
Supplementary material to:
COBREXA.jl: constraint-based reconstruction

and exascale analysis

Miroslav Kratochvíl , Laurent Heirendt , St. Elmo Wilken , Taneli Pusa , Sylvain Arreckx ,
Alberto Noronha , Marvin van Aalst , Venkata P. Satagopam , Oliver Ebenhöh ,

Reinhard Schneider , Christophe Trefois , and Wei Gu

S1 Internal structure of COBREXA.jl
This section summarizes the design rationale and extensibility of the COBREXA.jl package.

S1.1 Polymorphic models future proofs analysis workflows
COBREXA.jl does not enforce a single universal model type. This ensures that the package will be able to
incorporate novel model structures that are possibly incompatible with current standards and assumptions,
while maintaining the functionality of the existing analysis workflows. To ensure that the new extensions in-
corporate well into the package ecosystem, COBREXA.jl defines a structure-agnostic interface for accessing
the model data and enforces its use in the main analysis functions. In the long term, this promotes separation
of concerns and avoids the feature creep that inevitably occurs in any all-encompassing data structure.

As a typical example, new structure of the annotations and constraints may be required to be implemented
in the models in the future, possibly causing incompatibility with any current data layout; separating the new
model structure prevents the changes from breaking the existing code. Custom model data structures may also
be designed to utilize specific optimizations for particular use-cases without the rist of causing undesirable
overhead in others – for example, implementing a model with index structures that allow rapidly computing
knockouts of reactions by selected genes will not impose the re-indexing overhead in models and analyses
that do not require work with genes.

The custom model structures interface with COBREXA.jl analysis functions using a polymorphic inter-
face of several overloaded accessor methods, which rely on multiple dispatch system of Julia. The accessors
methods include simple functions to recreate the stoichiometric matrix, bounds and objective vectors, and
functions that access various model annotations (if available), including the gene-reaction relationships and
chemical formulas of the metabolites. The analysis functions use only these generic accessors to read the nec-
essary information from models, which ensures their portability to any future model structure implemented
by the users.

COBREXA.jl includes ready-to-use model types that reflect the common practice in current metabolic
modeling, including the type CoreModel (a COBRA Toolbox-style sparse matrix model), StandardModel
(an object-oriented-style model similar to COBRApy models), and SBMLModel (which mimics the structure
of Systems Biology Markup Language as described by Keating et al., 2020). Thanks to the polymorphic
design, all model types are freely interchangeable in the implemented workflows, and can be supplemented
by the user by implementing another subtype of the abstract MetabolicModel type.

An up-to-date description of the model interface can be obtained from the documentation at https:
//lcsb-biocore.github.io/COBREXA.jl/. An example implementation of the accessor structure for a
very simple custom model used in benchmarking can be seen in supplementary script benchmark-prep.jl
(Table S1).

S1.2 Specification of model variants and solver modifications
To allow for straightforward implementation of large analyses, COBREXA.jl utilizes the high-level program-
ming capabilities of Julia to create a set of model and analysis modifiers that can be used to declaratively
specify various properties of the analysis sub-tasks. In the distributed processing framework, these functions
act as small ‘recipes’ that are efficiently transferred to remote workers where they make larger changes to the
model structure. All analysis functions accept a list of such modifiers and apply them to the model before
the analysis, providing a useful way for e.g. controlling specific optimizer parameters without any additional
implementation overhead.

1

https://lcsb-biocore.github.io/COBREXA.jl/
https://lcsb-biocore.github.io/COBREXA.jl/

For example, flux balance analysis may be modified declaratively to solve a different objective (declared
by set_objective) with one reaction knocked out (declared by set_bounds) as follows:
optimal_flux = flux_balance_analysis_vec(

model, # a loaded model
Tulip.Optimizer; # the linear problem solver to use
modifications = [

set_objective("Reaction1"), # tell the optimizer to optimize the rate of Reaction1
set_bounds("Reaction2", 0, 0), # set the lower and upper bound of Reaction2 to 0

]
)

