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Abstract  

Neuroimaging studies have reported functional connectome aberrancies in autism spectrum 

disorder (ASD). However, the time-varying patterns of connectome topology in ASD individuals 

and the connection between these patterns and gene expression profiles remain unknown. To 

investigate case-control differences in dynamic connectome topology, we conducted mega- and 

meta-analyses of resting-state fMRI data of 939 participants (440 ASD patients and 499 healthy 

controls, all males) from 18 sites, selected from the ABIDE (Autism Brain Imaging Data 

Exchange) dataset. Functional data was preprocessed using harmonized protocols, and brain 

module dynamics was assessed using a multilayer network model. We further leveraged 

postmortem brain-wide gene expression data to identify transcriptomic signatures associated 

with ASD-related alterations in brain dynamics. Compared to healthy controls, ASD individuals 

exhibited a higher global mean and lower standard deviation of whole-brain module dynamics, 

indicating an unstable and less regionally differentiated pattern. More specifically, ASD 

individuals showed increased module switching, primarily in the default-mode regions, and 

reduced switching in the visual regions, with the largest case-control differences in the medial 

prefrontal cortex. These alterations in brain dynamics were predictive of social impairments in 

ASD individuals and were linked with expression profiles of genes primarily involved in the 

regulation of neurotransmitter transport and secretion, as well as with previously identified 

autism-related genes. This study is the first to identify consistent alterations in brain network 

dynamics in ASD, and the transcriptomic signatures related to those alterations, furthering 

insights into the biological basis behind this disorder.  
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Introduction  

Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorder characterized 

by persistent impairments in social communication and the presence of restricted and repetitive 

patterns of behavior [1, 2]. Contemporary views of ASD conceptualize it as a connectome 

dysfunction syndrome [3, 4], manifesting as aberrant functional connectivity in the brain, 

especially in the default-mode network [5-8]. ASD-related aberrancies in the brain connectome 

are linked with individual clinical symptoms [8-10] and impairments in cognitive ability [11, 12]. 

These studies have provided insights into understanding the biological underpinnings of ASD 

from a network perspective.  

However, despite its importance for understanding the disease, previous functional connectome 

studies on ASD have focused primarily on the static (i.e., time-invariant) connectivity patterns of 

the brain, largely ignoring the temporal characteristic of brain networks. The human brain can be 

thought of as a highly dynamic networked system that exhibits connectivity reconfigurations 

over time [13, 14]. These dynamic reconfigurations are essential for efficient inter-module 

communication [15], cognitive flexibility [16, 17], and rapid response to external task demands 

[18, 19]. Although several prior studies have reported alterations in brain connectome dynamics 

in ASD, such as increased connectivity variability [20-23] and fewer transitions between 

connectivity states [24-26], the topological features of dynamic brain networks in ASD remain 

understudied. Investigating the temporally fluctuating patterns in ASD brain network topology, 

in particular the properties of modular switching, will advance our understanding of how 

dynamic interactions of different network components underpin cognitive dysfunction in patients 

[27]. Thus, the time-varying pattern of functional connectome topology in ASD is a pertinent 

area that warrants further research.  

Genetic factors are considered to be a predominant cause of ASD [1]. Former twin and family 

studies have confirmed the prominent heritability of ASD and ASD-associated traits [28]. An 

increasing number of susceptibility genes have been identified, such as common variants [29] 

and rare, de novo variants [30]. Recently, a large-scale exome sequencing study of ASD 

identified over 100 putative ASD-associated risk genes, the majority of which are neuronally 

expressed [31]. RNA microarray and sequencing studies of post-mortem ASD brain samples also 

demonstrated transcriptionally altered genes and affected pathways, wherein upregulation was 

observed for genes involved in inflammatory pathways and glial function, and downregulation 

was observed for genes involved in neuronal and synaptic pathways [32]. A very recent study 

suggests that the spatial layout of network module dynamics in healthy brains is linked to the 

expression level of genes associated with potassium ion channel activity regulation and 

mitochondria [33]. Thus, we speculate that the alteration of brain network dynamics in ASD is 

related to the expression profile of previously identified autism-related genes. 

To address these questions, we conducted the first mega- and meta-analyses for the identification 

of significant alterations in connectome dynamics in ASD. We used resting-state functional MRI 

data from 939 participants (440 ASD patients and 499 controls) selected from 18 independent 

sites and employed a multilayer network model [34] to characterize the topological dynamics of 

the functional connectome. The mega- and meta-analyses were performed separately, using 

harmonized image processing and network analysis protocols. Finally, we conducted a partial 

least squares regression analysis to determine the link between abnormal network dynamics and 

transcriptional profiles. We hypothesized that: i) ASD patients would show significant alterations 
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in brain connectome dynamics as compared to healthy controls; and ii) these alterations in brain 

dynamics would be associated with the expression profiles of genes that were enriched for 

previously published ASD-related gene sets. 

Materials and methods 

Data sets 

We selected resting-state functional MRI (rsfMRI) data from 440 ASD individuals and 499 

healthy controls (HCs) (all males, age range: 5-35 years old, collected at 18 independent sites) 

(Figure S1) from the publicly available Autism Brain Imaging Data Exchange (ABIDE) I and 

ABIDE II datasets [35, 36] (http://fcon_1000.projects.nitrc.org/indi/abide/) (for details, see 

Supplement) after screening against strict criteria. 

Data preprocessing 

RsfMRI data from all 18 sites were preprocessed with a standardized and harmonized pipeline 

using the GRETNA package [37]. This process involved removing the first 10-second volumes, 

slice timing correction, realignment, spatial normalization to standard space, spatial smoothing 

with a Gaussian kernel (full width at half maximum = 6 mm), linear detrending, nuisance 

regression (for the following nuisance regressors: Friston’s 24 head-motion parameters, 

cerebrospinal fluid, white matter, and global signals), and temporal filtering (0.01-0.1 Hz). 

Further, given that rsfMRI scanning duration may have been different between sites, we took 

data from a fixed scanning length (i.e., the first 5-minute time course) for connectome 

construction. 

Constructing dynamic brain connectomes 

For each individual, dynamic brain connectomes were generated using a sliding window 

approach [14, 38]. Specifically, network nodes were defined as 512 regions of interest with 

uniform areas obtained from a random parcellation [39]. Within each time window, we estimated 

the inter-node functional connections by calculating the Pearson’s correlation coefficient 

between nodal time courses. Here, the window length was set as 60 seconds and the sliding step 

was set as one repetition time. Finally, we obtained weighted dynamic connectomes by applying 

a network threshold with a fixed density (density = 15%) to reduce the influence of weak or 

spurious connectivities. 

