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ABSTRACT 31 

Objectives: MALDI-TOF Mass Spectrometry (MS) is a reference method for microbial 32 

identification at clinical microbiology laboratories. We have designed and validated a new 33 

multiview model based on machine learning from MS spectra to predict antibiotic resistance 34 

mechanisms 24 h before phenotypic results are available. 35 

Methods: Antibiotic susceptibility of 402 clinical Klebsiella pneumoniae isolates was 36 

determined in two collections, discriminating among Wild Type (WT), Extended-Spectrum 37 

Beta-Lactamases (ESBL) producers, and ESBL and Carbapenemases (ESBL+CP) producers. 38 

Each isolate was subcultured 3 consecutive days and 2 independent spectra were acquired in 39 

each replica (6 MS spectra/isolate). Spectra were automatically classified by a kernelized 40 

Bayesian factor analysis model (KSSHIBA), using two independent strategies: 1) the model 41 

was designed with isolates from a single centre and validated with isolates from the other 42 

centre; and 2) in a second stage all isolates were used at the same time for design and validation 43 

processes. 44 

Results: Higher prediction values were obtained when integrating all isolates with hospital 45 

collection of origin information. Our model exhibited higher prediction capability than current 46 

state-of-the-art models, particularly in intercollection scenarios because local epidemiology 47 

could introduce relevant variables affecting prediction accuracy. 48 

Conclusions: Compared to previously reported studies, our model demonstrated the highest 49 

ability to predict ESBL and/or CP production in clinical K. pneumoniae isolates and it provided 50 

an efficient way to combine information from different centres. Its implementation in 51 

microbiological laboratories could improve the detection of multi-drug resistant isolates, 52 

optimizing the therapeutic decision. 53 

 54 
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INTRODUCTION 55 

Multidrug-resistant Klebsiella pneumoniae is considered a global public health threat 56 

according to the major international health organizations due to its rapid spread, its high 57 

morbidity and mortality and the economic burden associated with its treatment and control [1–58 

3]. Resistance to carbapenems is a major challenge since this antibiotic group represents one 59 

of the last therapeutic options. In fact, some Carbapenemases (CP) have been shown to 60 

hydrolyse almost all beta-lactam antibiotics [4]. Thus, besides the routinely antimicrobial 61 

susceptibility testing (AST), rapid diagnostic methods such as MALDI-TOF Mass 62 

Spectrometry (MS) should be implemented in clinical microbiology laboratories beyond 63 

identification for early detection of multidrug resistant isolates. 64 

MALDI-TOF MS is designed for microbial identification, but also allows the detection 65 

of extended-spectrum beta-lactamases (ESBL) and CP by the different molecular weight of the 66 

antibiotic after its hydrolysis by resistant bacteria [5]. This approach is faster than conventional 67 

AST (30-60 min vs. 18-24 h) but requires highly trained personnel and it is of limited use in 68 

clinical laboratories. 69 

More recently, machine-learning methods such as Support Vector Machines (SVM), 70 

Random Forest (RF), K-Nearest Neighbours (KNN), naïve Bayes and Logistic Regression have 71 

been successfully applied to predict CP-producing isolates from MS spectra [6]; as well as 72 

other approaches based on deep learning methods [7]. Supervised learning is a powerful 73 

classification tool but is not yet optimized for the usual high-dimensional MS data. 74 

Consequently, pre-processing is needed to reduce dimensions; in this sense, some authors have 75 

proposed the use of a genetic algorithm in combination with a SVM using ClinProTools [8]. 76 

Bayesian models are starting to be implemented, as they get rid of cross-validation issues at 77 

the same time that can provide a probability prediction with a confidence measurement. A 78 
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recent study has proposed the use of an ad-hoc non-linear kernel followed by a Gaussian 79 

Process [9]. 80 

To address all these aspects, we have applied a novel Bayesian model called Kernelized 81 

Sparse Semi-Supervised Interbattery Bayesian Analysis (KSSHIBA) [10,11] that using the MS 82 

spectra and the hospital collection of origin predicts the phenotypic/genotypic AST. As 83 

phenotypic AST data reproducibility between laboratories is also an unresolved issue, we have 84 

included clinical collections characterized at separate centres, representing wide lineages 85 

variability from distant epidemiological environments. 86 

  87 
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MATERIAL AND METHODS 106 

