study samples. 1143 
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Supplementary Figure 5: Concomitant medications do not substantially impact 1146 

community composition 1147 

Multidimensional scaling ordination of Bray-Curtis distance calculated from species 1148 

classifications. Circles indicate participants from Bushbuckridge, triangles indicate 1149 

participants from Soweto. 1150 

(A) Points are colored red if the participant was taking a medication of the 1151 

corresponding class, patients not taking a medication of that class are shown in gray. 1152 

(B) Specific antibiotics taken by participants. Points are colored according to the 1153 

antibiotic or combination of antibiotics reported. 1154 

(C) PERMANOVA R2 values and nominal and adjusted p-values for the variation 1155 

explained by each drug class. Pr(>F) is the unadjusted p-value associated with the 1156 

PERMANOVA F statistic, and FDR is the adjusted p-value to control the false discovery 1157 

rate. 1158 
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 1160 

 1161 
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Supplementary Figure 6. Differentially abundant species between Bushbuckridge 1162 

and Soweto 1163 

Differentially abundant microbial species between rural Bushbuckridge and urban 1164 

Soweto samples identified by DESeq2. Features with log2 fold change greater than 1165 

one are shown (full results in Supplementary Table 7). Note that differentially abundant 1166 

microbial genera are presented in Figure 2C. 1167 

 1168 

 1169 
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Supplementary Figure 7: GTDB yields increased taxonomic precision and alpha 1172 

diversity 1173 

(A) Genus-level taxonomy using the MetaPhlAn3 classifier and database. 1174 

(B) Genus-level taxonomy using the Genome Taxonomy Database (GTDB) release 95. 1175 

(C) Shannon diversity across our custom GenBank database, the GTDB, and 1176 

MetaPhlAn3. Shannon diversity is significantly higher using the GTDB as a reference 1177 

collection compared to the custom GenBank database (Two-sided Wilcoxon rank sum 1178 

test, p = 4.929e-06) and MetaPhlAn3 (Two-sided Wilcoxon rank sum test, p < 2.2e-16). 1179 

Significance values for Wilcoxon rank sum tests denoted in the plot as (****) to 1180 

represent p < 0.0001. 1181 
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 1183 
Supplementary Figure 8: Differentially abundant antibiotic resistance genes 1184 

between Bushbuckridge and Soweto 1185 

Antibiotic resistance genes were profiled using shortBRED against the Comprehensive 1186 

Antibiotic Resistance Database (CARD). The shortBRED profiles were generated by 1187 

grouping genes by CARD antibiotic resistance ontology (ARO) accession. 1188 
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(A) Heatmap showing log-transformed RPKM (reads per kilobase per million) values for 1189 

antibiotic resistance genes in the gut metagenome of each participant. Columns 1190 

(participants) are clustered by Canberra distance, rows (genes) are clustered by 1191 

Euclidean distance. 1192 

(B) Differentially abundant antibiotic resistance genes in Bushbuckridge (BBR) versus 1193 

Soweto (SWT). RPKM profiles were compared between study sites using MaAsLin v2 1194 

and p-values were adjusted to control the false discovery rate (FDR). Of 113 antibiotic 1195 

resistance genes tested, 30 with q < 0.05 are shown. 1196 

(C) Full CARD names for AROs whose names were truncated for plotting purposes in 1197 

(A) and (B).  1198 
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 1199 
Supplementary Figure 9: Differential MetaCyc pathways between Bushbuckridge 1200 

and Soweto 1201 

(A) MetaCyc pathways were profiled with HUMAnN v3 and differentially abundant 1202 

pathways were identified using MaAsLin v2. 424 of 484 features (88%) met the 10% 1203 

prevalence cutoff and 68 of 424 features (16%) were significantly differentially 1204 

abundant between Bushbuckridge and Soweto with a q-value < 0.05. 37 features with 1205 

q-value < 0.05 and coefficient >0.5 in either direction are shown. 1206 

(B) Stratified pathway composition by taxon for each significant MetaCyc pathway. 1207 
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 1209 

