
Online supplementary materials and methods 1 

Study design  2 

The purpose of this study on SLE was to unveil the contribution of each immune cell subset to its 3 

pathogenesis by investigating genetic, epigenetic, and transcriptional regulation on immune cells. 4 

In addition, we aimed to find clinical meanings as well as importance of the results. To this end, 5 

we generated and analyzed RNA-seq, ATAC-seq, and genomic data from human peripheral 6 

blood samples. SLE patients with stable activities were recruited in order to avoid strong 7 

interferon and/or inflammatory signal overwhelming some lupus susceptibility signatures. 8 

 9 

Human Participants 10 

In this study, 49 SLE patients and 37 age- and sex-matched HCs for the test cohort and 58 SLE 11 

patients and 55 HCs for the validation cohort were recruited. The SLE patients were ambulatory 12 

patients at the University of Tokyo Hospital. Ethical approval of this study was obtained from 13 

the Human Genome, Gene Analysis Research Ethics Committee of the Graduate School of 14 

Medicine and Faculty of Medicine, University of Tokyo (reference number G10095), and 15 

informed consent was obtained from all subjects. Eligible patients were > 18 years of age and 16 

had been diagnosed with SLE according to the American College of Rheumatology 1997 revised 17 

classification criteria. The inclusion criteria were as follows: (1) treatment with < 10 mg/day 18 

prednisolone, (2) absence of autoimmune diseases other than Sjögren’s syndrome, and (3) 19 

absence of malignancies within the last 5 years. All of the patients and HCs were East Asian. To 20 

evaluate the effect of the OXPHOS gene signature on long-term prognosis, patients with an 21 

estimated glomerular filtration rate < 50 ml/min were excluded, resulting in 36 and 38 SLE 22 



patients remaining in the test and validation cohorts, respectively. The clinical characteristics of 1 

the SLE patients were assessed with the 2012 Systemic Lupus International Collaborating 2 

Clinics criteria [1] and systemic lupus activity measure-revised [2], and are summarized in online 3 

supplementary table S6. 4 

 5 

Animals 6 

C57BL6/J mice were purchased from Japan SLC (Hamamatsu), and Prdx6 KO mice were cryo-7 

recovered from embryos in the KOMP (KNOCKOUT MOUSE PROJECT) repository. All mice 8 

were used at 7–10 weeks of age. All animal experiments were conducted in accordance with 9 

institutional and national guidelines. 10 

 11 

Separation of immune cell subsets by multi-parameter flow cytometry 12 

Human PBMCs were isolated from 25 ml whole blood by centrifugation (1,000 g for 10 min.) 13 

over Ficoll, and each immune cell subset was sorted using a flow cytometer (MoFlo XDP 14 

[Beckman Coulter] for the test cohort and FACSAria Fusion [BD Biosciences] for the validation 15 

cohort). For the definitions of each immune cell subset, we followed the strategy recommended 16 

by the Human Immunology Project Consortium [3]. We collected 5,000 cells per subset. The 17 

precise gating strategy and list of antibodies used are presented in Table S7. 18 

 19 

RNA-seq library preparation and sequencing 20 

For the test cohort, total RNA was isolated from each immune cell subset in 350 µl RLT Buffer 21 

(Qiagen) containing 1% b-mercaptoethanol. For the validation cohort, total RNA was isolated 22 



from each immune cell subset using the MagMAX kit (Thermo Fisher Scientific) following the 1 

manufacturer’s protocol. RNA quality was assessed by the RNA integrity number obtained from 2 

the Agilent BioAnalyzer 2100. Sequencing libraries were constructed from total RNA using 3 

Smart-Seq v2 [4] for the test cohort and the Smart-Seq v4 Ultra Low Input RNA Kit for 4 

Sequencing (Clontech) for the validation cohort. Paired-end sequencing was performed on the 5 

HiSeq 2500 sequencer (Illumina) with a target of approximately 10 million read pairs per 6 

sample. The resulting bcl files were deconvoluted and converted to FASTQ format using 7 

bcl2fastq v1.8.4 from Illumina. FASTQ files were aligned to the human genome within the 8 

UCSC Genome Browser (GRCh38; GenBank assembly GCA_000001405.18) using STAR 9 

(v2.5). HTSeq-count (v0.6.1) was used to generate gene counts. In the quality-control analysis, 10 

samples with a Phred quality score > 20 were selected using the FASTX-Toolkit (v0.0.14). As 11 

the level of mitochondrial transcription is an indicator of cell stress, we applied a cutoff 12 

percentage of mitochondrial gene transcripts of < 8% [5]. Genes were filtered to include those 13 

with raw read counts ≥ 10 in at least 10% of each cell subset library. The final data set included 14 

