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Abstract 

Predicting tumor sensitivity to antineoplastics remains an elusive challenge, with no methods 

demonstrating predictive power. Joint analysis of tumors—from patients with distinct 

malignancies who had progressed on multiple lines of therapy—and drug perturbation 

transcriptional profiles predicted sensitivity to 28 of 350 drugs, 26 of which (93%) were 

confirmed in low-passage, patient-derived xenograft (PDX) models. Drugs were prioritized 

based on their ability to either invert the activity of individual Master Regulator proteins, with 

available high-affinity inhibitors, or of the modules they comprise (Tumor-Checkpoints), based 

on de novo mechanism of action analysis. Of 138 PDX mice enrolled in 16 single and 18 multi-

protein treatment arms, a disease control rate (DCR) of 68% and 91%, and an objective 

response rate (ORR) of 12% and 17%, were achieved respectively, compared to 6% and 0% in 

the negative controls arm, with multi-protein drugs achieving significantly more durable 

responses. Thus, these approaches may effectively complement and expand current precision 

oncology approaches, as also illustrated by a case study.  
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(A) Introduction 

The ultimate objective of precision cancer medicine (PCM) is to leverage molecular-level 

properties of a tumor—such as gene expression, epigenetic modification, proteomics, and 

mutational profiles, among others—to predict sensitivity to a broad range of available 

therapeutic agents or to guide development of novel drugs. When predictions are conserved 

across a significant fraction of cancer patients, successful application of PCM principles may 

help generate high-likelihood hypotheses for randomized clinical trials [1, 2], and may even help 

prioritize candidate treatment options at the individual patient level (personalized medicine). 

Systematic application of the current PCM paradigm is largely predicated on two 

complementary approaches. The first one (oncogene addiction) is aimed at identifying targeted 

therapies based on the presence of activating mutations inducing aberrant activity in druggable 

oncoproteins  [3]; the second (immunotherapy) is predicated on the discovery that specific 

tumor-initiated immunosuppressive programs can be abrogated by pharmacological targeting of 

immune checkpoints of the innate and antigen-specific host response [4]. Unfortunately, not 

only have these approaches shown limitations that prevent their application to the majority of 

cancer patients but, with some exceptions, predicting patient response to either class of drugs 

remains challenging.  

Specifically, most tumors lack actionable mutations, and even when detected their 

pharmacological targeting often fails to abrogate tumor viability, with benefits limited to specific 

cancer types or contexts. Moreover, even in patients who initially respond, the typical outcome 

of either approach is the relatively rapid development of drug-resistance as a result of cell-

adaptive processes, inherent genetic heterogeneity, allowing for clonal selection—i.e., via 

emergence of secondary mutations—phenotypic plasticity allowing reprograming to a drug-

resistant state [5], and suppression of immunogenic neoantigen expression [6]. Consistently, 

multiple studies have shown that only 5% to 11% of cancer patients derive some clinical benefit, 
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mostly transitory, from targeted therapy [7]. As such, accurate patient-level prediction of 

sensitivity to a vast repertoire of clinically relevant drugs remains a highly elusive problem.  

Moreover, given the paucity of actionable mutations and the role that a myriad of additional 

genetic events may have in modulating drug sensitivity to oncogene-directed therapy, it is 

becoming increasingly difficult to identify large subsets of a tumor type that are sensitive to the 

same drug. This contributes to an ever increasing fine-grain stratification of the therapeutic 

landscape, prohibitively narrows selection criteria for clinical trials, and increases costs of drug 

development. Thus, there is an urgent need for novel methodologies for the systematic 

identification of more universal, non-oncogene tumor dependencies that are pharmacologically 

accessible and less prone to acquired resistance.  

We have shown that, within individual tumor-subtypes, cancer cells can adopt only a relatively 

limited, discrete, and remarkably stable repertoire of transcriptional states [8]. These states are 

mechanistically controlled by tightly autoregulated Tumor-Checkpoint (TC) modules, comprising 

small, yet highly conserved sets of Master Regulator (MR) proteins, responsible for canalizing 

the effect of mutations in their upstream pathways [8-10]. We have also shown that TC-modules 

are highly enriched in MRs and MR-pairs, whose genetic  [11-13] or pharmacological [14-16] 

inhibition can collapse the entire TC-module activity, thus abrogating tumor viability in vitro and 

in vivo. As such, MRs and the TC-modules they comprise are emerging as a novel, actionable 

class of tumor-specific, non-oncogene dependencies. Interestingly, MR and TC-module 

conservation is even more evident at the single cell level, where distinct, transcriptionally stable 

states controlled by equally distinct TC-modules are not commingled [17, 18].  

An important observation is that we have shown that virtually identical TC-modules induce the 

same transcriptional state in tumors with highly divergent mutational profiles [8]. As such, TC-
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modules may represent largely mutation-agnostic, and therefore more universal dependencies 

within a specific tumor subtype, thus providing an appealing novel repertoire of therapeutic 

targets to complement targeted and immune therapy. Moreover, since TC-modules effectively 

canalize the effect of entire mutational landscapes in their upstream pathways, their successful 

pharmacological targeting should be, at least in theory, less prone to cell adaptation and clonal 

selection processes, thus providing more durable responses. 

In this manuscript, we test two approaches to leverage this conceptual regulatory architecture 

for therapeutic purposes, by targeting either a single candidate MR with a high-affinity inhibitor 

(OncoTarget) or an entire TC-module, as determined by the Mechanism of Action (MoA) of 

~350 clinically-relevant compounds inferred de novo from drug perturbation profiles 

(OncoTreat). These approaches are predicated on the ability to accurately measure the activity 

of ~6,200 regulatory and signaling proteins—as defined in Gene Ontology [19], see STAR 

Methods—from RNASeq profiles, using the VIPER algorithm [20], which we have recently 

shown to compare favorably with antibody based protein measurements [21]. Specifically, 

OncoTarget uses VIPER to identify the most aberrantly activated proteins (i.e., candidate MRs) 

for which a high-affinity inhibitor drug is available, thus representing a straightforward, mutation-

agnostic extension of the oncogene addiction paradigm. The rationale is that aberrant protein 

activity can result not only by activating mutations in the encoding gene but also by mutations 

and signals in upstream pathways. In contrast, OncoTreat leverages large-scale RNASeq 

profiles from patient-matched cell lines perturbed with clinically relevant compounds to 

experimentally assess their ability to invert the activity of entire TC-modules [14]. 

To rigorously assess the efficacy of these two methods in prioritizing effective treatments for 

clinical translation, we designed a tumor-agnostic study that enrolled patients with advanced 

disease across 14 distinct aggressive human malignancies (the N of 1 study at Columbia 
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University, IRB-AAAA7562). All subjects must have progressed on at least one standard of care 

systemic therapy, with the majority having received ≥3 lines of treatment and fresh tissue must 

be available from standard of care biopsies or resections, resulting in N = 117 subjects enrolled 

to the study. Fresh tissue was implanted in immunocompromised mice to create low-passage, 

patient-matched PDX models for drug validation. Engrafted PDX mice were randomized to 

treatment with OncoTreat and/or OncoTarget predicted drugs, as well as vehicle control and 

suitable negative control drugs. Tumor growth was assessed by volumetric measurements. 

Pharmacodynamic assays, at an early time point, were also performed, to assess recapitulation 

in vivo of drug MoA predicted from drug perturbations in vitro. Overall analysis of PDX mice 

enrolled in 18 OncoTreat-based, 16 OncoTarget-based, and 13 negative control treatment arms 

demonstrated the effectiveness of the approach, achieving dramatically improved DCR and 

ORR, compared to negative controls. OncoTreat and OncoTarget have received NY and CA 

Dpt. of Health approval and are CLIA compliant [22], including for the analysis of archival (i.e., 

FFPE) samples, thus paving the way to their clinical utilization, as we illustrate through an ultra-

rare tumor case study.  

Critically, stratification of predicted drug sensitivities across entire tumor cohorts shows that 

patients co-segregate within a small number of clusters (pharmacotypes) predicted to be 

sensitive to the same drugs, thus supporting use of these methodologies for the high-throughput 

generation of mechanism-based hypotheses for clinical trials. Finally, while both approaches 

dramatically outperformed treatment with negative control drugs and Vehicle control, the study 

confirmed that mice treated with TC-module-targeting drugs had statistically significantly more 

durable responses than those treated by targeting individual MR proteins. This is consistent with 

the expectation that TC-modules provide more universal targets that are less amenable to 

adaptation and selection mechanisms.  
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Results 

To translate the ability to accurately measure protein activity in individual tumor samples [20] 

and even in single cells [21, 23] to the clinics, we have developed two complementary, RNA-

based CLIA-compliant and New York State and California Dpt. of Health approved assays. The 

first one, OncoTarget, identifies actionable, aberrantly activated proteins (p ≤ 10-5, as measured 

by VIPER), for which a high-affinity inhibitor is available. To assess target actionability, we 

analyzed DrugBank [24], the SelleckChem database [25], published literature, and public 

information from drug development pipelines, resulting in a curated list of 180 proteins 

representing validated, high-affinity targets of clinically-relevant small molecule compounds 

(Table S1). Conceptually, OncoTarget represents a tumor-type-agnostic, mutation-independent 

reformulation of the oncogene addiction paradigm [3], which extends the approach beyond 

established mutated oncoproteins to any actionable, aberrantly activated protein. This includes 

proteins that are rarely if ever mutated in cancer, such as topoisomerases, chromatin 

remodeling enzymes, and proteins aberrantly activated by autocrine, paracrine, or endocrine 

signals (Figures 1 and S1A-B). 