Isolates selection and processing. We included 282 consecutive clinical K. pneumoniae 107 

isolates (2014-2019) isolated at Hospital Gregorio Marañón (GM), and 120 isolates previously 108 

characterized in surveillance programs (STEP and SUPERIOR) [12,13] and sourcing from 8 109 

Spanish and 11 Portuguese hospitals. This collection of isolates was merged into the Hospital 110 

Ramón y Cajal collection (RyC). AST determination was performed for each collection in their 111 

origin centre by the automated broth microdilution method Microscan® System (Beckman-112 

Coulter, CA, USA), using EUCAST criteria (2021). Presence of ESBL/CP genetic resistant 113 

mechanisms was corroborated by molecular testing. Isolates were categorized as Wild Type 114 

(WT) -n=94-, ESBL-producers (n=67) or ESBL+CP-producers (n=241). 115 

Isolates were kept frozen at -80ºC in skimmed milk and, after thawing, cultured 116 

overnight at 37ºC in Columbia Blood agar (bioMérieux, Lyon, France) during 3 subcultures 117 

for metabolic activation. MS analysis was centralized and performed by the same operator 118 

using an MBT Smart MALDI Biotyper mass spectrometer (Bruker Daltonics, Bremen), in 6 119 

separated replicas (2 positions in 3 consecutive days). Protein extraction was performed adding 120 

1µl 100% formic acid further dry at room temperature. Then, 1µl of HCCA matrix solution 121 

(Bruker Daltonics) was added to each spot. MS spectra were acquired in the positive linear 122 

mode in the range of 2,000 to 20,000 Da, using default settings [14], although only data 123 

between 2,000-12,000 m/z was further analysed applying Total Ion Current (TIC) 124 

normalization [15,16]. 125 

  126 

Model development. The proposed model, SSHIBA [10], considers a common low 127 

dimensional latent variable, Z, responsible for generating heterogeneous observations of each 128 

view (i.e., it can model either continuous, categorical or multilabel observations) and, besides, 129 

it automatically adjusts the dimension of this latent space, finding the relationships between 130 
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the different views and making an interpretability analysis easier. To deal with the high 131 

dimensionality of the MS spectra data, we applied here the KSSHIBA [11] extension since it 132 

is able to model kernelized version data to work in the dual space by means of the kernel trick 133 

and avoiding the high dimensionality problem of the MS spectra. In our setting, KSSHIBA 134 

model used three complementary views: the Kernelized MS spectra, the hospital collection 135 

origin (GM or RyC), and the antibiotic resistance category (WT, ESBL and ESBL+CP) (Figure 136 

1).  137 

 138 

Figure 1. KSSHIBA graphical model proposed integrating 3 views: kernelized MS spectra, 139 

Hospital Collection origin (GM or RyC), and antibiotic resistance category (WT, ESBL, and 140 

ESBL+CP). 141 

  142 

Model validation. To test whether intra and intercollection distributions could improve the 143 

learning process, two different scenarios were proposed. First, GM and RyC collections were 144 

tested separately (intra-collection analysis), and in a second stage all isolates were merged in a 145 

single collection (inter-collection analysis).  146 

In the first experiment, we split each dataset into 5 random train-validation folds. Each 147 

training fold was processed to correct the unbalance in the class population by oversampling 148 

the minority class on each antimicrobial resistance category ultimately resulting in stratified 149 

folds with a consistent class ratio. In the second experiment using the global collection, data 150 
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were again split into 5 random train-test folds maintaining the previous unbalance correction 151 

technique. Moreover, we defined two frameworks: (1) directly combining both datasets and (2) 152 

merging them with an extra view identifying as “0” isolates from GM and as “1” those from 153 