Specific functions are provided to run parallel analysis of many model variants at once. That way, with
a model type that supports the gene knockouts, one can easily combine the basic tools to run a flux balance
analysis for all combinations of single-gene knockouts and single-reaction knockouts, producing a matrix of
the objective values from all sub-results as follows:
results = screen(

model;
variants = [# a matrix of all variants to be examined

[
each variant is specified by a list of the modifications:
with_gene_knockout(g),
with_removed_reaction(rxn)

]
for rxn=reactions(model), g=genes(model)

],
the `analysis ` is a function executed independently on each variant
analysis = m -> objective_value(flux_balance_analysis(m, Tulip.Optimizer)),
parallelism is enabled by specifying IDs of the worker processes:
workers = [2,3,4,5]

)

S1.3 Model distribution optimizations
COBREXA.jl uses the DistributedData.jl package (https://github.com/LCSB-BioCore/
DistributedData.jl, Kratochvíl et al., 2020) for explicitly caching temporary copies of frequently
reused dataset objects (in most cases, the whole model structure) on remote workers, avoiding the potentially
slow transfer of base data during the distributed analysis. Distributed and parallel processing is enabled by
passing a worker list to any given analysis function.

The model distribution process is optimized to utilize shared storage, which is a common (although not
standardized) feature of many HPC systems. To allow the users to benefit from this feature while avoid-
ing portability problems (such as HPC-system-specific implementations of analysis functions), the feature
is enabled by utilizing a simple ‘wrapper’ model structure that transparently serializes any other model to
a fast shared storage and loads it on demand on remote workers. The specific disk-cached type, called
Serialized{M}, works with any subtype M of MetabolicModel. The benchmark script benchmark-
prep.jl (Table S1) demonstrates the use with a simple custom model type.

S2 The need for scalable COBRA implementations
To illustrate the scale of computation required for various classes of realistic, biologically relevant prob-
lems, we catalogued the size of existing published unicellular models (collected from AGORA and BIGG
databases), several multicellular organism models, whole-organ and whole-body reconstructions, and vari-
ous publications referencing the microbiomes of human, bovine, canine, ocean, and soil. Figure S1 shows

2

https://github.com/LCSB-BioCore/DistributedData.jl
https://github.com/LCSB-BioCore/DistributedData.jl

10^18 operations for a single model

10^18 operations for 1 million model variants

1 k

1 M

1 G

Bac
te

ria

Oth
er

 si
ng

lec
ell

Sing
lec

ell
 co

m
m

un
ity

M
ult

ice
ll

Hum
an

Hum
an

 +
 g

ut
 b

iot
a

M
et

ag
en

om
ic

m
od

els

R
ea

ct
io

ns
 in

 p
ub

lis
he

d
m

od
el

 (
lo

g−
sc

al
e)

Figure S1: Size of the published models (represented by dots) can easily cause the analysis to reach huge
computation volumes. The latest human microbiome models would cross the threshold of 1018 required oper-
ations (one ‘exa-operation’) if around 4 million model variants would be processed using typical algorithms,
such as FVA. Models constructed from metagenomic data exceed this bound at mere thousands of analyzed
variants. The model size thresholds are highlighted by horizontal lines.

3

the number of reactions contained in each system (putative in the case of the metagenomic systems). Typi-
cally, analysis of metabolic models combines a constraint-based analysis with generation and scrutinization
of multiple variants of the model or the optimization objective (e.g., flux balance analysis on multiple gene
and organism knockouts, flux variability analysis on all reactions, …). In Figure S1, the markers illustrate
the putative model size where the usual analysis will inevitably reach 1018 required basic operations i.e. the
exa-scale boundary. For the estimation, we considered a flux-variability-style analysis on all model reactions,
which requires at least O(|reactions|2) computation steps in the case of a single model, possibly multiplied
by the total number of examined model variants. Notably, the notion of “operations” used here is asymptotic
– actual instruction count on realistic hardware will be much higher, thus further lowering the thresholds.

