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Abstract

Background: Interest in genomic medicine for human health studies and clinical
applications is rapidly increasing. Clinical applications require contamination-free
samples to avoid misleading results and provide a sound basis for diagnosis.

Results: Here we present ContaTester, a tool which requires only allele balance
information gathered from a VCF file to detect cross-contamination in germline
human DNA samples. Based on a regression model of allele balance distribution,
ContaTester allows fast checking of contamination levels for single samples or
large cohorts (less than two minutes per sample). We demonstrate the efficiency
of ContaTester using experimental validations: ContaTester shows similar results
to methods requiring alignment data but with a significantly reduced storage
footprint and less computation time. Additionally, for contamination levels above
5%, ContaTester can identify contaminants across a cohort, providing important
clues for troubleshooting and quality assessment.

Conclusions: ContaTester estimates contamination levels from VCF files
generated from whole genome sequencing normal sample and provides reliable
contaminant identification for cohorts or experimental batches.
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Introduction
Advances in genomic medicine are steadily improving and facilitating diagnosis and

healthcare. In parallel, a need is arising to develop robust quality control meth-

ods to ensure reliable contamination-free data. Sources of contamination can differ,

ranging from human and technological errors to bioinformatics processing errors,

consequently the contamination risk needs to be carefully assessed. To evaluate con-

tamination levels, current tools use two main sources of evidence: Sequence Aligne-

ment Map (SAM/BAM) and Variant Call Format (VCF).

Most tools developed for contamination detection are dedicated to the somatic con-

text and require the use of paired samples to determine contamination levels; these

tools include Conpair [1], GATK CalculateContamination [2] and HYSYS [3]. To

our knowledge, there are few tools dedicated to germline single sample contami-

nation analysis. Common practice in the community is to use VerifyBamID2 [4],

which requires BAM files as input to analyze mixture models, thus estimating the

likelihood of contamination. ART-Deco [5] uses coverage tables provided by GATK
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[6] and analyzes the fraction of supporting reads to detect contamination in the

restricted context of high-coverage panel analysis. Other programs like Peddy [7]

use pedigree information to identify swaps or contamination within families.

Here we present ContaTester [8], an integrated solution for fast contamination es-

timation and contaminant identification in a Whole Genome Sequencing (WGS)

normal sample. ContaTester is based on Allele Balance (AB) regression models and

correlations, and requires only VCF including the Allele Depth (AD) metric; no

other information is needed. In addition, we have developed a function for contam-

inant identification to support troubleshooting and quality control performed on a

production platform.

Methods
Experimental and in silico design

Five DNA sample mixtures (1%, 5%, 10%, 15%) from both NA10859 and NA12878

individuals were experimentally designed and sequenced to a 30x depth of coverage

to validate our method [9]. All samples were processed with a “Truseq™ PCRfree

kit” and sequenced with a HiSeqX Illumina® sequencer.

We selected sequencing datasets from two distinct families (CEPH/UTAH PEDI-

GREE 1463 and 1347) to simulate in silico mixtures from related and unrelated

samples mimicking contamination conditions commonly observed in large cohorts.

The mixtures included selected read ratios from NA12878, NA12891 (NA12878 fa-

ther), NA12892 (NA12878 mother) and NA10859 (unrelated sample) (Table 1).

Allele balance ranges and regression models

To determine the AB (1), we used the ratio of the number of reads supporting the

first alternative allele, divided by the sum of numbers of reads supporting the ref-

erence allele with the first two alleles. Insertions-Deletions (InDels) were discarded

from the Allele Balance distribution.

AB =
AD 1st ALT

AD REF + AD 1st ALT + AD 2nd ALT
(1)

We evaluated several scenarios of AB range selections for contamination character-

ization. The mixture of two samples with different genetic backgrounds produced

an increase in the number of variants, a spread of the allele balance distribution for

ranges between 0.25 and 0.75 and peaks in low [0-0.25] and high [0.75-1] AB ratios

(Figure 1).

We selected the AB ranges between [0.18-0.49] and [0.51-0.82] gathering the high-

est numbers of variant according to the drift of their AB ratio for a second order

polynomial regression (Figure 2). These two intervals maximize the coefficient of de-

termination (r2)(Figure 3). The polynomial regression models had to be customized

to fit depth of coverage conditions. Three regression models for common depth of

coverage in WGS (30x, 60x and 90x) were calculated. Each condition showed a high

r2 (r2 > 0.999) with the computed polynomial models.

