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Supplementary Methods

Numerical solution of the heat equation for a water layer

To solve the heat equation, we used the Crank-Nicolson method (central difference in time and in space,
CTCS)1 with discretized time and space T (i∆x, n∆t) = Tni , with ∆x = 1 nm and ∆t = 0.01 ns:
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For vectors T n+1 = (Tn+1
2 , · · · , Tn+1

N−1)ᵀ and T n = (Tn2 , · · · , TnN−1)ᵀ, this equation can be written in matrix
form A · T n+1 = B · T n + b, where A and B and (N − 2)× (N − 2) matrices:

A =
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B =
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.

The N − 2 dimensional vector b contains the temperature Tb = 90 K at the boundary grid points i = 1 and
i = N , b = Tb∆t

2∆x2 (α(∆x), 0, . . . , 0, α(N∆x))
ᵀ
. After multiplying with the inverse of matrix A, we get

T n+1 = A−1B · T n +A−1b.

The starting temperature profile T 0 was set to a temperature of 90 K for the ethane layer and to 277.15 K
for the water layer (Fig. 1a, blue line). Next, equation was iterated until the temperature in the center of
the profile dropped below 90.1 K (Fig. 1).
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Metropolis sampling with Bayesian inference

The models of the cooling process model1, model2 and model3 have different sets of parameters p. Here,
the aim is to obtain the probability distribution P (p | Q,S) of the parameter set p given the rmsf quantiles
obtained from the T-quench simulations Q = {Qτc | τc ∈ τc}, where τc is the set of cooling time spans used
for training the model, e.g., τc = [0.1ns, . . . , 128ns]. The standard deviations of the rmsf values are given by
S = {Sτc | τc ∈ τc} as described above. According to Bayes’ theorem,

P (p | Q,S) ∝ P (Q,S | p) · P (p), (1)

with the likelihood P (Q,S | p) and the prior probability of the parameters P (p). The likelihood is given by
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where Qτc,i and Sτc,i are the i-th rows of Qτc and Sτc , respectively. For each quantile i and each cooling
time span τc, the likelihood is given by
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where rmsfmodel is taken from equation 5 (Methods), equation 7 (Methods), and equation 8 (Methods) for
model1, model2 and model3, respectively.

For the prior distributions of the parameters, we used uniform distributions. For model1 and model3,
uniform distributions between 0 MJ/mol/nm2 and 30 MJ/mol/nm2 and between between 0 Å and 10 Å
were used for parameters c and d, respectively. For model2 and model3, uniform distributions between 0 Å
and 10 Å, between 0 kJ/mol and 10 kJ/mol were used for parameters ∆x and ∆G‡. For ∆G (model2 and
model3), we used a uniform distribution between 0 kJ/mol and −kbTh log(1/0.99 − 1)) ≈ 10.6 kJ/mol such
that the occupancy of state A is at least 1% at Th before cooling.

The probability distribution P (p | Q,S) was sampled using the Metropolis Monte Carlo algorithm2

with 106 steps. To that aim, we used the function f(p) = P (Q,S | p) · P (p) which is proportional to the
probability distribution (compare equation 1).

Initial values of parameters d and ∆x were set to 1 Å for model variants which have one value for all
quantiles and to 1 Å, 2 Å, 3 Å, 4 Å, and 5 Å for variants which have one value per quantile. Initial values of
parameters c were set to 5 MJ/mol/nm2 and initial values of parameters ∆G and ∆G‡ were set to 5 kJ/mol.

For each metropolis step, Np substeps were carried out, where Np is the number of free parameters of the
model variant. In each substep, a new value for one of the parameters was drawn from a normal distribution
centered on the current value with a standard deviation of σp. For parameter c, σp was set to 1 MJ/mol/nm2.
For d, σp was set to 2 · 10−5 Å for variants with one value of d for all quantiles and to 2 · 10−5 Å, 4 · 10−5 Å,
6 · 10−5 Å 8 · 10−5 Å, and 10 · 10−5 Å for variants with one value of d for each quantile. For ∆x, σp was
set to 1 · 10−4 Å for variants with one value of ∆x for all quantiles and to 1 · 10−4 Å, 2 · 10−4 Å, 3 · 10−4 Å
4 · 10−4 Å, and 5 · 10−4 Å for variants with one value of ∆x for each quantile. For model2, σp was set to
0.05 kJ/mol and 1 kJ/mol for parameters ∆G and ∆G‡, respectively. For model3, σp was set to 0.2 kJ/mol
and 2 kJ/mol for parameters ∆G and ∆G‡, respectively. In each substep, the function f was evaluated with
the new parameter, and the ratio α of the new and previous value of f was used as the acceptance ratio: If
α > 1, the new parameter was accepted. If α < 1, a random number u between 0 and 1 was drawn and the
new parameter was accepted if u ≤ α and rejected otherwise.

