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 2 

ABSTRACT 20 

Mitochondria are essential organelles in eukaryotic cells that provide critical support 21 

for energetic and metabolic homeostasis. Mutations that accumulate in mitochondrial 22 

DNA (mtDNA) in somatic cells have been implicated in cancer, degenerative diseases, 23 

and the aging process. However, the mechanisms used by somatic cells to maintain 24 

proper functions despite their mtDNA mutation load are poorly understood. Here, we 25 

analyzed somatic mtDNA mutations in more than 30,000 human single peripheral and 26 

bone marrow mononuclear cells and observed a significant overrepresentation of 27 

homoplastic mtDNA mutations in B, T and NK lymphocytes despite their lower 28 

mutational burden than other hematopoietic cells. The characteristic mutational 29 

landscape of mtDNA in lymphocytes were validated with data from multiple platforms 30 

and individuals. Single-cell RNA-seq and computational modeling demonstrated a 31 

stringent mitochondrial bottleneck during lymphocyte development likely caused by 32 

lagging mtDNA replication relative to cell proliferation. These results illuminate a 33 

potential mechanism used by highly metabolically active immune cells for quality 34 

control of their mitochondrial genomes.  35 
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INTRODUCTION 36 

Mitochondrial DNA (mtDNA) encodes genes involved in oxidative phosphorylation that 37 

are essential for eukaryotic cells1. There are typically hundreds to thousands of copies 38 

of mtDNA molecules in each cell and the germline mtDNA is predominantly maternally 39 

inherited and does not undergo recombination2. mtDNA accumulates mutations at a 40 

rate that is five to ten times higher per site than the nuclear genome because the lack 41 

of DNA repair systems3,4 and frequent contact with mutagenic reactive oxygen species 42 

(ROS)5. More than 500 pathogenic mtDNA mutations have been identified as causative 43 

genetic defects of various human diseases6. According to the theory known as 44 

“Muller’s ratchet,” continuous accumulation of deleterious mutations in the absence of 45 

purifying selection will lead to a decline in population fitness and will ultimately result 46 

in mutational meltdown7. To avoid this outcome, the animal germline has evolved a 47 

mitochondrial genetic bottleneck, wherein only a small subset of mtDNA is transmitted 48 

to the next generation, thus resulting in significant removal of deleterious mutations8-49 

10. Population studies have also revealed an increase in mtDNA heteroplasmy in blood 50 

cells as part of the normal aging process11 and the accumulation of pathogenic mtDNA 51 

mutations has been reported in cancers and neurodegenerative disorders12,13. 52 

However, the transmission and clonal dynamics of somatic mtDNA mutations along 53 

tissue development are largely unknown, due to the technical difficulties of detecting 54 

heteroplasmic mutations in single cells.  55 

 56 

We and others have recently developed a single-cell lineage tracing method leveraging 57 

the somatic mtDNA mutations detected in single-cell assay for transposase-accessible 58 

chromatin with high-throughput sequencing (scATAC-seq) and/or RNA-seq (scRNA-59 

seq) data14,15. Using this method, a recent study had shown that a pathogenic mutation 60 

3243A/G, the cause of mitochondrial myopathy, encephalopathy, lactic acidosis, and 61 

stroke-like episode (MELAS)16, was remarkably purified in T cells as compared to other 62 

blood cells from peripheral blood mononuclear cells (PBMCs), with unknown 63 

mechanisms. These results inspired our investigation of the mtDNA mutational 64 

landscape in a large population of single cells in order to understand the clonal 65 

dynamics of mtDNA in the development of somatic cell lineages.   66 
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RESULTS 67 

Somatic mutational landscape of mtDNA at single-cell resolution 68 

In this study, we focused on human hematopoietic system where the cellular 69 

differentiation lineages have been well documented. We first identified somatic mtDNA 70 

mutations in a previously reported mitochondrial scATAC-seq (or mtscATAC-seq) 71 

dataset including more than 20,000 blood cells from a healthy 47-year-old individual17 72 

(Fig. 1a-b, Extended Data Fig. 1a, Methods). We summarized the numbers of 73 

mutations and the variant allele frequency (VAF, also referred to as mtDNA 74 

heteroplasmic ratio) in each cell in order to compare the VAF distribution in a population 75 

of different cell types. Interestingly, we found cells of the mature lymphocyte lineages-76 

-specifically B, T, NK cells--carried a significantly lower mtDNA mutational burden as 77 

compared to those identified in hematopoietic progenitor cells, including hematopoietic 78 

stem cells (HSCs), multipotent progenitors (MPPs), lymphoid-primed multipotent 79 

progenitors (LMPPs), common lymphoid progenitors (CLPs), common myeloid 80 

progenitors (CMPs), and granulocyte-macrophage progenitors (GMPs) (Fig. 1c and 81 

Extended Data Fig. 1b, Wilcoxon test, p <2.2e-16). The mtDNA mutational burden was 82 

also lower in lymphocytes as compared to the myeloid and erythroid lineages (Fig. 1c, 83 

Wilcoxon test, p <2.2e-16). As anticipated, most somatic mtDNA mutations were 84 

detected at low VAF in individual cells in all cell types (Fig. 1d). However, the 85 

distribution of homoplastic mutations (i.e., those at VAF~1) varies substantially among 86 

the different cell types. For instance, progenitor cells, including HSCs, MPPs, LMPPs, 87 