18 immune cell subsets composed of approximately 12,000 genes. Genes were normalized using 15 

the trimmed mean of M value (TMM) method. For detecting outlier samples, Spearman’s 16 

correlation for each subset was calculated, and samples with an average r2 < 0.8 were omitted as 17 

outliers. 18 

 19 

RNA-seq in stimulated mouse splenic and human B cells 20 

Using Smart-Seq2, RNA-seq libraries were constructed from mouse splenic B cells purified from 21 

WT or Prdx6 KO mice and human naive/memory B cells stimulated with type I IFN and/or a 22 

TLR9 agonist. Paired-end sequencing was performed using the MiSeq sequencer (Illumina) with 23 



a target of approximately 300,000 reads per sample. The resulting bcl files were deconvoluted 1 

and converted to FASTQ format using bcl2fastq v1.8.4 from Illumina. FASTQ files were aligned 2 

to the human genome (GRCh38; GenBank assembly GCA_000001405.18) or mouse genome 3 

(GRCm38; GenBank assembly GCA 000001635.2) within the UCSC Genome Browser using 4 

STAR (v2.5.3a). 5 

 6 

Fast-ATAC-seq 7 

An additional eight SLE patients and eight HCs were enrolled for the ATAC-seq analysis. The 8 

inclusion criteria for these subjects were the same as those for the transcriptome analysis. We 9 

used a Fast-ATAC-seq protocol optimized for blood cells [6]. Five thousand sorted cells in wash 10 

buffer (PBS containing 1% FCS and 1 mM EDTA) were pelleted by centrifugation at 500 × g for 11 

5 min at 4°C in a precooled fixed-angle centrifuge. All of the supernatant was removed. Next, 12 

transposase mixture (25 µl 2× TD buffer, 2.5 µl TDE1, 0.25 µl 2% digitonin, and 22.25 µl 13 

nuclease-free water) (Nextera DNA Library Prep Kit, Illumina; G9441, Promega) was added to 14 

the cells, and the pellet was disrupted by pipetting. The transposition reactions were incubated at 15 

37°C for 30 min in an Eppendorf ThermoMixer with agitation at 300 rpm. The resulting DNA 16 

was purified using the QIAGEN MinElute Reaction Cleanup kit (28204), and purified DNA was 17 

eluted in 10 µl elution buffer (10 mM Tris-HCl, pH 8). Transposed fragments were amplified 18 

and purified as described previously[7,8]. Libraries were quantified using qPCR prior to 19 

sequencing. All Fast-ATAC-seq libraries were sequenced using paired-end, single-index 20 

sequencing on the HiSeq 2500. Dendritic cell subsets (myeloid and plasmacytoid dendritic cells) 21 

were not collected for the ATAC-seq analysis because of the limited volume of total blood 22 

collected from each subject. We evaluated a total of 15 types of immune cells. 23 



 1 

ATAC-seq data analysis 2 

Reads were trimmed using a custom script and aligned using Bowtie 2 (v2.3.4.3). Quality control 3 

was performed using ATACseqQC (v1.2.10) [9]. For peak calling, data were grouped according 4 

to each unique cell type, and peak summits were called using MACS2 (v1.4.3) and filtered using 5 

a custom blacklist, as described previously [10]. The complete data set comprised a total of 6 

278,973 peaks. To obtain normalized fragment counts, which were used for all downstream 7 

processing steps, coverage tracks were visualized using the integrative genomics viewer [11]. 8 

We performed stratified LDSC (available as open-source software at 9 

http://www.github.com/bulik/ldsc) to determine whether heritability is enriched in the open 10 

chromatin regions in each immune cell subset, using our ATAC-seq peaks for regression and 11 

summary statistics from a previous SLE GWAS [12] for the reference panel. We used DiffBind 12 

(v2.4.8) (Stark R, Brown G (2011). DiffBind: differential binding analysis of ChIP-Seq peak 13 

data) to obtain DARs and HOMER (v4.11.1) to identify the genes nearest to the DARs. 14 

