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21 Abstract:

22 1. Lotka-Volterra (LV) and Multivariate Autoregressive (MAR) models are computational frameworks with 

23 different mathematical structures that have both been proposed for the same purpose of extracting 

24 governing features of dynamic interactions among coexisting populations of different species from 

25 observed time series data.

26 2. We systematically compare the feasibility of the two modeling approaches, using four synthetically 

27 generated datasets and seven ecological datasets from the literature. 

28 3. The overarching result is that LV models outperform MAR models in most cases and are generally 

29 superior for representing cases where the dependent variables deviate greatly from their steady states. A 

30 large dynamic range is particularly prevalent when the populations are highly abundant, change 

31 considerably over time, and exhibit a large signal-to-noise ratio. By contrast, MAR models are better suited 

32 for analyses of populations with low abundances and for investigations where the quantification of noise 

33 is important.

34 4. We conclude that the choice of either one or the other modeling framework should be guided by the 

35 specific goals of the analysis and the dynamic features of the data.

36

37 Key words: 

38 Algebraic Lotka-Volterra Inference (ALVI), Lotka-Volterra models, Multivariate Autoregressive (MAR) 

39 models, community dynamics, parameter estimation, population dynamics, structure inference, systems 

40 biology.
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42 Availability of algorithms used:

43 https://github.com/LBSA-VoitLab/Comparison-Between-LV-and-MAR-Models-of-Ecological-Interaction-

44 Systems 
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45 1. Introduction

46 The growth of populations has been a topic of human interest since prehistoric times: Babylonian clay 

47 tablets documented exponential growth in cuneiform lettering as early as about 4,000 years ago (Sachs & 

48 Goetze, 1945; Savageau, 1979). The quantitative representation and analysis of population dynamics is 

49 also one of the early roots of mathematical modeling in biology. In the mid-1920s, Alfred Lotka (Lotka, 

50 1925) studied periodic increases and decreases in the populations of lynx and hare in Canada, while Vito 

51 Volterra (Volterra, 1926) independently analyzed fish catches and the competition among populations in 

52 the Adriatic Sea. Since these early days, Lotka-Volterra (LV) models have become a mainstay—and typical 

53 default—in computational ecology (May, 2001) . 

54 With the discovery of complex microbiomes and their surprisingly strong effects on human health and the 

55 environment, the interest in interactions among different species has received renewed attention  (Gavin, 

56 Pokrovskii, Prentice, & Sobolev, 2006; Stein et al., 2013; Shenhav et al., 2019). As an example, we recently 

57 inferred the temporally changing interactions among bacterial communities in different lake 

58 environments with over 12,000 Operational Taxonomic Units (OTUs)  (Dam et al., 2016; Dam et al., 2020). 

59 We chose as our computational framework an LV model, which we augmented with LV equations for 

60 environmental variables that affected the OTUs (see also (Stein et al., 2013)). Our rationale for this choice 

61 was a combination of (1) the successful history of LV models, (2) their mathematical simplicity and 

62 tractability and (3) the important fact that parameter values (and thus signs and strengths of interactions) 

63 can be obtained from time series data of OTU abundances with methods of linear regression (Voit & Chou, 

64 2010). 

65 Multivariate Autoregressive (MAR) models were proposed a few decades ago as a viable alternative to LV 

66 models. Originally proposed for problems in economics (Sims, 1980), Ives suggested their use for 

67 predicting responses of populations to environmental changes (Ives, 1995).  His specific motivation was 
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68 to establish techniques for studying how population abundances change in response to long-term 

69 environmental trends and for partitioning different factors driving changes in mean population densities 

70 in response to these trends. Since this early work, MAR models have been chosen to represent the 

71 interaction dynamics between biotic and abiotic drivers, infer the intra- and interspecific effects of species 

72 abundances on population growth rates, identify environmental drivers of community dynamics, predict 

73 the fate of communities submitted to environmental changes and extract measures of community 

74 stability and resilience. The latter was initially applied to lake and marine systems and later in terrestrial 

75 ecology (Certain, Barraquand, & Gårdmark, 2018). 

76 Thus, two modeling frameworks with entirely different structures have been proposed for essentially the 

77 same purpose of extracting key features of dynamic interactions among coexisting populations of 

78 different species from observed time series data. Both methods have had successes, but a direct 

79 comparison of the two approaches has not been reported. Such a comparison is the subject of this article. 

80 LV are ODE models, whereas MAR are statistical models. The former were designed to elucidate the long-

81 term dynamics of interacting populations, whereas the latter were conceived to also describe the 

82 stochastic structure of a dataset. Our focus for their comparison is the ability of each model structure to 

83 produce an acceptable fit to the available data and to capture the process dynamics underlying the 

84 observed trends in population abundances.

85 We use four versions of MAR: MAR without any data transformation, MAR with log transformation, MAR 

86 upon data smoothing and MAR with log transformation upon data smoothing. Log transformation is 

87 necessary for comparing the general mathematical interpretation of a MAR model with a typical ecological 

88 interpretation, where they can be viewed as multispecies competition models with Gompertz density 

89 dependence (Ives, 1995; Certain et al., 2018) (Section 1.3 of the Supplements). Data smoothing is explored 

90 to assess if the advantages of LV models are in fact due to this preparatory step. It is clear that data 
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91 smoothing will impede the ability of MARs to describe stochastic structures in the data, but this aspect is 

92 not the focus of this study. 

93 We begin with a description and comparison of the main features of LV models and MAR models, 

94 subsequently analyze small synthetic systems, which offer the advantage of simplicity and full knowledge 

95 of all model features, and then assess several real-world systems. It is quite evident that it is impossible 

96 to compare distinct mathematical approaches with absolute objectivity and without bias (Rykiel, 1996), 

97 and it sometimes happens that inferior choices of models in specific cases outperform otherwise superior 

98 choices. We will attempt to counteract these vagaries by selecting case studies we consider representative 

99 and by stating positive and negative facts and features as objectively as possible.

100

101 2. Materials and Methods

102 2.1. Lotka-Volterra models

103 Lotka-Volterra (LV) models (Lotka, 1925; Volterra, 1926) are systems of first-order ordinary differential 

104 equations (ODEs) of the format

105 𝑑𝑋𝑖,𝑡

𝑑𝑡
= 𝑎𝑖𝑋𝑖,𝑡 + ∑𝑛

𝑗=1 𝑏𝑖𝑗𝑋𝑖,𝑡𝑋𝑗,𝑡,    𝑖 = 1,2,…, 𝑛.  eqn 1 

106 The left side of equation 1 represents the change in species  𝑋𝑖  with respect to time. The equation with 

107 only the first term on the right side, 𝑎𝑖𝑋𝑖,𝑡, yields exponential growth, while the sum captures interactions 

108 between pairs of populations. Most of these terms represent interactions between different species, such 

109 as predation, competition for the same resources or cooperation, but one term in each equation, 𝑏𝑖𝑖𝑋𝑖,𝑡𝑋𝑖,𝑡

110 , accounts for interactions among the members of the same species and is sometimes interpreted as 

111 “crowding effect.” Background and further details regarding these models are presented in Supplements 
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112 Section 1.1. Because ODEs are natural representations of dynamic processes, the index t is usually 

113 omitted.

114

115 2.2. Estimation of LV Parameters Based on Slopes of Time Courses

116 Any of the numerous generic parameter estimation approaches for systems of nonlinear ODEs may be 

117 used to estimate the parameter values of LV systems; reviews include (Mendes & Kell, 1998; Wedelin & 

118 Gennemark, 2007; Chou & Voit, 2009). Here, we use a combination of smoothing, slope estimation, and 

119 parameter inference, for which we use the recently introduced Algebraic Lotka-Volterra Inference (ALVI) 

120 method (Voit et al., 2021). We begin by smoothing the raw time series data in order to reduce noise in 

121 the data as well as in their slopes, where the effects of noise are known be exacerbated (Knowles & Renka, 

122 2014). Many options are available, but smoothing splines and local regression methods are particularly 

123 useful (Cleveland, 1981); they are reviewed in Supplements Section 1.2.1. Splines have degrees of freedom 

124 and we will refer to a spline with, say, 8 degrees of freedom as “8DF-spline”.

125 The estimation of slopes allows us to convert the inference problem from one involving ODEs into one 

126 exclusively using algebraic functions. This conversion is accomplished by substituting the left side of 

127 equation 1 with estimated slopes that correspond to values to the dependent variables on the right side, 

128 which leaves the parameters as the only unknowns (Voit & Savageau, 1982; Varah, 1982; Voit & Almeida, 

129 2004; see also Supplements Sections 1.2.2. and 1.2.3.). 

130 After the differentials are replaced with estimated slopes, two options permit the inference of the 

131 parameter values of LV-models. We can apply simple multivariate linear regression (ALVI-LR), where we 

132 either use all datapoints or iterate the regression several times with subsets of points, which is a natural 

133 approach of creating ensembles of solutions. As an alternative, if n is the number of variables, one may 
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134 use n+1 of the datapoints and slopes, which results in a system of linear equations that can be solved with 

135 simple algebraic matrix inversion (ALVI-MI). For a thorough description of the ALVI method please see 

136 (Voit et. al., 2021) and an example in Supplements Section 1.2.4.

137

138 2.3. Multivariate Autoregressive (MAR) models

139 In contrast to the ODEs of the LV format, Multivariate Autoregressive (MAR) models are discrete recursive 

140 linear models. They have the general format

141 𝑋𝑖,𝑡+1 = 𝛼𝑖 + ∑𝑛
𝑗=1 𝛽𝑖𝑗𝑋𝑗,𝑡 + ∑𝑚

𝑔=1 𝛾𝑖𝑔𝑢𝑔,𝑡 + 𝑤𝑖,𝑡; 𝑖 = 1,2,…, 𝑛;   𝑤𝑖,𝑡 ~ 𝑁(0,𝛿𝑖) , eqn 2 

142 where ug,t are environmental variables and wi,t represents normally distributed noise. This set of 

143 equations, for different i, is usual represented in the matrix form

144 𝑿𝑡+1 = 𝜶 + 𝜷𝑿𝑡 + 𝜸𝒖𝑡 + 𝒘𝑡,    𝒘𝑡 ∼ 𝑀𝑉𝑁(0,𝛿). eqn 3 

145 Explained in words, the “state” of the system at time t+1, expressed by the vector Xt+1, depends 

146 exclusively on the state of system one time unit earlier, Xt, as well as on external inputs and stochastic 

147 environmental effects. Furthermore, α is the vector of intersects and  is one row of the population 

148 interaction matrix. The term 𝛾𝒖𝑡 describes how cofactors affect the dependent variables. Specifically, ut 

149 is a vector of external variables and γ is the vector of weights associated with these external variables. 

150 Finally, the term 𝒘𝑡 is a vector representing stochastic noise affecting the dependent variables. 

151 Background and further details regarding these models are presented in Supplements Section 1.3.

152

153 2.4. Parameter estimation for MAR
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154 Software packages for the estimation of MAR model parameters greatly facilitate the use of these models. 

155 An example is the package MARSS, which uses an expectation maximization algorithm (Holmes, Ward, & 

156 Wills, 2012; Holmes, Ward, & Scheuerell, 2020). Some details of MARSS are discussed in in Supplements 

157 Section 1.4. and in the next section.

158

159 2.5. Structural Similarities between Modeling Formats

160 Although LV and MAR models have both been proposed for characterizing the interactions among 

161 populations within a mixed community, they are distinctly different in structure and appearance. 

162 Nonetheless, they also exhibit fundamental mathematical similarities, which are sketched below; a 

163 detailed analysis is presented in Supplements Section 1.5.

164 To assess these similarities, we focus on models without environmental factors, and thus on

165 𝑋𝑖,𝑡+1 = 𝛼𝑖 + ∑𝑛
𝑗=1 𝛽𝑖𝑗𝑋𝑗,𝑡 + 𝑤𝑖,𝑡; 𝑖 = 1,2,…, 𝑛;   𝑤𝑖,𝑛 ∼ 𝑁(0,𝛿𝑖). eqn 4 

166 We also suppose that the MAR variables represent the logarithms of abundances, as proposed in 

167 (Dennis & Taper, 1994; Ives, 1995; Certain et al., 2018). Borrowing the principles of solving ODEs with 

168 Euler’s method, we discretize the LV model, which yields

169 𝑋𝑖,𝑡+ℎ = 𝑋𝑖,𝑡 +ℎ ∙ 𝑑𝑋𝑖

𝑑𝑡 𝑋𝑖=𝑋𝑖,𝑡
=  𝑋𝑖,𝑡 +ℎ ∙ 𝑋𝑖,𝑡(𝑎𝑖 + ∑𝑛

𝑗=1 𝑏𝑖𝑗 𝑋𝑗,𝑡),        𝑖 = 1,2,…, 𝑛. eqn 5 

170 If the dynamics remains close to the steady state, then 𝑋𝑖,𝑡+1 ― 𝑋𝑖,𝑡 ≈ 0 for any given t. Substituting this 

171 approximation into equations 4 and 5 yields

172 𝛼𝑖 + ∑𝑛
𝑗=1 𝛽𝑖𝑗𝑋𝑗,𝑡 + 𝑤𝑖,𝑡 ― 𝑋𝑖,𝑡 ≈ 0 eqn 6

173 and
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174 𝑎𝑖 + ∑𝑛
𝑗=1 𝑏𝑖𝑗𝑋𝑗,𝑡 ― 𝑋𝑖,𝑡 ≈ 0, eqn 7 

175 respectively. Ignoring the noise term in the MAR model, the two sets of near-steady-state equations 6 and 7 are 

176 the same if αi = ai , βij = bij for all i ≠ j and βij = bij + 1  for i = j . Thus, the MAR and LV models are mathematically 

177 equivalent at the steady state and similar close to it. 

178

179 3. Results

180 The comparison between LV and MAR models may be executed in two ways. A purely mathematical 

181 approach was sketched in Section 2.5. An alternative approach focuses on practical considerations and 

182 actual results of inferences from data. It is described in the following.

183 For simplicity, we omit environmental inputs (𝑐𝑖𝑋𝑖𝑈𝑡 and  𝛾𝑖𝑢𝑡, respectively) and begin by testing several 

184 synthetic datasets with different dynamics. We suppose that these data are moderately sparse and noisy, 

185 to mimic reality. In particular, we test whether the LV inference from synthetic LV data returns the correct 

186 interaction parameters and whether the MAR inference from synthetic MAR data does the same. 

187 Subsequently, we test to what degree LV inferences from MAR data yield reasonable results and vice 

188 versa. Finally, we apply the inference methods to real data. As the main metric, we compare the sums of 

189 squared errors and use a Wilcoxson rank test to assess the significance of the difference. 

190

191 3.1. Case study 1: Synthetic LV data 

192 The first case consists of data that were generated with a four-variable LV model and superimposed with 

193 synthetic, normally distributed noise (for details, see Supplements Section 2). We also generate a smaller 
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194 noisy dataset, which however comes with replicates. The specific question we address is whether the LV 

195 and MAR inference methods return the true dynamics and parameter values. 

196 The fits for the noisy and replicate LV datasets are presented in Figures 1 a, b, along with parameter 

197 estimates. These generally possess the correct sign and could, if deemed beneficial, serve as the starting 

198 point for an additional, refining optimization, for instance with a steepest-decent method. The inferred 

199 and true values are quite similar for the replicate dataset. By contrast, the parameter values inferred for 

200 the noisy dataset do not exactly recoup the true values. In fact, these inferences yield slightly better fits 

201 to the noisy data (SSE=17.981) than the “true” values (SSE=18.197), due to the noise. Because we usually 

202 obtain better results through ALVI-MI, we display those results here and ALVI-LR results in the 

203 Supplements.

204 Figure 1 also displays the MARSS estimates with and without log-transformation of the data and with or 

205 without data smoothing. With respect to X1, X2 and X3, these estimates are of adequate quality. They 

206 present good fits, although not as good as the LV inference, which is probably not surprising as the data 

207 were generated with an LV system. MARSS did not perform well for the “detached” variable X4, especially 

208 for the noisy dataset. 

