
High Resolution Slide-seqV2 Spatial Transcriptomics Enables Discovery of 
Disease-Specific Cell Neighborhoods and Pathways 

 
Jamie L. Marshall1†*, Teia Noel1†, Qingbow S. Wang2,3,4,5†, Silvana Bazua-Valenti1,6†, Haiqi 
Chen7†, Evan Murray8, Ayshwarya Subramanian1, Katherine A. Vernon1,6, Katie Liguori1, Keith 
Keller1,9, Robert R. Stickels8,10,11, Breanna McBean12, Rowan M. Heneghan1, Astrid Weins6,9, 
Evan Z. Macosko7, Fei Chen7,8,13, Anna Greka1,6* 
 

Affiliations:  
1Kidney Disease Initiative, Broad Institute of MIT and Harvard; Cambridge, MA, USA. 
2Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Cambridge, 
MA, USA. 
3Program in Bioinformatics and Integrative Genomics, Harvard Medical School; Boston, MA, 
USA. 
4Analytic and Translational Genetics Unit, Massachusetts General Hospital; Boston, MA, USA. 
5Department of Statistical Genetics, Graduate School of Medicine, Osaka University; Osaka, 
Japan. 
6Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School; 
Boston, MA, USA. 
7Program in Cell Circuits and Epigenetics, Broad Institute of MIT and Harvard; Cambridge, MA, 
USA. 
8Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 
USA. 
9Department of Pathology, Brigham and Women’s Hospital; Boston, MA, USA. 
10Graduate School of Arts and Sciences, Harvard University; Cambridge, MA, USA. 
11Division of Medical Science, Harvard University; Boston, MA, USA. 
12Broad Summer Research Program, Broad Institute of MIT and Harvard; Cambridge, MA, 
USA. 
13Department of Stem Cell and Regenerative Biology, Harvard University; Cambridge, MA, 
USA.  
*Corresponding authors. Email: jmarshal@broadinstitute.org, agreka@broadinstitute.org  
†These co-first authors contributed equally. 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2021. ; https://doi.org/10.1101/2021.10.10.463829doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.10.463829
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract: High resolution spatial transcriptomics is a transformative technology that enables 
mapping of RNA expression directly from intact tissue sections; however, its utility for the 
elucidation of disease processes and therapeutically actionable pathways remain largely 
unexplored. Here we applied Slide-seqV2 to mouse and human kidneys, in healthy and in 
distinct disease paradigms. First, we established the feasibility of Slide-seqV2 in human kidney 
by analyzing tissue from 9 distinct donors, which revealed a cell neighborhood centered around a 
population of LYVE1+ macrophages. Second, in a mouse model of diabetic kidney disease, we 
detected changes in the cellular organization of the spatially-restricted kidney filter and blood 
flow regulating apparatus. Third, in a mouse model of a toxic proteinopathy, we identified 
previously unknown, disease-specific cell neighborhoods centered around macrophages. In a 
spatially-restricted subpopulation of epithelial cells, we also found perturbations in 77 genes 
associated with the unfolded protein response (UPR). Our studies illustrate and experimentally 
validate the utility of Slide-seqV2 for the discovery of disease-specific cell neighborhoods. 
 
One-Sentence Summary: High resolution Slide-seqV2 spatial transcriptomics in human and 
mouse kidneys.  
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Main Text 
Known for its structural complexity, the kidney performs vital functions that rely on spatially-
distinct cellular compartments, yet an understanding of spatially resolved, cell type-specific 
responses to perturbations using high resolution technologies1–3 is lacking. The nephron, the 
functional unit of the kidney, is composed of epithelial, mesenchymal, and endothelial cells, as 
well as a network of immune cells that contribute to organ defense and repair from injury. 
Anatomically, each kidney has an outer layer, the cortex, containing the glomeruli, through 
which blood is filtered, and an inner layer, the medulla, where urine is concentrated. Urine flows 
within tubules that coalesce in the renal pelvis, draining into the ureter and on to the bladder4. 
Given its structural and functional complexity, second only to the brain, there is a significant 
need to develop spatial transcriptomics from intact kidney tissue both as a reference, and to 
uncover disease-specific processes. 
  
Several studies using single cell (sc-) or single nucleus (sn-) RNA sequencing of human and 
mouse kidney in health and disease have been performed5–21, and have used spatial validation 
methods including immunofluorescence microscopy, fluorescence in-situ hybridization, and 
targeted panels of a few dozen RNA probes or antibodies. However, these spatial methods are 
hampered by relatively low throughput22–28. To date, efforts to spatially capture transcriptome-
wide profiles in kidney cells in situ have been limited in resolution29–31. Given that several cell 
types in spatially restricted areas are the hypothesized drivers of injury as a result of ischemia 
and inflammation32–36, diabetic conditions20,37–40, and genetic disorders41–47, high resolution spatial 
transcriptomics in the kidney could catalyze mechanistic and therapeutic insights. 
  
We recently generated a comprehensive cross-species scRNA-seq atlas20, that identified shared 
broad cell classes and unique cellular states between mouse and human kidney across three 
regions (cortex, medulla, and renal pelvis). Among many insights, this work revealed multiple 
macrophage subsets including C1QB+LYVE1+ macrophages in human adult kidneys. A unique 
TREM2+ subset was expanded with age in kidneys of diabetic and obese mice and humans20, 
mirroring obesity-associated macrophages in other tissues48. Based on these results, we 
hypothesized that these specialized macrophage populations might be localized in disease-related 
microenvironments, and that we could define these cell neighborhoods using high resolution 
spatial transcriptomics. 
  