CLPs, CMPs, and GMPs, exhibit the typical monotonic decline in the number of 88 

mutations with increasing VAF (Fig. 1d). While this pattern was also true in both the 89 

myeloid and erythroid lineages (e.g., monocytes and erythrocytes), we observed an 90 

unanticipated increase in the number of homoplastic mutations in B, T and NK cells 91 

(Fig. 1d).  92 

 93 

In addition to the mtscATAC-seq dataset from PBMCs, we analyzed another 94 

mtscATACseq dataset of 10,327 bone marrow mononuclear cells (BMMCs) from an 95 

independent healthy donor18 (Fig. 2a). As the observations in PBMCs, lymphocytes in 96 

BMMCs also carried a lower mtDNA mutational burden with a characteristic 97 

overrepresentation of homoplastic mutations (Fig. 2b and Extended Data Fig. 1c). In 98 

fact, these lymphocyte-specific characteristics were also verified by additional scATAC-99 
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seq or scRNA-seq data from 7 independent individuals (Extended Data Fig. 2), 100 

indicating a general and unique process of clonal dynamics of mtDNA in lymphocyte 101 

development.  102 

 103 

Asynchronous replication of mitochondrial and nuclear genome during B cell 104 

development 105 

To examine whether the distinct VAF distribution between lymphoid cells and 106 

myeloid/erythroid cells is due to the variation of mtDNA copy number per cell, we 107 

estimated the relative number of mtDNA copies in each cell type according to the 108 

fraction of sequencing reads mapped to the mitochondrial genome relative to the total 109 

number of reads in each cell (Fig. 3a and Extended Data Fig. 3a). Although mature 110 

lymphocytes and progenitor cells had similar mtDNA copy numbers, pro-B and pre-B 111 

cells—the earliest lineage-committed cells in B cell development—exhibited a 112 

significantly lower number of mtDNA copies (Wilcoxon test, pro-B/pre-B versus 113 

HSC/MPP, p <2.2e-16; pro-B/pre-B versus B, p <2.2e-16). Of note, the CLPs also showed 114 

significantly fewer mtDNA copies than earlier progenitors (Wilcoxon test, CLP versus 115 

HSC/MPP, p <2.2e-16; CLP versus LMPP, p<2.2e-16), thus indicating a remarkable 116 

mtDNA copy number reduction in early lymphocyte development. Therefore, we 117 

hypothesized that the characteristic mutational spectra in lymphocyte mtDNA (Fig. 1c-118 

d and Fig. 2b) might result from a mitochondrial genetic bottleneck.  119 

 120 

To address this possibility, we examined the mtDNA replication machinery to gain 121 

insight into the regulation of mtDNA copy number along the lymphocyte differentiation 122 

trajectory. Since T cells matures in thymus and their progenitor, pre-T cells, are not 123 

available in by PBMCs, we focused on the B cell lineage. DNA polymerase γ is the only 124 

known mitochondrial DNA polymerase in animals19. DNA polymerase γ has both a 125 

catalytic (POLG) and a binding subunit (POLG2) and can catalyze the polymerization 126 

of deoxyribonucleotides. High levels of DNA polymerase γ activity have been detected 127 

in cell cycle phases S and G2 to maintain stable numbers of mtDNA during cell 128 

division19-21. To determine whether the expression of DNA polymerase γ increases with 129 

cell proliferation during B cell development, we projected the developmental trajectory 130 

of cell subpopulations from HSCs to mature B cells via a pseudo-time analysis with 131 

scRNA-seq data (Fig. 3b and Extended Data Fig. 3b). We observed up-regulation of 132 
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G1/S phase-specific genes (such as DNA polymerase δ, POLD1–3) in both pro-B and 133 

pre-B cell populations, thus suggesting high activation of cell proliferation in these cell 134 

types (Fig. 3c-d and Extended Data Fig. 3c-e). In contrast, the expression of DNA 135 

polymerase γ was not coupled with cell proliferation (Fig. 3e-f and Extended Data Fig. 136 

3c-e). Unexpectedly, the expression of the DNA polymerase γ binding subunit (POLG2) 137 

was significantly diminished in the highly proliferative pro-B and pre-B cell 138 

subpopulations (Fig. 3g). Together, these results imply a genetic bottleneck during B 139 

cell development which might have resulted from limited replication of mtDNA, thus 140 

diluting the mtDNA copy number throughout cell division. 141 

 142 

Quantification of mtDNA genetic bottleneck by computational modeling  143 

To test our hypothesis and quantify the extent of the mitochondrial genetic bottleneck, 144 

we developed a computational model of an mtDNA dilution process based on 145 

population genetics theory (Fig. 4a). In this model, we assumed that only a proportion 146 

of mtDNA molecules (denoted by α) replicates during each cell cycle. This process 147 

continues for Td cell cycles until the mtDNA copy number recovers to the initial levels 148 

(~500 copies per cell estimated by Ryan et.al22). Using the approximate Bayesian 149 

computation (ABC) method, we estimated the model parameters for B, T and NK cell 150 

populations by using a constant mtDNA mutation rate of 10-7 per site per cell division23 151 