Tracking dynamic modular structure  

We utilized a multilayer network model [34] to identify the time-varying features of connectome 

topology (Figure 1A). This model incorporates connectivity information from adjacent windows 

and assumes temporal continuity of modular configurations. Specifically, we conducted a 

multilayer-variant Louvain algorithm (http://netwiki.amath.unc.edu/GenLouvain) to identify the 

optimal modular architecture by maximizing the modularity index, Q (range: 0-1), which denotes 

the extent of segregation between network modules. Then, we computed the modular variability 

[16] of each brain node to quantify how individual nodes dynamically switched their modular 

affiliations over time (see Supplement). The larger the modular variability, the more flexibly a 

brain node switches between modules.  
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Case-control comparison analysis 

Mega-analysis. To examine case-control differences in module dynamics, we performed a mega-

analysis by pooling individual modular variability maps across all sites. Prior to performing the 

analysis, we applied a ComBat harmonization [40-42] to the individual modular variability maps 

to correct for site effects. We then estimated group differences in modular variability at both 

global (whole-brain mean and standard deviation) and nodal levels using a semi-parametric 

Generalized Additive Model (GAM) [43] with restricted maximum likelihood as the smoothing 

parameter: 

Y = β0 + β1 × group + f1 (age) + f2 (age, group) + β2 × mFD + ε,          (1) 

where Y denotes the measure of modular variability. The age and age-by-group interaction 

effects were controlled for by introducing two smooth functions (i.e., f1, f2) as non-parametric 

terms. This allows for flexible assessment of the nonlinear relationship without pre-emptively 

assigning a prior shape. Mean framewise displacement [44] was also included as a covariate to 

control for head motion. Multiple comparisons across nodes were corrected for by applying the 

false discovery rate (FDR) method [45]. Cohen’s d values, representing the effect size of the 

group comparisons, were computed from the t statistic of the group term. The GAM was 

computed using the mgcv package (https://cran.rproject.org/web/packages/mgcv/index.html). To 

further decode the cognitive implications of the brain nodes exhibiting ASD-related alterations in 

connectome dynamics, we performed a functional meta-analysis using the Neurosynth database 

[46] (see Supplement).  

Meta-analysis. To assess the robustness of the observed case-control differences in the mega-

analysis, we also undertook a harmonized meta-analysis. Briefly, for each site we calculated the 

GAM (Eq. (1)) to examine site-specific group differences in modular dynamics at both global 

and nodal levels. Then, we obtained the meta-analytic Cohen’s d values of these measures using 

an inverse variance-weighted random effect meta-analysis model in the metafor package (version 

3.0.2; https://cran.r-project.org/web/packages/metafor/index.html). 

Prediction of social impairments using connectome dynamics 

We further evaluated whether brain module dynamics were predictive of the social impairments 

observed in ASD. To quantify the degree of social impairment, we referred to scoring against the 

Social Responsiveness Scale (SRS), which provides a dimensional characterization of the 

severity of social impairments related to ASD. We trained a support vector regression model to 

estimate each participant’s SRS score based on the whole-brain modular variability maps (see 

Supplement). The leave-one-out cross validation was used to estimate the accuracy of our 

predictions. This analysis was performed using the LIBSVM toolbox [47] 

(https://www.csie.ntu.edu.tw/~cjlin/libsvm/). 

Association between alterations in connectome dynamics and gene expression profiles 

Estimation of gene expression in brain nodes. We utilized brain-wide genome expression data 

from five male post-mortem adult human brains from the Allen Human Brain Atlas dataset [48] 

(http://human.brain-map.org) to identify genes associated with ASD-related alternations in 

connectome dynamics. Gene expression levels from the left hemisphere was used here, since 

right hemisphere data was available from only two donors. The microarray data was 

preprocessed using a state-of-the-art analysis pipeline [49] and spatially matched with 222 brain 
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nodes (see Supplement). This resulted in a 222 × 10,145 matrix, denoting the expression of 

10,145 genes across 222 nodes.  

Spatial correlation with gene expression profiles. Given the high similarity of results obtained 

from both the mega- and meta-analyses in respect of ASD-related alterations in brain module 

dynamics (see Results), we performed the connectome-transcriptome association analysis based 

on the group difference map (i.e., Cohen’s d values) from the mega-analysis. Specifically, we 

used a partial least squares (PLS) regression to identify the weighted linear combinations (i.e., 

components) of expression patterns for all 10,145 genes, which were correlated with ASD-

related alterations in connectome dynamics. The statistical significance of the variance explained 

by the PLS components were tested using a permutation analysis (n = 10,000) in which spatial 

autocorrelation was corrected for [50]. For each PLS component map, we calculated the spatial 

similarity between the weighted gene expressions and the Cohen’s d values in the group 

difference map using the Pearson’s correlation. The significance of the correlation was tested 

again using a permutation analysis (n = 10,000) in which spatial autocorrelation was corrected 

for [50]. Finally, the PLS weight of each gene was transformed into a Z-score value by dividing 

the weight by the standard deviation of the corresponding weights derived from 1,000 instances 

of bootstrapping (resampling with replacement of 222 nodes). We then ranked all genes 

according to their Z-score weights to the PLS components.  

Enrichment analysis. To explore the functional significance of the associated genes, we first 

conducted separate searches for Gene Ontology terms that were enriched at the top (strong 

positive correlation) and bottom (strong negative correlation) of the ranked gene list, by 

employing the widely used online tool GOrilla [51] (http://cbl-gorilla.cs.technion.ac.il/) (see 

Supplement). All three ontology classes, including biological process, cellular component, and 

molecular function, were considered. 

Next, we performed a gene set enrichment analysis [52] on the whole gene list (i.e., the ordered 

set of 10,145 genes) to assess whether previously identified ASD-related gene sets were 

overrepresented in the most strongly correlated genes identified in our ordered list. Specifically, 

we considered six different classes of ASD-related gene sets (Table S1), including i) gene set 1, 

ASD-related genes from a summary of multiple datasets [53]; ii) gene set 2, ASD risk genes 

from a large-scale exome sequencing study [31]; iii) gene set 3, ASD-associated common genetic 

variants from a GWAS meta-analysis study [29]; iv) gene set 4, ASD associated rare, de novo 

variants from a study integrating copy number variants and sequencing data [30]; v) gene set 5, 

genes upregulated in the ASD cortex from a post-mortem genome-wide transcriptome study [32]; 

and vi) gene set 6, genes downregulated in the ASD cortex from a post-mortem genome-wide 

transcriptome study [32]. For the purposes of comparison, we also included one gene set that was 

associated with non-mental health diseases (i.e., gene set 7) [53]. The enrichment analysis was 

performed using the clusterProfiler package, version 3.14.3 [54] 

(https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html).  

Validation analysis 

We validated our main findings by considering five potential confounding factors. (i) Head 

motion. During image preprocessing for the validation analysis, an additional spike regression-

based scrubbing strategy was employed during the nuisance regression procedure to further 

control the influence of head motion [55]. “Bad” volumes were defined as those with framewise 
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displacement above 0.5 mm and their adjacent volumes (one forward and two backward). (ii) 

Window length. In addition to the window length of 60 seconds used in the main analysis, we 

also reconstructed the dynamic functional networks with a longer window length of 100 seconds 

to assess the effect of the window length on our results. (iii) Intelligence quotient. As part of the 

validation analysis, we included the intelligence quotient in the GAM as an additional covariate 

to reduce its influence on group differences. (iv) Imaging sites. We utilized a leave-one-site-out 

cross validation strategy to estimate whether group differences were biased by specific sites. (v) 

Age range. We reexamined the case-control differences by excluding participants aged over 21 

years to assess whether group differences were observable for the children and adolescents. 

Results 

Demographic characteristics 

Table 1 summarizes the demographic and clinical information of the participants. No significant 

difference in age was found between the ASD and HC groups (p = .84). The ASD group showed 

lower IQ scores (p = 4.1 × 10-9) and higher SRS scores than the HC group (p = 4.5 × 10-133). 