The second one, OncoTreat, leverages RNASeq profiles of representative cell lines, treated 

with a large repertoire of antineoplastic agents, to identify TC-module-inverter compounds that 

statistically significantly (p ≤ 10-5) invert the activity of the top 50 candidate MR proteins (i.e., 25 

most activated and 25 most inactivated), as assessed by VIPER analysis (Figures 1 and S1C) 

[14]. We use 50 MRs for two reasons: first, a fixed MR number is necessary to make the 

statistics of their activity inversion comparable across samples (see STAR methods); second, 

because we recently showed that, on average, across 25 cancer cohorts, ≤ 50 MRs are 

necessary to account for the integration of mutational events in their upstream pathways, at the 

individual sample level [8]. 
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Critically, OncoTreat predicts TC-module-inverter drugs with no a priori knowledge of their MoA. 

Indeed, MoA is elucidated de novo, in proteome-wide fashion, by measuring the differential 

activity of regulatory and signaling proteins in drug vs. Vehicle control-treated cells, see STAR 

methods for an in-depth description. 

Model Fidelity assessment: A critical OncoTreat requirement is the availability of a 

comprehensive repertoire of gene expression profiles representing the transcriptional state of a 

tumor tissue, following treatment with a repertoire of antineoplastic compounds of interest, as 

well as Vehicle control (DMSO). To maximize the statistical power of the MR activity inversion 

analysis, these assays must be conducted in high-fidelity cell lines, pre-selected based on their 

ability to recapitulate the patient tumor’s MR activity profile. Similarly, validation should be 

performed in PDX models that also represent high-fidelity models for the tumor of interest.  

Cell line and PDX model fidelity to human tumors was assessed based on the normalized 

enrichment score (NES) of the top 50 patient-specific activated and inactivated MRs in 

differentially activate and inactive proteins in each cell line or PDX, respectively, by analytic-rank 

based enrichment analysis [20] (aREA: p ≤ 10-10, Benjamini–Hochberg, BH-corrected). To 

generate a differential expression signature for VIPER-based protein activity analysis of patient 

and PDX tumors, we compared each sample to a common reference represented by the entire 

TCGA repository. To obtain an equivalent metric for cell lines, which would not be biased by 

their higher proliferative nature, we compared each cell line against a large cancer cell line 

repository— including the Cancer Cell Line Encyclopedia (CCLE) [26] and the Genentech Cell 

Line Screening Initiative (gCSI) [27].  

In Figure 2A, we show the fidelity of the top 12 matching breast cancer cell lines to basal breast 

cancer tumors in the TCGA repository; BT20 emerged as one of the top five candidates based 
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on the number of tumors (78 of 173), whose top 50 MRs are conserved at significance threshold 

p ≤ 10-10. In Figure 2B, we show the fidelity of four patient-matched cell lines to five patients in 

the study for which OncoTreat-based drugs were predicted, as well as the match between 

ASPC1 and a pancreatic cancer tumor, even though drug perturbation profiles in ASPC1 cells 

were not completed in time for the vivo validation studies, see additional MR-level 

characterization (Figure S3). Specifically, the BT20 cell line emerged as an excellent model for 

tumor BC-32398 (normalized enrichment score, NES = 14.5, p = 10-48), a very good model for 

BC-97359 (NES 8.0, p = 10-15), but a poor model for BC-50291 (NES -3.9, p = 1); both GIST cell 

lines GIST430 and GISTT1 were excellent matches for GIST-81050 (p < 10-40) despite not 

harboring the patient SDHBDel/KRASG12D alterations, but rather canonical KIT mutations; IOMM 

was a weaker but statistically significant match for CNS-16474 (NES 3.3, p = 0.0005). 

A critical point is that the purpose of patient-fidelity assessment is to predict and validate drug 

MoA in tissue contexts that optimally recapitulate the MR activity-profile of the target tumor. As a 

result, patient-matched cell lines are not required to also recapitulate other biologically relevant 

parameters, such as the mutational profile and histology of the tumor. Indeed, we have shown 

that MR conservation is a sufficient criterion to predict tumor-relevant drug MoA, as assessed 

from drug perturbation profiles, with predictions validated in both patient-derived primary cells 

and patient-derived explants with high statistical significance [28]. 

Perturbation Profile Generation: We generated RNASeq profiles in the 4 patient-matched cell 

lines at 24 hours—as well as at 6h in BT20, GISTT1 and GIST430 to assess early response—

following perturbation with each compound at two sublethal concentrations, the 48-hour EC20 

and one tenth of this concentration, as determined by 10-point dose response curves. These 

highest sublethal concentrations were selected to focus the analysis on drug MoA rather than 

non-specific effector proteins of cells undergoing significant stress or death processes [29, 30]. 
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To avoid testing drugs at non-physiologically relevant concentrations, we also capped tested 

concentrations at the drug’s CMax, defined as the maximum tolerated serum concentration from 

published human studies. 

DMSO was selected as a universal solvent and Vehicle control. Multiplexed, low depth (1 to 2M 

read) RNASeq profiles were generated using 96-well plates via the PLATESeq methodology, 

using fully automated microfluidics for increased throughput and reproducibility [31]. Drug 

MoA—defined as the drug-mediated differential activity of all regulatory and signaling proteins—

was assessed by VIPER analysis of each drug-treated sample vs. eight DMSO-treated controls 

included in each plate to avoid plate-dependent batch effects.  

In summary, each drug perturbation profile was used to rank regulatory and signaling proteins 

from the most inhibited to the most activated following treatment with a specific drug at its 

maximum sublethal concentration vs. Vehicle control. On average, ~350 drugs were profiled in 

each cell line, including 138 FDA approved antineoplastics, ~170 late-stage experimental drugs 

in cancer clinical trials, as well as a variable number of additional compounds from diverse 

libraries, with cell line-specific EC50 ≤ 10 uM (Table S2). Since study initiation, we have now 

generated a Pancancer Activity by Enrichment Analysis database (PANACEA), comprising the 

drug MoA profiles of ~350 compounds whose activity was profiled in 23 patient-matched cell 

lines, representing 15 malignancies (Table S3). Access to the full PANACEA resource will be 

made available via a companion publication. 

Interactome Generation: To measure MR activity, VIPER requires a comprehensive molecular 

interaction dataset (interactome) representing the tumor context-specific transcriptional targets 

(regulon) of each protein. For these analyses—including protein activity measurement in patient, 
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PDX, and cell line related samples—interactomes were generated by ARACNe analysis [32, 33] 

of RNASeq profiles from tumor-matched cohorts with ≥ 100 samples (Table S4).  

Study protocol and rationale: To systematically benchmark the OncoTreat and OncoTarget 

tests, we designed an innovative clinical study, with a preclinical endpoint based on in vivo 

tumor volume measurements following treatment with predicted drugs in low-passage PDX 

models. The goal was to both evaluate the efficacy of computationally predicted drugs and to 

assess the feasibility of the approach in the clinic (Figures 1 and S2). The N of 1 study enrolled 

117 patients with advanced malignancies that were refractory or intolerant to standard of care 

treatment, representing over 20 unique cancer subtypes, including several rare and orphan 

ones (Table S5). Eligible subjects were required to have an anticipated life expectancy of at 

least six months, as determined by the treating oncologist. Clinically indicated biopsies or tumor 

resections were performed at the request of their treating oncologist; consent to allow a portion 

of the fresh specimen to be processed for RNASeq profiling and transplant into immunodeficient 

mice was required. A total of 84 implantations were possible, based on tissue availability and 

histology, leading to successful engrafting of 39 PDX models (46.4% take rate). Nineteen of the 

39 PDX models were passaged at least once, and mature P0 passages were characterized by 

RNASeq and VIPER analyses to assess fidelity (Table S5). 

In vivo validation strategy: To achieve rigorous validation of OncoTreat and OncoTarget 

predicted drugs, we relied on the first seven PDX models that successfully engrafted and could 

be passaged to P1 for drug testing. These include three triple negative breast cancers (BC-

32398, BC-97359, BC-50291), a pancreatic ductal carcinoma (PAC-05647), a colon 

adenocarcinoma (CAR-23659), a KITWT/PDGFRWT gastrointestinal stromal tumor harboring 

KRASG12D and a germline SDHB deletion (GIST-81050) in an adolescent/young adult, and a 

recurrent WHO grade II anaplastic meningioma (CNS-16474). The results of targeted genomic 
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sequencing and clinical characteristics of the seven patients are summarized (Table 1), 

including extensive prior therapies with four of the seven subjects having received at least three 

lines of treatment before enrollment. Importantly, for all seven cases, targeted sequencing failed 

to identify an actionable alteration, as assessed by their treating physician at the time, thus 

negating potential targeted therapy approaches. Drugs to be validated in the PDX therapeutic 

study were selected by several criteria related to their antineoplastic nature, prior use in the 

patient, statistical significance, and other criteria (see STAR Methods), as follows: (a) Only 

drugs classified as antineoplastic agents were considered for validation, (b) Drugs were 

eliminated if the patient previously received the specific drug, (c) Drugs were prioritized based 

on their prediction p-value from OncoTreat and OncoTarget analysis of patient tumors, (d) 

OncoTreat predictions were selected over OncoTarget with comparable p-values when 

perturbation profiles were available from suitable models—e.g. for GIST, meningioma and 

breast cancer, (e) Drugs predicted not effective, based on direct corresponding OncoTreat or 

OncoTarget analysis of the PDX tumors (i.e., p > 10-5), were eliminated, and (f) When multiple 

drugs with the same canonical MoA had similar prediction statistics, only the most clinically 

relevant was selected for validation.  