To understand the way in which cells act in concert in the kidney, we employed Slide-seqV2, a 
high resolution method for unbiased spatial transcriptomics, with a feature (or bead) size of 
10µm most commonly capturing 1-2 cells/feature, and no more than 3 cells/feature1,2. Leveraging 
this near-single cell spatial resolution and single cell atlases20, we developed SlideSeqV2 working 
protocols and analysis pipelines for human and mouse kidney tissue. Furthermore, we compared 
tissue from healthy and diseased kidneys, because the side-by-side analysis allowed us to 
measure changes in the organization of cellular neighborhoods, thus taking full advantage of the 
high spatial resolution. 
  
We first established the applicability of  Slide-seqV2 in human kidney, in samples from 9 
individual donors. We generated libraries from 4 arrays per sample with 2 arrays applied to 
cortex and 2 arrays applied to medulla in nephrectomy tissue (Table S1; samples were also used 
to build the single cell reference20). Histopathologic analysis performed by a kidney pathologist 
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showed that seven samples were consistent with normal age-appropriate kidney tissue, one 
sample had subtle signs of early diabetic kidney disease (DKD), and one sample displayed clear 
evidence of injury (ischemia due to tumor compression; for relevant clinical data, see Table S1). 
The arrays were positioned at different locations in each tissue cross-section to cover as much 
area in each 3mm array as possible. Following library preparation, we mapped cell types using 
our recently developed single cell reference20 (Methods). Cell type classifications of Slide-seqV2 
features were confirmed based on established markers of gene expression (Fig S1). We 
compared two different cell type assignment methods, NMFreg1 and the label transfer method 
from Seurat49,50. We found that Seurat was best able to map all cell types in human kidneys with 
expected spatial patterns of known cell types in the cortex and medulla, the two main anatomical 
layers of the kidney. For example, proximal convoluted tubules (PCTs) were enriched in cortex, 
whereas distal convoluted tubules (DCTs) and collecting ducts (CDs) were more densely packed 
in the medulla (Fig 1B; Fig S2-7; Fig S9A; Fig S10A). We thus used the Seurat label transfer 
method for all downstream analyses. As expected, glomeruli were found in the cortex and 
contained the appropriate cell types, including podocytes, endothelial cells (ECs), and mesangial 
cells (MCs) (Fig S2-7, S9A). We did not detect any significant changes in the early DKD sample 
(consistent with early disease lacking overt structural changes, as also previously shown20). We 
also found no significant changes in injured cortex (where the cell mappings showed numerous 
fibroblasts, in agreement with Periodic acid-Schiff (PAS) staining that showed extensive 
fibrosis) (Fig S8-9). Therefore, in human kidney, we focused our efforts on studying injured 
medulla in the sample that showed ischemic injury due to tumor compression.   
  
Given that ischemic injury is associated with inflammatory changes that involve macrophage 
populations32,36, we hypothesized that focusing on macrophages20 might help us identify injury-
specific changes. First, we identified macrophage beads in medulla from age matched healthy 
and injured human tissue arrays (Fig S10A-B, D, F; validated by quantification of C1QB+ cells, 
a canonical macrophage cell marker51, in hybridization chain reaction (HCR) of the entire kidney 
tissue section). Among these C1QB+ macrophages, we prioritized looking for changes in 
macrophage subtypes that have been previously implicated in disease processes in the kidney 
and other tissues20,48,52–58. We thus detected an increase in LYVE1+ macrophages (large red beads) in 
medullary injured tissue (Fig 1B, Fig S10C, S10E-F; validated by HCR showing C1QB+ 
LYVE1+ cells). Taking advantage of the high spatial resolution, we calculated the average 
interaction frequency in the cellular neighborhood between LYVE1+ macrophages and 
immediately adjacent cell types (Fig 1A-D). In human healthy medulla, LYVE1+ macrophage 
expansion led to a spatial neighborhood composed of DCT epithelial cells and EC (Fig 1C). In 
order to determine if these interactions were specific to LYVE1+ macrophages, the same analysis 
was performed with all medullary macrophages that, in addition to DCT and EC, also interacted 
significantly with principal cells (CD-PC), other immune cells, and vascular smooth muscle cells 
(vSMC) (Fig 1D). Overall, LYVE1+ macrophage interactions with DCT and EC and all 
macrophage interactions with other immune cells were reduced in human injured medulla, 
perhaps consistent with increased fibrosis (Fig 1C-D; Table 1; Fig S8A, C, E). Most importantly, 
this work established the applicability of Slide-seqV2 in human kidney, including new 
computational approaches (Methods) that provide the blueprint for future, more detailed studies 
in human kidney tissue. 
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Since mouse tissue of the quality required for successful implementation of spatial 
transcriptomics is more readily attainable than human tissue, we turned our attention to 
established mouse models of kidney disease. We thus generated libraries from BTBR ob/ob 
mice, a genetic model of DKD, where the first signs of injury localize to the glomeruli38–40. We 
chose this well-characterized mouse model with an available single cell reference20 because we 
wanted to take advantage of the high spatial resolution of Slide-seqV2 to detect transcriptome-
wide changes in or near glomeruli, spatially defined structures composed of rare cell types59. We 
were particularly interested in the Juxtaglomerular apparatus (JGA), a structurally distinct, 
spatially compact structure located adjacent to glomeruli, that is comprised of renin (Ren1)-
producing granular cells (GCs), and rare macula densa (MD) cells, which, working in concert, 
regulate blood flow to the kidney filter60–62. In DKD, the JGA is known to shift its cellular 
composition63,64, but, to date, the underlying cellular changes have not been described with high 
spatial, near single cell resolution. 
  