Alterations of module dynamics in ASD connectomes 

Mega-Analysis. At the global level, whole-brain functional connectomes exhibited a high 

modularity value (modularity, QASD: .476 ± .021, QHC: .477 ± .020) in both the ASD and HC 

groups, and no significant group difference was found in modularity (p = .32). However, the 

ASD group showed a higher mean value (Cohen’s d = .18, p = .007) and a lower standard 

deviation (Cohen’s d = -.19, p = .004) in whole-brain modular variability than the HC group 

(Figure 1B). This suggests that global brain dynamics in ASD tends to be more unstable and 

regionally undifferentiated as compared to that in healthy controls.  

At the nodal level, for both the HC and ASD groups, we observed higher modular variability 

primarily in the bilateral prefrontal regions and the medial temporal lobes, and lower variability 

mainly in the medial frontal and parietal regions, angular gyrus, and visual cortex (Figure 1C, 

upper and middle panels). This pattern is highly comparable to that shown in previous studies 

[16, 33]. In comparison to the HC group, the ASD group showed higher modular variability 

mainly in several default-mode regions, including the medial prefrontal cortex, posterior 

cingulate gyrus, and angular gyrus (Cohen’s d ranging from .19 to .33), and lower variability 

primarily in the visual cortex (Cohen’s d ranging from -.24 to -.19) (FDR corrected p < .05) 

(Figure 1C, lower panel; age and age-by-group interaction effects are described in Figure S2 and 

Figure S3 of the Supplement). 

Using the NeuroSynth meta-analytic database [46], we found that the regions showing higher 

modular dynamics in ASD were mainly associated with social function and internally oriented 

processes, while those showing lower modular dynamics were involved in visual-related tasks 

(Figure 1D).  

Meta-analysis. At the global level, our harmonized meta-analysis revealed that, compared to the 

control group, the ASD group showed a higher global mean (Cohen’s d = .15, p = .01) and a 

lower standard deviation (Cohen’s d = -.23, p = .001) in whole-brain modular variability (Figure 

2A and 2B). At the nodal level, the case-control difference pattern was remarkably similar to that 

derived from the mega-analysis (spatial similarity: r = .96, p < .0001 after correcting for spatial 

autocorrelation) (Figure S4). The meta-analysis revealed significant group differences primarily 
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in several default-mode (Cohen’s d ranging from .19 to .34) and visual regions (Cohen’s d 

ranging from -.34 to -.17) (FDR corrected p < .05) (Figure 2C), with the greatest difference in 

the medial prefrontal cortex (Figure 2D).  

Predicting the severity of social impairments based on brain module dynamics 

Using individual whole-brain modular dynamics patterns as the feature in the support vector 

regression model, we found that brain module dynamics was a significant predictor of SRS 

scores (r = .16, pperm = .002, 10,000 permutations) (Figure 1E, left panel). Brain nodes making 

the largest contribution to SRS score prediction were mainly located in the medial frontal cortex 

and the visual cortex. These regions largely overlapped with those showing the most significant 

group differences in brain modular dynamics (Figure 1E, right panel). 

Association between alterations in connectome dynamics and gene expression profiles 

Partial least squares regression analysis. We assessed the spatial association between ASD-

related dynamics alterations and nodal gene expression patterns (Figure 3A). The weighted gene 

expression pattern of the first PLS component (PLS1) accounted for the greatest spatial variance 

(20.5%, Figure 3B) in modular dynamics in the group difference map (p = .05, corrected for 

spatial autocorrelation). The PLS1 score map was spatially correlated with the group difference 

map (r = .45, p = .0043, corrected for spatial autocorrelation) (Figure 3C and 3D).  

Enrichment analysis. We identified three biological process terms significantly enriched at the 

top of the gene list, including the regulation of secretion by cell, the regulation of 

neurotransmitter transport, and the regulation of secretion (FDR corrected p < .01) (Figure 3E). 

Interestingly, all three of these terms were related to the regulation of transport. We did not find 

any significant enrichment of Gene Ontology terms at the bottom of the gene list. Moreover, no 

significant enrichment of molecular function and cellular components was observed. 

We further conducted a gene set enrichment analysis to examine whether six classes of 

previously identified ASD-related genes were significantly enriched at the top or bottom of our 

ordered gene list (Figure 4A). We found that ASD-related genes from a summary of multiple 

databases (i.e., gene set 1) [53] were significantly enriched at the top of our gene list (normalized 

enrichment score (NES) = 1.27, padjust = .035, FDR corrected, hereafter the same) (Figure 4B). 

The ASD risk genes identified from a large-scale exome sequencing study (i.e., gene set 2) [31] 

exhibited a significant enrichment at the bottom of our gene list (NES = -1.48, padjust = .035) 

(Figure 4C). We also observed that ASD-related common genetic variants (i.e., gene set 3) [29] 

were significantly enriched at the bottom of our gene list (NES = -1.70, padjust = .028) (Figure 

4D), while ASD-related rare, de novo variants (i.e., gene set 4) [30] exhibited only marginally 

significant enrichment (NES = -1.39, padjust = .069) at the bottom of our gene list (Figure 4E). 

Moreover, genes upregulated and downregulated in the post-mortem ASD cortex (i.e., gene sets 

5 and 6) [32] were significantly enriched at the top and bottom of our gene list, respectively 

(upregulated: NES = 1.41, padjust = .009; downregulated: NES = -1.67, padjust = .002) (Figure 4F 

and Figure 4G ). As a control dataset, the gene set comprising genes associated with non-mental-

health diseases (i.e., gene set 7) [53] was not significantly enriched at the gene list (NES = -.99, 

padjust = .51) (Figure 4H). 

Validation results 
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When assessing the potential influence of head motion, window length, intelligence quotient, 

imaging sites, and age range, we found that ASD-related, significant alterations in brain modular 

dynamics remained highly similar to our main results (Dice index ranging from .77 to .95) 

(Table S2 and Figure S5). This suggests that our results were robust and not affected by 

methodological variations. For details, see Supplement. 

Discussion  

Using a harmonized mega- and meta-analysis, this study provides the first robust demonstration 

of ASD-related alterations in brain modular dynamics. Our study reveals that these alterations 

occur primarily in the default-mode and visual regions and are associated with the expression 

profiles of genes enriched for the regulation of neurotransmitter transport and secretion, as well 

as with the enrichment of previously reported autism-related genes. Together, these findings 

provide evidence for altered macroscopic connectome dynamics and illustrate its linkage with 

corresponding transcriptional profiles at the microscale, advancing our knowledge of the 

biological mechanisms behind ASD. 

Aberrant configuration of dynamic modular architecture in ASD  

Previous studies have reported on the existence of temporal modular switching in healthy brain 

networks [16, 38, 56, 57], which is critical for efficient integration between different functional 

systems [58] and for cognitive flexibility [16]. Here, we demonstrate that patients with ASD 

exhibited abnormal, higher levels of modular switching in several default-mode regions (in 

particular the medial prefrontal cortex) but lower modular switching in visual areas. This reflects 

more frequent switching and excessive functional integration between the default-mode network 

and other networks over time, but reduced functional integration between the visual network and 

other networks. Prior studies have also reported altered dynamic functional connectivity in the 

default-mode [20, 25, 59] and visual regions [24, 60, 61] in ASD. Compared with these studies, 

our findings extend the existing knowledge of ASD-related abnormalities in brain dynamics from 

the connectivity-level to the system-level, advancing our understanding of ASD 

psychopathology from a dynamic connectome topology perspective. 