The 18 OncoTreat-inferred and 16 OncoTarget-inferred drugs (28 individual drugs in total, 6 of 

which were predicted by both tests) selected for validation in the seven PDX models, based on 

these criteria, as well as their prediction rationale, dosing and schedule, are summarized in 

Table 2, (see Table S6 for further details on drug prediction and selection in each model). The 

in vitro ability of the 18 OncoTreat-predicted drugs to invert activity of the patient TC-module 

(top/bottom 25 MRs) in the relevant cell line model is shown in Figure 2C.  

 

PDX fidelity assessment: Tumors undergo clonal evolution under various selection pressures, 

including available nutrients, organ-specific environment, immune editing, pharmacological 
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treatment, and growth kinetics [34]. This is especially critical when tumors are transplanted in an 

immunocompromised environment, as selective pressures may be very different from those in 

the original human host. A critical aspect of successful treatment is to target the most common 

dependencies in the population of tumor cells and to efficiently identify potential resistant states 

that may emerge from subclonal expansion or cell adaptation. As a result, as discussed above, 

assessing fidelity of the PDX model tumors to the original human tumors was of paramount 

importance to validate drugs that would be relevant in a human context.  

Several groups have described clonal drift that occurs with sequential passages in PDX models 

[35]. As a result, to minimize drift, we performed all therapeutic studies in the earliest passage 

feasible, P1 – P5. In addition, we used VIPER to assess whether the MR proteins that were the 

target of the drugs predicted by our analyses were conserved in the PDX tumors. Specifically, 

following successful engraftment and maturation of tumors (P0 passage), we performed 

RNASeq and subsequent VIPER, OncoTarget, and OncoTreat analyses to determine (a) the 

fidelity of the model in terms of Tumor Checkpoint MR activity conservation and (b) conservation 

of drug predictions. Drugs predicted from patient sample analysis, which were no longer 

statistically significant from analysis of PDX samples, were excluded from the study.  

Six of the seven PDX models, GIST-81050, BC-32398, CAR-23659, BC-97359, CNS-16474, 

and PAC-05647 met the pre-defined match threshold (p ≤ 10-10), with analytic-rank aREA 

Normalized Enrichment Scores (NES) ranging from 13.8 to 17.3 (Figures 3A and S4). In fact, in 

GIST-81050 and CAR-23659 there was almost perfect conservation of patient candidate MR 

proteins, while in BC-32398, BC-97359, CNS-16474, and PAC-05647 there were a handful of 

MR proteins having different activity rank between patient and PDX. In BC-50291, however, 

there was no statistically significant MR activity conservation when compared to the original 

human tumor (p = 0.89). 
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PDX efficacy study: Cumulatively, significant anti-tumor responses were observed in five out of 

seven PDX models using drugs prioritized by either OncoTarget or OncoTreat (Figure 3B-D 

and Table S7). After expansion of PDX models for therapeutic studies, animals were enrolled 

onto study when tumor volumes reached 100 mm3.  A total of 16 OncoTarget and 18 

OncoTreat-predicted drugs were evaluated in individual PDX therapeutic arms (28 discrete 

drugs in total). Of these, six were predicted by both analyses. Response (either stable disease 

or partial response) was observed in 26 of 28 predicted drugs (93%) in at least one PDX mouse.  

Models were treated and tumor volume measurements were recorded for at least 4 weeks 

(range 29 – 30 days). In order to account for differences in tumor growth rates across each 

model, treatment response was first evaluated on the day in which the corresponding vehicle-

treated control animals met tumor volume (TV) criteria for progressive disease (i.e., TV >100% 

increase relative to baseline), defined as the day of treatment failure (TxFail; range: 15 – 30 

days, median 26 days). Significant differences in TV (relative to baseline) were observed in both 

OncoTreat and OncoTarget groups compared to Vehicle control (OncoTreat vs. Vehicle 

p < 0.0001 by Mann-Whitney-Wilcoxon test; OncoTarget vs. Vehicle p < 0.0001) with a disease 

control rate (DCR = stable disease (SD), partial response (PR), or complete response (CR)) of 

91% (48/53 mice) and 83% (50/60), and an objective response rate (ORR = PR+CR) of 9% 

(5/53) and 12% (7/60) in the OncoTreat and OncoTarget cohorts, respectively (Figure S5). The 

corresponding Vehicle control cohorts for OncoTreat and OncoTarget groups showed a DCR of 

12% (3/25 mice) and 11% (4/36 mice) respectively. No objective response was observed in any 

Vehicle control-treated mouse.  Thus, at TxFail, both OncoTreat and OncoTarget-predicted 

drugs were highly effective, albeit with no statistically significant difference between them in 

DCR (p = 0.42, Fisher’s exact test) and ORR (p = 0.31, Fisher's exact test). Due to 

unanticipated toxicity related to study treatment (tumor ulceration in a breast cancer PDX 

model), 3 mice were unevaluable for response in the OncoTarget cohort (BC-97359, n=2 MK-
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2206 arm, n=1 panobinostat arm) and 1 mouse treated with OncoTreat (BC-97359, Irinotecan 

arm).  

We also evaluated TV at a fixed end of study (EoS) time point (range: 29 – 30 days, median 29 

days), thus allowing for a longer period of response monitoring and assessment of response 

durability across all models. When evaluated at the EoS time point, there was a marked, 

statistically significant difference in OncoTreat vs. OncoTarget-predicted drug treatment 

response (p = 0.016). Indeed, DCR was 91% (48/53) and 68% (41/60), and ORR was 17% 

(9/53) and 12% (7/60) in the OncoTreat and OncoTarget cohorts, respectively (Figure 3B&D), 

indicating more durable responses in PDXs treated with drugs targeting the entire TC-module 

rather than an individual MR protein. This suggests that drug-mediated inhibition of TC-modules 

may implement a more effective regulatory blockade that is less likely to be circumvented by 

adaptive processes and clonal selection. 

Similar to our prior analysis at the treatment failure timepoint, n=1 (BC-97359, Irinotecan arm), 

n=3 (BC-97359, MK-2206 and Panobinostat arms), and n=3 (GIST-81050, Daunorubicin and 

Topotecan arms) mice could not be evaluated at the arm level, due to the unanticipated toxicity.  

To evaluate the specificity of drug response in the OncoTarget and OncoTreat cohorts, we 

identified Negative Control antineoplastic drugs for which neither OncoTarget or OncoTreat 

(when available) predicts an anti-tumor effect. Four PDX models (GIST-81050, CAR-23659, 

PAC-05647, BC-50291) were treated with 13 Negative Control drugs (Table 2) and Vehicle 

Control. At the TxFail time point (range: 7 – 30 days, median 12 days; Table S7), these 

demonstrated DCR = 53% (31/59) and ORR = 0%. However, at the EoS time point (range: 21 – 

30 days, median 28 days), DCR dropped to only 6% (3/54), with an ORR of 0%. Since the 

TxFail time point is related to the growth rates for each model, and as Negative Control studies 
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could not be conducted concurrently with the OncoTarget and OncoTreat cohorts, variable 

tumor growth rates in the models may have limited the window for response assessment as 

reflected by the earlier TxFail time point in Vehicle control-treated mice. Nonetheless, overall 

disease progression was observed across all models treated with Negative Control drugs 

(Table S7). Additionally, tumor growth inhibition (T/C% ratio) was significantly superior in the 

OncoTarget (mean T/C% 11%, 95% CI: -5.8 – 27.8, p = 8.0×10-4) and OncoTreat treated 

cohorts (mean T/C% 14.1%, 95% CI: -5.2 – 33.4, p = 2.0×10-3), compared to the Negative 

Control cohort (mean T/C% 48.9%, 95% CI: 29.2 – 68.5), overall p = 7.0×10-4 by ANOVA 

(Figure 4C).   

Cumulative Kaplan-Meier analysis for animals in the OncoTarget, OncoTreat, and 

OncoTreat+OncoTarget cohorts was performed (Figure 4A). The analysis demonstrates highly 

statistically significant improvement in disease control using agents predicted by either analytic 

approach, compared to Vehicle Control (p < 1.0×10-4, by log-rank test). In contrast there was no 

statistically significant difference between the animals in the Negative Control and concurrent 

Vehicle Control cohorts (p = 0.38) (Figure 4B).  

Consistent with TV comparison at the EoS time point, Kaplan-Meier analysis also identified a 

highly significant disease control difference between the OncoTarget and OncoTreat cohorts 

(p = 2.0×10-3), with improved disease control in the OncoTreat cohort. Finally, no significant 

differences were observed between drugs predicted by OncoTreat alone versus both OncoTreat 

and OncoTarget (p = 0.10). 