ChromVAR, which is available as open-source software 15 

(http://www.github.com/GreenleafLab/chromVar), was used to compute bias-corrected 16 

accessibility and the z-score for each TF annotation in each immune cell subset [13]. We utilized 17 

downstream applications for cell clustering using bias-corrected z-scores. 18 

 19 

DEG analysis 20 

Genes with low read counts were removed before the DEG analysis. DEG analysis was 21 

performed using the data sets for each immune cell subset from SLE patients and HCs. We used 22 



the edgeR (v3.18.1) package to calculate DEGs; run batch effects were removed, and raw count 1 

data were normalized by TMM. Resulting p-values were adjusted for multiple hypothesis testing 2 

and filtered to retain DEGs with a q-value < 0.05. We performed pathway analysis of the DEGs 3 

using Ingenuity Pathway Analysis, and the pathways with a −log10 p-value > 10 in any immune 4 

cell subset were visualized by a heatmap. Heritability estimates of the top 1000 DEGs in each 5 

immune cell subset were calculated using LDSC analysis of specifically expressed genes [14]. 6 

Genome locations of the DEGs were identified using PBMC data (E062) from the ROADMAP 7 

project after excluding quiescent sites. We used summary statistics from a previous GWAS on 8 

SLE [15] for our reference panel. 9 

 10 

Module definition using WGCNA 11 

WGCNA (v1.67) is an open-source package for R available at 12 

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/. We removed 13 

genes with a read count < 10 in > 90% of the samples and normalized the data using TMM. Read 14 

counts were transformed to logCPM values, and batch effects in the RNA extraction method 15 

(due to different columns used for RNA extraction) were removed by an empirical Bayesian 16 

framework (comBat in the sva package, v3.24.4). We performed singular value decomposition 17 

(SVD) and calculated module eigengenes, defined as the first left singular vector of the 18 

expression matrix corresponding to the module. Correlations of each vector value in each module 19 

were calculated, and we visualized all correlations of r2 > 0.7 or 0.8 using igraph (v1.2.4) in the 20 

R package. The node size represents the relative number of genes in the module, and the 21 

presence of an edge indicates a significant correlation between two modules, with the edge 22 

thickness reflecting the strength of the correlation. To calculate the signature scores for the gene 23 



sets, we also applied SVD and defined the vector value as the score. The score for the OXPHOS 1 

gene signature was calculated using the HALLMARK OXIDATIVE PHOSPHORYLATION 2 

gene set (200 genes), and that for the type I IFN signaling-related gene (ISRG) signature was 3 

calculated based on GO gene sets from MSigDB (v6.1) (response to type I IFN (GO:0034340), 4 

regulation of type I IFN production (GO:0032479), and regulation of type I IFN-mediated 5 

signaling pathway (GO:0060338): 184 genes, but we excluded those with low expression, 6 

leaving 148 genes.) Signature scores were calculated using transcriptomic data from SLE 7 

patients. 8 

 9 

Imputation and genotyping 10 

In the test cohort, genotyping was performed using the Infinium® OmniExpressExome-8 v1.4 11 

BeadChip (GRCh37). For quality control, identity-by-descent estimation of relatedness is used to 12 

help phase the individuals accurately over long stretches. In addition, we checked sex and 13 

removed monomorphic alleles or alleles with a missing rate > 0.01. After removing outliers by 14 

principal component analysis using HapMap populations, we performed pre-phasing-based 15 

imputation using the programs SHAPEIT and IMPUTE2 together. To fully account for the 16 

uncertainty in imputed genotypes, an observed data likelihood approach implemented in 17 

SNPTEST was used, in which the contribution of each possible genotype is weighted by its 18 

imputation probability. We utilized liftOver (available as open-source software at 19 

http://genome.ucsc.edu/cgi-bin/hgLiftOver) to convert GRCh37 to GRCh38. In the validation 20 

cohort, whole genome was sequenced on Illumina’s HiSeq X. Data processing was performed 21 

based on the standardized best-practice method proposed by GATK (v 4.0.6.0). A total of 22 



6,165,701 variants (minor allele frequency ≥ 5%) in the test cohort and 8,105,611 variants 1 

(minor allele frequency ≥ 1%) in the validation cohort were selected and used for eQTL analysis. 2 

 3 

cis-eQTL analysis in HCs and patients with immune-mediated diseases (IMD) 4 

In this analysis, we used our RNA-seq and whole genome sequencing data from 79 HCs, 25 5 

patients with Anti-Neutrophil Cytoplasmic Antibodies (ANCA)-associated vasculitis, 18 patients 6 

with adult-onset Still’s disease, 23 patients with Behcet’s disease, 19 patients with mixed 7 

connective tissue disease, 65 patients with inflammatory myositis, 24 patients with rheumatoid 8 

arthritis, 18 patients with Sjögren’s syndrome, 62 patients with SLE, 67 patients with systemic 9 

sclerosis, and 16 patients with Takayasu arteritis [16]. We excluded data from third-degree 10 

siblings. After sample QC, low-expressed genes (< 5 count in more than 80% samples or < 0.5 11 