Prior studies in schizophrenia have suggested potential links between the altered cellular 

excitation-inhibition balance and disturbances in both neural synchrony [62] and large-scale 

brain network dynamics [63]. Thus, we may assume that the abnormal connectome dynamics 

observed in the ASD default-mode and visual regions indicate an imbalanced excitation and 

inhibition of neural circuits in these regions. In fact, the existence of neocortical excitation-

inhibition imbalances has been a long-standing theory in ASD animal model studies [64-66], 

where both the medial prefrontal and visual cortices have received substantial attention 

[66].These two regions have been demonstrated to show opposite types of excitation/inhibition 

imbalance in ASD. Specifically, the medial prefrontal cortex exhibits a reduced excitation-

inhibition ratio [67, 68], while an increased excitation-inhibition ratio is observed in the visual 

cortex [64]. This divergent change in cellular excitation/inhibition is compatible with our 

observation of opposing connectome dynamics alterations in these two regions. However, 

whether and how altered excitation-inhibition balances at the microscale in ASD affects 

macroscopic brain network dynamics still requires further investigation.  

Mounting evidence also suggests an association between social functions and the default-mode 

and visual regions. For instance, default-mode regions (especially the medial prefrontal cortex) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.10.03.462909doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.03.462909
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

have been demonstrated to be involved in social inference [69]. At the same time, visual 

perception impairments significantly contribute to early social-emotional deficits [70] and have 

cascading effects on learning and social development in ASD [71]. These findings hint that the 

alterations in connectome dynamics in the default-mode and visual regions identified here may 

underlie social impairments in ASD. Indeed, we observed that brain module dynamics patterns 

significantly predicted individual social impairments, suggesting that temporal characteristics in 

connectome topology may be a promising neuroimaging biomarker for ASD diagnosis and 

treatment. 

Transcriptional profiling of aberrant brain module dynamics  

Leveraging postmortem brain-wide gene expression data from the AHBA [48], we found that 

ASD-related alterations in brain dynamics were closely associated with the transcriptional 

profiles of genes involved in the regulation of neurotransmitter transport and secretion. Extensive 

studies have indicated that aberrant neurotransmitter transport is a significant feature of ASD, 

especially aberrancies in the transport of the excitatory neurotransmitter glutamate and the 

inhibitory neurotransmitter gamma-aminobutyric acid (GABA) [72]. This suggests that brain 

regions with abnormal dynamics in ASD, e.g. the medial prefrontal and visual cortices, may have 

failed to maintain balanced excitatory-inhibitory neurotransmitter transport. Such speculation are 

supported by prior studies that have reported imbalanced excitatory-inhibitory synaptic 

transmission in these regions [64, 67, 68]. Accordingly, our findings may provide support for the 

existing excitation/inhibition imbalance theory in ASD [64-66] by revealing a transport 

regulation-specific connectome-transcriptome association. 

 

We also demonstrated that previously identified autism-related genes were significantly enriched 

among the genes that we found to be most strongly correlated (both positively and negatively) 

with alterations in modular dynamics, indicating that different classes of genes contribute to the 

alterations in module dynamics in ASD. Specifically, compared with rare, de novo variants (gene 

set 4) [30], ASD-related common genetic variants showed a more substantial influence on 

module dynamics, which was manifested as a significant enrichment of the gene set. This finding 

is consistent with a recent study regarding cortical volume and transcriptome association in ASD 

[73], and could be due to common variants explaining a larger proportion of heritable variance in 

ASD compared to rare, de novo variants [74]. Moreover, we found that genes upregulated and 

downregulated in the post-mortem ASD cortex were respectively overrepresented at either end of 

our gene list. As the top and bottom weighted genes in the ranked list showed different 

correlations (i.e., positive and negative) with ASD-related alterations in module dynamics, we 

speculate that these two categories of dysregulated genes in ASD are likely to affect brain 

network dynamics in different ways. In line with this hypothesis, several previous studies have 

shown the association between abnormal brain morphology (e.g., cortical thickness and volume) 

and the downregulated genes in ASD, but the same association was not found for the upregulated 

genes [73, 75]. Combining these findings, the implication is that different imaging phenotypes in 

ASD may show both common and specific genetic factors.  

Notably, we did not find any significant overrepresentation of genes in the gene set associated 

with non-mental health diseases (gene set 7) [53], suggesting that the genes identified as being 

strongly correlated were mental disorder-specific. Together, the results from our connectome-
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transcriptome association analysis provides a meaningful link between the ASD-related 

alterations in macroscopic brain dynamics and molecular signatures at the microscale.  

Methodological considerations 

Several issues should be taken into consideration when interpreting these results. First, only male 

participants were included in this study, given the high prevalence of ASD in males and the 

small sample of female participants in the ABIDE database. Whether the findings can be 

generalized to the female population still needs further investigation. Second, gene expression 

data used here was derived from five healthy adult brains. It will therefore be promising to 

explore connectome-transcriptome association using ASD gene expression data when the 

relevant data becomes available. Third, we did not exclude medicated ASD individuals, given 

the limited medication information available from the ABIDE database. Whether and how 

medication affects the alterations in module dynamics remains for further exploration. Finally, as 

a psychiatric disorder, ASD often features high comorbidity and may exhibit alterations in brain 

function and genetic factors that are also present in other brain disorders [76]. Revealing ASD-

specific genes and connectome alterations will be important for understanding the biological 

basis of this disorder. 
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Table 1. Demographics and clinical characteristics of participants  

  ASD (n = 440) HC (n = 499)  p value 

Age (Years) 5.3-34.5 (14.3 ± 5.4) 5.9-34.1 (14.4 ± 5.4) .8431 

FIQ 71-149 (107.1 ± 16.6) 73-148 (112.8 ± 12.9) 4.1 × 10-9 

ADOS-2 Total (n = 208) 2-26 (11.7 ± 4.2) NA  

ADOS-2 Severity (n = 208) 1-10 (6.7 ± 2.0) NA  

ADOS-2 Social (n = 206) 1-20 (8.7 ± 3.6) NA  

ADOS-2 RRB (n = 209) 0-7 (3.0 ± 1.6) NA  

ADI-R Social (n = 322) 4-30 (19.3 ± 5.4) NA  

ADI-R Verbal (n = 322) 4-25 (15.6 ± 4.4) NA  

ADI-R RRB (n = 322) 0-12 (5.7  ± 2.6) NA  

SRS (ASD/HC: 220/253) 16-171 (90.5 ± 28.7) 0-85 (19.8 ± 13.5) 4.5 × 10-133 

 

Note: Male participants were selected from 18 of the sites that contributed to the ABIDE I and 

ABIDE II datasets using stringent quality control criteria. For each clinical measure, we only 

considered the module/version with the largest sample of participants available. The p value was 

obtained using a two-sample two-tailed t-test. ASD, autism spectrum disorder; HC, healthy 

control; FIQ, full-scale IQ; ADOS-2, Autism Diagnostic Observation Schedule, Second Edition; 