Additionally, we selected the ranges [0.01-0.49] and [0.51-0.99], removing the ex-

pected common AB peaks to perform a Pearson’s correlation analysis as a comple-

mentary method to support the contamination identification.
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Contaminant research and identification

For this study, we selected variants associated with an AB range between [0-0.11]

which gathered a high proportion of variants related to the contaminant sample. Af-

ter removing variants in low-complexity repeats and segmental duplication regions

(GnomAD 2.0.2 [Genome Aggregation Database [10]]), the number of germline Sin-

gle Nucleotide Variants (SNVs) for the contaminated samples was minimized in

most of the contamination ratio conditions (including very low contamination ra-

tios).

To determine the detection performance and related threshold in our selected AB

range [0-11], we observed the distribution of the number of variants (position only)

belonging to the contaminant and the contaminated sample for a range of contami-

nation ratios (between 0% and 50%) (Figure 4). In this distribution, a contamination

level of 5% showed an equivalent proportion (55%) of variants belonging to the con-

taminant and contaminated samples (Figure 4).

A detailed analysis of the curves showed that for contamination ratios under 3.6%

the ratio of matching variants related to the contaminant decreased below the pro-

portion of variants related to the contaminated sample. This observation led us

to define a minimal threshold of 5% for contaminant identification, to ensure that

variants from the contaminant sample were predominantly used for contaminant

identification.

Consequently, this contamination threshold of 5% required us to define a shared vari-

ant match-rate threshold to validate the contaminant identification. After exploring

the impact of contamination by family related samples (Figure 5), we decided to set

a minimal 60% match-rate between the selected variant in the AB ranges [0-11%]

and the variants in the tested sample. This 60% match-rate threshold supports a

clear discrimination between the contaminant and other tested samples as it is 10%

above closely related samples.

Results
In order to validate the relevance of our in silico simulation, we compared the AB

distribution of the experimental mixture against in silico mixture conditions. The

two distributions shared similar outlines thus validating the guiding principles of

this work (Figure 2).

Next, we launched ContaTester and demonstrated contamination level estimations

closely approaching those of expected experimental conditions (Table 2). This shows

that ContaTester provides correlation and regression as two complementary ap-

proaches to estimate the contamination rate. The second order polynomial regres-

sion model shows an accuracy down to a mixture prediction of 1%. The results of

the Pearson’s correlation are consistent with those of the second order polynomial

regression; hence this method can be used for cross-validation and interpretation.

In addition, using BAM files as input, we compared the ContaTester results against

VerifyBamID2 and found similar results for contamination estimation in our differ-

ent experimental mixtures (Table 2). These results show that ContaTester offers a

fast and simple alternative for estimating contamination levels, and requires only

VCF files.

Lastly, we applied ContaTester’s contaminant detection function to each of the
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mixture conditions. For contamination levels above 5%, we clearly detected the

contaminant NA10859 with more than 60% shared positions within the subset used

for the comparison and tested samples (Table 3).

In summary, ContaTester provides estimations of contamination levels from VCF

files generated from germline sample WGS. It provides reliable contaminant iden-

tification for cohorts or experimental batches with contamination levels above 5%.

ContaTester does not require additional files or parameters, and it provides fast

results and reports to support automatic or visual checks of the contamination sta-

tus. The input, restricted to VCF files (∼ 1GB for a 30x WGS), reduces the storage

footprint required for quality control compared to solutions that use BAM files

(∼ 70GB for a 30x WGS). ContaTester requires 70 seconds with a 1 core Intel®

Xeon® CPU E5-2680 v4 @ 2.40GHz to process a VCF file obtained from WGS and

determine the related contamination level. In comparison, the processing of a BAM

file by VerifyBamID2 takes 42 minutes to complete (Table 4). Moreover, contami-

nant identification by ContaTester takes only 31 minutes for a cohort of 96 samples

including 32 contaminated samples (Table 4). In conclusion, ContaTester can be

used for the human reference genomes GRCh37 and GRCh38 (Table 2, Table 5)

and offers a scalable method for analysis of the increasing volume of VCF files from

large WGS projects.

Appendix

Acronyms
r2 coefficient of determination. 2

AB Allele Balance. 2, 3

AD Allele Depth. 2

BAM Binary Alignement Map. 1, 3, 4

GnomAD Genome Aggregation Database. 3

InDels Insertions-Deletions. 2

SAM Sequence Alignement Map. 1

SNVs Single Nucleotide Variants. 3

VCF Variant Call Format. 1–4

WGS Whole Genome Sequencing. 2, 4

Availability of data and materials

Project name: ContaTester

Project home page: https://github.com/CNRGH/contatester

Operating system(s): Runs natively on linux and on any operating system supporting container images (Docker:

https://hub.docker.com/r/cnrgh/contatester)