Seven arrays were captured from 10µm sagittal sections of kidney from four BTBR wt/wt 
controls and four BTBR ob/ob mice. We used our recently developed scRNA-seq reference20 for 
cell type mappings (Methods; Fig S11-13), and characterized the transcriptional effects of 
disease in three ways. First, we captured a significant increase in the measured area of individual 
glomeruli in BTBR ob/ob mice compared to controls (Fig 2A-E; Fig S14A-D)38,40. Second, we 
examined the composition of the JGA. We identified glomeruli-adjacent beads positive for 
Ren165 and negative for Slc12a3 (a classical distal nephron marker6,66), and another set positive for 
Ptger3, Klf6, or Nos1 (MD marker genes6,67), and labeled the corresponding cells as GC or MD, 
respectively. MDs were rare (~0.6% of unfiltered TAL calls were classified as MD). However, in 
diabetic BTBR ob/ob tissue, we detected a significant increase in the percentage of GCs (Fig 2F; 
Fig S14E) and in the distance between the center of each glomerulus and GCs (Fig 2G-H; Fig 
S15A). Consistent with overall tissue hypertrophy, as observed in BTBR ob/ob mice38–40, we 
found a significant increase in the distance between the centers of glomerular and GC structures. 
In contrast, the distance measured between the edges of the glomeruli and GC structures did not 
show a significant increase (Fig S14G), arguing against GCs migrating away from glomeruli. 
This spatial expansion of the JGA in diabetes, reminiscent of previous work in glomeruli using 
labor-intensive lineage tracing studies63,68–70, was readily detected by Slide-seqV2. 
  
Taking advantage of the fact that each cell in the spatial array is linked to a transcriptome 
comprising of several hundred genes (Methods), we developed a clustering and differential gene 
expression (DGE) pipeline. Focusing on podocytes, whose injury is a hallmark of DKD38, we 
compared the transcriptional profiles for all podocyte beads. Specifically, we examined their 
clustering in an unbiased fashion, irrespective of whether the podocyte beads came from a BTBR 
wt/wt or diabetic BTBR ob/ob array; we let their transcriptional profiles dictate whether they 
were considered “healthy” or “diseased” (Fig S16; Tables S2-5). Based on transcriptomes alone, 
podocyte beads from the “diseased” cluster that mapped to diabetic BTBR ob/ob glomeruli were 
found to express Ctgf, a known podocyte injury marker gene (Table 3). Furthermore, these 
results were validated by HCR measuring co-expression of Ctgf and Nphs2, a podocyte marker 
gene71,72 (Fig 2I-J; Fig S15B). Pathway analysis highlighted mechanisms of high relevance to 
podocyte pathobiology such as lipid-mediated signaling, regulation of stress fiber assembly, and 
apoptosis (Table S6, Fig S14F)73–76. In sum, we captured disease-specific changes in spatially-
restricted neighborhoods of podocytes and granular cells in a mouse model of DKD. More 
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generally, implementing Slide-seqV2 in mouse tissue provided a valuable foundation for our 
subsequent studies of a significantly understudied toxic proteinopathy. 
  
Seeking to define actionable disease mechanisms, we turned to homozygous UMOD-C125R 
knockin (KI) mice41. These mice are a model of a poorly understood, monogenic disorder called 
UMOD Kidney Disease (UKD)42, caused by the toxic accumulation of mutant UMOD protein in 
the kidney41. We generated libraries in five arrays from kidneys of three WT control and five 
homozygous UMOD-KI six-month-old mice41. At this age, homozygous UMOD-KI mice have 
detectable kidney disease associated with inflammation and fibrosis41. Cell types were mapped to 
arrays20, and a border was drawn to separate cortex from medulla based on the presence of PCTs 
in the cortex and the concentration of TAL and CDs in the medulla (Fig S17-19). A significant 
increase in fibroblast and macrophage beads was observed in the medulla of homozygous 
UMOD-KI mice compared to controls (validated by HCR for Ctgf+ and Itga8+ fibroblasts77 and 
C1qb+ macrophages51; Fig 3A-C; Fig S20). Significant Ctgf expression was detected by HCR in 
medullary Umod+ TAL epithelial cells78 of homozygous UMOD-KI mice, suggesting cellular 
injury in Umod+ TALs (Fig 3E; Fig S20F). Unbiased clustering and DGE analysis of cortex and 
medulla identified disease-specific clusters for TAL, fibroblasts, macrophages, vSMCs, and CD-
PCs in the medulla, as well as fibroblast, glomerular EC, and CD-PC in the cortex (Tables S7-
14; Fig S21-22). 
  
Taking advantage of the spatial resolution, we wondered whether we could determine the 
location of medullary disease-associated cell types compared to healthy cells based only on 
unbiased clustering, without any prior knowledge of their localization in the tissue. We thus 
classified individual beads into either healthy or disease states based on gene expression profile 
alone, and characterized their spatial distribution across all of the arrays from WT and UMOD-
KI mice. This analysis showed that healthy (“non-disease”) cells largely mapped onto the 
medulla of WT arrays (99.8%), while disease-associated cell types were predominantly localized 
in the medulla of homozygous UMOD-KI arrays (Fig 3D; 63.1%, fisher exact test p<10^-100). 
This analysis, uniquely afforded by high resolution spatial transcriptomics, suggested that 
fibroblasts (blue), TAL epithelial cells (red), and macrophages (orange) in the medulla of 
UMOD-KI mice may form disease-specific cell neighborhoods. 
  