Pharmacodynamic Efficacy: Pharmacodynamic (PD) studies are a critical aspect of preclinical 

and early clinical drug development to elucidate drug MoA and to characterize primary and 

acquired drug resistance. PD assessment from early, on-treatment samples helps determine 
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whether: (a) effective, OncoTreat-predicted drugs recapitulate in vivo the Tumor Checkpoint MR 

activity inversion that occurs in cell lines (i.e. mechanism conservation); (b) failure of OncoTreat-

predicted drugs correlates with the inability to recapitulate MR inversion in vivo (i.e. failure to 

conserve MoA), perhaps due to pharmacokinetic factors; (c) failure occurs despite MR 

inversion, for instance due to later cell adaptation or clonal selection; and (d) ultimately, whether 

assessing Tumor Checkpoint inversion in early, on-treatment biopsies may be used as a 

predictive biomarker of response to OncoTreat predicted drugs. 

Samples for PD assessment were procured from mice sacrificed approximately three hours 

following the third dose, in two animals per treatment arm in five of the seven PDX models: 

GIST-81050, BC-32398, CAR-23659, CNS-16474, and PAC-05647 with significant conservation 

of patient measured Tumor Checkpoint MR activity (i.e. fidelity; p ≤ 10-10, Figure 3). Since these 

mice were sacrificed independent of tumor size, they were excluded from outcome assessment. 

OncoTreat analysis of RNASeq from drug-treated vs. Vehicle Control-treated mice was 

performed to assess statistical significance of MR activity inversion.  

Overall, of 18 drugs predicted by OncoTreat for which PD samples were procured, all but three 

significantly recapitulated in vivo the MR-inversion (p ≤ 10-5) predicted from perturbation of MR-

matched cell lines with p-values in the range of 10-40 (daunorubicin in BC-32398) to 10-5 

(teniposide in PAC-05647) (Figure 6). Of the three drugs that failed to recapitulate the in vitro 

assessed activity, 1 was only borderline for meeting the disease control endpoint, abiraterone in 

CNS-16474 (Table S7). Belinostat also failed to recapitulate the in vitro MR-inversion but 

achieved disease control at EoS in PAC-05647. This is likely because this drug targets a 

chromatin remodeling enzyme and its cell state reprogramming activity may not be evident at 

this early time point biopsy. Finally, daunorubicin achieved disease control despite failing to 

achieve statistically significant MR inversion in vivo in the GIST-81050 model (it was however 
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recapitulated in the BC-32398 model). However, this was due to failure to inhibit the positive 

MRs, while the negative MRs were effectively activated by daunorubicin (single-tail analysis p = 

10-2). We have shown that negative MRs include potent tumor suppressors. As a result, their 

concerted activation was likely sufficient to abrogate tumor viability. In contrast, one drug 

(homoharringtonine) failed to achieve disease control in the CNS-16474 model, at the EoS, 

despite effectively recapitulating the MR-inversion predicted from the in vitro assays, suggesting 

that either clonal selection or late cell adaptation/reprogramming to a drug-resistant state may 

have been responsible for treatment failure.  

Three of the Negative Control drugs—alpelisib, serdemetan, and pacritinib—failed to achieve 

significant MR-inversion activity in vivo and none of them achieved disease control by EoS. In 

contrast, TAE684 achieved significant MR-inversion activity (p = 10-16) but also failed to achieve 

disease control (Figure 5). This suggests that the early on treatment PD sample may have 

failed to capture the subsequently acquired cell adaptive response that ultimately led to loss of 

drug effect and treatment failure.  

Taken together, 15 of 18 OncoTreat predicted drugs, including 13 of 16 that resulted in disease 

control, demonstrated significant in vivo recapitulation of in vitro-predicted MoA (p ≤ 10-5).  

Pharmacotypes identification for Clinical Trial Design: The OncoTreat and OncoTarget 

approaches can identify multiple candidate drugs for the treatment of the vast majority of 

tumors, a majority of which induced DCR or ORR when tested in the associated PDX model. 

Given the inherent conservation of MR protein activity within cancer subtypes, as identified by 

protein activity-based cluster analysis, it is not surprising to see an equivalent stratification of 

OncoTreat and OncoTarget predictions. Indeed, the majority of cancer types in TCGA could be 

stratified into 2 to 7 clusters representing patients with predicted sensitivity to the same drugs 
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(“pharmacotypes”) (Figure 6A; Supplementary Figures Ota/Otr heatmaps). Pharmacotypes help 

(a) identify drugs consistently predicted across a significant fraction of patients in a specific 

tumor type (e.g. breast cancer) to help formulate mechanism-based hypotheses for pre-clinical 

and clinical trials and (b) avoid drugs that appear as uniquely relevant to a single patient, which 

may be false positives due to the noisy nature of RNASeq data. Consistent with the clinical 

observation that, as monotherapy, the vast majority of antineoplastic drugs are at best effective 

only in a [small] subset of patients, pharmacotypes provide a critical mechanistic link to identify 

patients most likely to benefit from drugs that may otherwise fail if tested broadly without a 

selection criterion.  

OncoTarget, in particular, can significantly expand the pool of eligible patients for basket trials 

using targeted agents, while OncoTreat can be used as the basis of umbrella trials where 

patients with one or more cancer types can be assigned to preselected drug treatment arms 

based on their pharmacotype classification. To illustrate this concept, we show the 

pharmacotypes identified by our analysis in triple negative breast cancer (TNBC) and how this 

could be leveraged to design an umbrella trial (Figure 6A-B). 

N-of-1 Clinical Application: A Case Report. The proposed PCM framework discussed in this 

study is uniquely suited to identify therapeutic alternatives even for rare cancers lacking 

actionable mutations and standard of care options. Calcifying Nested Stromal Epithelial Tumor 

(CNSET) is an exceptionally uncommon primary hepatic tumor that occurs in children and 

young adults, with only about 40 cases reported in the literature [36]. While localized disease is 

often effectively cured with surgical resection, recurrent and de novo metastatic disease 

demonstrates chemotherapy resistance and there are no proven therapeutic options [37-40]. 
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We present the case of a 14-year-old male who reported a 1-month history of abdominal pain 

and fatigue.  A computed tomography (CT) scan of the chest and abdomen revealed a large 

hepatic mass with multiple satellite liver tumors and pulmonary metastases. The mass was 

biopsied and histopathologic evaluation was consistent with CNSET. The family was initially 

hesitant to initiate chemotherapy, but the patient developed progressive hepatomegaly, 

anorexia, weight loss, constipation, and anemia in the subsequent three months. Memorial 

Sloan Kettering IMPACT [41], a targeted next-generation sequencing panel covering 468 genes, 

was performed on a biopsy specimen and demonstrated a CTNNB1 hotspot mutation, TERT 

promoter gain of function mutation, and NTRK3 point mutation not known to predict response to 

currently available TRK inhibitors. The estimated tumor mutational burden was only 

2.6/megabase, predicting a low likelihood of tumor response to immune checkpoint inhibitors.   

Based on the observation that the tumor shared biological features with Wilms’ Tumor (CTNNB1 

and TERT mutations, WT1 and β-catenin expression by immunohistochemistry), the patient was 

treated with 10 neoadjuvant cycles of a “Wilms’ tumor like-regimen,” including five cycles of 

vincristine/irinotecan, four cycles of vincristine/dactinomycin/doxorubicin, and one cycle of 

cyclophosphamide/topotecan [42, 43]. There was a partial response to chemotherapy and the 

patient successfully underwent debulking surgery. Post-operative chemotherapy was 

complicated by the development of severe colitis, and the family elected to discontinue systemic 

therapy.  Over the next six months, there was evidence of significant disease progression in the 

liver and lungs (Figure 6C), and the patient developed biliary obstruction and transaminitis that 

made him ineligible for clinical trials and precluded the use of most chemotherapy agents. 

Given the lack of remaining viable therapeutic options, tumor tissue was sent for the CLIA-

certified OncoTarget test. The most significantly activated targetable protein was PDGFR-B (p = 

10-7, Bonferroni corrected). After discussing the results with the family, including the absence of 
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clinical data on targeting PDGFR-B in this exceedingly rare malignancy, we felt that sunitinib 

would be the best candidate drug, given its high relative selectivity for PDGFR-B, accessibility, 

and safety data in the context of impaired hepatic function. The patient had a partial response to 

the first cycle of sunitinib (six weeks) which deepened by the end of cycle 3 (Figure 6D). 

Remarkably, this patient who had rapidly progressing treatment refractory cancer, has had a 

durable response and remains on sunitinib, now for two years from his original presentation 

without any appreciable side effects. 
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Discussion 
Approaches based on oncogene addiction [3] and immuno-oncology [4] have been both 

illuminating as to the potential promise that precision cancer medicine holds by driving the 

development of highly effective treatments for some patients, but also disappointing in their 

inability to benefit the majority of patients with advanced cancer in spite of large-scale efforts. 

We have performed extensive preclinical studies on MR proteins—establishing their role as the 

mechanistic determinants for integrating the effects of multiple mutations in their upstream 

pathways and for activating regulatory programs (cancer hallmarks) necessary for cancer cell 

survival [8-10, 44]. Indeed, MR analysis has elucidated novel mechanisms of tumorigenesis, 

progression, and drug sensitivity in several cancer types [10]. 