Finding optimal model variants

The three models of the cooling process have different sets of parameters. When we use all model parameters
for each quantile separately, model1, model2 and model3 have 10, 15, 25 free parameters, respectively. For
different variants of the models, we set different parameters to be the same for all quantiles. To test how well
a model variant reproduces and predicts the rmsf values obtained from the T-quench simulations, we used
a cross-validation approach. For each model variant, first, we applied Metropolis sampling with Bayesian
inference (as described above) where the likelihood function only depend on the rmsf values from the T-
quench simulations with cooling time spans between 0.1 ns and 64 ns. Next, after omitting the first 20% of
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the Metropolis steps, 1000 steps were randomly chosen, the values of the parameters were extracted and 1000
rmsf curves were calculated from the model for all cooling time spans. To check how well the model variant
reproduces the rmsf values used for training, root mean square deviations (rmsds) of model rmsf values from
those obtained from the T-quench simulations were calculated for cooling time spans 0.1–64 ns (Fig. S3,
blue). To check how well the model variant predicts rmsf values not included in the training, rmsds of model
rmsf values from T-quench simulation values were calculated for the cooling time span 128 ns (Fig. S3, red).

From the tested model variants, we chose the one with the lowest cross-validation rmsd for further analysis.
For model1 and model2, we tested all possible variants (Fig. S3a,b) and we chose the model1 variant with
five parameters for d and one fore c and the model2 variant with five parameters for ∆x and ∆G‡ and one for
∆G. For model3, several variants showed similar cross-validation rmsds and among these variants we chose
the one with the fewest free parameters, namely five parameters for d and one for c, ∆x, ∆G‡, and ∆G.

Comparison of models

To check how well the model recreates and predicts the rmsf values obtained from the T-quench simulations,
we trained the model on different sets of cooling time spans (Fig. 3e). Next for each set of cooling time
spans, after omitting the first 20% of steps, from 1000 randomly chosen Metropolis steps, the values of the
parameters were extracted and 1000 sets of rmsf curves for all cooling time spans τc were calculated from
the model. Then, rmsds of the rmsf values obtained from the model from those obtained from the T-quench
simulations were calculated for all cooling time spans (Fig. 3e). The rmsf curves obtained from the models
trained on all cooling time spans are shown in (Fig. 3d, colored lines). Probability densities of the parameters
obtained from two independent calculations are shown in Fig. S4a.
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Supplementary Figures

Figure S1: Equilibration of the ribosome-EF-Tu complex at 277.15 K prior to cooling. (a) Root
mean square deviation (rmsd) as a function of simulation time (black line). Rmsd of two simulations of the
same system at T=300 K (green lines) described earlier3. Time points of extracted snapshots are indicated
by vertical lines (every 50 ns). Horizontal lines (top) indicate time intervals of 2 µs length. (b) The rmsf
values of the ribosome-EF-Tu complex for ensembles of 41 structures obtained from different time intervals.
Histograms of the rmsf values are shown as areas (grey, light red). The highlighted ensemble (red) was used
for T-quench simulations. Horizontal lines (black, red) indicate the positions of the 6-quantiles (Q1–Q5) of
each rmsf distribution.

4



Figure S2: Volume reduction during cooling. For each cooling time span and each time point of the
cooling trajectories, the scaling factor s which minimized the average rmsd between the scaled conformations
and the starting conformations of the respective simulations is shown (mean: blue circles, standard deviation:
blue vertical lines). As a control, the same analysis was carried out for conformations extracted from the
277.15-K simulation (red circles and lines).
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Figure S3: Model parameter optimization. Different variants of model1 (a), model2 (b), and model3 (c)
with different numbers of the parameters ∆x, ∆G, ∆G‡, c, and d were trained on the rmsf values for cooling
time spans between 0.1 ns and 64 ns (Fig. 2c, black lines). If the number of parameters is 5, there is one
parameter for each quantile. If the number is 1, there is one parameter for all quantiles. The rmsds between
the rmsf values calculated from the model and the training set are shown in blue (bars indicate the 95 %
confidence interval). For validation, the rmsds between the rmsf values predicted by the model for cooling
time span 128 ns and the rmsf values from the respective MD simulations are shown in red.
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Figure S4: Parameters obtained for thermodynamic and kinetic models. Probability densities of
the model parameters obtained via Bayesian statistics from two independent calculations for model1 (a),
for model2 (b), and for model3 (c). The two shades of magenta, green, and blue denote two independent
calculations.
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Figure S5: B-factor dependency on temperature and model3 parameters. (a) B-factors as a function
of temperature calculated from model3 applied to ribosome T-quench simulations under equilibrium condi-
tions (upper panel; expected values: blue lines, 95 % confidence interval: light blue area). The B-factors of
the harmonic potentials are shown in cyan. (b,c) Probability densities of the parameters for the equilibrium
model3 applied to experimental data. The B-factors obtained from x-ray crystallography of thaumatin4 (b)
and ribonuclease-A5 (c) at different temperatures were used to train equilibrium model3.
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