To probe the question of cell neighborhoods further, we employed the spatial neighbor 
interaction frequency method, as we previously established in human tissue (Fig 1C-D), to 
determine the identity of cell types immediately adjacent to macrophages (Fig 4A-C; Methods). 
We thus identified medulla-specific cell neighborhoods centered on macrophages interacting 
with diverse kidney cell types (Fig 4A-C). Of interest, specifically in the setting of disease, we 
observed enhanced interactions between medullary macrophages and CD-PC, collecting duct 
intercalated cells (CD-IC), and ECs (Fig 4C). Focusing further on macrophage subsets, we found 
a significantly higher percentage of Trem2+ macrophages in the medulla of UMOD-KI mice 
(large red beads; Fig 4D-E). HCR confirmed a significant expansion of double-positive 
C1qb+Trem2+ cells in the medulla of UMOD-KI mice (Fig 4F-G). These results suggest that 
Trem2+ macrophages in the medulla of UMOD-KI mice may expand in response to interactions 
with specific cell neighbors, a previously unknown mechanism in this disease. 
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To gain a deeper understanding of disease-relevant pathways, we probed our data for detectable 
changes in the UPR, a cellular mechanism triggered by the accumulation of misfolded mutant 
UMOD protein in UMOD-KI mouse kidneys41,42. Using a validated UPR pathway signature79, 
DGE analysis between WT and UMOD-KI arrays (Fig 5A, Fig S23) revealed changes in the 
UPR80,81 specifically in medullary TALs (Fig 5A; 77 genes). In contrast, when we aggregated all 
TALs (cortex and medulla), we did not detect any significant DGE changes between WT versus 
KI tissue (Fig S23A). Similar analyses focusing on cortical TALs alone, or PCTs alone did not 
yield any significant differences in UPR gene expression either (Fig S23B-C). The loss of signal 
when looking at the totality of TALs (or other cell subsets) suggests that if we only relied on 
bulk RNA-Seq or even on scRNA-Seq without the high spatial resolution afforded by Slide-
SeqV2, we would not have been able to identify this disease-associated UPR signature. 
  
Three to four markers of the UPR have been previously used to implicate this pathway in 
UKD41,42, however, coordinate changes in the expression of 77 UPR genes in Umod-expressing 
medullary TALs have not been described before. Among significant genes in medullary TAL 
features were Slc35b1 (IRE1ɑ pathway) and Trib3, Mthfd2, and Slc3a2 (PERK pathway; Fig 5B-
E; Fig S24-29), which showed that the medullary TAL epithelial cells were selectively and most 
highly affected by two specific UPR pathways, IRE1ɑ and PERK (Fig S27-29). Among UPR-
associated genes, Tmed9 was upregulated and selectively localized to Umod-expressing 
medullary TALs (Fig 5A, red arrow). We have previously shown that the small molecule 
(BRD4780) targets TMED9 for the treatment of MUC1 Kidney Disease, a toxic proteinopathy 
caused by the accumulation of mutant MUC1 protein in epithelial cells in the kidney43. We 
reasoned that the specific co-localization of Umod and Tmed9 in cells with detectable UPR-
mediated injury (medullary TALs) pointed to the utility of Slide-seqV2 for the detection of 
therapeutically relevant targets. 
  

Discussion 
Spatial transcriptomics has revolutionized the field of single cell genomics and provided new 
insights into many biological systems such as the brain, heart, liver, and testes82–88. However, the 
potential of spatial transcriptomics to identify therapeutically actionable pathways has not yet 
been explored. In this study, we explored the utility of spatial transcriptomics to uncover disease-
associated cell-cell interactions and pathways, and, importantly, we performed rigorous 
experiments (HCR, mouse studies) to experimentally validate these findings. Several critical 
conclusions can be drawn from these studies. 
  
First, we developed tools and methods to identify disease-specific cell neighborhoods. In human 
kidney, we found a cell neighborhood centered around LYVE1+ macrophages, most notably in 
the medulla. In other tissues, LYVE1+ macrophages have been shown to protect from fibrosis53. 
We can therefore speculate that LYVE1+ cell neighborhoods in human kidneys may reflect an 
adaptive response mounted to prevent or abrogate the pro-fibrotic sequelae of injury. Disease-
specific cell neighborhoods were also identified in a mouse with diabetic kidney disease. In line 
with prior studies63,68–70, we characterized a disordered kidney filter and blood flow regulating 
apparatus (JGA) associated with an expanding population of rare GCs in diabetic kidneys. These 
findings illustrated how the high spatial resolution of Slide-seqV2 empowered us to detect 
changes within and between spatially restricted structures. 
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Second, drawing from the blueprint established in these initial studies in human and mouse, we 
made a new discovery in mice with a toxic proteinopathy (UKD). Specifically, we identified a 
disease-specific, medulla-restricted cell neighborhood composed of Trem2+ macrophages20, and 
specific epithelial (TAL) and fibroblast cell populations. Since resident macrophage Trem2 acts 
as an immunomodulatory receptor on resident macrophages that senses tissue damage and 
negatively regulates inflammation48,54–58, our results suggest that medullary Trem2+ macrophages 
may expand in response to neighboring cell injury. More generally, resident macrophage-
epithelial cell neighbor interactions may underlie several kidney diseases20 associated with 
inflammation and fibrosis89. 
  