RyC. 154 

  155 

Comparison with state-of-the-art methods. Firstly, KSSHIBA was compared with a SVM 156 

and a GP since both approaches can also work in a dual space. For these models we tried out a 157 

nonlinear kernel called Radial Basis Kernel (RBF) and a linear kernel. As we were solving a 158 

multidimensional problem with MS spectra and both models work for single output prediction, 159 

we ran independent SVMs and GPs for each prediction task. We also compared KSSHIBA to 160 

a RF able to jointly estimate all the prediction tasks. Finally, we explored our model 161 

implementing the kernel called Peak Information KErnel (PIKE) [9], which exploits non-linear 162 

correlations between MS peaks. In this case, MS spectra were pre-processed by a topological 163 

peak selection keeping only 200 peaks per sample, as they explain in their work.  164 

Hyper-parameter cross-validation was done by an inner 5-fold over the training folds. 165 

We cross-validated the C value (0.01, 0.1, 1, 10) for the SVM and the number of estimators 166 

(50, 100, 150) and the maximum number of features (auto, log2) for the RF. For both 167 

KSSHIBA and GP, the hyper-parameters were optimized by maximizing the evidence lower 168 

bound and the log marginal likelihood of the data, respectively. Then, we ran both models 5 169 

times for each one to ensure that the learnt parameters do not correspond to a local maximum. 170 

When KSSHIBA was combined with the PIKE kernel we fixed the kernel smoothing parameter 171 

“t” to 5, based on the influence analysis carried out in the original research. 172 

The extended comparison to other baselines, such as KNN, RF or SVM and GP with 173 

other kernels are included in the Supplementary Material B. 174 

  175 
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Performance metric. Prediction of antibiotic resistance category was calculated by the AUC 176 

measuring. The Receiver Operator Characteristic curve is an evaluation metric used in binary 177 

classification problems that show the True Positive Rate against the False Positive Rate at 178 

different thresholds. The AUC measures the ability of the model to distinguish between classes 179 

(positive and negative) for different thresholds in the probability prediction and is a summary 180 

of the ROC curve. Higher values of AUC means that the models distinguish better between 181 

WT and non-WT isolates. 182 

  183 

Repository. The model is implemented in Python using Pytorch and Pyro libraries. The code 184 

used to obtain the presented results, an explanation on how to use KSSHIBA and both datasets 185 

are publicly available in [17]. 186 

  187 

Ethics Statement. The Ethics Committee from the GM and RyC hospitals (codes 188 

MICRO.HGUGM.2020-002, and 087–16, respectively) approved this study. The study was 189 

performed from microbiological samples, not human products and informed consent from the 190 

patients was not necessary. 191 

  192 
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RESULTS 197 

A detailed description of the datasets decomposition in each scenario can be found in 198 

Supplementary Material A. The experiment's source code can be found at the GitHub 199 

repository [17]. 200 

Intra-collection scenario 201 

Results obtained for GM and RyC separated collections are summarized in Table 1. For 202 

GM isolates, KSSHIBA performs better AUC scores than the baselines regardless of the 203 

predicted antibiotic resistance category. Specifically, nonlinear kernels provided the best 204 

results, where the RBF kernel performed better in the prediction of both ESBL and ESBL+CP 205 

and the PIKE kernel worked better for WT prediction. In the RyC collection KSSHIBA was 206 

more accurate for WT prediction while performing competitive results in ESBL prediction. 207 

Table 1. AUC mean and standard deviation for GM and RyC intracollection analysis. The 208 

kernel type is detailed in brackets, if used, and values in bold correspond to the high prediction 209 

value for each antibiotic resistance category. 210 

  211 

Dataset Category KSSHIBA 

(RBF) 

KSSHIBA 

(LINEAR) 

KSSHIBA 

(PIKE) 

GP 

(LINEAR) 

SVM 

(RBF) 

RF 

GM WT 0.61±0.14 0.70±0.15 0.71±0.16 0.70±0.18 0.67±0.12 0.70±0.17 

ESBL 0.57±0.28 0.46±0.19 0.56±0.32 0.54±0.18 0.40±0.29 0.39±0.21 

ESBL+CP 0.85±0.14 0.77±0.16 0.78±0.09 0.80±0.20 0.82±0.19 0.80±0.19 

RyC WT 0.47±0.35 0.49±0.22 0.64±0.19 0.48±0.28 0.45±0.15 0.57±0.26 

ESBL 0.70±0.10 0.59±0.08 0.43±0.09 0.58±0.14 0.72±0.14 0.69±0.10 

ESBL+CP 0.67±0.12 0.66±0.05 0.43±0.09 0.62±0.06 0.71±0.17 0.71±0.07 

  212 
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Inter-collection scenario 213 