S3 Performance and scalability on biological use cases
To assess the scalability and applicability of COBREXA.jl, we performed two benchmarks on realistic use-
cases that demonstrate the scalability results and can be used to estimate the viability of using the different
COBRA implementations for computational tasks of various sizes. An additional benchmark was performed
to estimate the impact of data distribution optimization in the HPC environments.

S3.1 Benchmarked datasets
We used the human gut microbiota models from AGORA database. Pseudorandomly generated subsets of
all microbes were combined into small community models as follows: Exchange reactions in the individual
models were replaced by reactions that transfer the metabolites between the extracellular compartment of the
model and the “community supply” of the metabolite, represented as a special metabolite. Biomass exchange
reactions were processed in the same way, connected with a forward-only reaction that adds the biomass into
the community biomass pool. Additional reactions were added that provide exchange of the community
metabolite supply with the environment (i.e., supply or remove each metabolite from the system). These
were constrained to allow only a small influx of the metabolites compared to outflux (lower bound = −1000,
upper bound = 10), except for water, oxygen and carbon dioxide where both large influx and outflux was
allowed (upper bound = 1000). Additional unidirectional reaction for removing the community biomass
from the model was added, and set as the objective of the model. Using this procedure, we generated models
that contained 5, 10, 20, and 50 individual microbes, each with several differently seeded subsets of the
AGORA microbes. Given the average size of a single microbe model of around 1800 reactions, this allowed
us to easily generate biologically meaningful models of many required sizes. The details are available in
supplementary script benchmark-prep.jl (Table S1).

S3.2 Benchmarked use-cases
We designed two benchmarks that substantiate the benefits of using COBREXA.jl stated in main text Sec-
tion 2. The first benchmark measures the speedup that COBREXA.jl can gain by utilizing distributed work-
ers, as compared to a package that does not implement workload distribution. The second benchmark shows
that the parallelization speedup is available also for newly implemented and user-specified analyses that are
typically not parallelized in the existing COBRA software.

Benchmark 1: Flux variability analysis We chose flux variability analysis as the main benchmark for
determining the scalability of the packages, due to wide availability of parallelized implementations. The

4

corresponding functions from the packages (flux_variability_analysis in both COBRApy and CO-
BREXA.jl) were called to resolve the variability of all reactions in the model with the objective value bound
set to 90% of the global objective. The details can be found in scripts benchmark-fva.jl and .py (Ta-
ble S1).

Benchmark 2: Production envelopes We chose the computation of production envelopes in the model
as an example of an analysis that can be easily parallelized and can be constructed from the building blocks
in COBREXA.jl, but many packages do not implement the parallelization, forcing the users to fall back
to the serial implementations. The production envelopes were created for 3-dimensional grids in the flux
space. We selected the dimensions from the available exchange reactions that supply energetically interesting
metabolites from the environment (choice of the exchanges was made from first 3 exchanges of sucrose, L-
glutamine, galactose, L-glutamate, D-glucose, xylose and arabinose, in order, that were present in the model).
The flux bounds of the selected 3 reactions were set to small influx of the metabolite (bounded between 0
and 100). The envelope computation was then benchmarked for 7, 10, and 14 points in each dimension
(respectively translating into 343, 1000 and 2744 individual optimization problem instances to solve). Only
the reachable flux values were collected. Details are available in scripts benchmark-envelopes.jl and
.py (Table S1).

S3.3 Benchmark setup
Computation environment The benchmarks were conducted on the hardware of the ‘iris‘ cluster of Uni-
versity of Luxembourg HPC facility, see https://hpc.uni.lu/. The computational nodes were equipped
with Intel Xeon E5-2680 v4 @2.4GHz CPUs with 128GB RAM per node; nodes were interconnected with
100GB/s Infiniband EDR. All benchmarks were executed using the Slurm scheduler, using the scripts in
Table S1. Measurements were collected from the log files generated by the scripts.

Measurements of COBRA Toolbox performance were collected on different hardware due to soft-
ware compatibility and licensing issues; we used a single computation node with Intel Intel Core i5-
1038NG7 @2.00GHz and 16GB of RAM. The absolute scales of the results may differ by a con-
stant factor; single-core performance of i5-1038NG7 is estimated 21% higher (precise estimate of
the CPU performance differences can be seen e.g. at https://www.cpubenchmark.net/compare/
Intel-i5-1038NG7-vs-Intel-Xeon-E5-2680-v4/3723vs2779). This does not affect the interpreta-
tion of our benchmark results, which aim to show mainly the impact of multi-core parallelization.