Programming language: Python, R, Bash

Other requirements: Python 3.6 or higher, python libraries (pathlib, os, typing, argparse, io, subprocess, sys, glob,

datetime), R 3.3.1, bcftools 1.9 or higher, pegasus 4.8.2 or higher

License: CeCILL

Any restrictions to use by non-academics: None

Contact: bioinfo-tools@cnrgh.fr
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Figure 1 Schema of a theoretical 20% contamination impact on allele balance distribution. Blue
lines represent reads alignments from initial sample. Orange lines represent reads alignments from
contaminant. Stars represent different scenarios of single nucleotide variation

Table 1 Dataset is composed of 188 cases of contamination : 23 levels (0.5; 1.0; 1.5; 2.0; 2.5; 3.0;
3.5; 4.0; 4.5; 5.0; 7.5; 10.0; 12.5; 15.0; 17.5; 20.0; 22.5; 25.0 ; 30.0; 35.0; 40.0; 45.0; 50.0) x 8
combinations and 4 contamination’s free

NA10859 NA12878 NA12891 NA12892
NA10859 - 23 levels 23 levels 23 levels
NA12878 23 levels - - -
NA12891 23 levels - - 23 levels
NA12892 23 levels - 23 levels -

Table 2 ContaTester and VerifyBamID2 estimations of contamination ratios from 30x Whole Genome
Sequencing of experimental sample mixtures

Sample mixture VerifyBamID2 ContaTester
contamination second order Pearson’s

level polynomial regression Correlation
1.0% 1.03% 0.87% 1.14%
2.5% 2.50% 2.19% 2.75%
5.0% 4.65% 4.76% 4.09%

10.0% 9.21% 9.62% 8.63%
15.0% 15.49% 17.17% 14.71%

Table 3 Contaminant identification with ContaTester from 30x Whole Genome Sequencing
sequencing of experimental sample mixtures

Sample mixture Variant count NA10859 NA12878
contamination in subset shared variant shared variant

level positions ratio position ratio
1.0% 13 500 0.248 0.307
2.5% 17 852 0.404 0.238
5.0% 34 918 0.691 0.127

10.0% 89 679 0.884 0.051
15.0% 153 871 0.914 0.034
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Figure 2 Allele balance distribution of experimentally contaminated sample (blue) versus four
controls (green) and two in-silico contaminated sample (purple) for several ratio of mixture: A)
NA12878 contaminated with 1% of NA10859 B) NA12878 contaminated with 5% of NA10859 C)
NA12878 contaminated with 10% of NA10859 D) NA12878 contaminated with 15 % of NA10859

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2021. ; https://doi.org/10.1101/2021.10.01.461647doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.01.461647
http://creativecommons.org/licenses/by-nc/4.0/


Delafoy et al. Page 8 of 10

Figure 3 Polynomial regression of variant count ratio in selected allele balance range for
contamination estimation at 30x, 60x and 90x
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Figure 4 Allele balance range selection for contaminant identification: A) from 0 to 0.11 B) from
0 to 0.2 C) from 0 to 0.3 ; Blue crosses and purple diamonds represent the evolution of the ratio
of variants in the AB range belonging respectively to the initial sample and the contaminant for
increasing rate of contamination
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Figure 5 Discrimination between parents and real contaminant in contaminant identification.
Blue crosses and purple diamonds represent the evolution of the ratio of variants in the AB range
[0-0.11] belonging respectively to the initial sample and the contaminant for increasing rate of
contamination. Green crosses and Red triangle represent the same distribution with family related
samples. Brown squares and orange round represent cases of unrelated samples

Table 4 ContaTester time and memory consumption depending on the number of samples and

treatment, on broadwell Intel® Xeon® CPU E5-2680 v4 @ 2.40GHz

Number Conta- Conta- Paralle- ContaTester VerifyBamID2
of minated minant CPU lization Memory Time Memory Time

samples samples check (MB) (MB)
(> 5%)

1 - - 1 1 165 1’09” 536 42’11”
96 - - 48 48 201 2’18” 660 1h14’20”
96 10 + 196 48 185 11’08” - -
96 32 + 196 48 201 30’53” - -

900 - - 48 48 247 17’47” 660 9h26’52”
900 90 + 196 48 1438 12h29’14” - -

Table 5 ContaTester results for contamination evaluation of experimental contamination at 30x in
Whole Genome Sequencing, aligned on GRCh38

Sample mixture Correlation Regression
Contamination level

1.0% 1.14% 1.64%
2.5% 2.75% 2.92%
5.0% 4.09% 5.47%

10.0% 8.63% 10.25%
15.0% 14.71% 17.66%
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