(Fig. 4b and Extended Data Fig. 4a). The model estimations showed the minimal 152 

mtDNA copy number were 21 (95% confidence interval [CI] =13–56), 13 (95% CI=12–153 

19) and 14 (95% CI=12–21) in each B, T and NK cell, respectively. These values were 154 

20–40-fold lower than the normal mtDNA levels. The VAF distribution simulated with 155 

these parameter estimations recapitulated the observed data, showing a characteristic 156 

overrepresentation of homoplastic mutations (i.e., VAF~1) and a reduced overall 157 

mutational burden (Fig. 4c and Extended Data Fig. 4b-c). Notably, this pattern cannot 158 

be achieved by random genetic drift alone with a constant number of mtDNA copies. 159 

 160 

The consequence of mtDNA genetic bottleneck  161 

Collectively, our integrative genomic data analysis and computational modeling 162 

demonstrated the existence of a stringent mtDNA genetic bottleneck that resulted from 163 

replicative dilution during lymphocyte development. This mechanism strengthens the 164 

genetic drift toward a lower mtDNA mutational burden and lower genetic diversity within 165 
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each cell. We wondered whether the genetic bottleneck during lymphocyte 166 

development might have the same purifying selection effects as those in the germline. 167 

We thus examined the VAF distribution in various genomic regions (loop, tRNA, rRNA 168 

and coding) or mutation types (synonymous and nonsynonymous), as well as the 169 

dN/dS ratio (the ratio of the normalized number of nonsynonymous substitutions - dN 170 

to the normalized number of synonymous substitutions - dS) (Extended Data Fig. 5a 171 

and Extended Data Fig. 6a). We observed no significant differences in the VAF 172 

distribution for mutations in different genomic regions or substitution types among the 173 

various cell types. Moreover, the calculated dN/dS ratios revealed a pattern of 174 

generally neutral evolution (i.e., dN/dS~1) in all categories in most of the cases 175 

examined (Extended Data Fig. 5b and Extended Data Fig. 6b).  176 

 177 

Thus, our results showed that the entire mtDNA genome was evolving under a 178 

neutrality-like process. However, this is likely due to linkage of whole mitochondrial 179 

genome with strong Hill–Robertson interference, leading to a pattern of quasi-neutrality 180 

as in cancer evolution24. Therefore, we checked individual mutation sites to look for the 181 

signals of purifying selection and indeed observed several mutations that were 182 

specifically eliminated in lymphocytes compared to myeloid lineage (Fig. 5a-b). For 183 

example, the mutations, 2636G/A and 3209A/G, underwent the most profound 184 

decrease in prevalence (Fig. 5c) in lymphocytes. Intriguingly, these two sites are all 185 

located at MT-RNR2, which encode 16S rRNA and Humanin, a peptide playing 186 

protection roles in multiple mitochondrial diseases (Fig. 5d)25. Furthermore, we queried 187 

MITOMAP, a human mitochondrial genome database, and found that mtDNA variants 188 

reported on MT-RNR2 were highly associated with sepsis (p<2.2e-16, Fig. 5e)26,27, 189 

suggesting MT-RNR2 may play important roles in immune functions to protect from 190 

infections. These data indicate purifying selection in lymphocytes indeed occurs for 191 

specific mtDNA mutation sites. 192 

 193 

DISCUSSION 194 

Collectively, we observed an unanticipated lower mutational burden and accumulation 195 

of homoplastic mtDNA mutations in lymphocytes that depicted a stringent genetic 196 

bottleneck and purifying selection of mtDNA. Gene expression data and computational 197 

modeling suggest a dilution process, based on the rate of mtDNA replication relative 198 
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to the nuclear genome. Although the single-cell data derived from PBMCs cannot 199 

capture the full developmental trajectory of T cells because pre-T cells develop in the 200 

thymus. Our single cell data and computational inference indicates the genetic 201 

bottleneck in T and NK cells might be as stringent as that in B cells (Fig. 1d, Fig. 2a, 202 

Fig. 4b). Further systematic study of T cell precursors in the thymus may provide further 203 

insight on how genetic bottleneck occurs during T cell development. Also, based on 204 

our observations and simulations, we hypothesize that the regulation of lymphocyte 205 

specific genetic bottleneck may start from CLP stage, instead of subsequent lineage 206 

commitment for B, T and NK cells. The effect of this regulation was likely enhanced via 207 

the active proliferation of progenitor cells. We knew that during lymphocyte 208 

development, multipotent T and B progenitor cells undergo a series of maturation steps 209 

that include positive selection for functional T-cell receptors (TCRs) or 210 

immunoglobulins and negative selection to eliminate cells with a high affinity for self-211 

associated peptides or antigens28. Only a small proportion of T lymphoid cells will 212 

survive from the negative and positive selections. Moreover, mitochondrial function is 213 

important for T cell development and their functional activation29,30. The metabolic 214 

responses characteristic of lymphocytes development and activation are both well-215 

regulated at transcriptional and post-transcriptional levels31. For example, several 216 

groups have shown that T or B cell activation leads to mitochondrial remodeling and 217 

dramatic shifts in cell metabolism, as part of their role in eliminating pathogens32-36. 218 