 1210 
Supplementary Figure 10. South African microbiomes do not cluster by self-1211 

reported ethnicity 1212 

Multidimensional scaling ordination of Bray-Curtis distance with samples are colored 1213 

by self-reported ethnicity. Samples do not cluster by self-reported ethnicity.  1214 
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 1215 
Supplementary Figure 11. Relative abundance of VANISH taxa in global cohort 1216 

Relative abundance of VANISH genera from the families Prevotellaceae, 1217 

Spirochaetaceae, and Succinivibrionaceae. A pseudo-percent was substituted for zero 1218 

values in order to plot on a log scale. Relative abundance values for most genera trend 1219 
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toward decreasing from nonwestern cohorts to western cohorts. Box plot lower and 1220 

upper hinges correspond to the first and third quartiles, upper and lower whiskers 1221 

represent the highest and lowest values within 1.5 times the interquartile range, and 1222 

the horizontal line represents the median. 1223 
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 1225 
Supplementary Figure 12. Microbial genera enriched or depleted in South 1226 

Africans relative to other cohorts 1227 

Samples were grouped by geographic region into “western” (USA, Sweden), 1228 

“nonwestern” (Tanzania, Madagascar, Burkina Faso) and “South African” 1229 

(Bushbuckridge, Soweto) and genera which distinguish the South African group from 1230 
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the western and nonwestern groups were determined using DESeq2. Genera present 1231 

with at least 500 counts in 20% of samples were considered (190 features total). 14 1232 

features with the same directionality of log2 fold change with respect to South Africa in 1233 

both comparisons, with a minimum log2 fold change of 2 in each comparison, are 1234 

shown. A pseudo-percent was added to zero values for plotting. Box plot lower and 1235 

upper hinges correspond to the first and third quartiles, upper and lower whiskers 1236 

represent the highest and lowest values within 1.5 times the interquartile range, and 1237 

the horizontal line represents the median. 1238 

 1239 
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 1241 

 1242 
Supplementary Figure 13: Pangenomes of South African metagenomic strains 1243 

(A) Multidimensional scaling (MDS) plots of Jaccard distance between pangenome 1244 

content of the six most abundant bacteria cohort-wide as measured by MetaPhlAn3. 1245 

(B) PERMANOVA results testing the null hypothesis that the centroids of 1246 

Bushbuckridge and Soweto sample pangenomes differ in location. PR(>F) signifies the 1247 

unadjusted p-value for the F statistic and FDR signifies p-values adjusted to control the 1248 

false discovery rate.  1249 
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 1250 
Supplementary Figure 14. Cohort-wise beta diversity computed via Jaccard 1251 

distance 1252 

Comparison of pairwise beta diversity within each cohort based on Jaccard distance 1253 

between species abundance counts and nucleotide k-mer sketches. Nonwestern 1254 

populations have greater beta diversity than western populations considering 1255 

nucleotide k-mer composition. Box plot lower and upper hinges correspond to the first 1256 

and third quartiles, upper and lower whiskers represent the highest and lowest values 1257 

within 1.5 times the interquartile range, and the horizontal line represents the median. 1258 
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 1260 
Supplementary Figure 15: Novel short-read MAGs 1261 
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:"C'$0+'($*3$KLMN$/,0123(3$4-5$OPMN$/,-(40&-4(35Q$@7$:"C'$0+'($*3$RSMN$1266 

/,0123(3?$TLN$/,-(40&-4(35?$4-5$84D3$4$/,-(&A$@LM$R$PM$9*?$4D3)4A3$/,-(&A$23-A(8$RL$1267 

9*?$TLMM$/,-(&A'?$4-5$RSMN$,.$/,-(&A'$;&(8$RLU$)345$531(8Q$B>$:"C'$0+'($*3$KSMN$1268 

/,0123(3?$OLN$/,-(40&-4(35?$4-5$84D3$4($234'($PV$(F@"$A3-3'$4-5$4($234'($,-3$34/8$1269 

,.$(83$LG?$PWG?$4-5$XYG$)F@"$A3-3'J 1270 

(B) Distribution of FastANI average nucleotide identity values from each MQ or HQ 1271 

MAG to the most closely related genome in the Unified Human Gastrointestinal 1272 