209
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210 Figure 1: ALVI-MI and MARSS methods applied to noisy (a) and replicate (b) LV datasets. Original synthetic data 
211 are shown as gray dots and data with added noise as black circles. ALVI results are presented in blue .True 
212 parameters and ALVI-MI estimates are presented in the Table. MAR estimates are presented in green, orange 
213 and yellow.  Data and parameter estimates for MAR can be seen in Table S1. SSEs for all fits are presented in Table 
214 1 toward the end of the article. 

(a) (b)
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215

216 Because MARSS yields parameter values for a discrete recursive system, they are not directly comparable 

217 to the true parameters of a LV system; nonetheless, their numerical values are recorded for completeness 

218 in Tables S1.4 and S1.5.

219 For MARSS inferences from the replicate dataset we had to average points with the same time value. 

220 MARSS did not converge for all parameters but it still presented a relatively good fit.  Additional details 

221 are presented in Supplements Section 2.

222 The ALVI-MI method also works well for more complicated dynamics, as demonstrated in Supplements 

223 Section 2 and Figure S5.

224

225 3.2. Case study 2: Synthetic MAR data

226 Here we reverse the set-up of Case Study 1 by creating synthetic data with an MAR model and test 

227 whether either method can infer results corresponding to the original system.

228 As a representative example, we use a four-variable MAR system to create 31 synthetic datapoints. We 

229 create a noisy MAR dataset by adding noise in the form of a random normal variable of mean zero and a 

230 standard deviation of 20% of each variable’s mean to the original 31 points sample. We also create a 

231 replicate MAR dataset by choosing 12 points and generating 5 replicates by multiplying their values by a 

232 random normal of mean 1 and standard deviation of 0.2. The initial conditions, parameters, dynamics, 

233 ALVI and MAR fits are presented in Figure 2. All fits to the synthetic MAR data are satisfactory. The LV 

234 parameters are not directly comparable to the MAR parameters.
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235 Figure 2: MARSS and ALVI-MI methods applied to noisy (a) and replicate (b) MAR datasets. Original synthetic 
236 data are shown as gray dots, data with added noise as black circles. MAR estimates are presented in green, 
237 orange and yellow.  ALVI results are in blue. The variables of the noisy dataset were smoothed with 15DF-splines 
238 and the ALVI-MI solution was calculated with spline points at times 2, 6, 15, 18 and 26. The variables of the replicate 
239 dataset were smoothed with 15DF-splines and the ALVI-MI solution was calculated with spline points corresponding 

(a) (b)
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240 to times 1, 3, 11, 13 and 15. Data and parameter estimates for ALVI can be seen in Supplements Table S5. SSEs for 
241 these fits are presented in Table 1 toward the end of the article. 

242

243 In most cases, the different MAR models had difficulties retrieving the true parameters of the system, and 

244 sometimes even the correct sign (Figure 2). This is probably due to the small number of datapoints: Certain 

245 et al. (Certain et al., 2018) suggest that the length of the time series should be at least 5 times greater 

246 than the number of a priori nonzero elements in the matrix B in order to recover interaction signs 

247 correctly. Our sample has 31 observations and should have at least 80. For X1 and X4, all models show a 

248 similar fit, but not for X2 and X3, where MAR models with log transformation show a considerable deviation 

249 from the data.

250

251 3.3.  Case study 3: Experimental data from the literature, previously used for inferences with LV and 

252 MAR models

253 3.3.1. Published LV inferences 

254 Data from Georgy Gause’s 1930s experiments and others were recently compiled in the R package gauseR 

255 (Mühlbauer et al. 2020). In the accompanying paper, the authors present five examples to test their 

256 method for estimating LV model parameters. We use the exact same examples to demonstrate to what 

257 degree LV and MAR methods are compatible with these real-world data and compare our results to those 

258 presented by Mühlbauer and colleagues. For more information regarding the original experimental data, 

259 see (Gause, 1934), (Huffaker, Shea, & Herman, 1963) , (McLaren & Peterson, 1994) and (Mühlbauer et al., 

260 2020). The results are presented in Figure 3, with data as symbols and various estimates as lines. SSEs of 

261 the different estimates for these and other test examples are presented in Table 1.
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262 The MAR method never outperforms the other methods considered. To be fair, these examples had been 

263 used to test actual data for compatibility with the LV structure, which may explain the superior 

264 performance of the LV model. Nonetheless, these are the types of data the MAR method is supposed to 

265 capture.

266
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267 Figure 3: Model inferences associated with Gause’s data (Gause, 1934). Circles show observations, gray lines are 
268 the estimates from Mühlbauer et al. (Mühlbauer et al., 2020). ALVI-MI method estimates are presented as blue lines 
269 and MAR estimates as green, orange and yellow lines. See text and Supplements Tables S4.1 and S4.3 for further 
270 details. 

271

272 For the case in Figure 3a, ALVI-MI yields the same results as found in (Mühlbauer et al., 2020). In contrast, 

273 the MAR estimates are poor, with a very high estimate for the noise (Table S4.3), especially if one does 

274 not use log-abundances; this problem occurs in all cases presented in Figure 3. The data in Figure 3a are 

275 close to a logistic function, similar to X4 in the previous noisy dataset, where MAR also did not perform 

276 well.  

277 Figure 3b shows data from a competition experiment between Paramecium caudatum and Paramecium 

278 aurelia that were co-cultured. Estimates for P. aurelia are similar for all methods but ALVI-MI exhibits 

279 clear superiority for P. caudatum. 

280 The data in Figure 3c are complicated. Mühlbauer and colleagues noted that aditional quantities of 

281 bacteria were introduced to avoid species extinction. Furthermore, many datapoints in this dataset are 

282 zero, which causes problems for the parameter estimators. As a remedy, we changed the zeros to 10-5, 

283 but our initial estimates still produced poor fits. However, if we use the estimated trajectories from 

284 Mühlbauer et al. as “data,” quasi as a diagnostic measure, ALVI-MI captures the parameters that 

285 reproduce the fit of Mühlbauer et al.. This finding suggests that the initial poor fit is not a problem of LV 

286 adequacy. Instead, we hypothesize that the problem was caused by insufficient datapoints or almost-

287 linear dependence, which affects the matrix inversion. To test this hypothesis, we used the first splines as 

288 data to create a second set of splines that has more datapoints to create the subsample to be used on 

289 ALVI-MI. We were able to achieve the presented fit, which is still somewhat inferior to the one by 

290 Mühlbauer et al., but a considerable improvement over our initial fits. 
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291 When calculating splines for this dataset, it is difficult to choose degrees of freedom that capture both 

292 maxima. High degrees of freedom capture the global maxima but overshoot the local maxima. Low 

293 degrees of freedom capture the local but undershoot the global maxima. We suspect this to be the cause 

294 of ALVI’s initial poor performance. Still, ALVI yields better fits than MAR.  

295 The data in Figure 3d are also complicated, in this case due to two aspects. First, they show a stark 

296 difference in absolute numbers, with the abundance values for moose being several magnitudes higher 

297 than the numbers of tree rings. As a potential remedy, we normalized the fitting error for each dependent 

298 variable by dividing it by its mean to balance the SSE. The result is shown in Figure 3d. The LV models 

299 perform better than MAR, and MAR with log-abundances produces a better noise estimate than with the 

300 untransformed data. 

301 The second issue is the fact that, around 1980, the wolves were exposed to a disease introduced by dogs 

302 that caused a precipitous drop in the population between 1981 and 1982 (Park Service, 2021). Typical 

303 mathematical models are not equipped to simulate such a black swan event, and the totality of results 

304 from the various methods suggests that neither LV nor MAR may be good models for this system, because 

305 none of the fits, by Mühlbauer et al., ALVI, and MAR, are entirely satisfactory. Nonetheless, our ALVI 

306 results present a decent fit for moose and fir tree rings. To improve the fit to the wolf data, we divided 

307 the data into two groups, from 1959 to 1980 and from 1983 to the end of the series and estimated 

308 parameters for the two intervals. The results are presented in Figure S7 in orange lines. The fit is greatly 

309 improved, although still not perfect. 

310 Figure 3e describes yet another complicated example. According to the inference, the ALVI-MI estimates 

311 fit the first peak well but the oscillations die down, in contrast to the data. Estimates from Mühlbauer et 

312 al. produce even poorer estimates, suggesting that the data may not be compliant with the LV structure.  

313 As in the previous example, MAR models do not capture the dynamics, although MAR with log-
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314 abundances produces good noise estimates. Surprisingly, MAR with smoothing presented very poor fits 

315 to these data.

316 We repeated the analysis using ALVI-LR instead of ALVI-MI. The results were by and large similar and 

317 slightly inferior; they are shown in Supplements Figure S6 and Table S4.2.

318 One should note that Mühlbauer et al. used a steepest-descent method, while our method did not. 

319 Therefore, our results could possibly be further improved by adding a refinement cycle of steepest-

320 descent optimization. The main problem of these algorithms, getting stuck in local minima, would 

321 presumably not be an issue, since the ALVI results are already close to the optimum.

322

323 3.3.2. Published MAR inferences 

324 Here we use two datasets presented in the MAR inference package MARSS. The first dataset, “gray 

325 whales,” consists of 24 annual abundance estimates of eastern North Pacific gray whales during recovery 

326 from intensive commercial whaling prior to 1900 (Gerber, Demaster, & Kareiva, 1999). It is thus to be 

327 expected that the whales are initially far from the carrying capacity of the system. The second case 

328 consists of data  for wolf and moose populations on Isle Royale in Lake Superior between 1960 to 2011; 

329 this dataset was used by Holmes and colleagues (Holmes et al., 2020) to demonstrate usage of the MARSS 

330 R package.

331
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332

333 Figure 4: Two datasets of wildlife observations. Column a: Abundance data of gray whales (Gerber et al., 1999). The 
334 plot shows results from ALVI-MI in blue; MAR estimates are displayed with green, orange and yellow lines. Column 
335 b: Wolves and moose on Isle Royale (Vucetich, 2021). The original data used for parameter estimation are displayed 
336 with black circles, data not used by the estimation processes are shown in gray, ALVI-MI results are in blue, MAR 
337 estimates using log-abundances are displayed with green lines. The dashed lines indicate confidence intervals for 
338 the MAR estimates. Values of the estimates can be seen in Table S6.

339

340 Figure 4a show fits to the gray whale data (Gerber et al., 1999). ALVI-MI noticeably outperforms MAR, 

341 even though the data came from a MAR demonstration. In particular, the MAR results suggest that the 

342 whales are close to regaining their carrying capacity, which seems to contradict the trend in the data. The 

343 SSEs can be seen in Table 1. It is unclear why the MAR method without transformation does not perform 

344 better. As it stands, the estimates are inadequate (with the highest SSE) and have a very high variance for 
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345 the error. An LV model with one variable is a logistic function, and the LV fit represents initial quasi-

346 exponential growth that starts to slow down after a while. This behavior nicely reflects the fact that the 

347 whales were recovering from very small numbers due to overfishing but are apparently still much below 

348 the carrying capacity.

349 Figure 4b returns to the Isle Royale dataset from Vucetich (Vucetich, 2021), which we already used in the 

350 context of examples from the collection of Mühlbauer and colleagues (Mühlbauer et al., 2020); cf. Figure 

351 3. Holmes et al. (Holmes et al., 2020) used only the data of wolves and moose for a MAR analysis but 

352 extended them over a longer time horizon. Specifically, eight datapoints were added since the former 

353 usage of this dataset by Holmes and colleagues, from 2012 to 2020 (gray symbols in Figure 4b).

354 The results of the MAR model are identical with those published in (Holmes et al., 2020), with the same 

355 log transformation and z-scoring of the data, and the same parameter values were inferred. The result 

356 consists of acceptable estimates, although we found a slightly better fit without the z-scoring. Still, for a 

357 direct comparison, we opted to present the example exactly as Holmes et al. did. Interestingly, these fits 

358 miss all oscillatory behavior seen in the data. The ALVI results do show oscillations but clearly suffer from 

359 the disruption in the wolf population in 1981 and 1982, as discussed before. 

360 Because we used in this example only MAR with log transformation, we display the confidence intervals 

361 for the MAR model as dashed green lines. Very few datapoints are outside the confidence intervals. 

362

363 3.4. Comparative summary of the performance of LV and MAR in the presented examples

364 Inspection of Table 1 renders is evident that ALVI clearly performs better than MAR. In a few cases, the 

365 ALVI-LR solution gives a better SSE than ALVI-MI, but the difference between the two is not substantial. 

366 ALVI-LR appears to be superior when the data are noise-free.
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367

368 Table 1 – Sum of squared errors (SSE) of data fits for all experiments with ALVI-LR, ALVI-MI and four 
369 variants of the MAR methods. We also include SSEs for the estimates obtained by Mühlbauer et al. (2020) 
370 for LV data presented in Figure 3. Bold values identify the lowest SSE score for each example. Examples 
371 used in the Wilcoxson rank test are marked with asterisks.

372

373

374 We used a one-sided Wilcoxson rank test to see if the differences in performance are significant. The 

375 results and alternative hypotheses for these tests are presented in Table 2. 

376 Table 2 -  Test results of one-sided Wilcoxson rank.

377
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378

379 The data supports that the ALVI-MI method produces smaller SSE’s than the other methods considered. 

380 Also, in the last two tests, the data do not show evidence that data smoothing reduces the SSE’s in MAR. 

381 Comparing the results ALVI-LR and ALVI-MI with respect to the absolute value of the difference between 

382 true and estimated parameters, we obtained mixed results (Table 3). Indeed, a one-sided Wilcoxson rank 

383 test with the alternative hypothesis that the absolute errors in parameter values associated with ALVI-LR 

384 were smaller than those associated with ALVI-MI did not yield a significant p-value (0.2783). 

385

386 Table 3 – Absolute differences between true and estimated parameters for ALVI-LR and ALVI-MI. Bold 
387 font indicates the lower difference in each case. A statistical test did not reject the null hypothesis of no 
388 difference between the results of the two methods.  

389

390

391 Comparing the values in Tables 1 and 3 for noisy and replicate datasets, the latter presented smaller 

392 values. However, using the one-sided Wilcoxson rank test for the values in Table 1 with the alternative 

393 hypothesis—that the SSE values for the replicate dataset were smaller than those for the noisy datasets—

394 did not yield a significant p-value (0.2734). For the values in Table 3, the test produced a p-value (0.0625) 
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395 smaller than 0.1, suggesting that time series data are better than clustered data for parameter estimation 

396 in LV using ALVI.

397

398 4. Discussion

399 We have compared LV and MAR models using, as parameter estimation strategies, a recently introduced 

400 ALVI method for LV models (Voit et al., 2021) and the established MARSS method for MAR models 

401 (Holmes et al., 2012). Summary Table 1 renders it evident that ALVI usually outperforms MARSS, with 

402 often substantially lower SSE values, and that LV models in the vast majority of cases provide better 

403 representations than MAR models. Furthermore, Certain et al. (Certain et al., 2018) prescribed the 

404 length of the data series as at least 5 times greater than the number of nonzero interaction elements in 

405 order to recover interaction signs correctly. A caveat is that we presented the MAR model equations 

406 without noise, thereby ignoring an important part of these models that characterizes the stochastic 

407 structure of the data. 

408 ODEs and MAR models are derived from different philosophies and comparing them fairly is not 

409 straightforward. Here we compared the two approaches from a point of view of someone who is more 

410 interested in capturing the dynamics of a phenomenon, which poses an immediate disadvantage for MAR 

411 models, because they were created for phenomena with random noise and for characterizing the 

412 structure of this noise. Consequently, we found much of the dynamics quantified as noise in the estimates. 