Meanwhile the selection against pathogenic mutations 3243 was stronger in T cells 219 

than B and NK as shown by Walker et.al16. All these evidences suggested that the 220 

mtDNA genetic bottleneck may be one of several potential mechanisms in the 221 

regulation of mitochondrial genome in different lineages. 222 

 223 

Our novel discovery of a somatic mtDNA bottleneck specifically within the lymphoid 224 

lineage may play a role in the quality control of mitochondrial genomes, in parallel to 225 

the selection of immunoreceptor genes in the nuclear genome. Thus, a robust 226 

population of mtDNA may be crucial for lymphocyte-mediated immune responses. 227 

These findings provide new insight into immune degeneration and related diseases. 228 

The causing and the consequence of the somatic mtDNA genetic bottleneck require 229 

extensive efforts to explore.  230 

 231 

 232 
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CODE AVAILABILITY  233 

Code used for single cell data analysis and computational modeling are available at 234 

https://github.com/tangzhj/Bottleneck 235 
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 257 

ONLINE METHODS 258 

Data collection 259 

The mtscATAC-seq dataset generated through evaluation of hematopoietic and 260 

PBMCs was retrieved from a recent study evaluating samples from a healthy 47-year-261 

old donor17. The mtscATAC-seq dataset from human bone marrow from 25-year-old 262 

healthy donor was obtained from Mimitou et.al18. The scATAC-seq data from CD4+ T 263 

cells were obtained from the study published by Satpathy et al.37. The scATAC-seq 264 

dataset for hematopoietic stem cells (HSCs), multi-potent progenitors (MPPs), 265 
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lymphoid-primed multipotent progenitors (LMPPs), common lymphoid progenitors 266 

(CLPs), common myeloid progenitors (CMPs), granulocyte-macrophage progenitors 267 

(GMPs) and plasmacytoid dendritic cells (pDCs) derived from CD34+ bone marrow was 268 

obtained from Buenrostro et al.38 (Extended Data Fig. 2). The scRNA-seq dataset 269 

generated from an evaluation of healthy CD34+ PBMCs, bone marrow mononuclear 270 

cells (BMMCs) and total PBMCs was downloaded from the study published by Granja 271 

et al.39 These datasets were used to analyze mtDNA replication and gene transcription 272 

(Methods). The scRNA-seq dataset of 70 effector memory T cells (Tem cells), 70 273 

central memory T cells (Tcm cells) and 142 CD4+ regulatory T cells (Treg cells) from 274 

healthy human colon tissue were downloaded from Array Express (E-MTAB-6072)40. 275 

Detailed information on data resources is provided in Supplementary Table 1. 276 

 277 

Single-cell (sc)ATAC-seq data pre-processing and annotation of the cell 278 

populations 279 

Raw data from GSE142745 were processed with Cell Ranger ATAC (version 2.0.3; 10x 280 

Genomics, https://www.10xgenomics.com/products/single-cell-atac) with default 281 

parameters. Reads were aligned to the reference hg19 human genome 282 

(https://support.10xgenomics.com/single-cell-atac/software/downloads/latest). In each 283 

cell, 40% of fragments overlapping a compendium of DNase hypersensitivity peaks 284 

and 1,000 unique nuclear fragments were filtered. From the output of the Cell Ranger 285 

Software calls, we performed a computational annotation of the cell types on the basis 286 

of chromatin accessibility. Clustering and gene activity scores were determined 287 

through standard processing via ArchR41. Clustering was performed with the 288 

"addClusters" and "addUMAP" functions (resolution=0.8, neighbors=10, minDist=0.1). 289 

To identify marker genes according to gene scores, we used the "getMarkerFeatures" 290 

function with useMatrix "GeneScoreMatrix" and generated a reproducible peak set in 291 

ArchR by using the "addReproduciblePeakSet" function. By default, ArchR attempts to 292 

identify peaks by using the MACS2 algorithm42. Because common cell markers are 293 

sometimes not suitable for classification with "GeneScoreMatrix”, we used enhancer 294 

accessibility to define the cell type. For example, we identified myeloid cells according 295 

to the unique accessibility of enhancers at +85 kb and +87 kb in the interferon 296 

regulatory factor (IRF8) locus. Plasmacytoid dendritic cells (pDCs) were identified on 297 

the basis of the unique accessibility of +54 kb and +56 kb enhancers, as described by 298 

Satpathy et al.37. Furthermore, to label scATAC-seq clusters with scRNA-seq 299 
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information, we used the "addGeneIntegrationMatrix" function, which integrates 300 

scATAC-seq with scRNA-seq. Specific marker genes used to identify individual cell 301 

types in scATAC-seq datasets of healthy CD34+ hematopoietic cells and PBMCs are 302 

documented in Supplementary Table 2. 303 

 304 

Mitochondrial DNA variants identified in single-cell ATAC-seq datasets 305 

Paired-end raw reads from each sample were aligned to the human reference genome 306 

(hg19) with Cell Ranger ATAC after adapter sequences were trimmed. First, the reads 307 

mapped to multiple sites or the nuclear genome, and duplicates were also removed. 308 