Software We used COBREXA.jl version 1.0.5 (git commit d55323dd from https://github.com/
LCSB-BioCore/COBREXA.jl, with Julia version 1.6.2 and JuMP.jl interface version 0.21.9), COBRApy
version 0.22.1 (Ebrahim et al. (2013), installed from pip, running on Python 3.8.6 with optlang interface
version 1.5.2), and COBRA Toolbox version 3.33 (running on MATLAB 2020b). For solving the constrained
linear problems, we always utilized the Gurobi optimizer version 9.1. In all cases, we only enabled the paral-
lelization methods that were directly supported and documented by the packages, i.e., we did not attempt to
improve the parallelization with external scriptage or manual distribution of the analysis execution to worker
nodes.

The reported measurements are averaged from multiple runs. In case of COBREXA.jl a ‘dummy’ run
with minimal data was executed before collecting benchmark results to allow precompilation of Julia code.
The benchmarks were repeated for multiple model variants of similar size but different contents (differently
seeded random choices of the models used to construct the community, see Section S3.1) to compensate for
the effect of data-dependent solver performance.

5

https://hpc.uni.lu/
https://www.cpubenchmark.net/compare/Intel-i5-1038NG7-vs-Intel-Xeon-E5-2680-v4/3723vs2779
https://www.cpubenchmark.net/compare/Intel-i5-1038NG7-vs-Intel-Xeon-E5-2680-v4/3723vs2779
https://github.com/LCSB-BioCore/COBREXA.jl
https://github.com/LCSB-BioCore/COBREXA.jl

S3.4 Benchmark results and discussion
Results from benchmark 1 in Table S2 show that COBREXA.jl is able to continue to scale to large analysis
and problem sizes and benefit from any available distributed computing resources. In particular, we observed
that COBREXA.jl performs similarly to the state-of-the-art packages in situations where the resources fit on a
single computation node, but continues to scale even when the available resources cannot fit on a single node,
and thus cannot be utilized by shared-memory parallelism schemes. That demonstrates a common limit in
the COBRA packages that can otherwise be only partially countered by the users, usually by implementing
custom parallelization and external task distribution frameworks.

In the benchmark we also observed parallelization overhead in COBREXA.jl, especially with the smaller
models and higher node counts, but the overhead became negligible for larger analyses. Notably, the scaling
advantage was substantial even for the relatively small models of 50 organisms. The observations about scala-
bility are also supported by the previous benchmarking the code of package DistributedData.jl, showing
that it is able to scale to much larger and more communication-intensive use-cases (see Supplementary Figure
S2 in the report of Kratochvíl et al. (2020) for details). Based on the benchmarks, we expect COBREXA.jl
to be able to reliably utilize any added computing resources to provide substantial parallelization speedups
for growing model sizes.

As a side benefit of using a compiled language, we observed a surprisingly high speedup of COBREXA.jl
operations that do not directly depend on the performance of the solver but rather on the performance of the
programming environment, such as the model loading (Figure S2).

This is further confirmed by results from benchmark 2 (Table S3) even for the analysis methods con-
structed from the building blocks provided by COBREXA.jl, which possess no parallelized implementation
in other packages. Notably, COBREXA.jl implementation of the production envelopes is constructed from a
generic function for parallel screening through a parameter space, which is incidentally the same as the one
used to implement the flux variability analysis.

References
Ebrahim, A. et al. (2013). COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Syst

Biol 7.1, pp. 1–6.
Keating, S. M. et al. (2020). SBML Level 3: an extensible format for the exchange and reuse of biological

models. Mol Syst Biol 16.8, e9110.
Kratochvíl, M. et al. (2020). GigaSOM.jl: High-performance clustering and visualization of huge cytometry

datasets. GigaScience 9.11, giaa127.