Lastly, a critical aspect of this study was the development of new analytical methods and 
pipelines to map cell states and interactions onto spatial arrays from mouse and human kidney, 
relying exclusively on spatial near single cell transcriptome-wide profiles. Taken together, our 
experiments illustrate how we can harness the power of Slide-seqV2, and spatial transcriptomics 
more broadly, to gain biological insights by a “one and done” approach that simultaneously 
monitors cell-cell interactions and numerous genes and pathways in an unbiased fashion. Similar 
to RNA-Seq supplanting the need for RT-PCR, we speculate that this technology may mature to 
the point that it may minimize or even replace “one-by-one” molecule detection by labor 
intensive in situ and immunolocalization methods. 
 
In sum, our work provides a foundational framework for near single cell spatial transcriptomics 
in the kidney, a functionally complex tissue with intricate architecture. Building on the paradigm 
that many diseases, from cancer to neurodegeneration, depend on dynamic cell-cell interactions 
in spatially restricted microenvironments90,91, our studies illustrate the utility of high resolution 
spatial transcriptomics, to uncover disease-specific cell neighborhoods and pathways. 
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Materials and Methods 

All code can be found on github: https://github.com/marshalljamie/Kidney-Slide-seq. 

Mouse Models/Tissue 

BTBR wt/wt and BTBR ob/ob mice were purchased from JAX labs (strain 004824)38. Male mice 
were aged to 13 weeks in the Broad Institute vivarium with alpha dry bedding and acidified 
water. UMOD-KI mice were transferred to the Broad Institute from the Thakker lab at the 
University of Oxford41. UMOD-KI heterozygous mice were mated to produce 6 month old WT 
and UMOD-KI homozygous male progeny used in these studies. All animals were subjected to 
intracardiac perfusion of PBS to remove blood. Tissues were dissected, mounted in OCT, and 
flash frozen in liquid nitrogen cooled isopentane for 1 min. Samples were then placed on dry ice 
until long-term storage in the -80℃. All procedures performed are IACUC approved on Broad 
Institute animal protocol # 0061-07-15-1. 

Human Tissue 

All human tissues were obtained from healthy regions of tumor nephrectomy samples on 
Partners IRB protocol # 2011P002692 at Mass General Brigham (AW). Cortex and medulla 
samples were collected from each patient and samples were flash frozen in liquid nitrogen prior 
to storage in the -80℃.   

Slide-seqV2 

Bead synthesis. 

Bead barcodes were synthesized either by the ChemGenes Corporation or in house on an Akta 
Oligopilot 10 on one of two polystyrene supports, Agilent PLRP-S-1000A 10µm particles or 
10µm custom polystyrene from AMBiotech. Oligonucleotide synthesis was performed as 
described below. Beads were used with one of the two following sequences: ChemGenes 
Corporation beads (5′-TTTTTTTTCTACACGACGCTCTTCCGATCTJJJJJ 
JJJTCTTCAGCGTTCCCGAGAJJJJJJJNNNNNNNNT30-3′) and custom synthesis beads (5'-
TTT_PC_GCCGGTAATACGACTCACTATAGGGCTACACGACGCTCTTCCGATCTJJJJJJJ
JTCTTCAGCGTTCCCGAGAJJJJJJJTCNNNNNNNNT25-3′ (pawpuck3); PC, a photocleavable 
linker; J, bases generated by split-pool barcoding, such that every oligonucleotide on a given 
bead has the same J bases; N, bases generated by standard base mixing of a 1:1:1:1 ratio of A, C, 
T and G, such that every oligonucleotide on a given bead has different N bases; TX, a sequence 
of X thymidines; V, an A, C or G but not T. Bead synthesis. PLRP-S resin (~10-µm mean 
particle diameter; Agilent) was functionalized with a non-cleavable linker by ChemGenes. The 
functionalized beads were then used as a solid support for reverse-direction phosphoramidite 
synthesis (5′ to 3′) on an Akta OligoPilot 10 using a standard solid-phase DNA synthesis 
protocol. 5′-CE (b-cyanoethyl) phosphoramidites were purchased from Glen Research and were 
dissolved in anhydrous acetonitrile to obtain a concentration of 0.1M. Successive 
phosphoramidites were coupled for 5min using 5-benzylmercaptotetrazole (0.30M in 
acetonitrile) as an activator. Oxidation of the phosphite backbone to a phosphate backbone was 
achieved using iodine. Failure sequences were capped using acetic anhydride. Dichloroacetic 
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acid was used as a detritylation reagent. For split-pool synthesis cycles, beads were suspended in 
acetonitrile and divided into four equal portions. These bead aliquots were then placed in four 
separate synthesis columns and reacted with dG, dC, dT or dA phosphoramidites. After each 
cycle, beads were pooled, suspended in acetonitrile and aliquoted into four equal portions. The 
split-pool procedure was repeated 15 times in total (two blocks of eight and seven cycles) to 
obtain 415 (~109 ) unique barcode sequences. After synthesis completion, the protecting groups 
from the nucleobases and phosphate backbone were removed by treating beads with 30% 
ammonium hydroxide containing 10% diethylamine for 40h at room temperature. The beads 
were centrifuged, and the supernatant was discarded. Beads were then washed three times with 
1% acetone in acetonitrile, three times with water and three times with a buffer consisting of 
10mM Tris and 1mM EDTA pH 8.  