The remaining reads were realigned to correct the potential mapping errors around 309 

indels according to the process from GATK43. Bam files for each cell type were merged 310 

to identified germline mtDNA variants (bulk VAF >90%). Variants with VAF >90% 311 

shared among more than 90% cells were also considered germline mutations. Then 312 

mtDNA variants were called for each individual cell with VarScan244 with “--min-var-313 

freq 0.01” and “--min-reads2 2”. To identify high confidence somatic variants in single 314 

cell, the following filter steps were applied. 315 

 316 

First, the germline mutations identified in the merged bam file were removed.  317 

Second, the following sites were explicitly removed because of the large numbers of 318 

homopolymers in the revised Cambridge Reference Sequence (rCRS) and sequencing 319 

errors in the reference genome13: 320 

Misalignment due to ACCCCCCCTCCCCC (rCRS 302–315), including 321 

302A/C, 309C/T, 311C/T, 312C/T, 313C/T and 316G/C; 322 

Misalignment due to GCACACACACACC (rCRS 513–525), including 323 

514C/A, 515A/G, 523A/C and 524C/G; 324 

Misalignment due to 3107N in ACNTT (rCRS 3105–3109), including 325 

3106C/A, 3109T/C and 3110C/A. 326 

Third, sequencing errors can significantly affect the identification of somatic variants. 327 

Therefore, sequencing errors known to be associated with a high error rate according 328 

to Illumina NextSeq and sequence errors (G→T and C→A) from DNA damage were 329 

removed. 330 

Fourth, strand balance was required for confident somatic variants. For the given 331 

variant site, we required the reads mapped to the forward strand to be above 30% but 332 

below 70% of the total mapped reads for the variant allele. 333 
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Variants that passed the multiple filter steps were merged from all individual cells as 334 

the final somatic variants. If the variant was sufficiently confident in any given cell, the 335 

variant allele frequency was re-counted in all individual cells within the same cell type, 336 

without any other constraints. 337 

 338 

Single-cell RNA-seq data processing and cell-type annotation 339 

Downstream analysis of scRNA-seq dataset was performed with Seurat45 (version 340 

3.2.2; https://satijalab.org/seurat). The following bioinformatic analyses were 341 

performed in R software (version 3.6.0; https://www.r-project.org) with default settings 342 

unless otherwise stated. Cells with <200 or >2,500 detected genes or with >5% 343 

mitochondrial DNA were eliminated from further consideration. Normalization was 344 

applied with the MAGIC package (version 2.0.3)46 by following the Seurat v3 workflow. 345 

We next calculated a subset of features that exhibited high cell-to-cell variability by 346 

using the "FindVariableFeatures" function and identified 2,000 specific features. 347 

Clusters were identified with the "Find-Neighbors" and "FindClusters" functions in 348 

Seurat with 45 principal components (PCs) and a resolution of 0.3. The results were 349 

annotated to include differential expression of cell type-specific marker genes. Uniform 350 

Manifold Approximation and Projection for Dimension Reduction (UMAP) 351 

dimensionality reduction was performed with the "RunUMAP" function in Seurat, with 352 

45 PCs and other default parameters. The expression of cell type-specific marker 353 

genes in PBMCs and BMMCs is shown in Supplementary Table 3. We referred to the 354 

information and classifications recorded in GSE139369 from the GEO Database to 355 

guide our cell type annotations (Supplementary Table 3). 356 

 357 

Pseudo-time analysis  358 

To construct single-cell differentiation trajectories with scRNA-seq data from HSCs to 359 

B cells, we performed a pseudo-time analysis with the Monocle method47-49. First, we 360 

subdivided scRNA-seq data according to the annotated cell populations revealed by 361 

Seurat clustering analysis, according to the common pipeline (http://cole-trapnell-362 

lab.github.io/monocle-release/monocle3/). Re-clustering of selected cell populations 363 

was again performed with the "RunUMAP" function. Pseudo-time analysis was 364 
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conducted on these newly generated clusters with Monocle v3. We delineated 365 

expression patterns of G1/S phase-specific and mtDNA replication-related genes along 366 

a pseudo-timeline. G1/S phase-specific genes were identified according to a previously 367 

annotated list50 (Extended Data Fig. 3d). 368 

 369 

Mitochondrial DNA variants identified from single-cell RNA-seq data 370 

Mitochondrial DNA variants from single-cell RNA-seq data were processed in the same 371 

manner as mtDNA variants from scATAC-seq, with several modifications. Briefly, we 372 

used STAR51 to align reads to the human reference genome (hg19) and to obtain bam 373 

files. Germline mutations and mtDNA variants in individual cells were filtered and called 374 

in the same manner. 375 

 376 

Allele frequency spectrum  377 

The allele frequency (heteroplasmic ratio) of each mutation were calculated in each 378 

cell and the number of mutations fall in each frequency bin (from 0~1) were counted 379 

for each cell types. Somatic mutations arose in the early development stage, which 380 

had been fixed in the progenitor cells, were further excluded for the ASF analysis in 381 

the mtscATAC-seq from BMMCs. 382 

 383 

Annotation of mitochondria DNA mutations and calculation of non-384 

synonymous/synonymous mutation rates (dN/dS)  385 

The mitochondrial variants were annotated with ANNOVAR52. The annotated variants 386 

comprised mutations in loops, tRNA, rRNA and mRNA coding regions, including non-387 

synonymous (NS) and synonymous (SY) substitutions according to the variant location 388 