Here we present extensive preclinical validation for a readily applicable, scalable, and tumor-

agnostic framework, predicated on an MR-based conceptualization of cancer regulation, with 

the potential to radically expand the PCM landscape by providing rapid prioritization of effective 

drugs from the currently available armamentarium. OncoTarget and OncoTreat have several 

practical advantages over currently used approaches. First, they are NY/CA Dpt. of Health 

approved and CLIA compliant, allowing rapid deployment to the clinic. Second, based on our 

benchmarking of over 12,000 primary tumors from TCGA and now 100s of prospectively 

collected samples from patients with metastatic and treatment refractory cancers, these tests 

can prioritize multiple candidate treatments for virtually every patient. While we certainly do not 

expect all identified candidates to be effective in the clinic, it is an important starting point that is 

simply not available to cancer patients at this time, especially for rare tumors like the one 

reported in our case study, which can also allow treatment prioritization based on 

reimbursement, toxicity, and other clinically-relevant parameters. Third, the presence of well-

defined pharmacotypes—i.e., tumors with shared predicted drug sensitivity, in virtually all 

cancer cohorts that we have studied—supports the prioritization and evaluation of predictions 
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through standard basket and umbrella trials, respectively, with the OncoTarget and OncoTreat 

tests as widely applicable companion diagnostics. This includes patients across multiple 

malignancies predicted to share sensitivity to the same drug or drugs. Fourth, given the 

demonstrated role of MRs as regulatory bottlenecks, whose activity is strictly necessary for 

tumor state maintenance via canalization of the tumor’s genetic alteration repertoire and 

aberrant paracrine and endocrine signals, our data suggests that pharmacological targeting of 

TC-modules leads to more durable clinical responses than using therapy targeting individual 

proteins, thus providing a single-agent form of combination-therapy. Finally, the proposed 

approach has the potential of capturing longitudinal changes that are not necessarily driven by 

new mutations, such as metastatic progression [45] and therapy resistance, thus adapting the 

therapy to the dynamic nature of the tumor.  

A critical aspect of this research is that both drug prioritization and validation were driven by 

models, including cell lines and PDXs, selected based on their ability to recapitulate the activity 

of patient-specific Tumor Checkpoints, thus specifically assessing for potential drift in PDX P0 

tumors. An alternative strategy would have been to sample tumors in P1 animals prior to 

randomization to drug testing, but we felt mature tumors were more likely to be representative of 

patient tumors that were biopsied as opposed to early tumors undergoing kinetic growth in the 

PDX. Consistently, the vast majority of predicted drugs (15/18) recapitulated in vivo their MoA 

inferred from in vitro assays.  Indeed, the PD assessment approach we describe using on-

treatment biopsies has the potential to accurately predict treatment response within days as 

opposed to the usual requisite two to three months to determine response by radiologic criteria.  

Due to the robustness of VIPER to low sequencing depth, we have recently shown its 

applicability to measure protein activity in single cells with accuracy comparing favorably with 

antibody-based measurements and recapitulating bulk measurements [21, 46]. As such, we are 
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extending the OncoTarget and OncoTreat methodologies to the single cell level, thus allowing 

drug prioritization for independent subpopulations co-existing in a tumor with distinct drug 

sensitivities, thus potentially avoiding drug resistance before it leads to relapse.  

 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 3, 2021. ; https://doi.org/10.1101/2021.10.03.462951doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.03.462951


STAR Methods 

Generation of Gene Regulatory Networks: ARACNe (Algorithm for the Reconstruction of 

Accurate Cellular Networks) [32, 47]. The regulatory networks were reverse engineered by 

ARACNe from RNASeq profiles of human cancer tissue from The Cancer Genome Atlas 

(TCGA), Therapeutically Applicable Research To Generate Effective Treatments (TARGET), 

and a few other high quality publicly available mRNA datasets (Table S4). The RNASeq level 3 

data were downloaded from NCI Genomics Data Commons [48]; raw counts were normalized 

and the variance was stabilized by fitting the dispersion to a negative-binomial distribution as 

implemented in the DESeq2 R-package [49]. ARACNe was run with 100 bootstrap iterations 

using an input set of candidate regulators including: 1,813 transcription factors (genes 

annotated in Gene Ontology Molecular Function database (GO)55 as GO:0003700—‘DNA-

binding transcription factor activity’, or as GO:0003677—‘DNA binding’ and GO:0030528—

‘Transcription regulator activity’, or as GO:0003677 and GO:0045449—‘Regulation of 

transcription, DNA-templated’); 969 transcriptional co-factors (a manually curated list, not 

overlapping with the transcritpion factor list, built upon genes annotated as GO:0003712—

‘transcription coregulator activity’ or GO:0030528 or GO:0045449); and 3,370 signaling pathway 

related genes (annotated in GO Biological Process database as GO:0007165—‘signal 

transduction’ and in GO Cellular Component database as GO:0005622—‘intracellular’ or 

GO:0005886—‘plasma membrane’). Parameters were set to 0 DPI (Data Processing Inequality) 

tolerance and MI (Mutual Information) p-value threshold of 10−8. The mode of regulation was 

computed based on the correlation between TF and target gene expression.  

VIPER Analysis: VIPER (Virtual Proteomics by Enriched Regulon analysis). We have 

previously extensively validated the VIPER algorithm as a highly robust and specific tool for the 

accurate inference of regulatory protein activity in a context dependent manner [10, 16, 20]. 
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Specifically, VIPER leverages accurate network maps of gene regulation, such as those 

produced by ARACNe [32, 47], to infer differential protein activity from differential gene 

expression signatures (GES), including those from single sample analysis. VIPER infers a 

protein’s regulatory activity through a probabilistic enrichment framework, assessing the 

enrichment of a protein’s activated and repressed transcriptional targets (regulon) in genes that 

are over and under expressed in a sample, akin to a multiplexed gene-reporter assay.  

VIPER identifies the most aberrantly differentially active proteins as candidate MRs that 

mechanistically control a tumor’s transcriptional identity via their targets, as shown in multiple 

studies, see [10] for a comprehensive perspective. VIPER reproducibility is extremely high, such 

that Spearman correlation of activity profiles generated from RNASeq at 30M to as low as 50K 

read depth is � � 0.8 [20] even though correlation of the underlying gene expression profiles is 

low � � 0.3. This allows effective extension of all VIPER-based methodologies and was 

instrumental in achieving New York State CLIA certification for OncoTarget and OncoTreat. 

While VIPER design is uniquely appropriate for regulatory proteins that directly control gene 

expression, including transcription factors, co-factors, and chromatin remodeling enzymes, we 

have shown that the algorithm is equally effective in monitoring activity of signaling proteins [20] 

and cell surface markers [46]. For instance, we have shown that VIPER-measured EGFR 

activity was a better predictor of EGFR inhibitor sensitivity, in a large panel of lung 

adenocarcinoma cell lines, than the presence of canonical activating mutations [20]. 

Critically, genetic or pharmacological targeting of aberrantly-activated proteins, as per VIPER 

analysis, has been shown to abrogate viability of multiple malignancies, ranging from prostate 

and breast cancer [12, 50], to leukemias and lymphomas [16, 51], to neuroblastoma, 

glioblastoma, and neuroendocrine tumors[11, 13, 14]. As such, we propose MRs and other 

VIPER-inferred aberrantly activated proteins as a new class of non-oncogene dependencies. 
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OncoTarget Analysis: Through the use of DrugBank [24], the SelleckChem database [25], 

published literature, and publicly available information on pharmaceutical company drug 

development pipelines, we have curated a refined list of 180 proteins that are the validated 

targets of highly specific pharmacological inhibitors, either FDA approved or in clinical trials 

(Table S1). This manually curated target-drug(s) database is dominated by signaling proteins 

and other known oncoproteins. Pharmacological agents with narrow therapeutic indices, such 

as those targeting neurotransmitter signaling, ion channels, and vasoactive drugs were 

purposefully removed from the database as these drugs pose unique challenges for repurposing 

to treat cancer in the clinic.   

OncoTarget inference of target protein activity is accomplished by applying VIPER to the 

individual tumor sample GES, computed as the gene-wise relative expression to the distribution 

of the expression of that gene in a pan-TCGA reference group consisting of over 12,000 tumors 

and followed by application of a double rank transformation.  

Importantly, as VIPER reports a continuous measure of protein activity (normalized enrichment 

score: NES) based on the strength of enrichment of its regulon in the tumor GES, the absolute 

threshold that predicts sensitivity to a pharmacological inhibitor may vary between proteins. We 

used NES values with associated p-values p < 10-5 (BH-corrected) as a conservative empirical 

threshold for in vivo validation. Using this threshold, the average tumor in TCGA has 15 unique 

OncoTarget predictions, ranging from a mean of 4.5 in adrenocortical carcinoma (ACC) to 28.7 

in renal clear cell carcinoma (KIRC). Tumors of the same cancer type tend to have conserved 

OncoTarget predictions, reflecting shared dependencies within subsets of a given cancer type 

(Supplemental Figures).   
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OncoTreat Analysis: We have previously described the application of OncoTreat [14] to 

systematically elucidate compounds capable of reverting the activity of the repertoire of 

candidate MR proteins that regulate the transition to metastasis in enteropancreatic and rectal 

neuroendocrine tumors. We now describe a more readily applicable framework to all cancers 

that involves: 1) Defining tumor specific candidate MRs through the application of VIPER to a 

GES that computes gene-wise relative expression to the distribution of the expression of that 

gene in a pan-cancer reference group; 2) identifying relevant context-specific in vitro models 

based on conserved enrichment of patient tumor MR activity and generating high throughput 

RNASeq drug perturbation profiles in these models for de novo unbiased elucidation of MoA; 

and 3) prioritization of pharmacological agents whose effector proteins (i.e., post-perturbation 

VIPER-measured drug activity signature) are enriched in the repertoire of patient tumor 

candidate MRs. Drugs are ranked by statistical significance of their induced MR activity 

inversion based on enrichment analysis of the drug signature (i.e., MoA).  