RRB, restricted and repetitive behavior; ADI-R, Autism Diagnostic Interview–Revised; SRS, 

Social Responsiveness Scale; NA, not applicable. 
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Figure 1. Mega-analysis of case-control differences in module dynamics. (A) Schematic 

overview of brain module switching within a multilayer network model. Each node not only 

connects to nodes in the same window but also connects to itself in the two temporally adjacent 

windows. Node colors denote nodal module affiliations. Modular switching is determined by 

modular variability, which reflects the module dynamics. Node 1 shows a high modular 

variability while node 2 shows a low modular variability. (B) Mega-analysis of case-control 

differences in the mean value and the standard deviation of modular variability at the global 

level. (C) Mega-analysis of case-control differences in module dynamics at the nodal level. The 

upper and middle panels show the group-level modular variability maps for each population. The 

lower panel shows the regions with significant case-control differences in modular variability, 

corrected for multiple comparisons (FDR-corrected p < .05, corresponding to puncorr < .004). (D) 

Cognitive terms associated with the regions showing significant case-control differences. The red 

and blue word clouds respectively represent cognitive terms associated with regions showing 

significantly higher and lower module dynamics in the ASD group. Font size has been scaled to 

reflect the correlation value for each cognitive term. (E) Prediction of individual SRS scores 

based on modular variability maps using support vector regression. The scatterplot displays the 

correlation between actual and predicted SRS scores. Each dot corresponds to one instance of 

leave-one-out cross-validation. The brain map displays regional predictive power, which was 
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defined as the frequency that each region was selected as a feature in the leave-one-out cross-

validation. ASD, autism spectrum disorder; HC, healthy control; SD, standard deviation; SRS, 

Social Responsive Scale. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.10.03.462909doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.03.462909
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

 

Figure 2. Meta-analysis of case-control differences in module dynamics. (A) Forest plot of 

Cohen’s d effect size for case-control differences in the global mean of modular variability. Each 

row shows the Cohen’s d effect size and the confidence intervals for each site. The meta-analysis 

results are displayed at the bottom with the combined effect and the confidence interval plotted 

as a diamond. (B) Forest plot of Cohen’s d effect size for case-control differences in the standard 

deviation of modular variability. (C) Meta-analysis of case-control differences at the nodal level. 

The significance levels of case-control differences in modular variability have been corrected for 

multiple comparisons (FDR-corrected p < .05, corresponding to puncorr < .0056). MNI coordinate 

for a peak node in the medial prefrontal cortex was provided. (D) Forest plot of Cohen’s d effect 

size for case-control differences for the peak node in the medial prefrontal cortex. ASD, autism 

spectrum disorder; HC, healthy control; MPFC, medial prefrontal cortex; FDR, false discovery 

rate. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.10.03.462909doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.03.462909
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

 

Figure 3. Association between ASD-related alterations in module dynamics and gene expression 

profiles. (A) Gene expression profiles across brain nodes. Each row denotes the gene expression 

for each gene at a given brain node. (B) Explained ratios for the first 15 components obtained 

from the partial least squares (PLS) regression analysis. Each component denotes a weighted 

linear combination of the expression of all genes. (C) Spatial patterns showing the case-control 

differences in modular variability and the PLS1 scores in the left hemisphere (unthresholded). 

(D) Spatial association between case-control differences in modular variability and PLS1 scores. 

Each dot represents a brain node. The significance level of the spatial association has been 

corrected for spatial autocorrelation [50]. (E) Significant enrichment of Gene Ontology terms 

associated with biological processes was observed for PLS1. Color denotes the q-values for the 

significantly enriched Gene Ontology terms. ASD, autism spectrum disorder; HC, healthy 

control; PLS, partial least squares. 
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Figure 4. Gene set enrichment analysis of genes associated with ASD-related alterations in 

module dynamics. (A) An overview of the gene set enrichment analysis. The solid line denotes 

the running enrichment score (ES) along the ordered gene list, which increases when a gene is 

included in the gene set of interest and decreases when a gene is not included. The vertical lines 

in the middle display the locations at which the members of the gene set appear in the ordered 

gene list. The shaded curve at the bottom denotes the value of the ranking metric (i.e., Z value 

for each gene’s PLS1 weights) for the genes in the ordered gene list. The ES captures the degree 

to which the gene set is overrepresented at the top or bottom of the ordered gene list, which is 

defined as the maximum deviation from zero of the running ES. Significance of the ES was 

estimated by a gene set based permutation (10,000 times). (B) Significant enrichment of ASD-

related genes from a summary of multiple databases [53]. (C) Significant enrichment of ASD 

risk genes [31]. (D) Significant enrichment of common genetic variants of ASD derived from a 

GWAS study [29]. (E) Marginally significant enrichment of ASD-related rare, de novo variants. 

(F) Significant enrichment of genes upregulated in the post-mortem ASD cortex [32]. (G) 

Significant enrichment of genes downregulated in the post-mortem ASD cortex [32]. (H) Non-

significant enrichment of the gene set associated with non-mental health diseases [53]. After the 

gene set enrichment analysis was performed for all gene sets, the ES was normalized to the NES 

for each gene set to account for gene set size, and multiple comparisons with the seven gene sets 

were corrected for using the false discovery rate method. ASD, Autism Spectrum Disorder; PLS, 

partial least squares; ES, enrichment score; NES: normalized enrichment score; GWAS, genome-

wide association study. 
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Alterations in connectome dynamics in autism spectrum disorder: A harmonized mega- 

and meta-analysis study using the ABIDE dataset  
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Supplementary methods 

Data sets 

Resting-state functional MRI (rsfMRI) data covering 2,156 participants was initially obtained 

from the ABIDE I (17 sites, ASD/HC: 539/573, 7-64 years) and ABIDE II (19 sites, ASD/HC: 

487/557, 5-64 years) databases (http://fcon_1000.projects.nitrc.org/indi/abide/). We screened this 

initial dataset using strict inclusive criteria and only included scans that: i) were taken from male 

participants, as 94% of participants were male; ii) were from participants who did not show any 

severe structure damage in the T1 images; iii) consisted of single-band fMRI data, as only two 

sites used multiband scanning profiles; iv) had a scan length of at least 5 minutes; v) had 

maximal head motion of less than 5 mm and 5 degrees, and mean framewise displacement (FD) 

[1] of less than 0.5 mm; vi) had nearly full-brain coverage and successful spatial normalization; 

vii) were taken from participants with a full scale IQ higher than 70. Finally, we included only 

scans from participants under 35 years old, due to the limited number of participants older than 

35. We also excluded data from sites that had fewer than 10 participants remained in either ASD 

or control group after the above screening had been applied. Thus, after all selection criteria had 

been applied, we obtained a dataset consisting of scans from 939 participants (ASD/HC, 

440/499) taken from 18 different sites (Figure S1). 