CPM in more than 80% samples) were filtered and residual expression data were normalized 12 

between samples with TMM, converted to counts per million, and then normalized across 13 

samples using an inverse normal transform. Probabilistic Estimation of Expression Residuals 14 

(PEER) method was applied to normalized expression data to infer hidden covariates. Top two 15 

genetic principal components, sorter batch, disease types, sex and hidden covariates estimated by 16 

PEER were utilized as covariates for eQTL analysis. eQTL analysis was performed using the 17 

QTLtools package. This cis-eQTL analysis revealed an average of 6,000–8,000 SNP–gene 18 

associations in each immune cell subset with a < 0.05 false discovery rate. We used lead SLE-19 

related SNPs from the GWAS Catalog (https://www.ebi.ac.uk/gwas/) and applied two LD data: 20 

Japanese LD data and European LD data from the 1000 Genomes Project phase 3. We selected 21 

eGenes with r2 > 0.8 at both LD data. A manual document retrieval system was applied to 22 

eGenes in any B cell subset using PubMed data base to search their functions in B cells. 23 



 1 

Key driver gene analysis 2 

For disease-related cis-eQTL analysis, we used our RNA-seq and genotyping data from 48 SLE 3 

patients in test cohort. We excluded data from third-degree siblings. After sample QC, low-4 

expressed genes (< 10 count in more than 90% samples or < 0.1 FPKM in more than 80% 5 

samples) were filtered and residual expression data were normalized between samples with 6 

TMM, converted to counts per million, and then normalized across samples using an inverse 7 

normal transform. PEER method was applied to normalized expression data to infer hidden 8 

covariates. RNA extraction batch, sex, age and hidden covariates estimated by PEER were 9 

utilized as covariates for eQTL analysis. eQTL analysis was performed using the QTLtools 10 

packages (version 1.2). We selected lead SLE-related SNPs from the GWAS Catalog 11 

(https://www.ebi.ac.uk/gwas/) and INSIDEGEN (http://insidegen.com/insidegen-home.html). 12 

We identified eSNP-eGene lists focusing on the GWAS top SNPs that have cis-eQTL effects in 13 

strong Japanese LD (r2 > 0.8) within 100kb from TSS sites. Then, we determined the DEGs 14 

between HCs and SLE patients in each immune cell subset and selected those DEGs specific to 15 

immune cell subsets, such as B cells, that were common in the test and cohort data. By 16 

intersecting these DEGs with the eGenes, cell-type-specific key candidate genes and SNPs were 17 

identified. 18 

 19 

Hierarchical clustering and Factor analysis of type I IFN signaling-related signatures 20 

To classify type I IFN signaling-related gene sets, the expression level of each of the 184 genes 21 

in this set was subjected to z-score normalization in each immune cell subset in SLE patients. 22 



Using these expression data, we performed correlation-matrix-based hierarchical clustering. 1 

Factor analysis was used to determine whether the expression levels of multiple genes were 2 

regulated by a smaller number of unobserved continuous variables [17]. The Kaiser–Meyer–3 

Olkin measure was used to verify the sampling adequacy of the analysis [18]. We applied the 4 

psych R package. The optimum number of factors was determined as under seven by a parallel 5 

analysis. After identifying the number of factors, oblique (promax; kappa = 4) rotation was used 6 

to obtain the final factor solution. Factor scores were calculated using Bartlett’s method. The top 7 

10 genes detected by factor analysis were used to calculate the signature score of each type I IFN 8 

signaling-related gene cluster. 9 

 10 

Correlations of clinical parameters with the OXPHOS and C6 gene signatures 11 

We excluded patients with an estimated glomerular filtration rate < 50 ml/min, because severe 12 

renal dysfunction might cause metabolic changes and affect the OXPHOS signature in PBMCs. 13 

The OXPHOS, C6, and ISRG scores in each immune cell subset were calculated by SVD. SLE 14 

patients were divided into the high and low signature score groups by Ward’s hierarchical 15 

clustering method. After dividing the SLE patients with SDIs >0 into two groups according to 16 

the high/low OXPHOS or C6 signature score, enrichment analysis of each patient group to each 17 

clinical characteristic of SLE patients was performed. The signed −log10 p-values were 18 

visualized by heatmap. A p-value < 5% was considered significant. 19 

 20 

Reagents used for in vitro culture 21 



We used the B Cell Isolation Kit, mouse (Miltenyi Biotec) for isolation of splenic B cells and the 1 

Memory B Cell Isolation Kit II (Miltenyi Biotec) for isolation of human naive and memory B 2 

cells. The purity of the cells was confirmed to be > 95% in each experiment. Human B cells (1 x 3 