Puck preparation  

Puck preparation was performed as described previously2. Briefly, beads were pelleted and 
resuspended in water with 10% DMSO at a concentration between 20,000 and 50,000 beads per 
µl. Then, 10µl of the resulting solution was pipetted into each position on the gasket. The 
coverslip gasket filled with beads was centrifuged at 850g for at least 30min at 40°C until the 
surface was dry.  

Puck sequencing.  

Puck sequencing was performed in a Bioptechs FCS2 flow cell using an RP-1 peristaltic pump 
(Rainin) and a modular valve positioner (Hamilton MVP). Flow rates between 1ml min–1 and 
3ml min–1 were used during sequencing. Imaging was performed using a Nikon Eclipse Ti 
microscope with a Yokogawa CSU-W1 confocal scanner unit and an Andor Zyla 4.2 Plus 
camera. Images were acquired using a Nikon Plan Apo ×10, 0.45-NA objective. After each 
ligation, images were acquired in the following channels: 488-nm excitation with a 525/36-nm 
emission filter (MVI, 77074803), 561-nm excitation with a 582/15-nm emission filter (MVI, 
FF01-582/15-25), 561-nm excitation with a 624/40-nm emission filter (MVI, FF01-624/40-25) 
and 647-nm excitation with a 705/720-nm emission filter (MVI, 77074329). The final stitched 
images varied in size depending on the size of the Slide-seq array. For the arrays presented in 
this work the final stitched images were 6,030 pixels by 6,030 pixels. Pucks were sequenced 
using a sequencing-by-ligation approach with a SOLiD dibase-encoding and with a monobase-
encoding strategy previously described1,2.  

This protocol was used for all slide-seq version 2 arrays 
http://dx.doi.org/10.17504/protocols.io.bpgzmjx62. Briefly, 10µm sections (Leica, CM1950) 
were overlaid and melted onto spatial arrays. Seven arrays were collected from four BTBR wt/wt 
and four BTBR ob/ob mice, one kidney per mouse. Seven arrays were necessary to cover the 
entire cortex and collect enough glomeruli for analysis. Five arrays were collected for three WT 
and five UMOD-KI mice, one kidney per mouse. Five arrays ensured coverage of the entire 
medulla. Two arrays were collected from each human tissue sample, which resulted in two 
cortex and two medulla arrays per individual. 

 All reagents were diluted in ultrapure water (Life Technologies, Inc., 10977023). Arrays 
covered in tissue were then transferred to tubes with 6xSSC (Life Technologies, Inc., 15557044) 
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containing RNAase inhibitor (Takara Bio, 2313B) and incubated for 15min. Arrays were then 
dipped in 1xRT buffer (Life Technologies, Inc., EP0753) and transferred to RT tubes (Maxima 
RT: Life Technologies, Inc., EP0753; 10mM dNTP Life Technologies, Inc., 4303443; RNAase 
inhibitor: Takara Bio, 2313B; 50µM Template Switch Oligo: IDT, 
AAGCAGTGGTATCAACGCAGAGTGAATrG+GrG) for a 30min room temperature 
incubation. RT tubes were then transferred to 52℃ for a 90min incubation. Proteinase K and 
tissue clearing solution (Tris-HCl, pH 7.5: Life Technologies, Inc., 15567027;  NaCl: American 
Bioanalytical, AB01915-01000; SDS (w/v): Life Technologies, Inc., 15553027; EDTA: Life 
Technologies, Inc., 15575020; Proteinase K: New England BioLabs, Inc., P8107S) is then added 
to the RT tube and the array is incubated at 37℃ for 30min. Beads are removed from glass and 
resuspended in TE-TW (TE buffer: Sigma-Aldrich, Inc., 8910-1L; Tween-20: VWR 
International, LLC, 100216-360) and subjected to 2 TE-TW washes followed by centrifugation 
for 2min at 3000rcf. Beads are then resuspended in Exonuclease I mix (New England Biolabs, 
Inc., M0293L) and incubate at 37℃ for 50min. This is followed by 2 washes in TE-TW, 5min 
room temperature incubation in 0.1N NaOH (Sigma-Aldrich, Inc., SX0607N-6), another TE-TW 
wash, and incubation in the second strand synthesis buffer (Maxima RT: Life Technologies, Inc., 
EP0753; 10mM dNTP Life Technologies, Inc., 4303443; dnSMRT oligo: IDT, 
AAGCAGTGGTATCAACGCAGAGTGANNNGGNNNB; Klenow: New England BioLabs, 
Inc., M0212L) for 1 hour at  37℃. Beads are then subjected to three TE-TW washes and loaded 
into WTA PCR (100 µM Truseq PCR primer: IDT, CTACGACGCTCTTCCGATCT; 100 µM 
SMART PCR primer: IDT, AAGCAGTGGTATCAACGCAGAGT; Terra PCR mix: Takara 
Bio, 639284) with cycling conditions 98℃ for 2min; 4 cycles of 98℃ for 20sec, 65℃ for 45sec, 
72℃ for 3min; 7 cycles of 98℃ for 20sec, 67℃ for 20sec, 72℃ for 3min; and 72℃ for 5min. 
PCR clean up was performed twice with 0.6x SPRI (AmPureXP: Beckman Coulter, Inc., 
A63881) on cDNA libraries. Final and cDNA libraries were then QCed on a bioanalyzer 
(Bioanalyzer High Sensitivity DNA kit: Agilent Technologies, Inc., 5067-4626) and qubit 
(dsDNA high sensitivity kit: Life Technologies, Inc., Q32854) following manufacturer protocols. 
Tagmentation of 600pg of cDNA is performed according to Nextera DNA sample preparation 
manufacturer instructions (Illumina, Inc., FC-131-1096) using a Truseq-P5 hybrid constant oligo 
(IDT, 
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATC
T) and Nextera N7XX indexing primer (Illumina, Inc., FC-131-1001). Final libraries (4nM) were 
sequenced on a NovaSeq S2 or S4 with 100-200 million reads per sample at the Genomics 
Platform at the Broad Institute using read structure Read 1 42bp, Index 1 8bp, Read 2 41-60bp, 
and Index 2 0bp. 