413 Thus, an overarching conclusion is that the two approaches are different tools that are adequate in 

414 different situations. MAR models are well suited for simulations with variables presenting low abundances 

415 and investigations where the quantification of noise is relevant. By contrast, LV models, and ODE models 

416 in general, are better suited to capture the dynamics of a phenomenon and for cases where the 

417 dependent variables have high abundances and a high signal-to-noise ratio. Nonetheless, if the 
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418 characterization of noise is of interest, one might subtract the LV fit from the raw data and then assessing 

419 the remainder. Another advantage of LV models is that ALVI permits a priori tests for the adequacy of the 

420 LV structure for a given dataset (Voit et al., 2021). 

421 Because the LV structure is continuous, we can evaluate it at any point or choose any interval between 

422 the points in the numerical solution. By contrast, MAR does not truly reveal a time resolution higher than 

423 its intrinsic interval between solution points. However, Holmes et al. (Holmes et al., 2012) demonstrated 

424 with the MARSS R function that it is feasible to interpolate any number of missing values between the 

425 known datapoints, and that this method can be used to decrease the time unit for stepping forward. While 

426 this step does not make the MAR model as densely time-resolved as an ODE model, it mitigates the 

427 apparent granularity disadvantage considerably. 

428 ALVI allows a choice between linear regression and matrix inversion. The former is simpler, because it 

429 uses all points available, and faster due to the fact that no data sample needs to be chosen. In most cases 

430 tested, it also produces good fits and estimates. However, the latter usually produces slightly better 

431 results and works well even in cases where the ALVI-LR solution fails (Table 1). It also offers a natural 

432 approach to inferring whole ensembles of well-fitting model parameterizations.

433 Results obtained with MARSS or with ALVI-LR are rather robust if the data are noisy, whereas solutions 

434 with ALVI-MI may be sensitive to small alterations in the data. As an example, consider the synthetic MAR 

435 data presented in Figure 2, where we added noise as a normally distributed variable with mean zero and 

436 standard deviation of 0.2 of the dependent variable mean. For comparison, consider now an alternative 

437 sample (Figure S8) obtained by applying the same procedure, but with a different seed for noise creation. 

438 The alternative dataset is almost indistinguishable from the original dataset in Figure 2, but using the same 

439 point sample determined for the original dataset, ALVI-MI produces different parameter values. This 

440 means that if we calculate a new set of splines, we should also search for a new point sample. The 
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441 conclusion is that, although the inferred fits are similarly good, the parameter values associated with the 

442 best fit for a noisy point sample may not be optimal for another noisy sample, which may not be surprising. 

443 In fact, we showed in a different example with noise that the inferred parameter values yielded a better 

444 SSE than even the true values (Section 3.1). The argument may also be turned around into a positive 

445 feature: Different noisy datasets or subsamples of these datasets can easily be used to create natural 

446 ensembles of models that characterize the underlying data in a robust manner and yield additional 

447 insights into the variability of the model parameters. 

448 The MARSS software makes modeling with MAR models easy, although not entirely automatic, as many 

449 options must be tested to find the one that returns the best fit in each case. For example, one must decide 

450 whether to use estimated initial conditions or the initial datapoints and which variables should have the 

451 same noise level. By contrast, the ALVI method for LV models is novel (Voit et al., 2021), and while all 

452 steps are straightforward and code is available on GitHub [https://github.com/LBSA-VoitLab/Comparison-

453 Between-LV-and-MAR-Models-of-Ecological-Interaction-Systems], no formally published software 

454 currently exists that encompasses all these steps in a streamlined manner. As a new tool, ALVI offers 

455 several avenues for further refinement. One important component is optimal data smoothing with 

456 splines, which requires the determination of a suitable number of degrees of freedom and may also 

457 employ weights for different variables within a dataset. 

458 A comparison of MARSS results with or without log transformation of the dependent variable abundances 

459 did not yield clear results. If the MAR models are to be viewed as a multispecies competition models with 

460 Gompertz density dependence (Certain et al., 2018), the log transformation is required (Supplements 

461 Section 1.3). While inferences for LV models usually benefit from smoothing, the same is not true for MAR 

462 model, where smoothing in some cases, but certainly not always, led to improved data fits (Table 2).
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463 MARSS uses a steepest decent optimization step, which ALVI presently does not. Although ALVI already 

464 performs better than MARSS (Table 1), it might be possible to improve its results even further by adding 

465 a refinement step based on steepest-descent optimization. Steepest-descent methods tend to get 

466 trapped in local minima if the initial guesses are poor, but ALVI would not likely encounter this problem, 

467 as the solutions are already very good and could be used directly as initial guesses for the refinement step.

468 Estimation and inference methods typically do not scale well. ALVI bucks this trend, at least to some 

469 degree, as both the smoothing and estimation of slopes occur one equation at a time. Thus, instead of 

470 scaling quadratically, the inference problem scales linearly. The ultimate matrix inversion or linear 

471 regression is essentially the same for all realistically sized models. Thus, the only time-consuming step 

472 within ALVI-MI is the choice of datapoints. An exhaustive test for all combinations grows quickly in 

473 complexity, but it is always possible to opt for a random search. The resulting solution is not necessarily 

474 the best possible, but can still provide an excellent fit or at least a valuable starting point for a steepest-

475 decent refinement optimization. Importantly, many random solutions can also be collated to establish an 

476 ensemble of well-fitting models, which in most cases yields more insight than a single optimized solution. 

477
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590 SUPPLEMENTS

591 Comparison Between Lotka-Volterra and Multivariate Autoregressive Models of 
592 Ecological Interaction Systems
593
594 Daniel V. Olivença, Jacob D. Davis, Eberhard O. Voit

595

596 1. Materials and Methods

597 1.1. Lotka-Volterra models

598 For a single variable, Lotka-Volterra (LV) models (Eq. [1] in the main text) reduce to the well-known logistic 

599 growth law

600 𝑑𝑋𝑖,𝑡

𝑑𝑡
= 𝑎𝑖𝑋𝑖,𝑡 ― 𝑏𝑖𝑖𝑋2

𝑖,𝑡, [ S1 ]

601 where the ratio 𝑎𝑖/𝑏𝑖𝑖 is called the “carrying capacity” of the system, which corresponds to the non-trivial 

602 steady state. If time-dependent environmental inputs are to be considered, one may add terms 𝛾𝑖𝑋𝑖𝑈𝑡, 

603 where 𝑈𝑡 is an element of a vector of these inputs and the coefficients 𝛾𝑖 are weights that quantify the 

604 effects of the factors on species Xi (Stein et al., 2013; Dam et al., 2016; Dam et al., 2020). The index t is 

605 usually omitted, and the left-hand side is often written as 𝑋𝑖.

606 The LV system is a canonical model in the sense that its mathematical structure is immutable and scalable 

607 to any dimension (Voit, 2000). Such a canonical model may serve as a template to construct models of 

608 different systems that reasonably satisfy the following assumptions: 

609  encounters between and within species are representable by mass action kinetics; 
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610  the environment does not change during the process, unless environmental variables are 

611 explicitly formulated as described above; 

612  the parameter values do not change during an experiment;

613  the species respond to one another instantaneously;

614  for very small population sizes, interactions are negligible and the rate of change (growth) of each 

615 population is initially proportional to its size, resulting in initial exponential growth;

616  adaptations of species are absent or negligible. 

617 Although the model structure and these assumptions might appear to be unduly rigid, LV models are 

618 extremely rich in the repertoire of their possible responses. In fact, the LV structure was shown to be 

619 capable of modeling any type of differentiable nonlinearities, including different kinds of oscillations and 

620 chaos (Vano et al., 2006), if sufficiently many auxiliary variables are permitted, some of which have 

621 mathematical, but no real biological meaning (Voit & Savageau, 1986; Peschel & Mende, 1986; Savageau 

622 & Voit, 1987). At the same time, the LV structure has severe limitations. For example, it is not well suited 

623 for metabolic pathway systems, because a simple conversion of a substrate X1 into a product X2 would 

624 require X2 to appear in its own synthesis term, although the generation of X2 in truth depends only on X1 

625 and possibly some modulators (see (Voit, 2013) for this and other limitations). 

626 LV models were initially used to describe the dynamics of predator and prey populations or of populations 

627 that compete for the same resources, but the same equations have also been used in entirely different 

628 contexts and fields, including physics (Nambu, 1986; Hacinliyan, Kusbeyzi, & Aybar, 2010), pollution 

629 assessment (Haas, 1981), economy (Zhou & Chen, 2006; Gandolfo, 2008), manufacturing (Chiang, 2012), 

630 and sales (Hung, Chiu, Huang, & Wu, 2017). 
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631 Beyond the fact that LV models can be formulated very easily, another significant advantage over other 

632 systems of nonlinear ODEs is the fact that LV models can be parameterized with linear regression methods 

633 if time series data are available (Voit & Chou, 2010). As an intriguing alternative, the linearity also permits 

634 us to select variable and slope values at n+1 time points and to obtain parameter inferences by solving a 

635 set of linear algebraic equations (see below). It is furthermore possible to estimate parameter values from 

636 sufficiently many profiles of species that initially coexist and ultimately survive under comparable 

637 conditions (Voit et al., 2021).

638

639 1.2. Estimation of LV Parameters Based on Slopes of Time Courses

640 This section explains in detail an approach to parameter estimation that uses the Algebraic Lotka-Volterra 

641 Inference (ALVI) method. For a detailed explanation of the ALVI method itself please see (Voit et al., 2021).

642

643 1.2.1. Smoothing

644 Even though one might consider smoothing a conceptually separate issue from the actual parameter 

645 inference, the two are so closely intertwined in our analysis that it appears useful to discuss smoothing 

646 options. The goal is two-fold. First, it is beneficial to reduce or even remove noise from the raw data, and 

647 second, this smoothing greatly aids the determination of slopes of the experimental time courses (see 

648 later).

649 A smoothed representation of a dataset implicitly integrates information that is not in the data. This 

650 implicit integration step is not entirely unbiased and requires prudent judgment, because it must answer 

651 the following questions, often without true knowledge of the system: Are the deviations between the 

652 data and the smoothing function due to (stochastic) noise or are they part of the true signal? For instance, 
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653 are they the trace of true oscillations? Also, if very few data points deviate much more than all others 

654 from the smoothing function, are they true peaks or valleys or are they statistical outliers? It is difficult to 

655 answer these questions objectively, but two features of the data are of great benefit: First, if the variation 

656 in noise amplitude is much smaller than the range of signal values (high signal-to-noise-ratio), the 

657 distinction between signal and noise is relatively straightforward. Second, if the data come in replicates, 

658 they may support or refute the potential of true oscillations or peaks at certain time points in the data. 

659 Even if only one dataset is available, the biologist familiar with the phenomenon at hand usually has 

660 developed an expectation regarding signal and noise, and if there is no biological rationale for expecting 

661 oscillations or strong deviations from some simple trend, the smoothing strategies are flexible enough to 

662 allow the integration of the biologist’s knowledge and expectations. The result of the smoothing process 

663 therefore is a synthesis of all relevant information, constrained by external knowledge and reasonable 

664 expectations. Of course, it is also feasible to create alternative models with different thresholds between 

665 signal and noise and to analyze them side by side.

666 Independent of the options and intricacies of obtaining smoothed time courses of all variables, it is well 

667 known that the process of estimating slopes from data is more strongly affected by noise than the data 

668 themselves (Knowles & Renka, 2014). Expressed differently, if the noise is left unchecked, its effect on the 

669 estimated values of the slopes tends be higher than its effect on the values of the variables.  

670 We explored a number of methods for smoothing the time course data and keeping the noise in check 

671 (Eilers, 2003; Vilela et al., 2007; Batista Júnior & Pires, 2014), cognizant of the fact that empirical raw data 

672 alone do not provide enough information of what is noise and what is relevant signal in the dynamics of 

673 the phenomenon under study. 

674 One of the simplest approaches is the three-point method, where the slope at time point tk is taken as the 

675 average of the slopes at time points tk-1 and tk+1 (Burden, Faires, & Burden, 1993; Voit & Almeida, 2003). 
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676 More sophisticated methods were reviewed in (Cleveland & Grosse, 1991; Eilers & Marx, 1996; Batista 

677 Júnior & Pires, 2014). For long, dense time series, moving average and collocation methods with or 

678 without roughness penalty (Ramsay et al., 2007) are often very effective. However, they tend to be 

679 unsuited for biological time series data because the measurements are usually quite sparse and obtained 

680 over a relatively short time horizon. 

681 Smoothing splines and local regression methods like LOESS (locally estimated scatterplot smoothing) and 

682 LOWESS (locally weighted scatterplot smoothing) turned out to be particularly useful. A detailed 

683 description of these methods can be found in (Cleveland, 1981). 

684 In a nutshell, splines are piecewise polynomial functions that: pass through all sample points, are 

685 continuous and have first and second derivatives that are continuous at junction points between adjacent 

686 intervals. In a smoothing spline, the first condition is substituted by a least-squares fit that is balanced 

687 with an additional criterion that penalizes splines with high second derivative values, which indicate local 

688 roughness (Cleveland, 1979; Garcia, 2010; Loader, 2012). 

689 LOESS and LOWESS algorithms use locally-weighted polynomial regression. LOWESS is used for univariate 

690 smoothing and consists of computing a series of local linear regressions, with each local regression 

691 restricted to a window of x-values. Smoothness is achieved by using overlapping windows and by gradually 

692 down-weighing points in each regression according to their distance from the anchor point of the window. 

693 LOESS is for fitting a smooth surface to multivariate data and it is a generalization of LOWESS in that locally 

694 weighted univariate regressions are simply replaced by locally weighted multiple regressions. While LOESS 

695 is more versatile, LOWESS is faster and sometimes succeeds when LOESS fails (Cleveland, 1979; Cleveland 

696 & Devlin, 1988; Smyth, 2020). Locally-weighted polynomial regression methods have ‘span’ and splines 

697 have ‘degrees of freedom,’ which are parameters that control the degree of smoothing.
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698 The main result of smoothing with splines is a reduction or even removal of what is believed to be noise 

699 in the data. The slope at each point can be computed directly from the smoothing spline, which after all 

700 is an explicit function. This step of slope determination offers two options: it allows us to estimate slopes 

701 only for the measured data points or to sample the smoothing function for any number of other points, 

702 which yields a larger set of numerical values for variables and slopes (Voit & Almeida, 2004).  

703 If we select many points from the smoothing spline, we overcome the problem of data scarcity that is 

704 inherent in many datasets. In fact, sampling from the smoothing spline allows the subsequent parameter 

705 inference method to access a larger amount of information and thereby to mitigate noise amplification. 

706

707 1.2.2. Conversion of ODEs into systems of algebraic equations

708 If data are available as time series, it is mathematically feasible and beneficial to estimate slopes (for 

709 instance, from smoothing splines) and to convert the inference problem from one based on ODEs into one 

710 exclusively using algebraic functions (Voit & Savageau, 1982a, 1982b; Varah, 1982; Torres & Voit, 2002; 

711 Voit et al., 2005).

712 Suppose the growth and interaction parameters of an LV system are to be estimated from time series 

713 data of the dependent variables Xi. The smoothing of these data facilitates the estimation of slopes Sk(Xi) 

714 of all variables at a set of time points tk, k = 1, …, K. These time points may or may not correspond to the 

715 measured data. In fact, the smoothing permits the computation of slopes at arbitrarily many time points 

716 within the observation interval. However many slopes are computed, they correspond to derivatives of 

717 the spline of Xi at the given time points. Substituting numerical values of all variables and slopes from the 

718 smoothing splines into Eq. (1) yields a system of n  K linear algebraic equations containing all system 

719 parameters:
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720 𝑆𝑖,𝑡 = 𝑎𝑖𝑋𝑖,𝑡 + ∑𝑛
𝑗=1 𝑏𝑖𝑗𝑋𝑖,𝑡𝑋𝑗,𝑡,  𝑖 = 1, …, 𝑛  [ S2 ]

721 If environmental inputs 𝛾𝑖𝑋𝑖,𝑡𝑈𝑡 are to be considered as well, they are added to the equations and either 

722 substituted with numerical values, if known, or estimated with the parameters 𝑎𝑖 and 𝑏𝑖𝑗.