105/well) and mouse B cells (3 x 105/well) were plated in 96-well U-bottom plates and cultured 4 

for 72 h with combinations of cytokines; a TLR9 agonist and IFN-a. The TLR9 agonists CpG 5 

ODN 2006 (Enzo Life Sciences) and ODN 1668 (Enzo Life Sciences) at 2.5 µg/ml were used for 6 

human and mouse TLR9 stimulation, respectively. Recombinant human IFN-α A (α 2b) (Pierce) 7 

and mouse IFN-α (PBL Assay Science) were used at a concentration of 1000 U/ml. Antibodies 8 

against the following proteins were used for flow cytometry: mouse CD3 (clone: 17A2), CD19 9 

(clone: 1D3), CD138 (clone: 281-2), GL7 (clone: GL7), CD95 (Fas) (clone: Jo2) and B220 10 

(clone: RA3-6B2), and human CD38 (clone: HIT2) and CD27 (clone: O323) (all from 11 

BioLegend). Antibodies against mouse CXCR5 and PD-1 (clone: J43) and human CD19 (clone: 12 

HIB19) were purchased from BD Biosciences. For ETC inhibition, human memory B cells (4 x 13 

105/well) were plated in 96-well U-bottom plates and then treated with the following ETC 14 

inhibitors (all from Sigma-Aldrich): 5 µM rotenone for mitochondrial complex I, 1 mM 15 

malonate for complex II, 1 µM antimycin A for complex III, and 1 mM KCN for complex IV. 16 

 17 

Transmission electron microscopy 18 

Human naive B cells, memory B cells, and PB cells were purified from four SLE patients and 19 

four healthy volunteers by magnetic cell sorting (Miltenyi Biotec). Splenic B cells were sorted 20 

from Prdx6 KO and WT littermate control mice by fluorescence activated cell sorting. The cells 21 

were fixed in Karnovsky’s fixative (2% paraformaldehyde, 2.5% glutaraldehyde, and 0.08 M 22 

cacodylate buffer), dehydrated, and then embedded in epoxy resin. Tomography sections were 23 



imaged using the JEM-1011 (JEOL). Twenty cells per subset were analyzed, and mitochondria > 1 

500 nm in diameter were defined as swollen [19]. We calculated the percentage of cells with 2 

swollen mitochondria. 3 

 4 

Extracellular flux analysis 5 

To investigate the metabolic status, we used a standardized protocol to measure the oxygen 6 

consumption rate and extracellular acidification rate using the Seahorse XF 96 analyzer as 7 

described previously [20]. In brief, 3 x 105 human B cells from PBMCs or 4 x 105 mouse splenic 8 

B cells/well were plated in 96-well Seahorse plates coated with Cell-Tak (Corning). As an 9 

indicator of mitochondrial function, the oxygen consumption rate was measured in real-time. B 10 

cells were treated sequentially with 1 µM oligomycin, 2 µM carbonyl cyanide-4-11 

(trifluoromethoxy) phenylhydrazone (a mitochondrial uncoupler), and 0.5 µM rotenone plus 0.5 12 

µM antimycin A (respiratory chain inhibitors). 13 

 14 

Immunization and quantification of NP-KLH-specific antibody responses 15 

Sex- and age-matched WT littermate control and Prdx6 KO mice were intraperitoneally 16 

administered 200 µg NP-KLH (Biosearch Technologies) emulsified with an equal amount of 17 

Imject Alum (Thermo Fisher Scientific). On day 8 following immunization, mouse sera were 18 

collected for ELISA, and isolated splenocytes were analyzed by flow cytometry. Anti-NP IgG 19 

and IgM levels were quantified by ELISA on plates coated with NP(4)-bovine serum albumin 20 

(Biosearch Technologies) as the capture antigen. Serially diluted pooled sera from NP-KLH-21 

immunized C57BL/6 mice were utilized as a standard. Following incubation with sample and 22 



control sera, HRP-conjugated goat anti-mouse IgG or IgM (Bethyl Laboratories) and TMP 1 

substrate (KPL) were added to the plates. 2 

 3 

Statistical analysis 4 

Statistical tests were performed using Wilcoxon rank-sum test when sample sizes were more 5 

than five. Fisher’s exact test was used to determine nonrandom associations between two 6 

categorical variables. The Boruta algorithm, a wrapper approach built around the random forest 7 

classification algorithm, was used for feature selection in SLE patients with neurologic disorders, 8 

using perc = 99 as the threshold. Boruta is an open-source package for Python available at 9 

https://github.com/scikit-learn-contrib/boruta_py. 10 

 11 
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