Table 2 shows the results obtained when training simultaneously GM and RyC isolated. 214 

Labelled KSSHIBA, which means that each sample is labelled indicating from which collection 215 

is coming from, outperforms every baseline for GM isolates while also performs better for the 216 

prediction of WT and ESBL+CP isolates in RyC. The lower performance of the baselines 217 

without the source label indicates that using the data from both datasets without identifying 218 

their origin produced biased results. However, merging both collections, by adding an extra 219 

label with the collection origin, clearly contributed to improve the results in terms of AUC in 220 

all antibiotic resistance categories apart from ESBL, where there is a large imbalance (see Table 221 

S1). 222 

Table 2. AUC mean and standard deviation when all isolates were merged in a single 223 

collection. Each model is defined with its name and the type of kernel in brackets, if used. 224 

Values in bold correspond to the high prediction for each antibiotic resistance category. 225 

Labelled means that the samples have the hospital collection origin view, whereas unlabelled 226 

means that this information is not considered by model. 227 

Dataset Category KSSHIBA 

(LINEAR) 

LABELED 

KSSHIBA 

(LINEAR) 

UNLABELED 

GP 

(LINEAR) 

UNLABELED 

SVM 

(RBF) 

UNLABELED 

GM WT 0.77±0.11 0.72±0.14 0.76±0.10 0.62±0.13 

ESBL 0.46±0.19 0.39±0.21 0.43±0.20 0.39±0.21 

ESBL+CP 0.88±0.08 0.86±0.10 0.86±0.08 0.85±0.08 

RyC WT 0.70±0.16 0.66±0.16 0.68±0.17 0.59±0.20 

ESBL 0.55±0.09 0.49±0.09 0.60±0.10 0.69±0.12 

ESBL+CP 0.68±0.10 0.64±0.06 0.64±0.04 0.66±0.14 

  228 
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Latent space analysis of our model 229 

The learnt weight matrix W of each view to evaluate the importance of each latent variable and 230 

analyse how they relate to each other is shown in Figure 2; in MS view these weights are 231 

averaged over the input MS dimensions to obtain an intensity value per latent factor. Here, due 232 

to the sparsity imposed, the model automatically learned which latent features were relevant 233 

for each view and, in turn, some of the views only used selected features. 234 

KSSHIBA projected the 3 input views into 76 latent features (Figure 2), which were 235 

ordered by importance in the prediction task. Noticeably, only 13 latent factors were used to 236 

predict the antibiotic resistance category, all of them shared information with MS while only 3 237 

of them correlated simultaneously all the information available. Finally, note 51 latent features 238 

private to MS spectra view, which corresponds to an unsupervised projection of the data that 239 

can be understood as a principal component analysis. 240 

 241 

 242 

Figure 2. KSSHIBA latent space projection (d=76) for hospital collection origin, MS spectra, 243 

and antibiotic resistance category, including data with the extra hospital collection of origin 244 

view. Each subfigure refers to a W matrix associated with each view. 245 

 246 

 247 
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KSSHIBA showed that there existed a correlation between the hospital collection of 248 

origin of each strain and their AST profile shown in the latent space that these views share. 249 

This latent space representation allowed KSSHIBA to outperform all baselines in the 250 

intercollection scenario. As seen in Table 2, KSSHIBA performed 0.88+-0.08, 0.46+-0.19 and 251 

0.77+-0.11 in GM for ESBL+CP, ESBL and WT, respectively, outperforming the state-of-the-252 

art models. Likewise, in RyC data our proposal performed better in both ESBL+CP and WT 253 

prediction with AUC values of 0.68+-0.10 and 0.70+-0.16, respectively. 254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