723 A caveat of this conversion of ODEs into algebraic equation is a possible time warp (see end of chapter 5 

724 of (Voit, 2017)). The reason is that time is explicitly eliminated from the procedure. Nonetheless, the 

725 estimates usually provide good results, or at least good initial guesses for other optimization approaches 

726 such as traditional gradient methods.

727 Suppose the dependent variables are not zero within the dataset obtained from smoothing. If so, we can 

728 divide both sides of the K equations for Xi in expression [ S2 ] by the value of the dependent variable at 

729 the appropriate time point. This step is not mandatory but linearizes the equations. The case of variables 

730 with values of zero is typically not very interesting or can be handled by eliminating the variable or parts 

731 of the time series.

732

733 1.2.3. Parameter inference

734 Once all differentials are replaced with estimated slopes, the inference of parameter values from LV-

735 models offers two options: because the system of algebraic equations is linear, we may optimize its 

736 parameter values through simple multivariate linear regression (ALVI-LR), where we may use data points 

737 or iterate the regression with subsets of points, which naturally leads to an ensemble of well-fitting 

738 models. 

739 An interesting alternative is to use just n+1 of the data points and slopes, if n is the number of variables, 

740 which results in a system of linear equations that can be solved with simple algebraic methods (ALVI-MI). 
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741 Choosing different data points naturally creates ensembles of solutions. These can be further analyzed, 

742 for instance, with respect to model robustness and identifiability. They can also be used to determine to 

743 what degree the LV format is adequate for the available data (Voit et al., 2021).

744

745 1.2.4. Example of parameter estimation with ALVI

746 To explain the parameter estimation procedure with ALVI, we use the sparse noisy dataset presented in 

747 Supplements Section 2 and also in Table S1.2. First, we smooth the data with a spline or LOESS. For this 

748 example, we use 5, 8, 11 and 5DF-splines for X1, X2, X3 and X4 respectively and compute the first derivative 

749 of the splines to estimate the slopes. At this point we discard the data and only use the spline values. We 

750 may use the original data, especially if we think they characterize the studied phenomenon well, but using 

751 the spline usually produces better results in the case of noisy data.

752 As an example, consider the first differential equation and the first datapoint, at t = 0:

753
𝑑𝑋1

𝑑𝑡 (0) = 𝑎1𝑋1(0) + 𝑏11𝑋1(0)𝑋1(0) + 𝑏12𝑋1(0)𝑋2(0) + 𝑏13𝑋1(0)𝑋3(0) + 𝑏14𝑋1(0)𝑋4(0)

754 We substitute numerical values for the slope and for all variables on the system equations,

time Slope_X1 X1 X2 X3 X4

0 0.0353 1.229 0.492  1.787  0.0367

755

756 which yields

757 0.0353 = 𝑎1 × (1.229 ) + 𝑏11 × (1.229)2 + 𝑏12 × (1.229 ) × (0.492)

758                                + 𝑏13 × (1.229) × (1.787) + 𝑏14 × (1.229 ) × (0.0367).

759
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760 We may divide the equation by the numerical value of the dependent variable, but this step is not 

761 mandatory.

762

763
0.0353
1.229 = 𝑎1 + 𝑏11 × (1.229 ) + 𝑏12 × (0.492) + 𝑏13 × (1.787) + 𝑏14 × (0.0367)

764

765 The same steps are performed for every equation and every chosen time point. The result is a system of 

766 linear equations with as many equations as chosen time points; each equation has n+1 unknown 

767 parameters, where n corresponds to the number of dependent variables. 

768 Now we have two options: We may use linear regression (ALVI-LR) or matrix inversion (ALVI-MI). ALVI-LR 

769 uses every equation and every chosen time point and performs linear regression to produce estimates for 

770 the parameters. For the alternative, ALVI-MI, we choose a sample of data points that, when combined 

771 with the equations, generates a number of equations equal to the number of parameters to be estimated. 

772 If these equations are linearly independent, the system is solvable and the solution is unique, allowing us 

773 to obtain estimates for the parameters by simple matrix inversion. 

774

775 1.3. Multivariate Autoregressive (MAR) models

776 Multivariate Autoregressive (MAR) models are discrete recursive models. Their format is shown in           

777 eqn. 2 and 3 of the main text and conveys that the state of the system at time t+1 depends on the state 

778 at t and possibly on environmental or stochastic input. As an alternative to this modeling structure with 

779 “memory 1,” it is possible to extend MAR models to depend also on states farther in the past, such as Xt-

780 1, Xt-2, and Xt-3, in addition to Xt. However, the commonly used models depend only on the immediately 
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781 prior state and are sometimes called MAR(1). Here, we only consider MAR(1) models and refer to them 

782 simply as MAR models.

783 MAR models can be interpreted in two distinct ways. In generic mathematical terms, MAR models are 

784 stochastic, linear approximations of nonlinear dynamic systems that evolve over time in the vicinity of a 

785 fixpoint (steady state). According to this interpretation (Holmes et al., 2013), xt is a vector of the 

786 realization of random variables at time t. Noise captures natural variations in environmental conditions 

787 and is modeled by a multivariate normal distribution with mean zero and variance-covariance matrix δ.   

788 If stochasticity is omitted, MAR models are quite similar to LV models close to the steady state (see 

789 Supplements Section 1.5).

790 One may also interpret MAR models in an ecological context, where they can be viewed as multispecies 

791 competition models with Gompertz density dependence and an instantaneous growth rate that decreases 

792 linearly over time as the population sizes increase (Ives, 1995; Certain, Barraquand, & Gårdmark, 2018). 

793 In this context, xt is a vector of the log-abundances of dependent variables at time t.

794 MAR models may be augmented with state variables that simulate the observation process and these 

795 models are called  Multivariate Autoregressive(1) State-Space (MARSS) (Holmes et al., 2012; Certain et al., 

796 2018); we will not analyze these for the sake of simplicity. For the comparisons in this study, we are not 

797 considering the influence of environmental variables, so the 𝜸𝒖𝑡 term will be omitted henceforth. 

798 It is considered an advantage in ecology if models explicitly take the influence of environmental factors 

799 into account (for details, see (Certain et al., 2018) (Hytti et al., 2006)), which is the case for MAR. The 

800 availability of estimation software like MARSS (Holmes et al., 2012, 2020) has greatly increased the appeal 

801 of MAR models.

802
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803 1.4. MARSS

804 MARSS is a software package for analyzing MAR models with or without log transformation of the 

805 dependent variables. Its use requires several steps.

806 1 – Specify key MARSS settings:

B = "unconstrained" Matrix with all elements potentially different
U = "unequal" Vector with all elements potentially different

Q = "diagonal and unequal" Matrix where all elements are zero except the 
main diagonal, where the elements have real 
values

Z = "identity" Identity matrix
A = "zero" All elements zero
R = "zero" All elements zero

x0 = Initial values of the time series
807

808 A and R correspond to the “observation variables,” which simulate the observation process of the system 

809 variables. For our comparisons, these are set to zero because observation variables are not considered.

810 2 – In the MARSS function, the data must be formatted with variables in rows and observations in columns. 

811 If the data points are not equally distributed in time, they must be augmented by “NA” to force the interval 

812 between any two consecutive data entries to be of the same length. This is necessary to ensure the correct 

813 time structure of the data for the estimator.

814 3 – With this regularization, MARSS finds estimates for B, U and Z, that correspond to α, β and 𝛿 in eqn 3 

815 of the main text.

816 If MARSS does not converge, it is advisable to increase the max number of iterations. This step solves the 

817 problem but is different from the suggestion offered by Holmes and colleagues, namely, that the model 

818 assumptions should be checked (see p. 57 in (Holmes et al., 2020)).
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819 Our setup is exactly equal to that used by Holmes et al. (Holmes et al., 2012, 2020) for the Isle Royale 

820 dataset, which the authors used to exemplify the inference of species interaction parameters with and 

821 without covariates. Some of the illustration examples were modeled differently in the literature but for 

822 purpose of comparisons with LV models, this model structure was used. For example, the ‘gray whales’ 

823 dataset was modeled by Holmes and colleagues with  the species interaction matrix, set to zero, 

824 whereas R, the matrix that captures the noise from the observational process, was estimated from the 

825 data. Because we are interested in the interactions between species, we do not focus on observational 

826 noise, and Holmes’ original setup was replaced with the one discussed above.

827

828 1.5. Structural Similarities between Modeling Formats

829 The two modeling formats appear to be very different mathematically. Nonetheless, they can be compared in terms 

830 of their mathematical representations and also with respect to practical considerations. These comparisons 

831 demonstrate that the two models can actually behave quite similarly if the community of populations operates 

832 relatively close to a stable steady state. By contrast, if this assumption is violated, the two models often show 

833 strongly diverging results, as the linearity of the MAR model can deviate considerably from the nonlinearities of the 

834 LV model.

835 Purely considered on mathematical grounds, MAR is defined recursively in eqn 2 and 3 of the main text. By omitting 

836 environmental variables, we directly obtain

837 𝑋𝑖,𝑡+1 = 𝛼𝑖 + ∑𝑛
𝑗=1 𝛽𝑖𝑗𝑋𝑗,𝑡 + 𝑤𝑖,𝑡; 𝑖 = 1,2,…, 𝑛;   𝑤𝑖,𝑛 ∼ 𝑁(0,𝛿𝑖), [ S3 ]

838 which can be interpreted as a multispecies competition model with Gompertz density dependence, if the 

839 dependent variables represent logarithmic abundancies (Certain et al., 2018). 
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840 Suppose that the MAR model indeed uses log-abundances. To explain similarities between the MAR and LV 

841 formats, we rewrite this multispecies log-abundance model equivalently in Cartesian form, which yields the 

842 following:

843 For 𝑖 = 1,2,…, 𝑛;   𝑤𝑖,𝑛 ∼ 𝑁(0,𝑑𝑖):

ln(𝑋𝑖,𝑡+1) = 𝛼𝑖 +
𝑛

𝑗=1
𝛽𝑖𝑗 ln(𝑋𝑗,𝑡) + 𝑤𝑖,𝑛

⇔𝑋𝑖,𝑡+1 = 𝑒(𝛼𝑖+∑𝑛
𝑗=1 𝛽𝑖𝑗 ln(𝑋𝑗,𝑡)+𝑤𝑖,𝑛)

⇔𝑋𝑖,𝑡+1 = 𝑒𝛼𝑖𝑒
(∑𝑛

𝑗=1 ln ((𝑋𝑗,𝑡)
𝛽𝑖𝑗))

𝑒𝑤𝑖,𝑛

⇔𝑋𝑖,𝑡+1 = 𝑒𝛼𝑖

𝑛

𝑗=1
𝑒

(ln ((𝑋𝑗,𝑡)
𝛽𝑖𝑗))

𝑒𝑤𝑖,𝑛

⇔𝑋𝑖,𝑡+1 = 𝑒𝛼𝑖∏𝑛
𝑗=1 (𝑋𝑗,𝑡)𝛽𝑖𝑗𝑒𝑤𝑖,𝑛  [ S4 ]

844

845 In this form, MAR is similar to a discrete multivariate power-law function. 

846 The similarity of this result to the LV model can be seen if we use Euler’s method for determining the numerical 

847 solution. Euler’s method is an approximation of more sophisticated methods and its simplicity makes it preferable 

848 for the comparisons between time series and ODEs.     

849 Formulating the typical Euler step for the LV model transforms the ODE into a series of discrete steps of the type  

850 𝑋𝑖,𝑡+ℎ = 𝑋𝑖,𝑡 +ℎ ∗ 𝑑𝑋𝑖

𝑑𝑡
|
𝑋𝑖=𝑋𝑖,𝑡

=  𝑋𝑖,𝑡 +ℎ ∗ 𝑋𝑖,𝑡(𝑎𝑖 + ∑𝑛
𝑗=1 𝑏𝑖𝑗 𝑋𝑗,𝑡),     𝑖 = 1,2,…, 𝑛, [ S5 ]

851 where h is the step size of Euler’s method and dXi/dt is the left-hand side of the differential equations in eqn 1, 

852 evaluated at time t. 

853 A comparison of eqn [ S4 ] and [ S5 ] suggests that the MAR and LV models seem to be very different. Whereas the 

854 LV model captures nonlinear dynamic behaviors without variable transformations, the MAR model uses linearity in 
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855 log space. Nonetheless, there are similarities between the two formats. To see these, we compare eqn [ S3 ] and [ 

856 S5 ] instead of  [ S4 ] and [ S5 ].

857 Furthermore, we suppose that the dynamics is near the steady state of the differential equations, so that 𝑋𝑖,𝑡+1 ― 𝑋𝑖,𝑡

858 ≈ 0 for any given t. Using this approximate equality in eqn [ S3 ], we obtain 

859

860 𝑋𝑖,𝑡+1 ― 𝑋𝑖,𝑡 ≈ 0

861 ⇔𝛼𝑖 + ∑𝑛
𝑗=1 𝛽𝑖𝑗𝑋𝑗,𝑡 + 𝑤𝑖,𝑡 ― 𝑋𝑖,𝑡 ≈ 0; 𝑖 = 1,2,…, 𝑛;   𝑤𝑖,𝑛 ∼ 𝑁(0,𝛿𝑖). [ S6 ]

862

863 Using this approximate equality in format [ S5 ] for LV yields, for 𝑖 = 1,2,…, 𝑛:

𝑋𝑖,𝑡+ℎ ― 𝑋𝑖,𝑡 ≈ 0

⇔𝑋𝑖,𝑡 + ℎ ∗ 𝑋𝑖,𝑡(𝑎𝑖 +
𝑛

𝑗=1
𝑏𝑖𝑗 𝑋𝑗,𝑡) ― 𝑋𝑖,𝑡 ≈ 0

⇔𝑎𝑖 +
𝑛

𝑗=1
𝑏𝑖𝑗 𝑋𝑗,𝑡 ≈ 0

⇔𝑎𝑖 + ∑𝑛
𝑗=1 𝑏𝑖𝑗𝑋𝑗,𝑡 ― 𝑋𝑖,𝑡 ≈ 0 [ S7 ]

864 Here 𝑏𝑖𝑗 equals bij  for aIl i ≠ j and bij + 1 Ior i = j.

865 If we disregard the Gaussian noise, wij, in the MAR model, the two sets of near-steady-state eqn [ S6 ] and 

866 [ S7 ] are the same. They are both linear, although the dynamic LV model itself is non-linear. Thus, if αi = 

867 ai , βij = bij for all i ≠ j and βij = bij + 1  for i = j , the MAR and LV models are mathematically equivalent 

868 at the steady state and similar close to it. As long as the nonlinearity are close to linear or close to power-

869 law functions, MAR without or with log-transformation, respectively, may be expected to lead to 

870 acceptable fits. 
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871

872 2. Case study 1: Synthetic LV data

873 As a representative example, we use the four-variable LV system

874 𝑑𝑋𝑖,𝑡

𝑑𝑡
= 𝑎𝑖𝑋𝑖,𝑡 + 𝑏𝑖1𝑋𝑖,𝑡𝑋1,𝑡 + 𝑏𝑖2𝑋𝑖,𝑡𝑋2,𝑡 + 𝑏𝑖3𝑋𝑖,𝑡𝑋3,𝑡 + 𝑏𝑖4𝑋𝑖,𝑡𝑋4,𝑡,   𝑖 = 1, …, 4 [ S8 ]

875 The parameters are presented in Figure S1. For a first analysis, we use this system to create one set of 

876 synthetic time courses, consisting of 100 time points, which is presented in Table S1. The dynamics is 

877 shown in Figures 1 and S1 as circles.  

878 If we use these noise-free data, the inferences are close to perfect with respect to the trajectories and 

879 parameter values (Figure S9). 