OncoTreat specifically assesses the ability of drugs to invert the activity of the 25 most 

aberrantly activated and 25 most inactivated proteins in a specific tumor sample. This number 

was selected because we have shown that, on average, across all of TCGA, the vast majority of 

genomic events identified on an individual sample basis can be found upstream of the top 25 

proteins inferred by VIPER, thus supporting their status as putative MRs [8]. OncoTreat 

identified entinostat, a class I histone deacetylase inhibitor, among 105 profiled drugs, as 

effective at inverting the activity of MR proteins of metastatic gastroenteropancreatic 

neuroendocrine tumors (GEP-NETs), which was then validated to induce significant tumor 

volume reduction in vivo [14], leading to a clinical trial that is currently accruing patients 

(NCT03211988).  
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Cell Line and PDX Model Fidelity (Match) Analysis: Model match was tested by 

independently assessing the conserved enrichment of upregulated MRs (top 25) of the patient-

specific Tumor Checkpoint module in the positive tail of the VIPER-inferred protein activity 

signature of the model and the conserved enrichment of downregulated MRs (bottom 25) in the 

negative tail of the model signature. The two resulting significance values are combined by 

Fisher’s method. The analytic-rank based enrichment analysis (aREA) algorithm [20] was used 

to perform enrichment analysis, but any suitable algorithm could be substituted. In all cases, 

repeat RNASeq was performed on-site on acquired cell line models to ensure consistency with 

the publically available profiles used for pre-selection. 

Establishment of PDX models and therapeutic drug testing: All animals were maintained 

under barrier conditions and all experiments were performed in accordance with and approval of 

the Memorial Sloan Kettering Cancer Center (MSKCC) Institutional Animal Care and Use 

Committee (IACUC, protocol #16-08-011) and Columbia University Medical Center (CUMC) 

IACUC (AAAF5850). Patient tumor tissue was collected under the CUMC Institutional Review 

Board (IRB)-approved protocol AAAA7562 with written informed consent provided by the 

subject or legally authorized representative. Generation of PDX models was performed under 

the MSKCC IRB-approved protocol #17-387 and CUMC IRB protocol AAAJ5811. PDX models 

were established as previously described[52]. In summary, fresh tumor tissue  was fragmented 

and implanted subcutaneously into nonobese/severe combine immunodeficiency IL2Rγ null, 

hypoxanthine phosphoribosyltransferase (HPRT)-null (NSGH) mice (Jackson Labs, IMSR 

catalog no. JAX:012480, RRID: IMSR_JAX:012480) and tumor engraftment monitored by visual 

and manual inspection. Engrafted tumors were measured twice weekly with calipers and drug 

treatment initiated when tumor volume (TV) reached ~100 mm3 (TV = width2 X ½ length). Early 

passage animals (Passage 1 – 5) were used for all therapeutic studies. Aligned with clinical 

response criteria, treatment response was categorized as complete response (CR, >95% 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 3, 2021. ; https://doi.org/10.1101/2021.10.03.462951doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.03.462951


reduction from baseline or no measurable/palpable tumor), partial response (PR, >50% 

reduction), stable disease (SD, <50% reduction and no more than 100% increase), or 

progressive disease (PD, >100% increase from baseline). Disease control rate (DCR) is defined 

as the sum of CR, PR and SD responses. Objective response rate (ORR) is defined as the sum 

of CR and PR responses. Tumor responses were assessed at time of treatment failure (TxFail), 

defined as the day in which at least 75% of vehicle treated tumors met criteria for PD for any 

given model in order to account for inter-model variability in tumor growth rates, or at the end of 

the therapeutic study period (EoS). The Mann-Whitney-Wilcoxon method was used to determine 

differences in the distribution of relative tumor volume between OncoTarget or OncoTreat 

cohorts and Vehicle control. Vardi’s test was used to evaluate differences in area under the 

curve (AUC) between treatment groups across models. T/C% was determined for OncoTarget, 

OncoTreat, and Negative control groups and differences evaluated using 2-way ANOVA. 

Comparisons of DCR and ORR across treatment groups (OncoTarget alone, OncoTreat alone, 

Both) were performed using a Fisher’s exact test or Pearson’s chi-squared test. Disease control 

was defined as the percentage of mice that did not meet criteria for progressive disease for the 

duration of the therapeutic study. Kaplan-Meier survival curves were compared and analyzed 

using the log-rank test. Statistical analysis was performed using R software (v3.5.0) or 

GraphPad Prism [v8.4.1 (RRID:SCR_002798)]. Statistical significance was defined as a p-value 

< 0.05.  
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Figure 1. N of 1 preclinical trial conceptual diagram. (A) Adults with metastatic solid tumors with 

progression or intolerance to all standard treatments and with accessible site for biopsy are 

enrolled. Fresh tumor tissue from biopsy is partitioned for (i) clinical histopathology review, 

(ii) xenografting into immunodeficient mice, and (iii) mRNA profiling (RNASeq). If engraftment is 

successful, the mature P0 passage tumor is also profiled by RNASeq to confirm candidate MR 

conservation between patient tumor and PDX (OncoMatch). (B) Use of VIPER, OncoTarget, 

and OncoTreat analysis to predict optimal drugs for PDX treatment. (i) mRNA profiles are 

generated from tumor samples. (ii) A gene expression signature (GES) is generated by 

comparing the tumor profile to a large pan-cancer RNASeq compendium (reference) comprising 

all TCGA samples. (iii) Cancer-type specific network(s) are used to interrogate the GES to 

identify the most aberrantly activated and inactivated proteins (i.e., candidate MRs) by VIPER 

analysis. (iv) OncoTarget identifies the most aberrantly activated proteins among those for 

which a high-affinity inhibitor drug is available (i.e., druggable MRs)—e.g., receptor and 

intracellular kinases, cell surface molecules, and enzymes involved in epigenetic regulation. (v) 

OncoTreat identifies the drugs inducing the strongest activity inversion of all candidate MRs 

(i.e., TC-module inverter drugs) by VIPER analysis of drug perturbation profiles generated by 

treating context-relevant cell line models with available approved and experimental 

[antineoplastic] drugs. (C) Candidate drugs are prioritized based on prediction p-value, 

conservation of prediction based on the PDX RNASeq profile, and clinical relevance. Mice from 

the P1 passage are randomized into candidate drug arms, a negative control drug arm, and a 

vehicle control arm.  

Figure 2. (A) High throughput drugs screens have been completed in over two dozen cancer 

cell lines that are most representative of patient tumor cohorts (PanACEA database). An 

example is shown, with BT20 emerging as one of the top five out of 97 breast cancer cell line 

profiles (top 12 shown in heatmap, corresponding to -Log10 (p-value) of the fidelity match), for 
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recapitulating TC-module activity in the TCGA basal breast cancer cohort. (B) The enrichment 

of tumor-specific candidate MRs (i.e., collectively the TC-module) in proteins differentially active 

in basal cell line profiles, is assessed through directional enrichment analysis (aREA). For four 

of the six tumors for which OncoTreat predictions were made, activated and inactivated 

candidate MRs were highly enriched in the most activated and inactivated proteins of the 

matched cell line model. Normalized Enrichment Scores (NES) were in the range of 8.0 to 14.9, 

with associated p-values meeting the pre-defined match threshold p ≤ 10-10. For the 

meningioma case (CNS.16474), the match was weaker, albeit still statistically significant 

(p = 0.0005). Finally, for the third breast cancer case (BC-50291), BT20 was not statistically 

significant in terms of MR recapitulation. (C) OncoTreat based assessment of TC-module MR 

activity inversion—i.e., top 25 (red lines) and bottom 25 (blue lines) patient-specific MRs. For all 

OncoTreat-predicted drugs selected for in vivo validation, strong MR activity inversion (p ≤ 10-5) 

was detected following drug treatment of the patient-matched cell line, with inactivation and 

activation of positive and negative MRs, respectively. For the pancreatic tumor case 

(PAC.05647), drug perturbation profiles in the ASPC1 cell line became available only recently, 

thus OncoTreat analysis was based on integrated drug MoA signatures from the available cell 

lines, BT20, GIST430, GISTT1, and IOMM by Fisher’s method.    

Table 1. Clinical characteristics, prior systemic treatment, and tumor genomic profiling (if 

available). 

Table 2. Prioritized drugs, prediction basis, and dosing schedule for PDX efficacy study.  