Hybridization Chain Reaction (HCR) 

All HCR v3 reagents (probes, hairpins, and buffers) were purchased from Molecular 
Technologies92. Thin sections of tissue (10µm) were mounted in 24-well glass bottom plates 
(VWR International, LLC, 82050-898) coated with a 1:50 dilution of APTES (Sigma-Aldrich, 
Inc., 440140). The following solutions were added to the tissue: 10% formalin (VWR 
International, LLC, 100503-120) for 15min, 2 washes of 1x PBS (ThermoFisher Scientific, 
AM9625), ice cold 70% EtOH at -20 2 hours to overnight (VWR International, LLC, 76212-
358), 3 washes 5x SSCT (ThermoFisher Scientific 15557044, with 0.2% Tween-20), 
Hybridization buffer (Molecular Technologies) for 10min, probes in Hybridization buffer 
overnight, 4 15min washes in Wash buffer (Molecular Technologies), 3 washes 5x SSCT, 
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Amplification buffer (Molecular Technologies) for 10min, heat denatured hairpins in 
Amplification buffer overnight, 3 15min washes in 5x SSCT (DAPI, VWR International, LLC, 
TCA2412-5MG, 1:10,000, in the second wash), and storage/imaging in 5x SSCT. Imaging was 
performed on a spinning disk confocal (Yokogawa W1 on Nikon Eclipse Ti) operating NIS-
elements AR software. All images acquired were imaged using a Nikon Plan Apo ×40 1.15-NA 
water immersion objective. Image analysis and processing was performed on ImageJ Fiji.  

Image analysis 

Images were first processed using ImageJ2 (National Institutes of Health). Raw ND2 files were 
background subtracted using the Rolling Ball method (rolling=50 sliding stack). Max intensities 
of the Z-stack images were then projected, and image channels were split and saved separately. 
CellProfiler (version 3.1.5, Broad Institute) was then used for cell segmentation based on the 
fluorescence intensity of DAPI channel and for measuring integrated fluorescence intensity in 
the rest of the channels (CellProfiler pipeline provided in 
https://github.com/marshalljamie/Kidney-Slide-seq).  

Slide-seqV2 cell percentage and HCR validation plots were generated using Graphpad Prism 
version 9.1.1. Mean and standard deviation are shown and significance was determined by 
p<0.05 using a Mann-Whitney U-test. Each dot represents an individual mouse or human 
sample, except in glomerular plots where each dot represents an individual glomerulus collected 
from 4 BTBR wt/wt or 4 BTBR ob/ob mice or an individual human in healthy, DKD, or injured 
samples.  

Periodic Acid Schiff (PAS) Staining 

10µm cryosections of flash frozen tissue were mounted onto superfrost plus micro slides (VWR, 
48311-703). Tissue was fixed in 10% formalin (VWR International, LLC, 100503-120) for 
15min. Slides were then transferred to the Brigham and Womens Pathology Department for PAS 
staining, which briefly summarized starts with tissue oxidized in 0.5% Periodic Acid solution for 
5min, and rinsed 3 times with distilled water. Slides were then placed in Schiff's reagent for 
15min and washed with tap water for 5min. Slides were counterstained in Mayer's hematoxylin 
for 1 min and washed with tap water for 5min and then rinsed with distilled water. Slides were 
finally dehydrated and mounted using Xylene based mounting media. Imaging was performed on 
a Zeiss Observer.Z1 microscope using the Zeiss Zen software. Scale bars were added using Fiji 
ImageJ version 2.1.0/1.53c. 

Cell Type Classification 

In order to assign a cell type identity to each Slide-seq bead, we used two methods: (1) NMFreg 
(Non-negative matrix factorization regression)1, and (2) the label transfer method from the R 
package Seurat (v. 3.0.1)49. In the former, a reduced gene space of "metagene" markers for each 
cell type was identified by non-negative matrix factorization of a single cell reference data set20, 
in which cell types were previously annotated. The reduced gene space for mice and humans was 
comprised of 40 metagenes and 70 metagenes, respectively, from a single cell reference20. Every 
gene expression profile in the Slide-seq query data set was decomposed into a weighted 
combination of these metagenes by non-negative least squares regression. Each data point in the 
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query was assigned the cell type corresponding to the metagene of maximum weight. Lastly, cell 
type annotations were eliminated based on the confidence thresholding protocol defined by the 
NMFreg developers. 