 262 
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 264 

 265 
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DISCUSSION 272 

MS allows rapid and accurate bacterial identification, and the resulting spectra can be 273 

analysed by machine learning approaches to predict antibiotic resistance, as it has been 274 

previously suggested [18]. The most relevant limitation for this methodology is the great 275 

complexity of MS spectra, which is also influenced by the particularities of each lineage and 276 

its accessory genome. In this sense, two isolates carrying the same CP gene could differ in the 277 

MS spectra due to their particular genetic background. For the present work, two different 278 

bacterial sets were included, one of them sourcing from the same hospital collection without 279 

any particular criteria of inclusion and the other one grouped strain from 18 geographical 280 

disperse hospitals selected by their phenotypic and genotypic beta-lactams resistance. The 281 

latter collection was characterized by whole-genome sequencing and includes both frequent 282 

and rare clonal lineages. 283 

ESBL and CP categories groups a highly variable set of different proteins but with a 284 

common phenotypic pattern of antibiotic susceptibility. Here, we developed and validated a 285 

novel model in K. pneumoniae clinical isolates for ESBL and CP-producing prediction based 286 

on MS spectra. Our major contribution is provided by the multiview nature of KSSHIBA since 287 

it was able to learn from intercollection distribution without getting biased by intracollection 288 

distributions using the hospital collection of origin as an extra view. Moreover, our model also 289 

reduced the training complexity by kernel application and getting rid of cross-validation issues 290 

by the optimization of the evidence lower bound exploiting the Bayesian framework. As a 291 

direct consequence of these actions, the training period was considerably reduced.  292 

When we used a complex (non-linear) kernel, our model got better results in 293 

intracollection data: 0.85+-0.14 in ESBL+CP, 0.57+-0.28 in ESBL and 0.71+-0.16 in WT in 294 

GM and 0.64+-0.19 in WT in RyC (Table 1). Although the results seemed to indicate that the 295 

solution was to use complex kernels, when we combined both collections (intercollection 296 
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scenario, Table 2), complex kernels obtained poorer results, pointing to a possible over-fit to 297 

the intracollection distributions in the first scenario. For the intracollection scenario, KSSHIBA 298 

(UNLABELLED) failed to achieve better results than the baselines, but this result could be a 299 

consequence of the overrepresentation of ESBL/CP in the RyC collection with respect to the 300 

GM collection without inclusion criteria. This imbalance was particularly visible in the AUC 301 

performance as all unlabelled models predicted ESBL significantly worse in the GM dataset 302 

(unbalanced) than in the RyC dataset (balanced). Likewise, WT isolates were significantly 303 

more balanced only in the GM dataset. Therefore, the unlabelled models predicted worse 304 

unbalanced scenarios, getting biased by the data distribution. However, KSSHIBA 305 

(LABELLED) proved that exploiting the multi-view heterogeneous features allowed to add 306 

additional information to the learning process, such as the dataset source, being able to properly 307 

model different data distributions getting rid of the introduced bias by the data itself. Therefore, 308 

our model represents a step forward in the prediction of antibiotic resistance, particularly to 309 

beta-lactam antibiotics, as it obtains better performance in terms of AUC than previous models, 310 

while providing new features: adding more data to the learning base, reducing dimensionality 311 

and providing interpretability of how the data sets interact with each other to predict. 312 

Previous reports suggested some protein peaks are associated with specific mechanisms 313 

of antibiotic resistance [19]. These observations were manually performed by direct 314 

visualization of the protein spectra, but obviously automation avoids operator-related bias and 315 

provides more information about the optimal areas of the spectrum for discrimination. 316 

Likewise, some person-related discrepancies may occur in AST for the WT/resistant 317 

categories. Although the same AST methodology was used in both collections, we cannot rule-318 

out possible discrepancies linked to each centre/person. On the contrary, a single worker in the 319 

same instrument performed all MS spectra. A limitation of our work was a reduced number of 320 

isolates for machine-learning methodology. Also, more geographically unrelated isolates 321 
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should be included, always combining the phenotypic and the genotypic previous 322 

characterization of the antimicrobial susceptibility profile. Although machine-learning 323 

applications on MS spectra to predict resistance to antibiotics are still in an initial stage, their 324 

great potential should encourage us to continue work in this direction. 325 
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