Tracking dynamic modular structure  

We utilized a multilayer network model [2] to identify the window dependent (i.e., time-varying) 

modular architecture. This algorithm incorporates connectivity information from temporally 

adjacent two windows and assumes temporal continuity of the modular architecture across 

windows. Specifically, the window-dependent functional network was treated as a multilayer 

network, in which each node not only connected to nodes within the same layer (i.e., window) 

but also connected to the identical nodes in adjacent layers (i.e., one back and one forward). The 

optimal modular architecture was identified by maximizing the multilayer modular index, Q, 

which is defined as [2] 

𝑄𝑚𝑢𝑙𝑡𝑖𝑙𝑎𝑦𝑒𝑟 (𝛾, 𝜔) =
1

2𝜇
∑ [(𝐴𝑖𝑗𝑠 − 𝛾𝑠

𝑘𝑖𝑠𝑘𝑗𝑠

2𝑚𝑠
 ) 𝛿(𝑠, 𝑟) + 𝛿(𝑖, 𝑗)𝜔𝑗𝑠𝑟] 𝛿(𝑀𝑖𝑠, 𝑀𝑗𝑟)𝑖𝑗𝑠𝑟 ,（1） 

where i and j are node labels and s and r are layer labels.  

Specifically, 𝜇 denotes the total degree of the multilayer network, Aijs denotes the connectivity 

strength between nodes i and j in layer s, kis denotes the degree of node i in layer s, ms denotes 

the total degree of layer s, 𝑘𝑖𝑠𝑘𝑗𝑠/2𝑚𝑠 denotes probability expected by chance of a connection 

between node i and node j in layer s. The function 𝛿(𝑥, 𝑦) equals 1 if x equals y, and equals 0 

otherwise. The variable 𝛾𝑠 is the topological resolution parameter in layer s, which determines 

the detected module size. The larger the value of  𝛾𝑠 , the smaller the detected module size. 

Parameter 𝜔𝑗𝑠𝑟 is a temporal coupling parameter, denoting the strength of inter-layer coupling 

for node j between layers r and s. Here, we used the commonly used default values of γ = 1 and 

ω = 1 [3, 4].  

Due to the heuristic nature of modularity optimization based on the multilayer-variant Louvain 

algorithm [5], we repeated the multilayer modular detection process 100 times. All module-

relevant measures (i.e., modularity and modular variability) were calculated as the averaged 
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value across the 100 runs. The Genlouvain MATLAB package was used to perform multilayer 

community detection (http://netwiki.amath.unc.edu/GenLouvain).  

Given the time-varying nature of the modular architecture, we employed a measure of modular 

variability [6] to quantify how each brain region switched between modules over time. For 

example, given a node k, its modular variability between two sliding windows i and j is defined 

as 

𝑀𝑉𝑘(𝑖, 𝑗) = 1 −
|𝑋𝑘(𝑖) ∩ 𝑋𝑘 (𝑗)|

|𝑋𝑘 (𝑖)|
∙

|𝑋𝑘(𝑖) ∩ 𝑋𝑘 (𝑗)|

|𝑋𝑘 (𝑗)|
,                                         (2) 

where Xk (i) and Xk (j) denote the module labels to which node k belongs in window i and j 

respectively, 𝑋𝑘(𝑖) ∩ 𝑋𝑘(𝑗) denotes the set of common nodes between modules Xk (i) and Xk (j), 

and |X| denotes the node number in the node set X. For node k, its total modular variability across 

all windows is calculated as 

𝑀𝑉𝑘 =  ∑ 𝑤𝑖
𝑛
𝑖=1 𝑀𝑉𝑘(𝑖) ,                                                         (3) 

where 𝑀𝑉𝑘 (𝑖) =  ∑ 𝑀𝑉𝑘(𝑖, 𝑗)/(𝑛 − 1)𝑗≠𝑖  denotes the modular variability of node k between 

windows i and all other windows. In Eq. (3), we used a normalized weighed coefficient wi  to 

reduce the bias of potential outlier time windows. The coefficient wi denotes the spatial similarity 

in the modular architecture between window i and all other windows, and is estimated using 

adjusted mutual information [7]. The larger the modular variability, the more frequently a brain 

node switches between modules. For each node, we estimated its modular variability across all 

windows, and thus obtained a modular variability map for each participant. 

Site effect correction in the mega-analysis 

To reduce the influence of different sites, we applied a ComBat harmonization [8-12] to the 

individual modular variability maps to correct for site effects before subsequent statistical 

analysis. The Combat approach removes unwanted inter-site variability in imaging acquisition 

while preserving inter-site variability in biologically meaningful metrics. We retained age, group, 

mean FD, and IQ as regressors in the ComBat process to preserve biologically meaningful 

variability. Of note, for the nodal-level analysis, we transformed the harmonized modular 

variability values to z-score values to further enhance the comparability among sites. The nodal 

z-score values were obtained by subtracting the mean modular variability across the brain and 

then dividing by the corresponding standard deviation. 

Case-control comparison analysis in the mega-analysis 

We assessed differences in module dynamics between the ASD and HC groups using a semi-

parametric Generalized Additive Model (GAM) [13] with restricted maximum likelihood as the 

smoothing parameter. The age and age-by-group interaction effects were controlled by 

introducing two smooth functions for these non-parametric terms. The significance level of all 

three terms (i.e., group, age, and age-by-group) at the nodal level was corrected for using a false 

discovery rate (FDR) method [14] in which the p values of all three effects were pooled together 

[15]. In the main analysis, we reported only results on the group effect of interest (i.e. case-

control differences in module dynamics). The age and age-by-group effects on module dynamics 

are provided here as a supplement (see Figures S2 and S3). 
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Power estimation 

We estimated the minimal effect size (i.e., Cohen’s d) observable for case-control differences 

between 440 ASD individuals and 499 HCs using G*Power, version 3.1.9.4. At a significant 

threshold of .05 (two-tailed) and a minimum desired power level of .8, we have the statistical 

power to observe Cohen’s d greater than .18. 

Correlation between ASD-related alterations and cognitive terms 

To decode the cognitive implications of the divergences observed between the ASD and HC 

groups, we performed a functional meta-analysis using the Neurosynth database [16]. We first 

generated a t-value map from mega-analysis for ASD-related alterations, showing the brain 

nodes exhibiting significant differences in modular variability. Using this map, we then 

generated two separate t-value maps for ASD-related increases in modular variability and ASD-

related decreases in modular variability, respectively. Next, for each map, we decoded the 

associated cognitive terms and retained the top 35 as having substantial relevance. 

Prediction of social impairments using connectome dynamics  

We further evaluated whether the spatial pattern of nodal modular variability was predictive of 

individual social impairments. To quantify the degree of social impairments, we referred to 

scoring against the Social Responsiveness Scale (SRS), which provides a dimensional 

characterization of the severity of ASD-related social impairments, and which was available for 

the largest number of participants (i.e., 220 ASD individuals and 253 HCs).  

We trained a support vector regression (SVR) model to estimate each participant’s SRS score 

based on the whole-brain nodal modular variability values. The leave-one-out cross-validation 

(LOOCV) was used to estimate prediction accuracy. Specifically, in each LOOCV fold, one 

participant was designated as the test set, and the remaining participants were set as the training 

set.  