(Extended Data Fig. 5a and Extended Data Fig. 6a). Coding sequences (CDS) within 389 

the mitochondrial genome were evaluated with Phylogenetic Analysis of Maximum 390 

Likelihood (PAML) to identify all possible synonymous (defined as S) and 391 

nonsynonymous (defined as N) substitutions in the human mitochondrial genome53. 392 

On the basis of ANNOVAR’s annotations, we identified all observed synonymous 393 

(defined as s) and nonsynonymous substitutions (defined as n). The non-synonymous 394 

mutation rate (dN)=n/N and the synonymous mutation rate (dS)=s/S, responses to 395 
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positive, neutral, or negative selection pressure, can be determined by the dN/dS ratio. 396 

 397 

Computational modeling of the mitochondrial genetic bottleneck 398 

We used the Wright-Fisher model from population genetics to depict the accumulation 399 

of mutations and the dynamic frequency of heteroplasmic alleles in mtDNA during 400 

lymphoid cell divisions. The Wright-Fisher model assumes discrete generations and 401 

random sampling of individuals from the current generation without replacement by 402 

reproduction in the following generation. This model has been widely used to model 403 

the mtDNA population dynamics in both germline cells and somatic cells, including 404 

those that are neoplastic23,54. Because normal somatic cells typically contain 100–405 

1,000 copies of mtDNA, we used n=500 as the baseline copy number in our model22. 406 

Results from the scATAC dataset revealed that the relative copy number of mtDNA in 407 

NK cells was approximately 60% that detected in B or T cells (Fig. 3a); thus, 300 408 

(500×0.6) was used as the baseline mtDNA copy number for the NK lymphocyte cohort. 409 

We modeled the lymphoid development from lymphoid-primed multipotent progenitor 410 

(LMPP) cells, which are the common progenitor cells for all lymphocytes, B, T and NK 411 

cells. To model the dilution-based genetic bottleneck, we introduced a dilution rate α, 412 

which denotes the fraction of mtDNA molecules in each cell that undergo replication 413 

within a single cell cycle, and Td, which denotes the time of the diluting process. After 414 

Td cell divisions from LMPP, the mtDNA copy number in each cell type rapidly recovers 415 

to the baseline level. The minimal mtDNA copy number through the bottleneck can be 416 

computed by: 417 

𝑁𝑏 = 𝑁0𝛼𝑇𝑑           Eq (1) 418 

where 𝑁0  is the initial number of mtDNA copies. The total number of cell divisions 419 

required for the transition from an LMPP to a mature lymphocyte is denoted Ta. The 420 

mutation rate at each site within the mitochondrial genome per cell division is denoted 421 

𝜇, which has been estimated to be 10-8–10-7 mutations per site for somatic cells23,55. 422 

Thus, the mutation rate for the entire mitochondrial genome during each cell division 423 

event will be 𝑢 = 𝜇 × 𝐿, where L=16,569 base pairs (bp), representing the number of 424 

potential sites within the mitochondrial DNA length. 425 

 426 

During each cell division, the number of somatic mutations acquired per mitochondrial 427 

genome follows a Poisson distribution with a mean of u. Thus, the probability that k 428 

mutations occurred in each cell division is as follows:  429 
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𝑃(𝑥 = 𝑘) =
𝑢𝑘𝑒−𝑢

𝑘!
       Eq (2) 430 

 431 

Computational inference of parameters by approximate Bayesian computation  432 

We used the framework of approximate Bayesian computation (ABC) for parameter 433 

inference in our computational model of somatic mtDNA population dynamics on the 434 

basis of the dilution rate 𝛼, the dilution time course Td and the total number of cell 435 

divisions Ta. The minimal mtDNA copy number in each cell can be computed as 436 

described by Eq (1) when values for 𝛼  and Td are available. The prior uniform 437 

distributions used for sampling 𝛼 , Td and Ta, were  𝛼~𝑈(0, 1) , 𝑇𝑑~𝑈(0, 30)  and 438 

𝑇𝑎~𝑈(10, 40) . To avoid extinction (i.e., minimal mtDNA copy number=0), only the 439 

sampled parameter values ensuring 𝑁𝑏 (= 𝑁0𝛼𝑇𝑑) >10 were retained. We used a 440 

version of ABC based on the acceptance-rejection algorithm56 to estimate posterior 441 

probability distributions for the parameters of interest (i.e., θ [𝛼, 𝑇𝑑, 𝑇𝑎]. We used 19 442 

summary statistics (S), which included the mtDNA mutation count in each VAF bin as 443 

step=0.05 from VAF=0.05 to 1 to fit the simulated to the observed data. The ABC 444 

version of rejection sampling is as follows: 445 

For i=1 to K simulations: 446 

1. Sample parameters θ′ from the prior distribution π(θ) 447 

2. Simulate data (D′) with the sampled parameters (θ′) and summarize D′ 448 

as summary statistics (S′). 449 

3. Accept θ′ if d(S′, S)<ε, for a given tolerance rate ε, where d(S′, S) is a 450 

measure of the Euclidean distance between S′ and S 451 

4. Return to step 1. 452 

 453 

With this scheme, we approximated the posterior distribution by P(θ|d(S′, S)<ε). We 454 

used a common variation in ABC57,58 in which, rather than using a fixed threshold, ε, 455 

we sorted all calculated K distances by d(S′, S) (see step 3 above) and accepted the 456 