6

0

50

100

20 k 40 k 60 k
Model size (reaction count)

M
od

el
 lo

ad
in

g
tim

e
(s

ec
on

ds
)

Software
COBREXA.jl load_model
+make_optimization_model
COBRApy load_json_model

JSON model loading performance

Figure S2: Time required to load a JSON model by COBRA implementations. For efficiency reasons,
COBREXA.jl model loading functions do not create an optimizer instance of the model automatically upon
load as does COBRApy. This was compensated in the benchmark by explicitly building the optimizer instance
in COBREXA.jl after loading, using function make_optimization_model.

File Contents

gen.sh Shell generator of Slurm batch scripts that can be scheduled us-
ing the sbatch command. Scheduling the batch scripts then in-
directly executes the Julia and Python scripts.

benchmark-prep.jl Julia script for preparing the base community models for the
benchmarks.

benchmark-fva.jl FVA benchmark (COBREXA.jl version).
benchmark-fva.py FVA benchmark (COBRApy version).
benchmark-fva.m FVA benchmark (COBRA Toolbox version).

benchmark-envelopes.jl Envelope computation benchmark (COBREXA.jl version).
benchmark-envelopes.py Envelope computation benchmark (COBRApy version).

Table S1: Overview of the supplementary benchmark scripts, available at https://doi.org/10.17881/
ZKCR-BT30.

7

https://doi.org/10.17881/ZKCR-BT30
https://doi.org/10.17881/ZKCR-BT30

Model size 1 core 4 cores 16 cores 64 cores 256 cores Speedup

COBRApy

5 125.39 53.05 18.02 – –

1×10 595.54 257.92 93.43 – –
20 2539.34 1310.42 415.5 – –
50 × 9421.9 2887.81 – –

COBREXA.jl

5 131.57 35.6 12.04 9.56 × 1.88×
10 939.28 282.1 76.82 35.8 64.96 2.61×
20 4862.36 1465.15 477.05 164.24 139.87 2.97×
50 × 10818.09 3618.13 1066.48 584.37 4.94×

COBRA Toolbox∗

5 368.97 143.14 – – –

–10 1787.95 942.94 – – –
20 14520.76 7093.15 – – –
50 × × – – –

Table S2: Results collected from benchmark 1 show dependency of the computation time (in seconds) of
the FVA analysis on the available CPU core count (see Section S3.4 for discussion). Speedups are com-
puted between the best results for a given model size. Cases where the required multi-node distribution or
parallelization was not available are marked with ‘–’. Corner cases (marked with ‘×’) were not executed for
resource efficiency. Measurements of COBRA Toolbox (marked with ∗) were collected on different hardware
(see Section S3.3).

8

Envelope computation time (seconds)

Model size Package CPU cores 73 samples 103 samples 143 samples

5 COBRApy 1 8.69 16.8 48.91
COBREXA.jl 1 6.67 12.59 26.84

4 5.11 8.41 13.11
16 6.76 6.91 10.4

10 COBRApy 1 23.97 51.24 99.88
COBREXA.jl 1 17.67 32.25 71.64

4 12.25 20.49 32.33
16 13.35 16.27 20.19

20 COBRApy 1 78.49 153.73 269.56
COBREXA.jl 1 43.92 77.1 161.48

4 31.08 61.88 122.77
16 31.03 40.93 58.77

50 COBRApy 1 1100.35 1386.66 1768.12
COBREXA.jl 1 241.75 433.49 788.14

4 155.35 233.87 470.66
16 106.86 155.38 222.48

Table S3: Speed of solving the model variants required for a ‘production envelope’ analysis. The trivial
implementation built from the components available in COBREXA.jl is able to scale with added computing
resources, making the method feasible for analysis of large models.

9

	Internal structure of COBREXA.jl
	Polymorphic models future proofs analysis workflows
	Specification of model variants and solver modifications
	Model distribution optimizations

	The need for scalable COBRA implementations
	Performance and scalability on biological use cases
	Benchmarked datasets
	Benchmarked use-cases
	Benchmark setup
	Benchmark results and discussion