Figure 3. (A) Fidelity assessment of PDX models used for drug validation. Enrichment of tumor-

specific positive and negative candidate MRs (i.e., collectively the TC-module) in differentially 

active and inactive proteins in the P0 PDX tumor samples, assessed by analytic-rank 
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enrichment analysis (aREA). Candidate MR activity was highly conserved in six out of seven 

models, but not in the (BC.50291) breast cancer model. This is potentially explained by 

microenvironment specific selection pressures leading to rapid PDX model drift. (B, C) Waterfall 

plots for EoS time point. Waterfall plot of mice treated with OncoTarget predicted drugs (b) in 

seven PDX models and mice treated with vehicle control. A disease control rate (DCR = stable 

disease (SD) + partial response (PR) + complete response (CR)) of 71% (n=60/85) and 

objective response rate (ORR = PR + CR) of 14% (n=12/85) was observed when treating with 

OncoTarget predicted drugs. Responses were primarily SD (n=48) and PR (n=12). Waterfall 

plot of mice treated with OncoTreat predicted drugs (c) in six PDX models and mice treated with 

vehicle control.  A DCR of 86% (n=67/78) and ORR of 18% (n=14/78) were observed consisting 

of SD (n=53) and PR (n=14) responses. Both OncoTarget and OncoTreat were highly accurate 

in predicting disease control versus vehicle control (p < 10-4, by Mann-Whitney-Wilcoxon test). 

(D, E) summary of endpoints for each arm at the early TxFail time point (d) and the EoS time 

point (e), including a non-overlapping category for drugs predicted by both OncoTarget and 

OncoTreat (third column).  

Figure 4. Kaplan-Meier and T/C% Tumor Growth Inhibition Analysis. (A) Significant disease 

control was observed in cohorts treated with either OncoTarget or OncoTreat predicted drugs 

compared to vehicle control (p < 10-4, log-rank test). There was also improved disease control 

with OncoTreat predicted drugs compared to OncoTarget (p = 0.002), but no significant 

difference between drugs predicted by OncoTreat alone or by both OncoTarget and OncoTreat 

(p = 0.10). (B) By comparison, drugs predicted to exert no anti-tumor effect based on 

OncoTarget or OncoTreat analyses (Negative control drugs) show no significant difference in 

disease control when compared to vehicle control (p = 0.38). (C) Boxplot of distribution of T/C% 

tumor growth inhibition seen in animals treated with Negative Control, OncoTarget, and 

OncoTreat-predicted drugs, normalized to matched-Vehicle control. There is a statistically 
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significant difference in median T/C% in OncoTarget and OncoTreat treated mice versus 

Negative Control.    

Figure 5. Pharmacodynamic assessment of MR activity reversal in vivo, in early on-treatment 

biopsy samples. Two mice from each drug arm were sacrificed after the 3rd dose. VIPER was 

used to generate a differential protein activity signature from the drug-treated versus Vehicle 

control-treated PDX model. The enrichment of tumor-specific activated and inactivated 

candidate MRs (i.e., collectively the TC-module), in proteins differentially inactivated and 

activated in the treated PDX model was assessed by analytic-rank enrichment analysis (aREA). 

(A – D) Statistically significant MR-inversion in vivo (p ≤ 10-5), which recapitulated the 

predictions from MR-matched cell lines in vitro, was confirmed for 15 of the 18 OncoTreat-

predicted drugs. Exceptions included daunorubicin in GIST.81050, which however achieved 

disease control, abiraterone in CNS.16474, which induced only minimal tumor growth inhibition, 

and belinostat, an epigenetic modulator, in PAC.05674 which achieved disease control. (E) As 

expected, four of five negative control drugs tested in GIST.81050, did not significantly invert 

MR activity. TAE684 significantly inverted MR activity at this early time point. All control drugs 

failed to induce disease control in this model.  

Figure 6. (A) Heatmap shows top OncoTreat predictions for 173 TCGA basal breast cancer 

samples, as well as for the three basal breast cancer samples from patients enrolled in the 

study (BC.50291, BC.32398, and BC.97359). Color code represents the –Log10 p of the 

prediction strength. Drug predictions cluster into five main pharmacotypes, with the three N of 1 

cases clustering with samples in pharmacotype A, B, and D, respectively. (B) Conceptual 

schema for a pharmacotype-based umbrella trial concept in triple negative breast cancer. One 

or more drugs per pharmacotype may be prioritized as hypotheses for a follow-up umbrella 

clinical trial, based on availability, tolerability, and preclinical validation in relevant PDX models 
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matching the MR profiles. Patients with advanced triple negative breast cancer who have 

exhausted all proven effective treatment options would be enrolled and undergo biopsy. An 

initial screening phase would determine if OncoTreat predicts a match to any of the open drug 

arms. Patients with the most statistically significant match to a specific pharmacotype would be 

randomized 5:1 to OncoTreat-predicted drug versus physician treatment of choice. Using an 

adaptive design, arms that fail to demonstrate efficacy would be closed early and new arms 

would be opened, as drugs become available and are validated in PDX models. (C, D) 

Response to sunitinib in a pediatric Calcifying Nested Stromal Epithelial Tumor (CNSET) patient 

with aberrant activation of PDGFR-B, as assessed by OncoTarget analysis. (C) Chest CT pre-

sunitinib treatment: coronal section (top) and axial sections (middle and bottom) demonstrate 

numerous pulmonary metastases (red arrows) ranging from less than 1 to close to 3 cm in size. 

Several of the tumors were new or growing on serial scans during the preceding six months. (D) 

Chest CT following three cycles of sunitinib (six weeks each). Several of the tumors had 

decreased in size (red arrows) or were no longer radiologically evident. CNSET 

Supplemental:  

Figure S1: Detailed schematic of the VIPER, OncoTarget, and OncoTreat methodologies.   

Figure S2: Detailed schematic of the N of 1 trial, including overview of subject eligibility criteria, 

procurement of tumor tissue for standard of care clinical evaluation and study procedures – 

including xenografting and RNASeq/VIPER profiling for downstream OncoTarget and 

OncoTreat analyses, and therapeutic validation of predicted drugs in PDX models. Tumors are 

measured thrice weekly for efficacy evaluation and two mice in each arm sacrificed for early on-

treatment pharmacodynamics assessment.  
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Supplementary Report: Example clinical OncoTarget and OncoTreat report for an ovarian 

cancer case. In OncoTreat, predictions are made based on de novo dissected drug MoA. As 

such, one should not assume that drugs targeting the same primary target or representing the 

same inhibitor class may be considered equivalent. In OncoTarget, predictions are made on 

specific druggable proteins, and drugs are prioritized based on target specificity and clinical 

availability and use.  

Figure S3. The position of tumor-specific candidate MRs, i.e., collectively the Tumor 

Checkpoint, in the VIPER inferred protein activity signature of cell lines is assessed through 

directional enrichment analysis (aREA). The activity of specific candidate MRs used for this 

analysis in the patient tumor sample and cell line are demonstrated in the heatmaps on the 

right.  

Figure S4. Enrichment of tumor-specific positive and negative candidate MRs (i.e., collectively 

the TC-module) in proteins differentially activated and inactivated based on VIPER analysis of 

the mature P0 PDX tumor, respectively, as assessed by analytic-rank enrichment analysis 

(aREA). The activity of the specific candidate MRs used in this analysis in the patient tumor 

sample (top) and PDX (bottom) are shown in the heatmaps on the right. 

Figure S5. Waterfall plots for TxFail time point. (A) Waterfall plot of mice treated with 

OncoTarget predicted drugs in seven PDX models and mice treated with vehicle control. (B) 

Waterfall plot of mice treated with OncoTreat predicted drugs in six PDX models and mice 

treated with vehicle control. Both OncoTarget and OncoTreat were highly accurate in predicting 

disease control versus vehicle control. 

Table S1. Pre-defined list of proteins with high-affinity inhibitor drugs for OncoTarget analysis. 

Inhibitors were identified by analysis of databases such as SelleckChem and DrugBank. 
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Proteins with no associated drugs or drugs with narrow therapeutic indices (such as vasoactive 

or neurotransmitters) were removed. When multiple high-affinity inhibitors were identified, they 

were ranked based on target binding affinity, availability, and clinical utility/tolerability 

(subjective).   

Table S2. Comprehensive list of clinically relevant drugs screened in PanACEA cell lines. The 

list is divided into three sections, including one with FDA approved antineoplastics, one with 

experimental antineoplastics in clinical trials, and one with non-antineoplastics and tool 

compounds. Drugs in the first two categories were generally evaluated in all cell lines screened 

while compounds in the last category were only evaluated when demonstrating an 

EC50 < 10μM.  

Table S3. Current list of cancer cell lines with available drug perturbation RNASeq profiles, 

which together comprise the PANACEA resource. Automated high-throughput screens were 

performed in all cell lines using the PLATESeq platform.   

Table S4. List of available interactomes (gene regulatory networks) that have been generated 

from RNASeq datasets of patient tumor samples using the ARACNe algorithm.  

Table S5. Summary of enrollment criteria for the N of 1 trial, including numbers by cancer type, 

the attempt to develop a PDX, establishment of PDX, and RNASeq/VIPER profiling of PDX 

when established.  