θ′ that generated the smallest 100×η percentage distances. We used K=106 and 457 

η=0.001 so that the posterior distribution was composed of 106×0.001=1,000 data 458 

points. We ran the ABC inference procedures for two mutation rates (𝜇=10-8 and 10-7) 459 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 7, 2021. ; https://doi.org/10.1101/2021.09.28.462268doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.28.462268
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 16 

and performed model selection (Extended Data Fig. 4). The mutation rate 𝜇 =10-7 460 

fitted the data better in all cell types and thus was used for the computational inference. 461 

The ABC procedure was performed with the R package abc59.  462 
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Figures and Legends 463 

 464 

Fig. 1 Somatic mutations in the mtDNA of PBMCs. 465 

(a) Schematic of human hematopoietic differentiation and lineage commitment. HSC, 466 

hematopoietic stem cell; MPP, multipotent progenitor; LMPP, lymphoid-primed 467 
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multipotent progenitor; CLP, common lymphoid progenitor; CMP, common myeloid 468 

progenitor; GMP, granulocyte-monocyte progenitor; MDP, monocyte-dendritic cell 469 

progenitor; N CD4, naïve CD4+ T cell; N CD8, naïve CD8+ T cell; M CD4, memory CD4+ 470 

T cell; M CD8, memory CD8+ T cell; Th, T helper cell; NK, natural killer cell; pDC, 471 

plasmacytoid dendritic cell; Eryth, erythrocyte.  472 

(b) UMAP projection of 22,312 CD34+ hematopoietic cells and PBMCs with 473 

mtscATAC-seq data. Dots represent individual cells that have been colored according 474 

to cluster identity. The bar plot indicates the number of cells in each cluster (labeled at 475 

right).  476 

(c) Violin plot showing the number of somatic mtDNA variants per cell for various cell 477 

types; P-values, two-sided Wilcoxon rank-sum test. 478 

(d) The VAF distribution of somatic mtDNA mutations across different cell types. 479 

Homoplastic mutations (VAF ~1) identified in the lymphoid lineage are highlighted with 480 

a red box.   481 
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 482 

Fig. 2 Somatic mutations in the mtDNA of BMMCs. 483 

(a) UMAP projection of 10,327 mononuclear cells from bone marrow with mtscATAC-484 

seq data. Dots represent individual cells that have been colored according to cluster 485 

identify and cell types.  486 

(b) The VAF distribution of somatic mtDNA mutations across different cell types in 487 

BMMCs. Homoplastic mutations (VAF ~1) identified in the lymphoid lineage are 488 

highlighted with a red box.   489 
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 490 

Fig. 3 Replication of mtDNA during B cell development. 491 

(a) The relative number of mtDNA copies was determined by the proportion 492 

(sequencing reads mapped to mitochondrial genome divided by the total number of 493 

reads) in each cell, as identified from the scATAC-seq dataset. 494 

(b) Pseudo-time trajectory of B cell differentiation from HSCs by using single-cell RNA-495 
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seq data generated from PBMCs (n=4692 cells). Individual colors denote different cell 496 

types (top) and developmental stages (bottom) defined by pseudo-time. The solid line 497 

represents the fitted trajectory across pseudo-time.  498 

(c-f) Kinetic plots showing the expression of (c) 39 G1/S phase-specific genes 499 

(SSgene), (d) nuclear DNA polymerase δ (POLD1–3), (e) mtDNA polymerase γ (POLG) 500 

and (f) the binding subunit of mitochondrial DNA polymerase γ (POLG2) along the B-501 

cell developmental trajectory.  502 

(g) Violin plot showing the ratio of POLG2 expression to the mean expression of all 503 

G1/S phase-specific genes in each cell associated with B-cell development. The 504 

broken line represents the change trend of the mean ratio across different cell types.  505 
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 506 

Fig. 4 The dilution model of the mitochondrial genetic bottleneck. 507 

(a) Schematic illustration of the dilution model of the mitochondrial genetic bottleneck. 508 

In this model, only a fraction of mtDNA molecules (denoted by 𝛼) replicate at each cell 509 

division. After Td cell divisions from the LMPP stage, the number of mtDNA copies in 510 

each lymphocyte subtype (B, T, and NK cells) undergoes rapid recovery to the baseline 511 

level (~500 per cell). Nb denotes the minimal number of mtDNA copies that can be 512 

computed as Eq (1). The total number of cell divisions required for the transition from 513 

LMPP to mature lymphocyte is denoted as Ta.  514 

(b) The distribution of model parameters inferred by the Approximate Bayesian 515 

Computation (ABC) algorithm. The mean and 95% confidence interval of each 516 

parameter estimation is as shown.  517 

(c) Simulations based on the dilution model of mitochondrial genetic bottleneck with 518 

the ABC-estimated parameter values recapitulated the lymphocyte-specific 519 

overrepresentation of homoplastic mutations and the lower mutation burden 520 

(Extended Data Fig. 3b). The left and right panels represent the simulations with and 521 
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without mitochondrial genetic bottleneck, respectively. The average of 100 simulations 522 

carried out for each model is as shown. The results of each iteration are shown in 523 