880 To mimic a more realistic scenario, we created a noisy dataset, visualized in Figure S1a, which was 

881 constructed by randomly choosing forty of the one hundred original datapoints obtained from the 

882 synthetic system and adding to the chosen points a normal random variable with mean 0 and a standard 

883 deviation of 20% of the mean of each variable. This noisy dataset is shown in Table S1.2. 

884 A second realistic dataset (Figure S1b) was constructed by first choosing eleven points from the data that 

885 characterize the dynamic (including extremes values). Next, each of the chosen points was multiplied by 

886 a random normal variable with mean 1 and standard deviation of 0.2. This process was iterated to create 

887 five replicates per chosen point. This replicate dataset is shown in Table S1.3.

888 Variable X4 was designed as a (decoupled) logistic function. It is unaffected by the other variables and 

889 does not affect them either. It was included to explore to what degree the methods to be tested can 

890 detect this detachment.  
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891 The smoothing and slope estimation steps followed directly the procedures described in Supplements 

892 Section 1.2. The first derivative of the smoothing function was used for estimates for the slopes.

893 To infer numerical values for the parameters of a given equation, we have the choice between linear 

894 regression (ALVI-LR) and algebraic matrix inversion (ALVI-MI). For ALVI-MI, we choose points from the 

895 sample and use the corresponding slope estimates to create a system of equations with the same number 

896 of equations and unknowns. As we have 4 variables and 20 parameters, we need 20 independent 

897 equations and thus 5 time points. For each time point we obtain the value for each of the 4 dependent 

898 variables and use these to populate the equations. 

899 As an illustration for the noisy dataset, we choose 5, 8, 11 and 5DF-splines and time points t = 8, 13, 17, 

900 19 and 79 for the noisy dataset. For the replicate dataset, we use 5, 6, 8 and 8DF-splines, and the ALVI-MI 

901 solution was calculated with spline points at times 11, 18, 26, 33 and 60. The time point selection for the 

902 ALVI-MI solution can be automated using a random or exhaustive search of the possibilities. 

903 The noisy dataset (Figures 1a, S1a, S3a and S4a) is representative of a study where each time point sample 

904 corresponds to a single observation taken when it is possible or convenient. By contrast, the replicate 

905 dataset (Figures 1b, S1b, S3b and S4b) simulates a series of experimental replicates where the 

906 observations were conducted multiple times, but at fewer time points, which the researchers suspect 

907 would contain valuable information.

908 As an illustration of how the smoothing techniques work, we used splines and LOESS with different 

909 degrees of smoothing. The results for variable X1 are shown in Figure S2. Choosing the optimal degree of 

910 smoothing is not a trivial matter. Too much smoothing ignores important details in the variable dynamics, 

911 while too little incorporates noise. In the programing language R, the function “loess.as” allows the 

912 calculation of the optimum value for the spam, which controls the smoothing. The user still must decide 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.07.463461doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.07.463461
http://creativecommons.org/licenses/by/4.0/


50

913 the degree of the polynomials to be used and choose from two criteria for automatic smoothing 

914 parameter selection: a bias-corrected Akaike information criterion (AICC) and generalized cross-validation 

915 (GCV). This choice is not always leading to the optimal solution, but it should be used to challenge our 

916 assumptions.

917 Figure S3 presents the same treatment as presented in Figure 1 but for datasets with 5% noise. It is clear 

918 and not surprising that the models produce better quality fits when the signal-do-noise ratio is higher. 

919

920 2.1.1. Application of ALVI to synthetic data

921 An alternative to using the algebraic parameter inference method with matrix inversion (ALVI-MI) is the 

922 linear regression method (ALVI-LR); fits for 20% noise are shown in Figure S4. As in ALVI-MI, the parameter 

923 values are close to the true values and the fit is acceptable. However, the dynamics of the system is slightly 

924 different. One reason is that the dynamic solutions are sometimes quite sensitive to the chosen initial 

925 values. As a remedy, it is often beneficial to initiate the solution somewhere inside the overall time 

926 interval, typically close to the midpoints of the variable ranges, and solve forward and backward. 

927 ALVI also works for more complicated dynamics, as can be seen in Figure S5. Here we are interested in 

928 finding out if the methods can recover the dynamics, which in some cases turns out to be challenging for 

929 sparse data even without the introduction of noise. Thus, we used the synthetic data unaltered. 

930 Specifically, data for early time points (t = [1, 100]) were fitted and then extrapolated for a total time 

931 horizon of (t = [1, 500]). In these examples, ALVI-MI is used with 100DF-splines. It uses data samples with 

932 points corresponding to timepoints t = 5, 10, 20, 30 and 50 for all cases except for the chaotic oscillations 

933 where we used t = 4, 6, 10, 15 and 35. For each case, we also present the MAR estimates. Of course, one 

934 must recall that the original data were produced with LV models. While the MAR model extrapolations 
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935 are not always satisfactory, it is nevertheless comforting that the inference method returns good results 

936 for the time interval used for data fitting. 

937 ALVI-MI generally performed very well but did not adequately capture the deterministic chaos (chaos 1). For this 

938 case only, we obtained a better fit using ALVI-LR, which may not be surprising given the extremely sensitive nature 

939 of chaotic systems to noise. Apart from this situation, results with ALVI-LR are very similar to ALVI-MI results and will 

940 not be displayed.

941 In Figure S5b, the MAR model performed well when log-abundances were used. In the remaining cases, it failed to 

942 replicate the oscillations or these exploded by reaching amplitudes far bigger than in the dataset. One also notes 

943 early discrepancies between the initial points used to create the estimates and the MAR estimates.

944
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945 3. Supplemental Figures
946 Figure S1

Initial 
Conditions

X1 1.2
X2 0.3
X3 2
X4 0.001

True
Parameter

Values
a1 0.044
b11 -0.08
b12 0.02
b13 0.08
b14 0
a1 0.216
b11 -0.04
b12 -0.08
b13 0.04
b14 0
a2 0.116
b21 -0.16
b22 0.16
b23 -0.08
b24 0
a4 0.2
b41 0
b42 0
b43 0
b44 -0.1

947 Figure S1: Time courses with superimposed noise. Initial conditions and parameter values for the 
948 synthetic LV example in equation S8 with four dependent variables. Column a: Noisy dataset – Based on 
949 40 points from the synthetic data with added random normal noise with mean 0 and standard deviation 
950 equal to 20% of each variable mean. Column b: Replicate dataset – 11 points were chosen from the 
951 synthetic data and at each point five “observations” were created by multiplying the value of the variable 
952 by a random normal value of mean 1 and standard deviation of 0.2. 
953
954

(a) (b)
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955  Figure S2

956
957 Figure S2: Smoothing noisy variable X1. Column a: Splines with different degrees of freedom. Column b: 
958 LOESS with different span levels. 

(a) (b)
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959 Figure S3

 
Initial 

Conditions
Noisy 
Data

Replicate 
Data

X1 1.2 1.25117 1.17824
X2 0.3 0.25825 0.30397
X3 2 1.69737 1.97235
X4 0.001 0.02083 0.00104

True
Parameter

Values

Noisy 
Data

Replicate 
Data

a1 0.044 0.07373 0.03593
b11 -0.08 -0.09759 -0.06540
b12 0.02 0.02780 0.01935
b13 0.08 0.07649 0.06434
b14 0 -0.00149 -0.00401
a1 0.216 0.24020 0.21072
b11 -0.04 0.00429 -0.00647
b12 -0.08 -0.08501 -0.09561
b13 0.04 -0.04856 0.01263
b14 0 -0.00323 -0.00423
a2 0.116 0.10463 0.07192
b21 -0.16 -0.13316 -0.16077
b22 0.16 0.12651 0.16478
b23 -0.08 -0.05638 -0.05221
b24 0 -0.00441 0.00187
a4 0.2 0.48906 0.19237
b41 0 -0.79105 -0.00824
b42 0 0.91565 0.00687
b43 0 -0.30302 0.01005
b44 -0.1 -0.15627 -0.09992

960 Figure S3: Results of ALVI-MI and MAR applied to the noisy and replicate datasets with 5% of noise. 
961 Column a: Noisy dataset. All variables were smoothed with 11DF-splines and the ALVI-MI solution was 
962 calculated with spline points at time points 8, 17, 30, 42 and 62. Column b: Replicate dataset. All variables 
963 were smoothed with an 8DF-spline and the ALVI-MI solution was calculated with spline points 
964 corresponding to time 6, 18, 26, 33 and 60. MAR estimates are presented in Tables S2.1 and S2.2.

(a) (b)
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965 Figure S4

Initial 
Conditions

Noisy 
Data

Replicate 
Data

X1 1.2 1.19177 1.13704
X2 0.3 0.54552 0.33033
X3 2 1.78728 1.75958
X4 0.001 0.05701 0.00116

True
Parameter

Values

Noisy 
Data

Replicate 
Data

a1 0.044 0.05445 0.02433
b11 -0.08 0.00671 -0.00738
b12 0.02 -0.02130 -0.00173
b13 0.08 -0.01411 0.01168
b14 0 -0.00481 -0.01293
a1 0.216 0.23293 0.21887
b11 -0.04 0.00027 0.04438
b12 -0.08 -0.01935 -0.11968
b13 0.04 -0.14178 -0.04491
b14 0 -0.01553 -0.00930
a2 0.116 0.01081 -0.04261
b21 -0.16 0.00380 -0.07696
b22 0.16 0.04570 0.11963
b23 -0.08 -0.08669 -0.02739
b24 0 -0.00586 -0.00146
a4 0.2 0.08891 0.16518
b41 0 -0.02791 -0.02964
b42 0 0.11969 0.02948
b43 0 -0.11663 0.03522
b44 -0.1 -0.06679 -0.10181

966

967 Figure S4: Results of ALVI-LR and MAR applied to the noisy and replicate datasets. Column a: Noisy 
968 dataset. Time courses of X1, X2, X3 and X4 were smoothed with 6, 11, 11 and 11DF-splines respectively. 
969 Column b: Replicate dataset. All variables were smoothed with 8DF-splines. MAR estimates are the same 
970 presented in Figure 1.

(a) (b)
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971 Figure S5

972

973
974
975 Figure S5 – Data and results of inferences with ALVI-MI and MAR methods for LV systems with different 
976 dynamics. Row a: Data converging to a stable steady state; Row b: Damped oscillations; Row c: Initially 
977 erratic oscillations converging to a limit cycle; Row d: Sustained oscillations; Row e: Deterministic chaos, 
978 example 1; Row f: Deterministic chaos, example 2. Data, ALVI-MI and MARSS estimates are presented in 
979 Table S3. The SSEs concerning the differences between the data and estimates for t = [1, 500] are 
980 presented as labels to the Y-axis. No smoothing preceded MAR because the data are noise free.
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981 Figure S6

982
983 Figure S6 – Examples of experimental data analyzed with ALVI-LR and MAR. Black lines are estimates from 
984 Mühlbauer et al. (Mühlbauer et al., 2020). ALVI-LR estimates are represented as blue lines; corresponding parameter 
985 values can be seen in Table S4.2. MAR estimates are presented in green, orange and yellow. Parameter estimates 
986 are presented in Table S4.3. a: Standardized volume of Paramecium caudatum grown in monoculture (Gause, 1934). 
987 b: Standardized volume of Paramecium caudatum and Paramecium aurelia grown in co-culture (Gause, 1934). c: 
988 Predator-prey interactions between Didinium nasutum and Paramecium caudatum grown in mixture (Gause, 1934). 
989 d: Multi-trophic dynamics for wolves, moose, and fir tree rings on Isle Royale from 1960 to 1994 (McLaren & 
990 Peterson, 1994). e: Predator-prey interactions between Eotetranychus sexmaculatus and Typhlodromus occidentalis 
991 in a spatially structured experiment (Huffaker, Shea, & Herman, 1963).

992

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.07.463461doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.07.463461
http://creativecommons.org/licenses/by/4.0/


58

993

994 Figure S7

995

996 Figure S7 - Multi-trophic dynamics for wolves, moose, and fir trees on Isle Royale from 1960 to 1994, 
997 from McLaren & Peterson (1994) (McLaren & Peterson, 1994). This panel is very similar to Figure 2 d) but 
998 contains additional information. ALVI-MI estimates using all data are represented as blue lines. MAR 
999 estimates are presented in green, orange and yellow. Red lines correspond to the estimates using ALVI-

1000 MI for two intervals, from 1959 to 1980 and form 1983 until the end of the series. This split was tested 
1001 because around 1980 the wolves were exposed to a disease that drastically reduced their numbers, an 
1002 event that dynamic models do not capture outside piecewise operation. MAR estimates are the same as 
1003 in Figure 3.

1004  
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1005 Figure S8

1006

1007 Figure S8: ALVI-MI and MAR applied to an alternative sample of the same data presented in Figure 4, but with 
1008 slightly changed noise. Although the differences in noise are visually almost undetectable, very different results for 
1009 the ALVI-MI fit are obtained if the same sample of spline points is used. However, if a new sample of spline points is 
1010 determined, the fits are almost indistinguishable (not shown). See Text for further explanations.

(a) (b)

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.07.463461doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.07.463461
http://creativecommons.org/licenses/by/4.0/


60

1011 Figure S9

Initial ALVI-MI ALVI-LR 
Conditions Estimates Estimates 

X1 1.2 1.2 1.2
X2 0.3 0.3 0.3
X3 2 2 2
X4 0.001 0.001 0.001

True
Parameter values

a1 0.044 0.0440 0.0440
b11 -0.08 -0.0800 -0.0800
b12 0.02 0.0200 0.0200
b13 0.08 0.0800 0.0800
b14 0 0.0000 0.0000
a1 0.216 0.2160 0.2160
b11 -0.04 -0.0400 -0.0400
b12 -0.08 -0.0800 -0.0800
b13 0.04 0.0400 0.0400
b14 0 0.0000 0.0000
a2 0.116 0.1161 0.1161
b21 -0.16 -0.1602 -0.1602
b22 0.16 0.1601 0.1601
b23 -0.08 -0.0799 -0.0799
b24 0 0.0000 0.0000
a4 0.2 0.2000 0.2000
b41 0 -0.0003 -0.0003
b42 0 0.0001 0.0001
b43 0 0.0003 0.0003
b44 -0.1 -0.0999 -0.0999

1012 Figure S9: Estimates with alternative ALVI methods. Column a: ALVI-MI and Column b: ALVI-LR with original 
1013 synthetic LV data. The fits are of high quality (ALVI-MI SSE = 1.162229e-05 and ALVI-LR SSE = 3.289283e-07) and the 
1014 parameter estimates are very close to the true parameters. 