Table S6. Detailed summary of drugs prioritized for testing in PDX models, based on rank of 

OncoTarget and OncoTreat predictions by –log10 p-value.  
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Table S7. Detailed summary of therapeutic response at Vehicle TxFail time point (mean tumor 

volume versus baseline), organized by study group – OncoTreat, OncoTarget, or Negative 

Control – and then stratified by each individual drug arm. The study was underpowered for 

statistical analyses of therapeutic response in individual drug arms.   
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GIST.81050Drug [Concentration(s) Screened] MR−Reversal
Fludarabine

[0.026; 0.032; 0.26; 0.32 µM] NES: −13.54; p−val: 2.03e−40

Topotecan
[0.006; 0.05 µM] NES: −5.04; p−val: 7.36e−07

Selumetinib
[0.008; 0.084 µM] NES: −10.14; p−val: 2.6e−23

Teniposide
[0.13; 1.3 µM] NES: −12.42; p−val: 2.1e−34

Daunorubicin
[0.026; 0.26 µM] NES: −6.75; p−val: 3.45e−11

BC.32398
Irinotecan

[0.72; 7.1 µM] NES: −13.57; p−val: 9.57e−41

Clofarabine
[0.24; 2.4 µM] NES: −4.03; p−val: 0.000164

Daunorubicin
[0.022; 0.22 µM] NES: −6.22; p−val: 1.86e−09

Etoposide
[0.88; 9 µM] NES: −11.51; p−val: 8.43e−30

Thioguanine
[0.22; 2.2 µM] NES: −3.28; p−val: 0.00259

BC.97359
Irinotecan

[0.72; 7.1 µM] NES: −6.41; p−val: 1.11e−09

CNS.16474
Tivantinib
[0.53 µM] NES: −7.9; p−val: 5.83e−14

Ponatinib
[0.11 µM] NES: −7.65; p−val: 3.31e−13

Abiraterone
[1.3 µM] NES: −6.25; p−val: 3.69e−09

Vismodegib
[20 µM] NES: −7.59; p−val: 4.33e−13

Homoharringtonine
[0.0028 µM] NES: −9.7; p−val: 1.2e−20

Doxorubicin
[0.0029 µM] NES: −10.43; p−val: 1.43e−23

PAC.05647
Fludarabine

[0.026; 0.032; 0.038; 0.26; 0.32 µM] NES: −14.16; p−val: 5.28e−44

Belinostat
[0.11 µM] NES: −16.01; p−val: 1.07e−55

Teniposide
[0.0033; 0.1; 0.13; 1; 1.3 µM] NES: −9.62; p−val: 1.22e−20

BC.50291
Paclitaxel

[0.004; 0.04 µM] NES: −8.3; p−val: 3.04e−16

Temsirolimus
[0.68; 6.8 µM] NES: −8.54; p−val: 4.96e−17
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A. GIST.81050

B. BC.32398

C. CNS.16474

D. PAC.05647

E. GIST.81050
Negative Controls
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C. Pre-Sunitinib

D. Post 3C Sunitinib

A.

B.
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ID Age at 

Diagnosis

Gender Race/Ethnicity Primary Tumor/ 

Histopathology

Stage at 

Diagnosis

Biopsy Site Prior Systemic Treatments Tumor Genomics 

(Pathologic Variants)

GIST.81050 17 M Caucasian/Persian Gastrointestinal 

Stromal Tumor 

(GIST Sarcoma)

IV Brain 

Metastasis

Intraperitoneal mitomycin

Sunitinib x 1 cycle

Trametinib x 2 cycles 

Regorafenib x 5 cycles

CB-839 (glutaminase inh) x 1 cycle *on a clinical trial 

Pazopanib x 2 cycles

KRAS

CDKN2A 

SDHB (splice site; 

germline)

ZRSR2

BC.32398 48 F Caucasian Triple Negative 

Breast IDC (ER 0, 

PR 30%, HER2 0, 

Ki-67 50%)

III Peritoneal 

Metastasis

Paclitaxel x 12 weeks + propanolol *on a clinical trial

Adriamycin + Cyclophosphamide x 4 cycles

Tamoxifen x 6 months

Leuprolide + Anastrozole x 3 months

PIK3CA

TP53 (x2 mutations)

ATM

NIPBL

SETD2

RPS6KB2

EPHB1 (x2 mutations)

FAM175A

CAR.23659 83 F Caucasian Colon 

adenocarcinoma, 

microsatellite 

stable

II Liver Metastasis Capecitabine + Oxaliplatin x 3 cycles KRAS

ERBB2

APC

TP53

STAG1 

RAD51C

BC.97359 57 F African American Triple Negative 

Breast IDC (ER 0, 

PR 40%, HER2 0, 

Ki-67 50%)

IIIA Chest Wall 

Recurrence

Adriamycin + Cyclophosphamide x 4 cycles

Paclitaxel x 12 weeks

Anastrazole

AKT1

TP53

CNS.16474 56 M Caucasian Atypical 

meningioma 

(WHO Grade II)

Grade II Meningeal/Brai

n Recurrence

Hydroxyurea (concurrent with gamma knife radiation) Not available

PAC.05647 59 F Caucasian Pancreatic 

Adenocarcinoma

III Liver Metastasis 5-FU + Irinotecan + Oxaliplatin (FOLFIRINOX) x 12 cycles

Gemcitabine + Irinotecan + Everolimus x 6 months

Not available

BC.50291 47 F Caucasian Triple Negative 

Breast IDC (ER 0, 

PR 10%, HER2  0 

but amplified by 

FISH, Ki-67 60%)

IV Breast Nab-paclitaxel x 5 cycles

Glembatumumab vedotin x 2 cycles *on a clinical trial

Capecitabine x 3 months

Trastuzumab + Pertuzumab + Nab-paclitaxel x 3 cycles

Carboplatin + Gemcitabine x 5 months

Sacituzumab Govitecan x 9 Cycles *on a clinical trial

No mutations identified 

(Limited breast cancer 

specific panel)
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Drug Prediction Basis Dosing Schedule

Fludarabine OncoTreat 200 mg/kg IP daily

Topotecan OncoTreat+OncoTarget 0.6 mg/kg IP daily

Selumetinib OncoTreat 50 mg/kg PO twice daily

Teniposide OncoTreat+OncoTarget 5 mg/kg IP daily

Daunorubicin OncoTreat+OncoTarget 2.5 mg/kg IP once on D1

Chlorpromazine Negative Control

Obatoclax Negative Control

Alpelisib Negative Control 50 mg/kg PO daily

Selinexor Negative Control 15 mg/kg PO three times weekly

Serdemetan Negative Control 20 mg/kg PO daily, 5 days on, 2 off

TAE684 Negative Control 10 mg/kg PO daily

Pacritinib Negative Control 100 mg/kg PO daily

Drug Prediction Basis Dosing Schedule

Irinotecan OncoTreat+OncoTarget 20 mg/kg IP daily, 5 days on, 2 off

Olaparib OncoTarget 50 mg/kg IP daily

Clofarabine OncoTreat 60 mg/kg IP daily

Daunorubicin OncoTreat+OncoTarget 2.5 mg/kg IV once on day 1

Etoposide OncoTreat+OncoTarget 10 mg/kg IP daily

Thioguanine OncoTreat 1.5 mg/kg IP daily x 10 days

Drug Prediction Basis Dosing Schedule

Afatinib OncoTarget 20 mg/kg PO daily

Bosutinib OncoTarget 100 mg/kg PO daily

Vorinostat OncoTarget 60 mg/kg IP daily, 5 days on, 2 off

Daunorubicin OncoTarget 2.5 mg/kg IV once on day 1

Selinexor OncoTarget 15 mg/kg PO three times weekly

Bardoxolone Methyl OncoTarget 7.5 mg/kg PO daily

Celecoxib Negative Control

Lorlatinib Negative Control 10 mg/kg PO daily

HSP990 Negative Control 5 mg/kg PO twice daily

Drug Prediction Basis Dosing Schedule

Irinotecan OncoTreat 20 mg/kg IP daily, 5 days on, 2 off

MK-2206 OncoTarget 120 mg/kg IP daily

Panobinostat OncoTarget 10 mg/kg IP daily, 5 days on, 2 off

Dabrafenib OncoTarget 100 mg/kg PO daily

Drug Prediction Basis Dosing Schedule

Tivantinib OncoTreat 200 mg/kg PO daily

Ponatinib OncoTreat 30 mg/kg PO daily

Abiraterone OncoTreat 175 mg/kg IP daily

Vismodegib OncoTreat 92 mg/kg PO twice daily

Homoharringtonine OncoTreat 1 mg/kg IP daily

Doxorubicin OncoTreat+OncoTarget 8 mg/kg IV once on day 1

Drug Prediction Basis Dosing Schedule

Selinexor OncoTarget 15 mg/kg PO three times weekly

Fludarabine OncoTreat 100 mg/kg IP three times weekly

Belinostat OncoTreat 100 mg/kg IP daily

Bardoxolone Methyl OncoTarget 7.5 mg/kg PO daily

Teniposide OncoTreat+OncoTarget 5 mg/kg IP daily

Temsirolimus Negative Control 20 mg/kg IP daily

GSK2606414 Negative Control 150 mg/kg PO twice daily

Drug Prediction Basis Dosing Schedule

Paclitaxel OncoTreat 25 mg/kg IV weekly

Temsirolimus OncoTreat 20 mg/kg IP daily

Prexasertib OncoTarget 15 mg/kg subcut twice daily, 3x weekly

Olaparib Negative Control

PAC.05647

BC.50291

GIST.81050

BC.32398

CAR.23659

BC.97359

CNS.16474
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