We first generated a general linear model for the training set to reduce the effects of age and 

mean FD, and the estimated parameters was also applied to the test set. The resulting residuals in 

nodal modular variability were used for subsequent analysis. Next, we selected the features using 

the training set by calculating the across-participant Pearson’s correlation between the modular 

variability of each node and the SRS score. Brain nodes showing significant correlation 

coefficients (i.e., p < .01) were retained. Thirdly, we built an SVR model to fit the relationship 

between the features (i.e., modular variability of selected nodes) and the SRS scores in the 

training set. Fourth, we used the trained SVR model to predict the SRS score of the unseen 

participant (i.e., the test set). After all LOOCV folds were completed, we assessed the 

performance of the prediction model by calculating the correlation between predicted and actual 

SRS scores. Finally, we performed a permutation test (n = 10,000) by shuffling individual SRS 

scores to assess the statistical significance of the estimated prediction accuracy. The SVR model 

was computed using the LIBSVM toolbox for MATLAB, with default settings [17] 

(https://www.csie.ntu.edu.tw/~cjlin/libsvm/).  

Association between alterations in connectome dynamics and gene expression profiles 

Estimation of gene expression in brain nodes. We utilized a brain-wide transcriptomic dataset of 

the adult human brain from the Allen Human Brain Atlas (AHBA) [18, 19] (http://human.brain-
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map.org), which includes post-mortem brain samples from six donors (i.e., five males, one 

female) aged 24-57 years. This dataset provides expression data for more than 20,000 genes in 

3,702 spatially distributed tissue samples. Tissue samples from two donors cover the whole 

brain, while tissue samples from the other four donors cover only the left hemisphere. This 

dataset has been widely used to explore the genetic underpinnings of brain network properties in 

both typical development [20-23] and neuropsychiatric disorders [24, 25]. Since the canonical 

genetic signature of the adult human brain is highly consistent across individuals, past studies 

have established brain connectome-transcriptome associations by assessing the spatial 

correlation between brain network properties in vivo and gene expression profiles obtained from 

post-mortem tissue[19]. Considering that rsfMRI data used here were obtained from only male 

subjects, we employed gene expression data of the five male donors from ABHA data to explore 

the genetic underpinnings of altered brain network dynamics in ASD. 

ABHA gene expression data was preprocessed using the default procedures of a state-of-the-art 

pipeline [26] (https://github.com/BMHLab/AHBAprocessing). This included probe-to-gene re-

annotation, filtering of probes that did not exceed background noise, selecting the representative 

probe for each gene, assigning each sample to its nearest node in the random-512 parcellation, 

and correcting for both inter-sample and inter-subject variability. Several details in relation to the 

preprocessing should be noted. First, we performed probe-to-gene re-annotation based on the 

latest data from the National Center for Biotechnology Information (NCBI) using Re-annotator 

[27]. Secondly, we performed the spatial assignment of tissue samples to brain parcellation nodes 

in native space. Specifically, we first segmented T1 images of each donor brain using tissue 

probability maps in MNI space as the reference for segmentation. We then spatially transformed 

the random-512 parcellation from MNI space to native space by applying the inverse 

deformation field obtained from the T1 segmentation procedure. Tissue samples for each donor 

were then matched to the spatially nearest node based on donor-specific parcellation. Third, only 

gene expression data from the left hemisphere was used to ensure the reliability of results, since 

gene expression data for the right hemisphere was available from only one male donor. In the left 

hemisphere, 222 out of 236 nodes were spatially matched with expression data, resulting in a 222 

×10,145 matrix, which denoted the expression of 10,145 genes across 222 nodes. 

Enrichment analysis. After performing the partial least squares regression (PLS) analysis, we 

ranked the 10,145 genes according to their weights to the PLS1 component. Genes ranked at the 

top of this ordered gene list exhibited the strongest positive associations with the ASD-related 

alterations in modular variability, which were overexpressed in regions showing higher modular 

switching in ASD. Genes ranked at the bottom of this ordered gene list exhibited the strongest 

negative associations with ASD-related alterations in modular variability, which were 

overexpressed in regions showing lower modular switching in ASD.  

To gain further understanding of the biological implications of the genes identified as being 

associated with case-control differences in modular variability, we undertook two different 

enrichment analyses. First, we used the Gorilla tool [28] (http://cbl-gorilla.cs.technion.ac.il/) to 

perform Gene Ontology(GO) enrichment analyses to explore functional implications of the 

identified genes. Gorilla is a widely used online tool that identifies GO terms that are 

significantly enriched at the top of the ordered gene list, without pre-assigning thresholded target 

gene sets and background sets [28]. To identify the GO terms that were enriched at the bottom of 

our ordered gene list, we reversed the ordered gene list and performed the GO enrichment 

analyses again. Second, we carried out a gene set enrichment analysis (GSEA) [29] on the whole 
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gene list (i.e., the 10,145 ordered genes) to assess whether previously identified ASD-related 

gene sets were enriched at the top or bottom of our ordered gene list. The GSEA analysis does 

not require thresholding of the ordered gene list, which may reduce the effects of arbitrary 

thresholding and capture genes that may not show significant correlation with modular 

variability but nonetheless have important biomedical significance [29]. Six classes of ASD-

related gene sets and one gene set that was associated with non-mental health diseases were used 

in the GSEA. The six ASD-related gene sets are listed below: 

i) Gene set 1: ASD-related gene set from a summary of multiple datasets (n = 594) [30]. This 

gene set was curated by Krishnan et al, and was collected from both publicly available databases 

(e.g., SFARI Gene, http://gene.sfari.org) and automatically text-mined ASD-gene co-occurrences 

in published abstracts (e.g., Gene2Mesh, http://gene2mesh.ncibi.org/).  

ii) Gene set 2: ASD risk genes identified from a large-scale exome sequencing study (n = 102) 

[31]. Of these genes, 53 show higher frequency in individuals ascertained to have ASD, and the 

remainder show higher frequencies of disruptive de novo variants in individuals ascertained to 

have severe neurodevelopmental delay. 

iii) Gene set 3: ASD-associated common genetic variants identified from a GWAS meta-analysis 

study (n = 88) [32]. We extracted this gene set from the summary statistical results of the GWAS 

meta-analysis study [32]. Specifically, SNP-based p values were converted to gene-based p 

values using H-MAGMA [33]. We selected genes with an FDR corrected p < .1 [33], which 

included all 88 genes.  

iv) Gene set 4, ASD associated rare, de novo variants identified from a study integrating copy 

number variants and sequencing data (n = 65) [34]. A total of 65 ASD risk genes (FDR corrected 

p < .1) were identified by Sanders et al [34]  

v) Gene set 5, genes upregulated in the ASD cortex, identified from a post-mortem genome-wide 

transcriptome study (n = 584) [35]. We selected differential expression genes with FDR 

corrected p < .05. Upregulated genes were identified as those with log2(Fold-change) > 0 [36]. 

vi) Gene set 6, genes downregulated in the ASD cortex, identified from a post-mortem genome-

wide transcriptome study (n = 558) [35]. We selected differential expression genes with FDR 

corrected p < .05. Downregulated genes were identified as those with log2(Fold-change) < 0 [36]. 

The gene set associated with non-mental health diseases includes 1,189 genes [30], and was used 

to assess whether the PLS-derived genes were mental disease-specific.  