1015

(a) (b)
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1016 4. Supplemental Tables

1017

1018 Table S1.1 – Synthetic LV data. The data were generated with an LV system with four dependent 
1019 variables with parameter values presented in Figure S1.

t X1 X2 X3 X4

0 1.20000 0.30000 2.00000 0.00100
1 1.32083 0.37078 1.67253 0.00122
2 1.41112 0.44848 1.42395 0.00149
3 1.47488 0.53265 1.23448 0.00182
4 1.51746 0.62275 1.09051 0.00222
5 1.54431 0.71810 0.98219 0.00272
6 1.56033 0.81785 0.90227 0.00332
7 1.56959 0.92096 0.84535 0.00405
8 1.57534 1.02621 0.80746 0.00494
9 1.58006 1.13229 0.78565 0.00603

10 1.58566 1.23781 0.77778 0.00737
11 1.59356 1.34144 0.78227 0.00899
12 1.60486 1.44195 0.79788 0.01097
13 1.62038 1.53828 0.82360 0.01338
14 1.64076 1.62958 0.85846 0.01632
15 1.66648 1.71521 0.90140 0.01990
16 1.69783 1.79474 0.95118 0.02425
17 1.73496 1.86789 1.00625 0.02954
18 1.77779 1.93449 1.06475 0.03596
19 1.82599 1.99445 1.12450 0.04375
20 1.87894 2.04769 1.18311 0.05317
21 1.93567 2.09416 1.23810 0.06457
22 1.99490 2.13382 1.28715 0.07830
23 2.05502 2.16666 1.32828 0.09482
24 2.11427 2.19279 1.36011 0.11461
25 2.17079 2.21241 1.38190 0.13823
26 2.22286 2.22591 1.39369 0.16628
27 2.26899 2.23381 1.39615 0.19943
28 2.30811 2.23680 1.39047 0.23832
29 2.33961 2.23566 1.37821 0.28360
30 2.36336 2.23123 1.36102 0.33585
31 2.37966 2.22437 1.34057 0.39550
32 2.38913 2.21586 1.31834 0.46281
33 2.39266 2.20642 1.29562 0.53773
34 2.39123 2.19665 1.27343 0.61988
35 2.38587 2.18704 1.25253 0.70850
36 2.37758 2.17796 1.23345 0.80243
37 2.36727 2.16968 1.21655 0.90013
38 2.35575 2.16237 1.20201 0.99980
39 2.34368 2.15612 1.18987 1.09947
40 2.33162 2.15098 1.18009 1.19718
41 2.32001 2.14691 1.17257 1.29113
42 2.30917 2.14387 1.16713 1.37978
43 2.29935 2.14177 1.16358 1.46196
44 2.29070 2.14052 1.16170 1.53691
45 2.28329 2.14001 1.16126 1.60424
46 2.27717 2.14013 1.16203 1.66392
47 2.27231 2.14076 1.16377 1.71620
48 2.26866 2.14180 1.16626 1.76151
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49 2.26613 2.14313 1.16930 1.80043
50 2.26462 2.14467 1.17270 1.83359
51 2.26400 2.14632 1.17627 1.86167
52 2.26415 2.14801 1.17987 1.88531
53 2.26494 2.14968 1.18337 1.90511
54 2.26623 2.15128 1.18668 1.92164
55 2.26790 2.15275 1.18970 1.93538
56 2.26982 2.15407 1.19237 1.94679
57 2.27189 2.15523 1.19467 1.95622
58 2.27400 2.15620 1.19658 1.96401
59 2.27609 2.15698 1.19809 1.97044
60 2.27808 2.15759 1.19921 1.97573
61 2.27991 2.15802 1.19998 1.98009
62 2.28156 2.15829 1.20042 1.98367
63 2.28299 2.15842 1.20058 1.98661
64 2.28418 2.15843 1.20049 1.98902
65 2.28515 2.15833 1.20021 1.99100
66 2.28588 2.15816 1.19977 1.99263
67 2.28640 2.15792 1.19922 1.99396
68 2.28673 2.15764 1.19859 1.99505
69 2.28688 2.15733 1.19793 1.99595
70 2.28688 2.15702 1.19726 1.99668
71 2.28675 2.15671 1.19660 1.99728
72 2.28653 2.15641 1.19598 1.99777
73 2.28623 2.15613 1.19541 1.99818
74 2.28588 2.15588 1.19491 1.99851
75 2.28551 2.15566 1.19448 1.99878
76 2.28512 2.15547 1.19411 1.99900
77 2.28473 2.15532 1.19383 1.99918
78 2.28436 2.15521 1.19361 1.99933
79 2.28402 2.15512 1.19346 1.99945
80 2.28371 2.15507 1.19337 1.99955
81 2.28344 2.15504 1.19333 1.99963
82 2.28322 2.15503 1.19334 1.99970
83 2.28303 2.15505 1.19338 1.99975
84 2.28289 2.15508 1.19346 1.99980
85 2.28279 2.15512 1.19355 1.99983
86 2.28272 2.15517 1.19367 1.99986
87 2.28269 2.15522 1.19378 1.99989
88 2.28269 2.15528 1.19391 1.99991
89 2.28270 2.15533 1.19403 1.99993
90 2.28274 2.15539 1.19414 1.99994
91 2.28279 2.15544 1.19425 1.99995
92 2.28286 2.15549 1.19434 1.99996
93 2.28292 2.15553 1.19442 1.99997
94 2.28299 2.15556 1.19449 1.99997
95 2.28306 2.15559 1.19455 1.99998
96 2.28313 2.15562 1.19459 1.99998
97 2.28320 2.15563 1.19462 1.99998
98 2.28325 2.15564 1.19464 1.99999
99 2.28330 2.15565 1.19465 1.99999

100 2.28335 2.15565 1.19465 1.99999
101 2.28338 2.15565 1.19464 1.99999

1020
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1022 Table S1.2 – Noisy LV dataset. From the synthetic data, generated with the LV system in Table S1.1, forty 
1023 values were selected and random normal noise was added with mean 0 and standard deviation equal to 
1024 20% of each variable mean.

t X1 X2 X3 X4
1 1.14111 0.94716 1.92175 0.06256
3 1.36364 0.45349 1.45431 0.06645
5 1.22283 0.19582 1.33123 0.03641
8 1.47489 1.02716 0.78493 0.01857

13 1.68296 1.83783 0.72635 0.20645
17 1.87602 0.98039 1.33307 0.02590
19 2.23270 2.28656 0.88182 0.08578
24 2.46929 2.14703 1.42853 0.30301
26 2.12740 1.68427 1.24384 0.29370
30 2.93876 1.47752 1.47634 0.33315
31 1.60470 2.50979 0.99567 0.31345
32 2.64561 2.16238 1.21792 0.46671
33 2.16612 2.30080 1.25219 0.44936
40 2.90825 2.47699 1.42807 0.59721
42 2.16482 2.82494 1.06154 1.37928
44 2.86258 2.10103 1.23401 1.37031
46 2.30199 1.92131 1.06248 1.91622
49 1.46650 2.70250 0.96520 2.29495
52 2.07311 1.79577 1.33918 1.55672
53 1.52180 1.69359 1.07106 2.03041
55 2.34261 1.94310 1.50543 1.95215
56 3.07809 3.11285 1.29445 1.80656
62 1.30983 1.83120 1.16429 2.13265
63 2.70020 2.32062 1.30813 2.15788
64 1.68571 1.69570 1.19108 1.96368
67 3.06508 1.69727 1.30761 1.92002
69 2.87653 2.02694 1.10203 1.72796
71 1.92870 2.69214 0.69211 1.84299
73 2.17466 1.97223 1.23306 1.94046
75 2.25649 2.48677 1.35097 1.93681
77 2.12334 1.58311 0.96197 2.23364
78 3.38719 1.99818 0.93052 1.93376
79 2.33980 1.85041 1.09020 2.46553
83 1.97877 2.01006 1.07131 1.89393
84 2.55545 2.64187 1.29245 2.38731
87 2.36884 2.11299 1.22538 2.03970
90 2.25285 2.22309 1.43866 1.73292
91 2.24325 2.25534 1.58509 2.14186
93 2.47453 1.91424 1.19010 2.00689
95 1.82853 1.59450 1.18877 1.91223

1025

1026
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1027 Table S1.3 – Replicate LV dataset. 11 points were selected from the synthetic data in Table S1.1. For each 
1028 time point, five observations were created by multiplying the original value by a normal random variable 
1029 with mean 1 and standard deviation 0.2.

t X1 X2 X3 X4
1 1.079474 0.307892 1.968433 0.001177
1 1.228073 0.319118 1.767284 0.001143
1 1.001938 0.278408 2.035955 0.001019
1 1.151608 0.34439 2.049352 0.000994
1 1.106675 0.330651 1.634474 0.001462
6 1.409001 0.827832 1.033651 0.003136
6 1.292779 0.655128 0.840712 0.002841
6 1.186731 0.753583 0.964293 0.003671
6 1.501709 0.702128 0.846646 0.002595
6 1.600803 0.778034 1.191477 0.003243

11 1.553429 1.585188 0.501395 0.008283
11 1.420026 1.565142 0.721249 0.009309
11 1.599542 0.772725 0.708241 0.004804
11 1.642382 1.707548 0.424371 0.00881
11 1.142047 1.689577 0.992655 0.00613
18 1.644046 1.84217 0.929999 0.044789
18 1.780007 1.601518 1.134646 0.030728
18 1.710696 1.833336 1.096591 0.023249
18 1.331607 2.483739 0.591253 0.029612
18 1.357593 1.968956 1.2092 0.017282
26 2.560157 2.19029 1.010075 0.084837
26 2.478865 2.142542 1.441704 0.160821
26 2.920662 2.166496 1.227926 0.177711
26 1.783109 1.700208 1.23534 0.205836
26 1.809358 2.395388 1.056138 0.105769
33 2.230052 2.81995 1.194645 0.540826
33 1.692464 2.038453 1.113628 0.428625
33 2.981684 2.168246 1.363852 0.486374
33 2.095491 1.58247 1.231077 0.474691
33 2.875616 2.102594 1.238574 0.612312
41 1.970818 2.333379 1.04227 1.296557
41 1.611026 1.927812 1.114056 1.438404
41 2.112647 2.279129 1.081485 0.99357
41 2.652937 1.953001 1.498288 1.30327
41 2.261238 2.34695 1.170614 1.306394
51 2.079631 1.228253 1.209477 2.075646
51 1.819921 1.666988 1.070121 1.644326
51 2.454389 2.202211 1.41537 2.439964
51 2.256488 2.134285 1.231388 1.709964
51 2.213276 2.102253 1.234634 1.884561
60 2.165804 2.18245 1.155609 2.283614
60 2.279157 1.885294 1.137585 1.698353
60 2.36829 2.52211 1.349542 2.049815
60 2.234632 2.281866 1.184983 1.165772
60 2.439225 1.996245 1.501995 2.82506
70 1.719859 2.411846 1.227642 1.786889
70 2.570555 2.462909 1.1756 1.878108
70 1.790253 1.887747 1.142104 1.895824
70 2.723166 2.042576 1.65201 1.8243
70 3.007495 2.227207 0.93787 2.226255
80 2.296889 2.001374 1.396972 2.20474
80 2.749139 1.714839 1.059392 1.594539
80 0.9041 2.298373 1.489557 2.267917
80 1.676455 1.788501 0.766479 2.491924
80 2.131265 1.738182 1.403356 1.898047

1030
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1032 Table S1.4 – MAR estimates for the noisy LV dataset in Figs. 1 and S4 

1033

MAR without 
transformation

MAR with log 
transformation

MAR with 
smoothing

MAR with log 
transformation 
and smoothing

β11 -0.09089 -0.03360 1.06000 1.02000
β21 0.27209 0.43560 0.13800 0.07940
β31 -0.21012 -0.43570 0.07490 -0.10500
β41 0.12619 0.42840 -0.33900 -0.22100
β12 0.43295 0.24860 -0.05360 -0.01990
β22 0.47619 0.62610 0.91000 0.94700
β32 0.18150 0.17100 0.01730 0.12000
β42 0.00788 0.23190 0.22900 0.19400
β13 -0.20530 -0.01010 -0.01980 -0.01510
β23 -0.28009 -0.33410 -0.07090 -0.07300
β33 0.50995 0.57920 0.86700 0.90900
β43 -0.00869 -0.02950 -0.03190 0.04240
β14 0.07772 0.00960 -0.00954 -0.00439
β24 0.06929 0.02720 -0.02780 -0.01270
β34 0.00957 0.01530 -0.00911 -0.00807
β44 0.93364 0.88740 0.98800 0.95600
α1 1.70925 0.63980 0.01030 0.00614
α2 0.67025 -0.04340 0.01430 0.01390
α3 0.67931 0.29480 -0.00571 -0.00386
α4 -0.17950 -0.45920 0.02010 0.04190
δ1 0.22184 0.05270 0.00005 0.00001
δ2 0.19571 0.07520 0.00014 0.00003
δ3 0.01924 0.01480 0.00049 0.00028
δ4 0.04708 0.07570 0.00005 0.00010

1034
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1036
1037 Table S1.5 – MAR estimates for the replicate LV dataset in Figs. 1 and S4

1038

MAR without 
transformation

MAR with log 
transformation

MAR with 
smoothing

MAR with log 
transformation 
and smoothing

β11 0.77800 0.76500 1.01000 1.07000
β21 0.07760 0.21000 0.00367 0.07720
β31 -0.08920 -0.31200 -0.01630 -0.10700
β41 0.09140 0.13400 0.23200 0.38400
β12 0.13500 0.11600 -0.00781 -0.00292
β22 0.87500 0.80500 0.93600 0.88300
β32 0.14900 0.22500 0.10400 0.14800
β42 -0.00518 0.17400 -0.08900 0.06510
β13 0.24800 0.22200 -0.00982 -0.00328
β23 -0.20400 -0.18300 -0.10300 -0.05940
β33 0.94400 1.13000 0.86500 0.98300
β43 0.01090 0.17500 -0.02880 0.04240
β14 -0.02600 -0.01100 -0.02170 -0.00991
β24 -0.00159 -0.00250 -0.00530 -0.00583
β34 -0.00022 -0.00299 0.00004 -0.00317
β44 0.97200 0.93000 0.96400 0.93000
α1 0.02400 0.01470 0.00925 0.00610
α2 0.02610 0.03690 0.01980 0.02190
α3 -0.02240 -0.01470 -0.00880 -0.00573
α4 0.02160 0.10700 0.02500 0.09300
δ1 0.00557 0.00089 0.00008 0.00001
δ2 0.00243 0.00073 0.00037 0.00009
δ3 0.00001 0.00004 0.00024 0.00043
δ4 0.00559 0.00267 0.00029 0.00022

1039
1040

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.07.463461doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.07.463461
http://creativecommons.org/licenses/by/4.0/


67

1041 Table S2.1 - MAR estimates for the noisy dataset in Fig. S3
1042

MAR without 
transformation

MAR with log 
transformation

MAR with 
smoothing

MAR with log 
transformation 
and smoothing

β11 0.23009 0.01769 0.90100 0.93300
β21 0.11849 0.16822 -0.18000 -0.10300
β31 -0.18449 -0.35186 -0.26400 -0.61400
β41 0.14318 2.18894 0.40800 1.05000
β12 0.34796 0.23560 0.03870 0.01540
β22 0.84182 0.75617 1.05000 0.94800
β32 0.19214 0.17605 0.18600 0.20600
β42 -0.03130 0.01950 -0.15300 -0.06350
β13 0.21488 0.18478 -0.00110 0.00908
β23 -0.04121 0.02412 -0.10500 -0.04810
β33 0.78353 0.91531 0.87900 1.02000
β43 0.01040 1.00320 -0.02870 0.05100
β14 0.03493 0.01754 -0.00471 -0.00229
β24 -0.00776 0.00115 -0.00050 -0.00170
β34 -0.00548 0.00382 0.01160 0.01240
β44 0.97027 0.81890 0.95100 0.91800
α1 -0.00061 0.00073 0.01020 0.00586
α2 0.02045 0.03086 0.02000 0.02130
α3 -0.01764 -0.01187 -0.00431 -0.00279
α4 0.02229 0.04416 0.02100 0.06150
δ1 0.01953 0.00318 0.00001 0.00000
δ2 0.01746 0.01414 0.00002 0.00000
δ3 0.00158 0.00121 0.00002 0.00004
δ4 0.00363 0.39522 0.00038 0.00007
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1046 Table S2.2 - MAR estimates for the replicate dataset in Fig. S3
1047