Genome collection (UHGG). Not pictured are ten MQ MAGs with insufficient identity to 1273 

any genome in UHGG such that FastANI could not be calculated. Box plot lower and 1274 

upper hinges correspond to the first and third quartiles, upper and lower whiskers 1275 

represent the highest and lowest values within 1.5 times the interquartile range, and 1276 

the horizontal line represents the median. 1277 

(C) Taxonomic classifications of “novel” MAGs from this study with <95% ANI to any 1278 

genome in UHGG. Classifications according to GTDBtk using release 95 data. 1279 

 1280 
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Supplementary Figure 16. Taxonomic composition for samples selected for 1282 

nanopore sequencing 1283 

Short-read sequencing-based GTDB taxonomic classifications for the three samples 1284 

selected for Nanopore sequencing, (A) Bushbuckridge 106, (B), Bushbuckridge 108, (C) 1285 

Bushbuckridge 113. Species- and genus-level classifications shown for each sample. 1286 

Top thirty taxa by relative abundance shown in each plot. Symbols indicate whether a 1287 

medium- or high-quality short-read (*) or nanopore MAG (†) was assembled from the 1288 

corresponding genus or species in the short read metagenomic data. 1289 

 1290 
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 1292 

 1293 

1294 
Supplementary Figure 17. Summary statistics for Illumina and nanopore MAGs 1295 

generated from all samples. 1296 

 (A) Number of low-, medium-, and high-quality genomes as evaluated with Bowers et 1297 

al. standards  1298 

 (B) Distribution of MAG percent completeness as determined by CheckM. 1299 

 (C) Distribution of MAG percent contamination as determined by CheckM. 1300 

 (D) Distribution of MAG N50. 1301 

In all panels, box plot lower and upper hinges correspond to the first and third 1302 

quartiles, upper and lower whiskers represent the highest and lowest values within 1.5 1303 

times the interquartile range, and the horizontal line represents the median. 1304 
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1305 
Supplementary Figure 18. Summary statistics of nanopore and short read MAGs 1306 

generated for three Bushbuckridge samples 1307 

 (A) MAG short read or long-read coverage versus MAG N50. 1308 

 (B) MAG total size versus MAG N50. Grey line indicates where genome N50 equals 1309 

total genome size.  1310 
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 1312 
Supplementary Figure 19. Phylogeny of Treponema 16S rRNA sequences 1313 

Phylogeny of 16S rRNA sequences from species of the genus Treponema show that 1314 

the Treponema sp. assembled via Nanopore sequencing is most related to T. 1315 

succinifaciens, but is phylogenetically distinct. Branch labels indicate Shimodaira-1316 

Hasegawa support values for splits. 1317 

 1318 

 1319 

 1320 
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 1322 
Supplementary Figure 20. Phylogeny of Mollicutes 16S rRNA sequences 1323 
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Phylogeny of 16S rRNA sequences from species of the class Mollicutes showing the 1324 

Mollicutes and Mycoplasma genomes assembled via nanopore sequencing. Branch 1325 

labels indicate Shimodaira-Hasegawa support values for splits. 1326 

 1327 

1328 
Supplementary Figure 21. GC content of MAGs and nMAGs generated from three 1329 

Bushbuckridge samples 1330 

 (A) GC content range of MAGs and nMAGs. 1331 

 (B) nMAGs with contig N50 values greater than one megabase. GC content of low-1332 

quality nMAGs is lower than the GC content of high-quality nMAGs, despite nMAGs of 1333 

all quality having N50 values of higher than one megabase. (*) denotes p$T$MJML?$(;,<1334 

'&535$H&2/,Z,-$)4-9$'+0$(3'(J 1335 

In both panels, box plot lower and upper hinges correspond to the first and third 1336 

quartiles, upper and lower whiskers represent the highest and lowest values within 1.5 1337 

times the interquartile range, and the horizontal line represents the median.1338 

 1339 
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Supplementary Figure 22. GC content of nanopore and Illumina sequencing reads 1340 

generated from three Bushbuckridge samples 1341 

GC content was calculated for all processed Illumina reads (average length of 126 bp) 1342 

and for 126 bp windows of all nanopore reads. GC content distribution was 1343 

subsampled to 100,000 measurements per method. 1344 
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