GSEA was performed using the GSEA function in clusterProfiler package version 3.14.3 

(https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html) [37, 38]. The results 

were visualized using the gseaplot2 function in enrichplot package version 1.6.1 

(https://bioconductor.org/packages/release/bioc/html/enrichplot.html) in R language. 
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Supplementary results 

Age and interaction effects in the mega-analysis 

At global level, the GAM-based analysis revealed a significant nonlinear age effect (i.e., a slight 

increase followed by a persistent decline) on modularity (p = .0009) (Figure S2A), but no group 

and age-by-group interaction effects (both ps > .05). In addition to the significant group effects 

on the mean and standard deviation of whole brain modular variability, we also observed a 

nonlinear age effect (i.e., a slight decline followed by a slight increase) on mean modular 

variability (p = .037) (Figure S2B), but not on standard deviation (p > .05). No interaction effect 

was observed for either metric. 

At nodal level, in addition to the significant group effect on the modular variability at several 

default-mode and visual areas, we also identified significant age effects on modular variability, 

primarily in several frontal and temporal areas (p < .05, FDR corrected) (Figure S3A) such as the 

medial superior frontal cortex, supplementary motor area, superior temporal gyrus, and insular 

cortex. Only a few nodes showed significant age-by-group interaction effects, including the 

bilateral superior temporal gyrus and the right fusiform (p < .05, FDR corrected) (Figure S3B). 

Validation results 

When assessing the potential influence of head motion, window length, IQ, data collection sites, 

and age range, we found that the resultant maps of ASD-related alterations in modular variability 

remained highly similar to those in our main findings (Dice index range: .77 to .95) (Table S2 

and Figure S5). This suggests that the spatial distribution of case-control differences identified in 

our main findings was highly robust and weakly affected by methodological variations. It is also 

worth noting that age-by-group interaction effects varied substantially between different 

validation strategies (Dice index range: 0 to 1), suggesting limitations in robustness. Thus, the 

findings regarding interaction effects should be interpreted with caution.  
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Supplementary tables 

Table S1. Number of overlaps between the six ASD-related gene sets 

  Gene set 1 Gene set 2 Gene set 3 Gene set 4 Gene set 5 Gene set 6 

Gene set 1 594      

Gene set 2 26 102     

Gene set 3 2 1 88    

Gene set 4 20 38 1 65   

Gene set 5 21 0 0 0 584  
Gene set 6 21 3 0 1 0 558 

 

Diagonal elements denote the total number of genes in each gene set and the lower trigangular 

elements dennote the number of genes that overlap between each pair of gene sets. The gene sets 

were obtained from the following sources: i) gene set 1, ASD-related genes from a summary of 

multiple datasets [30]; ii) gene set 2, ASD risk genes from a largest exome sequencing study 

[31]; iii) gene set 3, ASD-associated common genetic variants from a GWAS meta-analysis 

study [32]; iv) gene set 4, ASD associated rare, de novo variants from a study integrating copy 

number variants and sequencing data [34]; v) gene set 5, genes upregulated in the ASD cortex 

from a post-mortem genome-wide transcriptome study [35]; vi) gene set 6, genes downregulated 

in the ASD cortex from a post-mortem genome-wide transcriptome study. 
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Table S2. Dice indices of thresholded statistical maps between the main results and different 

validations  

 

 

 

 

Here, we assessed the consistency of the group, age and age-by-group interaction effects at the 

regional level under four different validation conditions. “IQ regression” denotes the inclusion of 

the IQ term in the GAM to mitigate its influence. “Head motion” denotes the use of a spike 

regression-based scrubbing strategy in nuisance regression during image preprocessing to further 

control the influence of head motion, “Window length” denotes the reconstruction of the 

dynamic functional networks using a window length of 100 seconds, and  “Age range” denotes 

excluding adult participants with ages over 21 years. Each value in the table represents the Dice 

index between the original thresholded modular variability map in the main findings and that 

obtained under a validation condition. GAM, generalized additive model. 

  

Validation Strategy          Group effect            Age effect          Interaction effect 
IQ regression 0.94 1 1 
Head motion 0.77 0.77 0.33 
Window length 0.80 0.75 0.67 
Age range 0.87 0.58 0 
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Supplementary figures 

 

Figure S1. Distribution of participants across the 18 sites. For each site, both the ASD and HC 

groups contained at least 10 participants. Red circles denote ASD individuals and black crosses 

denote HCs. ASD, autism spectrum disorder; HC, healthy control; TCD-1, Trinity Centre for 

Health Sciences: Sample 1; SDSU-1, San Diego State University: Sample 1; NYU-1, NYU 

Langone Medical Center: Sample 1; KKI-1, Kennedy Krieger Institute; Sample 1; GU-1, 

Georgetown University: Sample 1; Yale, Yale School of Medicine; USM, Utah School of 

Medicine; UM-1, University of Michigan: Sample 1; UM-2, University of Michigan: Sample 2; 

UCLA-1, University of California, Los Angeles; TCD, Trinity Center for Health Sciences; 

STANFORD, Stanford University; SDSU, San Diego State University; PITT, University of 

Pittsburgh; OLIN, Olin, Institute of Living at Hartford Hospital; NYU, NYU Langone Medical 

Center; LEUVEN-1, University of Leven: Sample 1. 
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Figure S2. Age-related changes in global modular dynamics. (A) Significant nonlinear age 

effects on modularity. (B) Significant nonlinear age effects on the mean modular variability of 

the brain. We used a GAM to estimate age effects for the whole population, including both ASD 

individuals and HCs. ASD, autism spectrum disorder; HC, healthy control; MV, modular 

variability; GAM, generalized additive model. 
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Figure S3. Age and age-by-group effects on regional module dynamics. (A) Age effects on 

nodal modular variability. (B) Age-by-group interaction effects on nodal modular variability. We 

used a GAM to estimate the age effects and the group-by-age interaction effects on nodal 

modular variability. Significance levels were corrected for multiple comparisons by pooling the 

p values of all three effects (i.e., group, age, and interaction) across all nodes. GAM, generalized 

additive model. 
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Figure S4. Spatial similarity between case-control difference maps obtained from the mega- and 

meta-analyses. The left and middle panels respectively represent the spatial pattern of case-

control differences obtained from the mega- and meta-analysis. In the right-hand panel, each dot 

in the scatterplot represents a brain node. The significance level of the spatial association was 

corrected for spatial autocorrelation [39]. SA-corr denotes correction for the spatial correlation. 
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Figure S5. Dice indices between thresholded statistical maps in the main results and the leave-

one-site-out cross-validations. We performed a leave-one-site-out cross-validation to assess 

whether our main findings were biased by site specific sites. Each label on the left represents the 

site being leaved out. Each column represents the effect of interest (i.e., group, age, and group-

by-age interaction). Each number denotes the Dice index between the main results and the 

validation. TCD-1, Trinity Centre for Health Sciences: Sample 1; SDSU-1, San Diego State 

University: Sample 1; NYU-1, NYU Langone Medical Center: Sample 1; KKI-1, Kennedy 

Krieger Institute; Sample 1; GU-1, Georgetown University: Sample 1; Yale, Yale School of 

Medicine; USM, Utah School of Medicine; UM-1, University of Michigan: Sample 1; UM-2, 

University of Michigan: Sample 2; UCLA-1, University of California, Los Angeles; TCD, 

Trinity Center for Health Sciences; STANFORD, Stanford University; SDSU, San Diego State 

University; PITT, University of Pittsburgh; OLIN, Olin, Institute of Living at Hartford Hospital; 

NYU, NYU Langone Medical Center; LEUVEN-1, University of Leven: Sample 1. 
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