MAR without 
transformation

MAR with log 
transformation

MAR with 
smoothing

MAR with log 
transformation 
and smoothing

β11 0.83000 0.81000 0.88600 0.87400
β21 -0.06680 0.02220 -0.05350 0.04420
β31 -0.12600 -0.35400 -0.09890 -0.39000
β41 0.23600 0.37800 0.23500 0.41700
β12 0.07710 0.04860 0.05470 0.04280
β22 0.97800 0.89700 0.97600 0.90000
β32 0.16200 0.19000 0.13100 0.19100
β42 -0.07360 0.10500 -0.08250 0.08650
β13 0.12900 0.11100 0.05310 0.06250
β23 -0.06320 -0.03200 -0.09610 -0.06310
β33 0.87400 1.02000 0.89000 1.06000
β43 -0.04980 0.06360 -0.02580 0.08010
β14 -0.00609 -0.00121 -0.00871 -0.00304
β24 -0.00592 -0.00445 -0.00621 -0.00488
β34 -0.00154 0.00406 -0.00073 0.00508
β44 0.96100 0.92600 0.96300 0.92500
α1 0.02250 0.01380 0.01240 0.00749
α2 0.03120 0.04080 0.02220 0.02350
α3 -0.02690 -0.01750 -0.00777 -0.00512
α4 0.01850 0.10700 0.02520 0.09450
δ1 0.00052 0.00004 0.00007 0.00001
δ2 0.00029 0.00007 0.00004 0.00001
δ3 0.00002 0.00000 0.00002 0.00001
δ4 0.00219 0.00114 0.00039 0.00014
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1051 Table S3.1 – Initial conditions, parameter values and estimates for a four-variable LV system that 
1052 converges to a stable steady state, as presented in Fig. S5 

Initial Condition Estimate
X1 1.2 1.20993
X2 0.3 0.31991
X3 2 1.82146
X4 0.001 0.00104

True 
Parameter 

Value ALVI-MI MAR
MAR with log 

transformation
a1 0.044 0.04398 β11 0.89300 0.88800
b11 -0.08 -0.07995 β21 -0.07190 0.08510
b12 0.02 0.01997 β31 -0.17500 -0.43000
b13 0.08 0.07999 β41 0.19200 0.42800
b14 0 -0.00001 β12 0.04840 0.03110
a2 0.216 0.21599 β22 0.99000 0.91100
b21 -0.04 -0.04000 β32 0.16800 0.18000
b22 -0.08 -0.08001 β42 -0.05440 0.11000
b23 0.04 0.04002 β13 0.06600 0.06700
b24 0 0.00000 β23 -0.07540 -0.06800
a3 0.116 0.11600 β33 0.91100 1.03000
b31 -0.16 -0.15993 β43 -0.00639 0.03510
b32 0.16 0.15998 β14 -0.00719 -0.00229
b33 -0.08 -0.08007 β24 -0.00739 -0.00763
b34 0 -0.00001 β34 0.00126 0.00751
a4 0.2 0.20002 β44 0.96300 0.92400
b41 0 -0.00001 α1 0.07320 0.05740
b42 0 0.00000 α2 0.28900 0.01420
b43 0 0.00000 α3 0.14200 0.20700
b44 -0.1 -0.10000 α4 -0.22800 -0.38500

δ1 0.00014 0.00006
δ2 0.00004 0.00031
δ3 0.00064 0.00020
δ4 0.00032 0.00032
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1055 Table S3.2 – Initial conditions, parameter values and estimates for a four-variable LV system exhibiting 
1056 damped oscillations as presented in Fig. S5 

Initial Condition Estimate
X1 0.3 0.3
X2 0.3 0.3
X3 0.4 0.4
X4 0.6 0.6

True 
Parameter 

Value ALVI-MI MAR
MAR with log 

transformation
a1 0.3 0.30245 β11 1.05000 0.98800
b11 -0.3 -0.30328 β21 0.14700 0.01610
b12 -0.27 -0.27098 β31 -0.25300 -0.07880
b13 -0.6 -0.60467 β41 -0.23100 -0.05360
b14 -0.045 -0.04708 β12 -0.08350 -0.11600
a2 0.4 0.40299 β22 0.88800 0.92200
b21 0.2 0.19592 β32 0.04880 -0.03410
b22 -0.4 -0.40118 β42 -0.00228 -0.07260
b23 -0.4 -0.40578 β13 0.03660 -0.04410
b24 -0.6 -0.60250 β23 -0.07340 -0.06540
a3 0.7 0.71519 β33 0.71200 0.89700
b31 -2.38 -2.39901 β43 -0.20500 -0.02050
b32 0.35 0.34344 β14 -0.10400 -0.01220
b33 -2.8 -2.82806 β24 -0.12800 -0.03300
b34 0.35 0.33650 β34 0.03690 -0.14100
a4 0.6 0.60791 β44 0.96100 0.88100
b41 -0.96 -0.97003 α1 0.04710 -0.22200
b42 -0.24 -0.24338 α2 0.08150 -0.17700
b43 -0.96 -0.97466 α3 0.06750 -0.56600
b44 -0.6 -0.60704 α4 0.08660 -0.38800

δ1 0.00000 0.00004
δ2 0.00002 0.00016
δ3 0.00015 0.00271
δ4 0.00015 0.00065
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1060 Table S3.3 – Initial conditions, parameter values and estimates for a four-variable LV system 
1061 displaying initially erratic oscillations, but converging to a limit cycle as presented in Fig. S5 

Initial Condition Estimate
X1 0.3 0.3
X2 0.3 0.3
X3 0.4 0.4
X4 0.6 0.6

True 
Parameter 

Value ALVI-MI MAR
MAR with log 

transformation
a1 1 0.98743 β11 0.87600 0.94673
b11 -1 -0.99101 β21 0.26700 0.19269
b12 -1.09 -1.08083 β31 -0.11100 -0.77772
b13 -1.52 -1.51341 β41 -0.17600 -0.18648
b14 0 0.01346 β12 -0.13600 -0.11408
a2 0.72 0.72230 β22 0.90900 0.88847
b21 0 -0.00274 β32 0.03980 0.59990
b22 -0.72 -0.72223 β42 0.06220 0.11789
b23 -0.3168 -0.31966 β13 -0.44100 0.00528
b24 -0.9792 -0.97942 β23 0.07280 0.01411
a3 1.53 1.53466 β33 0.86500 0.93625
b31 -3.672 -3.67283 β43 -0.03720 -0.00153
b32 0 -0.00071 β14 0.36500 0.00392
b33 -1.53 -1.52615 β24 -0.19100 -0.17211
b34 -0.7191 -0.73207 β34 -0.02410 0.33444
a4 1.27 1.27361 β44 0.93800 0.97758
b41 -1.5367 -1.53884 α1 0.02540 -0.12418
b42 -0.6477 -0.64952 α2 0.01980 -0.00507
b43 -0.4445 -0.44519 α3 0.03310 -0.28038
b44 -1.27 -1.27581 α4 0.04680 -0.16530

δ1 0.00001 0.00057
δ2 0.00001 0.00012
δ3 0.00013 0.00112
δ4 0.00005 0.00022
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1064 Table S3.4 – Initial conditions, parameter values and estimates for a four-variable LV system 
1065 displaying damped oscillations as presented in Fig. S5 

Initial Condition Estimate
X1 0.3 0.3
X2 0.3 0.3
X3 0.4 0.4
X4 0.6 0.6

True 
Parameter 

Value ALVI-MI MAR
MAR with log 

transformation
a1 0.3 0.27831 β11 0.96100 1.02036
b11 -0.3 -0.30250 β21 0.17900 0.10195
b12 -0.27 -0.25033 β31 -0.15100 -0.09094
b13 -0.6 -0.59705 β41 -0.20000 -0.04845
b14 -0.045 -0.00606 β12 -0.07430 -0.05021
a2 0.4 0.36675 β22 0.94200 0.98452
b21 0.2 0.19193 β32 -0.05210 -0.02708
b22 -0.4 -0.36840 β42 -0.01790 -0.03530
b23 -0.4 -0.40045 β13 -0.09270 0.00210
b24 -0.6 -0.53672 β23 0.00417 -0.00943
a3 0.7 0.64222 β33 0.82100 1.05860
b31 -2.38 -2.37532 β43 -0.15000 0.02181
b32 0.35 0.39856 β14 -0.00981 0.02438
b33 -2.45 -2.42900 β24 -0.10400 -0.00099
b34 0.35 0.44414 β34 -0.12500 -0.32180
a4 0.6 0.55927 β44 0.96300 0.89997
b41 -0.96 -0.96318 α1 0.05890 0.00507
b42 -0.24 -0.20356 α2 0.01900 0.11510
b43 -0.96 -0.95279 α3 0.13300 -0.41484
b44 -0.3 -0.22817 α4 0.09470 -0.17804

δ1 0.00003 0.00018
δ2 0.00010 0.00101
δ3 0.00014 0.00935
δ4 0.00008 0.00056
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1068 Table S3.5 – Initial conditions, parameter values and estimates for a four-variable LV system 
1069 displaying deterministic chaos (chaos 1) as presented in Fig. S5

Initial Condition Estimate
X1 0.3 0.3
X2 0.3 0.3
X3 0.4 0.4
X4 0.6 0.6

True 
Parameter 

Value ALVI-MI MAR
MAR with log 

transformation
a1 1 1.01561 β11 0.85600 1.00059
b11 -1 -1.01294 β21 0.26400 0.20355
b12 -1.09 -1.10110 β31 -0.16900 -0.79454
b13 -1.52 -1.52409 β41 -0.21800 -0.23777
b14 0 -0.01741 β12 -0.14300 -0.10901
a2 0.72 0.72904 β22 0.88800 0.88053
b21 0 -0.00777 β32 0.01640 0.59018
b22 -0.72 -0.72674 β42 0.02020 0.08015
b23 -0.3168 -0.32100 β13 -0.47500 -0.03240
b24 -0.9792 -0.98775 β23 0.10500 0.03330
a3 1.53 1.48293 β33 1.07000 0.76513
b31 -3.5649 -3.52631 β43 0.06420 -0.03995
b32 0 0.03573 β14 0.38200 0.17765
b33 -1.53 -1.50898 β24 -0.24000 -0.23158
b34 -0.7191 -0.67335 β34 -0.21500 0.90744
a4 1.27 1.25074 β44 0.80900 1.08027
b41 -1.5367 -1.52127 α1 0.03510 0.01644
b42 -0.6477 -0.63310 α2 0.04320 -0.01131
b43 -0.4445 -0.43667 α3 0.11000 -0.11896
b44 -1.27 -1.25061 α4 0.11500 -0.24402

δ1 0.00002 0.00114
δ2 0.00002 0.00015
δ3 0.00022 0.00191
δ4 0.00006 0.00024
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1072 Table S3.6 – Initial conditions, parameter values and estimates for a four-variable LV system 
1073 displaying deterministic chaos (chaos 2) as presented in Fig. S5 

Initial Condition Estimate
X1 0.3 0.3
X2 0.3 0.3
X3 0.4 0.4
X4 0.6 0.6

True 
Parameter 

Value ALVI-MI MAR
MAR with log 

transformation
a1 0.3 0.29277 β11 1.05000 0.97700
b11 -0.3 -0.25379 β21 0.00560 0.02030
b12 -0.27 -0.28051 β31 -0.31600 -0.08880
b13 -0.6 -0.55795 β41 -0.23000 -0.06400
b14 -0.045 -0.07045 β12 -0.09830 -0.01780
a2 0.4 0.39048 β22 0.99000 1.00000
b21 0.2 0.26661 β32 0.08310 -0.02620
b22 -0.4 -0.41601 β42 -0.01940 -0.01610
b23 -0.4 -0.33988 β13 -0.00541 -0.06900
b24 -0.6 -0.63818 β23 -0.12100 -0.07290
a3 0.8 0.77659 β33 0.70200 0.87400
b31 -2.38 -2.23922 β43 -0.18000 -0.05050
b32 0.35 0.31928 β14 -0.08040 0.05960
b33 -2.45 -2.32117 β24 0.00941 -0.02020
b34 0.35 0.27470 β34 0.07400 -0.14500
a4 0.6 0.58578 β44 0.97300 0.94100
b41 -0.96 -0.86962 α1 0.05270 -0.11500
b42 -0.24 -0.26048 α2 0.02820 -0.09870
b43 -0.96000 -0.87774 α3 0.07760 -0.53700
b44 -0.30000 -0.34969 α4 0.10200 -0.28000

δ1 0.00000 0.00006
δ2 0.00002 0.00023
δ3 0.00009 0.00115
δ4 0.00007 0.00025
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1077 Table S4.1 – ALVI-MI estimates for five experimental data examples from (Mühlbauer et al., 2020). Data 
1078 came from experiments described in (Gause, 1934), (McLaren & Peterson, 1994) and (Huffaker et al., 
1079 1963). See R package gauseR (Mühlbauer et al., 2020) for datasets “gause_1934_science_f02_03”, 
1080 “gause_1934_book_f32”, ”mclaren_1994_f03” and “huffaker_1963” for details on observations.  
1081 Parameter estimates from Mühlbauer et al. can also be found in Table 2 in their paper.

1082

Example 1 - Paramecium caudatum in monoculture. The slopes were estimated from an 8DF-spline from data 
without log transformation and ALVI-MI using a subsample of spline points at the 3nd and 12th days.

 Mühlbauer et al. Estimate Absolute Difference
a1 1.259 0.92289 0.33611
b11 -0.005 -0.00456 0.00044

Example 2 - Paramecium caudatum and Paramecium aurelia in a mixed population competition study.  ALVI-MI 
was estimated from 10DF and 7DF-splines for P. caudatum and P. Aurelia, respectively. Spline points were taken 
at days 4, 8 and 11.

 Mühlbauer et al. Estimate Absolute Difference
a1 1.259 0.98677 0.27223
b11 -0.005 -0.00409 0.00091
b12 1.259 -0.00649 1.26549
a2 -0.005 0.79868 0.80368
b21 1.259 -0.00136 1.26036
b22 -0.005 -0.00536 0.00036

Example 3 - Predator-prey interactions between Didinium nasutum and Paramecium caudatum. ALVI-MI estimates 
were calculated using 14DF and 10DF-splines, respectively, using a subsample of the 122nd ,140th, 168th points of 
the second spline.

 Mühlbauer et al. Estimate Absolute Difference
a1 1.099 1.70706 0.60806
b11 -0.013 -0.03887 0.02587
b12 -0.078 -0.11360 0.03560
a2 -0.89 -1.27639 0.38639
b21 0.084 0.14275 0.05875
b22 -0.002 0.01565 0.01765

Example 4 - Multi-trophic dynamics for wolves, moose, and fir trees. ALVI-MI estimates were calculated using log-
abundances and 8DF-splines. Spline points were chosen as a subsample corresponding to the years 1973, 1978, 
1979 and 1982.

 Mühlbauer et al. Estimate Absolute Difference
a1 0.01 -1.901823 1.91182
b11 -0.003 0.028812 0.03181
b12 0.00004 0.000003 0.00004
b13 0 2.754448 2.75445
a2 2.021 0.331244 1.68976
b21 -0.088 -0.006836 0.08116
b22 0 -0.000107 0.00011
b23 0.002 -0.090569 0.09257
a3 0.238 2.779411 2.54141
b31 0 -0.051545 0.05154
b32 -0.0002 0.000494 0.00069
b33 -0.139 -4.693609 4.55461
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1084

Example 5 - Predator-prey interactions between E. sexmaculatus and T. occidentalis. ALVI-MI estimates were 
calculated using 15DF and 20DF-splines, respectively. The splines were constructed using log-abundances of the 
dependent variables, using a subsample of spline points corresponding to the 17th, 48th and 55th datapoints.

 Mühlbauer et al. Estimate Absolute Difference
a1 0.187 0.11148 0.07552
b11 0 0.00003 0.00003
b12 -0.028 -0.02960 0.00160
a2 -0.377 -0.80007 0.42307
b21 0.0012 0.00251 0.00131
b22 -0.024 -0.03144 0.00744
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1087 Table S4.2 – ALVI-LR estimates for five experimental data sets from (Mühlbauer et al., 2020). Data came 
1088 from (Gause, 1934), (McLaren & Peterson, 1994) and (Huffaker et al., 1963) experiments. See R package 
1089 gauseR (Mühlbauer et al., 2020) datasets “gause_1934_science_f02_03”, “gause_1934_book_f32”, 
1090 ”mclaren_1994_f03” and “huffaker_1963” for details on observations. Parameter estimates from 
1091 Mühlbauer et al. can also be found in Table 2 of their paper.