Extended Data Fig. 3c.  524 
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 525 

Fig. 5 Elimination of specific mtDNA variants in lymphocyte. 526 

(a) Scatter plot documenting the percentage of cells with dominant mtDNA mutations 527 

(VAF>50% in a single cell). Shown are the results from progenitor cells (HSC, MPP, 528 

and LMPP) compared to cells from lymphoid (B, T, or NK cells) or myeloid lineages(b).  529 
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(c) The distribution of VAF for two individual sites (3209A/G, 2636G/A) in progenitor, 530 

myeloid and lymphoid cells, respectively. The p values shown were determined by the 531 

Chi-square test.  532 

(d) The location of 16S RNA (MT-RNR2) on the mitochondrial genome and the location 533 

of sepsis association variants on MT-RNR2, reported in MITOMAP (in black), or 534 

specific eliminated in lymphocytes (in green).  535 

(e) The proportion of mtDNA variants associated with sepsis disease in 16S RNA 536 

versus other rRNA/tRNA genes on mitochondrial genome.   537 
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 538 

Extended Data Fig. 1 Detection of somatic mitochondrial mutations in single 539 

PBMCs with scATAC-seq data or scRNA-seq data. 540 

(a) Schematic of mtDNA mutation calling with scATAC-seq (including mtscATAC-seq) 541 

or scRNA-seq data. 542 

(b) Percentage of cells with at least one somatic mtDNA mutation detected in individual 543 

cells for each cell type in the mtscATAC-seq data from Lareau et al. 544 

(c) Percentage of cells with at least one somatic mtDNA mutation detected in individual 545 

cells for each cell type in the mtscATAC-seq data from Mimitou et al. 546 

(d) Violin plot showing the number of somatic mtDNA variants per cell for various cell 547 

types; p values based on a two-sided Wilcoxon rank-sum test are as shown.548 
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 549 

Extended Data Fig. 2 550 

Allele frequency spectrum of somatic mtDNA mutations for different hematopoietic cell 551 

types, on the basis of independent scATAC datasets (Buenrostro et al. and Satpathy 552 

et al.) and an scRNA-seq dataset (Ricardo et al.). 553 

 554 

 555 

 556 
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 557 

Extended Data Fig. 3 Gene expression of G1/S phase-specific genes in scRNA-558 

seq data. 559 

(a) Relative mtDNA copies were measured by the percentage of the sequencing reads 560 

mapped to the mitochondrial genome out of the total number of reads for each cell 561 

types. 562 

(b) UMAP projection of PBMCs, BBMCs and CD34+ PBMCs with scRNA-seq data. 563 
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Dots represent individual cells colored by cell types. 564 

(c) Violin plots showing the expression of mitochondrial DNA polymerase γ (POLG) 565 

and its binding subunit (POLG2) and nuclear DNA replication polymerase genes 566 

(POLD1–3) from scRNA-seq data. 567 

(d) Scatter plot showing the correlation of the gene expression of POLD (POLD1–3), 568 

POLG and POLG2 with G1/S phase-specific genes (SSgene). 569 

(e) Heat map showing the expression of 39 G1/S phase-specific genes in 24 cell types.  570 
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 571 

Extended Data Fig. 4 Details regarding the parameter inference for the dilution 572 

model of the mitochondrial genetic bottleneck. 573 

(a) Model selection with respect to the per-site mutation rate 𝜇. We ran the ABC 574 

inference procedures for two mutation rates 𝜇=10-8 and 10-7, and 𝜇=10-7 fitted the data 575 

better (smaller Euclidean distance between simulated and observed summary 576 

statistics) in all cell types and thus was used for the parameter inference. (b) 577 

Simulations under the dilution model of the mitochondrial genetic bottleneck with the 578 

ABC-estimated parameter values recapitulated the lower mutation burden in B, T and 579 

NK cells, as compared with simulations without a mitochondrial genetic bottleneck. (c) 580 

Simulations (100 times) with inferred parameters from the dilution model under 581 
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conditions with or without a mitochondrial genetic bottleneck. Each curve represents 582 

one simulation.  583 
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 584 

Extended Data Fig. 5 Allele frequency spectrum of somatic mtDNA mutations for 585 

different types and dN/dS in the progenitor and myeloid lineages. 586 

(a) Distribution of the VAF for mutations in different mtDNA genomic regions or types 587 

in progenitor and myeloid cells. The color code corresponds to mtDNA genomic regions 588 

or mutation types, annotated as loop, tRNA, rRNA, coding (coding region), NS (non-589 

synonymous) and SY (synonymous). (b) The dN/dS ratio (y-axis) for mutations in 590 

different VAF bins (x-axis). 591 

 592 
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 593 

Extended Data Fig. 6 Allele frequency spectrum of somatic mtDNA mutations for 594 

different types and dN/dS in the lymphoid lineage. 595 

(a) Distribution of VAF for mutations in different mtDNA genomic regions in lymphoid 596 

cells (B, T and NK). The color code corresponds to mtDNA genomic regions or mutation 597 

types, annotated as loop, tRNA, rRNA, coding (coding region), NS (non-synonymous) 598 

and SY (synonymous). (b) dN/dS ratio (y-axis) for mutations in different VAF bins (x-599 

axis).  600 
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