Example 1 - Paramecium caudatum in monoculture, analyzed with 8DF-spline
 Mühlbauer et al. Estimate Absolute Difference

a1 1.259 0.93948 0.31952
b11 -0.005 -0.00465 0.00035

Example 2 - Paramecium caudatum and Paramecium aurelia in mixed population, analyzed with 10DF and 7DF-
splines  

 Mühlbauer et al. Estimate Absolute Difference
a1 1.259 0.85524 0.40376
b11 -0.005 -0.00289 0.00211
b12 -0.008 -0.00580 0.00220
a2 1.026 0.84423 0.18177
b21 -0.002 -0.00187 0.00013
b22 -0.007 -0.00553 0.00147

Example 3 - Predator-prey interactions between Didinium nasutum and Paramecium caudatum, analyzed with 
14DF and 10DF-splines

 Mühlbauer et al. Estimate Absolute Difference
a1 1.099 0.45652 0.64248
b11 -0.013 0.02117 0.03417
b12 -0.078 -0.11495 0.03695
a2 -0.89 -0.98922 0.09922
b21 0.084 0.16549 0.08149
b22 -0.002 -0.01146 0.00946

Example 4 - Multi-trophic dynamics for wolves, moose, and fir trees, analyzed with 28DF, 24DF and 28DF-splines
 Mühlbauer et al. Estimate Absolute Difference

a1 0.01 -0.06509 0.07509
b11 -0.003 0.00164 0.00464
b12 0.00004 0.00007 0.00003
b13 0 -0.13411 0.13411
a2 2.021 0.20754 1.81346
b21 -0.088 -0.00483 0.08317
b22 0 -0.00009 0.00009
b23 0.002 0.06010 0.05810
a3 0.238 -0.08580 0.32380
b31 0 0.00343 0.00343
b32 -0.0002 -0.00020 0.00000
b33 -0.139 0.43352 0.57252

Example 5 - Predator-prey interactions between E. sexmaculatus and T. occidentalis, analyzed with 15DF and 
20DF-splines

 Mühlbauer et al. Estimate Absolute Difference
a1 0.344 0.03525 0.30875
b11 0 0.00038 0.00038
b12 -0.059 -0.03619 0.02281
a2 -0.236 -0.44687 0.21087
b21 0.0005 0.00159 0.00109
b22 0 -0.03540 0.03540
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1092

1093 Table S4.3 – MAR estimates for five experimental data sets from (Mühlbauer et al., 2020). Data came 
1094 from (Gause, 1934), (McLaren & Peterson, 1994) and (Huffaker et al., 1963) experiments. See R package 
1095 gauseR (Mühlbauer et al., 2020) for datasets “gause_1934_science_f02_03”, “gause_1934_book_f32”, 
1096 ”mclaren_1994_f03” and “huffaker_1963” for details on observations. Parameter estimates from 
1097 Mühlbauer et al. can also be found in Table 2 on their paper.

1098 Example 1 - Paramecium caudatum in monoculture.

MAR
MAR log 

transformation 
MAR with data 

smoothing

MAR log 
transformation with 

smoothing

β1 0.90000 0.85550 0.90400 0.74718
α1 9.93000 0.15590 10.22600 0.21106
δ1 287.57000 0.06920 126.15300 0.00525

1099

1100 Example 2 - Paramecium caudatum and Paramecium aurelia in coculture 

MAR
MAR log 

transformation 
MAR with data 

smoothing

MAR log 
transformation with 

smoothing

β11 0.81800 0.73590 0.91500 0.98309
β21 0.07170 0.03240 0.11600 0.03625
β12 -0.16030 -0.07020 -0.16900 -0.26372
β22 0.82140 0.71450 0.87700 0.73153
α1 27.54890 1.38260 0.91000 0.07810
α2 20.30740 1.28150 5.82700 0.15430
δ1 262.75870 0.17190 113.99000 0.03530
δ2 253.59620 0.03470 11.12100 0.00202

1101

1102 Example 3 - Predator-prey interactions between Didinium nasutum and Paramecium caudatum

MAR
MAR log 

transformation 
MAR with data 

smoothing

MAR log 
transformation with 

smoothing

β11 0.52400 0.80250 0.37800 0.86900
β21 0.57700 0.10510 0.52100 0.18700
β12 -0.57200 -0.21950 -0.45100 -0.25400
β22 0.63300 0.59490 0.69100 0.76500
α1 12.93300 -1.11100 0.40300 -0.75400
α2 -2.76100 0.06450 0.23900 0.70000
δ1 94.22700 10.97630 140.72600 7.15700
δ2 27.95400 23.00840 83.62600 9.82300

1103
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1106

1107 Example 4 - Multi-trophic dynamics for wolves, moose, and fir trees

MAR
MAR log 

transformation 
MAR with data 

smoothing

MAR log 
transformation with 

smoothing

β11 0.62900 0.69390 1.13000 1.17360
β21 -4.15000 -0.04540 -3.48000 -0.04426
β31 -0.00083 -0.02210 0.00137 0.07236
β12 0.00517 0.07570 0.00148 0.01665
β22 0.84800 0.86270 0.90300 0.89080
β32 -0.00007 -0.12840 -0.00009 -0.13234
β13 -27.30000 -0.34650 10.70000 0.22128
β23 96.60000 0.08020 245.00000 0.13054
β33 0.89000 0.89160 1.11000 1.06497
α1 15.90000 0.12600 -0.35700 -0.02613
α2 241.00000 1.18230 27.80000 0.02986
α3 0.14200 0.85670 -0.00485 -0.01065
δ1 32.30000 0.06210 3.88000 0.00553
δ2 15000.00000 0.01080 1290.00000 0.00127
δ3 0.00382 0.02160 0.00098 0.00591

1108

1109 Example 5 - Predator-prey interactions between E. sexmaculatus and T. occidentalis

MAR
MAR log 

transformation
MAR with data 

smoothing

MAR log 
transformation with 

smoothing

β11 1.01500 0.88120 1.11000 1.05163
β21 0.00900 0.53850 0.00718 0.47337
β12 -17.79700 -0.09960 -16.00000 -0.10626
β22 0.56200 0.75520 0.73200 0.86330
α1 94.24600 0.80680 0.47700 -0.00088
α2 -1.28500 -2.86420 -0.02580 -0.01771
δ1 15440.27300 0.13470 1360.00000 0.02078
δ2 5.55100 0.33790 1.93000 0.08104

1110
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1114 Table S5.1 – Synthetic MAR data 

MAR Results
t X1 X2 X3 X4

1 5 10 15 20
2 5.62418 35.2103 21.4125 10.3696
3 13.077 68.6603 16.2175 6.98986
4 30.8946 57.2944 7.75681 8.13234
5 42.7475 27.4855 3.71568 13.9927
6 31.3421 13.2593 2.63367 24.3619
7 16.5916 9.92497 3.02139 31.2622
8 9.868 12.4469 4.56419 27.4996
9 8.72248 20.3998 6.5998 19.5587

10 11.2768 30.657 7.33895 14.4998
11 16.7965 33.724 6.20514 13.314
12 21.9882 27.4413 4.66674 15.2345
13 22.1248 19.9474 3.79027 19.1227
14 18.0405 16.0646 3.69825 22.5386
15 14.0932 15.9557 4.22409 22.9275
16 12.3388 18.7495 5.03802 20.5772
17 12.7869 22.8183 5.59201 17.8653
18 14.8002 25.3774 5.51118 16.4484
19 17.1129 24.6804 4.99159 16.6605
20 18.1251 21.9731 4.48974 18.0462
21 17.3171 19.5701 4.27918 19.6396
22 15.6847 18.6862 4.39198 20.3941
23 14.456 19.3693 4.70288 19.9587
24 14.1822 20.9554 4.99681 18.8896
25 14.7787 22.3651 5.08888 17.9987
26 15.7517 22.7146 4.95911 17.7463
27 16.4482 21.9861 4.74141 18.1246
28 16.4701 20.8982 4.58774 18.7896
29 15.9468 20.1878 4.56995 19.2878
30 15.3325 20.1628 4.6678 19.3417
31 15.0101 20.6857 4.80099 19.0122
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1117 Table S5.2 –Synthetic MAR data with added noise (noisy MAR) 

Noisy MAR data
t X1 X2 X3 X4

1 0.7537 5.7537 10.7537 15.7537
2 3.6789 33.265 19.4672 8.42431
3 22.0484 77.6318 25.189 15.9613
4 27.8408 54.24056 4.70298 5.0785
5 44.2644 29.0024 5.23259 15.5096
6 27.0183 8.93558 0.005 20.0381
7 12.285 5.61827 0.005 26.9555
8 8.64674 11.2257 3.34294 26.2784
9 13.7228 25.4001 11.6001 24.559

10 9.55584 28.9361 5.61798 12.7788
11 19.8884 36.8159 9.29705 16.406
12 16.6399 22.093 0.005 9.88615
13 20.6563 18.479 2.32184 17.6543
14 15.1923 13.2165 0.85012 19.6905
15 12.7385 14.601 2.86941 21.5728
16 16.8878 23.2986 9.58707 25.1263
17 12.3928 22.4243 5.19791 17.4712
18 15.4333 26.0105 6.14431 17.0815
19 18.0468 25.6143 5.92554 17.5945
20 15.8709 19.7188 2.23545 15.7919
21 12.0743 14.3274 0.005 14.3969
22 14.4706 17.472 3.17787 19.18
23 14.9269 19.8403 5.17384 20.4297
24 17.9169 24.6901 8.73157 22.6243
25 13.8412 21.4276 4.15137 17.0612
26 14.6419 21.6048 3.8493 16.6365
27 22.3732 27.9111 10.6664 24.0496
28 13.6319 18.06 1.74954 15.9514
29 17.5022 21.7432 6.12531 20.8432
30 13.1904 18.0207 2.52572 17.1996
31 16.5325 22.2082 6.32346 20.5347
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1121 Table S5.3 – Synthetic MAR data with added noise replicates (replicate MAR)

Replicate MAR data
t X1 X2 X3 X4
1 4.49781 10.2631 14.7632 23.5471
1 5.11697 10.6373 13.2546 22.8581
1 4.17474 9.28028 15.2697 20.3851
1 4.79837 11.4797 15.3701 19.8827
1 4.61115 11.0217 12.2586 29.2412
3 11.9312 79.1524 17.0672 8.07106
3 10.947 62.6395 13.8815 7.31271
3 10.049 72.0532 15.922 9.44662
3 12.7162 67.1334 13.9795 6.6798
3 13.5553 74.391 19.6732 8.34617
5 41.8787 35.199 2.3953 15.7358
5 38.2823 34.7539 3.4456 17.6842
5 43.1218 17.1583 3.38346 9.12718
5 44.2767 37.916 2.02733 16.7366
5 30.7883 37.517 4.74218 11.6452
7 15.7223 9.78831 2.79243 47.4058
7 17.0225 8.50962 3.40691 32.5233
7 16.3596 9.74137 3.29265 24.6074
7 12.7344 13.1973 1.77531 31.342
7 12.9829 10.462 3.63077 18.2921
9 10.287 20.1958 4.824 12.0043
9 9.96034 19.7555 6.8854 22.756
9 11.7355 19.9764 5.86442 25.1459
9 7.16472 15.6769 5.89983 29.1256
9 7.27019 22.0869 5.04399 14.9662

11 15.6781 42.9179 5.62292 15.5585
11 11.8986 31.024 5.24159 12.3307
11 20.9623 32.9993 6.41934 13.992
11 14.7321 24.0842 5.79439 13.6559
11 20.2166 32.0002 5.82968 17.615
13 18.7011 21.639 3.34761 20.71
13 15.2871 17.8779 3.57818 22.9758
13 20.047 21.1359 3.47356 15.8704
13 25.1738 18.1115 4.81227 20.8173
13 21.4569 21.7648 3.75984 20.8672
15 12.942 9.13784 4.35658 25.9541
15 11.3257 12.4019 3.85461 20.5608
15 15.2742 16.3838 5.09822 30.5096
15 14.0426 15.8784 4.43551 21.3816
15 13.7737 15.6401 4.4472 23.5648
18 14.0831 25.677 5.31579 19.0626
18 14.8202 22.1809 5.23288 14.1771
18 15.3997 29.6731 6.20788 17.111
18 14.5306 26.8466 5.45091 9.73135
18 15.861 23.4862 6.90916 23.5824
22 11.7957 20.8907 4.50092 18.258
22 17.6303 21.3329 4.31011 19.19
22 12.2785 16.3511 4.18731 19.371
22 18.677 17.6922 6.05678 18.6402
22 20.6271 19.2914 3.43852 22.7473
26 15.8405 21.0941 5.80476 19.5684
26 18.9594 18.0741 4.40203 14.1525
26 6.23512 24.2245 6.18947 20.1291
26 11.5617 18.8505 3.18491 22.1173
26 14.6982 18.3201 5.83128 16.8463
30 10.6779 20.0665 4.69269 19.9748
30 16.5898 17.6329 5.2624 14.6922
30 19.4617 17.7483 5.08063 21.715
30 14.4153 13.7083 4.35089 17.093
30 14.1355 23.5724 5.30704 20.2612
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1122

1123 Table S5.4 – Initial conditions and ALVI-MI parameters estimates for the synthetic MAR data

Noise MAR Replicate MAR

Spline 15DF-spline 15DF-spline
Point subsample t = 2, 6, 15, 18, 26 t = 1, 3, 11, 13, 15

Initial condition Initial condition
X1 0.814535 4.639806
X2 7.333485 10.536398
X3 12.89041 14.183246
X4 14.301336 23.182858

Parameter Estimate Estimate
a1 51.4374203 1.986927
b11 -0.7981952 -0.029770
b12 -0.1668495 -0.008283
b13 -1.2191651 0.012518
b14 -1.5223832 -0.068446
a2 34.0728264 2.071364
b21 -0.5711864 -0.054005
b22 -0.1142499 -0.025029
b23 -0.8100883 0.065384
b24 -0.9677829 -0.051774
a3 103.292766 0.327628
b31 -1.7809655 -0.022297
b32 -0.3029228 -0.008557
b33 -2.6887155 -0.002260
b34 -2.8840097 0.010410
a4 30.8332588 -1.318063
b41 -0.4422159 0.036978
b42 -0.1141606 0.014019
b43 -0.770332 -0.029955
b44 -0.9159577 0.029689
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1127 Table S6.1 – Parameter values and initial conditions estimated for the ‘grey whales’ dataset (Gerber, 
1128 Demaster, & Kareiva, 1999)

Results generated with ALVI-MI with 3DF-spline 
and a data sample composed of spline values in 
1959 and 1966.

Parameter True value Estimate

ALVI-MI
a1  0.0948
b11 -3.79E-06
X1(0) 2894 3663.9550

MAR
α1  1260
β11 0.943
δ1 7240000
X1(0) 2894

MAR with log 
transformation
α1  1.0368
β11 0.9512
δ1 0.0327
X1(0) 2894

MAR with smoothing
α1  597
β11 0.9930
δ1 199000
X1(0) 2894

MAR with log transformation 
and smoothing
α1  0.4902
β11 0.9535
δ1 0.0014
X1(0) 2894
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1131 Table S6.2 – Parameters and initial conditions estimated for the ‘Wolves and Moose’ dataset 
1132 (Vucetich, 2021)

Results of ALVI-MI with 15DF-splines 
and a data sample composed of 
spline values in 1991, 1994 and 1997.

ALVI-MI
MAR with log 
transformation

Initial 
condition Estimate

Initial 
condition Estimate

X1 20 21.6545 X1 20 22.0000
X2 538 560.5340 X2 538 564.0000

Parameter Estimate Parameter Estimate
a1  -0.2732 β11  0.7670
b11 0.0073 β21 -0.1788
b12 0.0001 β12 0.0783
a2 0.8431 β22 0.8277
b21 -0.0380 δ1 0.4485
b22  -0.0001 δ2  0.1758
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