With regards to the Seurat V3 label transfer method, we assigned cell type annotations from the 
same single cell reference data set20 to each of our Slide-seq query data sets. Mappings between 
highly similar gene expression profiles of the single cell reference20 and Slide-seq query data 
points were established using the FindTransferAnchors() function on SCT-normalized data, with 
50 PCs derived from the reference data. Cell type annotations of the query data were acquired 
from TransferData(), using PCA-derived dimensionality reduction on the reference. This 
function provided vectors with cell type prediction scores for every bead in our Slide-seq arrays. 
We defined the cell type identity of every bead to be the cell type class corresponding to the 
maximum prediction loading. 

Upon running both methods on our data and generating scatterplots of the resulting cell type 
loadings, we found that while podocyte identification was comparable between the two methods, 
Seurat performed better in confidently identifying all other cell types. We concluded that Seurat 
cell type calls reliably formed structures across 2-D tissue space that we would expect to find in 
true kidney biology. 

Pronounced tubular structures with fewer scattered points were more consistently characteristic 
of Seurat’s PCT, DCT, CD-IC, and CD-PC calls than of NMFreg’s calls. Additionally, we 
consistently found a clear delineation of cortex and medulla regions from Seurat’s TAL calls, 
which was less often true of NMFreg’s TAL calls (Fig S2-7; Fig S11-12; S17-18). 

Consequently, we used podocyte classifications defined by NMFreg and classifications output 
from Seurat for all other cell types. 

Segmentation of Medulla and Cortex Regions 

While most Slide-seq arrays from human kidney sections spanned either the cortex or medulla, 
several human arrays and all mouse arrays contained both regions. In order to refine our 
characterization of the cell type and genetic composition of our tissue to these distinct regions of 
the kidney, we utilized a segmentation algorithm to separate beads in the cortex from beads in 
the medulla. We first plotted the coordinates of all beads in an array, colored by their cell type 
class. Visually, we were able to approximate the boundary separating the cortex from medulla 
because the former contains exclusively PCTs and podocytes, while the latter contains a higher 
density of DCT, CD-IC, CD-PC, and TAL cell types. Using the methodology adapted from the 
Python lasso selector widget 
(https://matplotlib.org/3.1.0/gallery/widgets/lasso_selector_demo_sgskip.html), we were able to 
hand-draw on these plots our proposed boundary, and in response, the program returned the bead 
coordinates both within and outside this border. 

Cell Type Curation 

While many of the cell types formed dense structural patterns that aligned with the known 
histology of structures found in kidney tissue, we found relatively isolated instances of cell type 
calls. We sought to remove these uncertain cell type calls from our analysis. Here, we used a 
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custom method utilizing K-nearest neighbors (KNN). First, we isolated marker beads for each 
structure, whether that be beads having a certain cell type label or expression of a marker gene, 
labeling these 1, and labeled all other beads 0. Next, from the Python package scikit-learn (v. 
0.23.1)93, we generated the KNN adjacency matrix based on the coordinates of all beads with the 
function NearestNeighbors(), using the ball tree algorithm and user-specified k. We then filtered 
all marker beads with fewer than a threshold number of 1-labeled neighbors. Lastly, we added 
back in any nearest neighbors of our isolated beads having a label of 1. The motivation here was 
that marker beads occurring along the edge of structures may be filtered out because their 
composition of surrounding 0-labeled neighbors is too high. 

The number of k-nearest neighbors we allowed the algorithm to search for, and the threshold 
number of neighbors used to filter out points were chosen by trial and error in order to maintain a 
clean boundary around the known biological structures of each cell type. 

Glomerulus, GC, and MD Detection 

Because podocytes are known to be solely contained within glomeruli, and glomeruli have a 
circular shape in 2-D tissue space, we used our KNN-filtration method on podocyte-annotated 
beads. We chose parameters that maintained these circular structures, while throwing out 
spurious, isolated points (Fig S53). We then assigned other glomerulus-specific cell types, 
including mesangial cells and endothelial cells, to these regions containing podocytes. To do so, 
we computed the circular area of each glomerulus defined by its approximate center and radius. 
The centers were defined as the cluster centers of curated podocyte coordinates output by 
cluster.KMeans() from the Python package scikit-learn. Here, K was determined by the number 
of podocyte clusters visualized in a scatter plot of podocyte coordinates. We approximated the 
radius of each glomerulus to be the maximum of the distances between all podocytes in a cluster 
and its cluster center. We then assigned instances of endothelial and mesangial-annotated beads 
to a podocyte cluster if their coordinates occurred within the circle defined by its radius and 
center (Fig S60). 

GC clusters were identified by running KNN-filtration on all beads expressing Ren1, or REN, 
with parameters chosen to isolate elliptical, dense groupings of these points. Although we know 
that GC cluster near glomeruli, our curated granular cell regions disagreed with this assumption. 
Therefore, we hand-selected GC clusters that occurred within 250 pixels to a curated glomerulus 
(Fig S54). Approximately 39% of GC clusters met this criterion.    

In order to identify MD structures, we iterated through several filtration steps. First, we ran our 
KNN-filtration method on TAL, glomerulus, and granular cell-annotated beads, aiming to hone 
in on any TAL-annotated beads that occur near clusters of glomerulus-specific cells or GC, 
whether they themselves occur in a dense cluster or not. We then eliminated any of our filtered 
TAL-annotated beads that expressed the gene Slc12a3 - a gene characteristic of TAL, but not 
MD structures. Lastly, in mice we hand-filtered the remaining beads based on the expression of 
Ptger3/PTGER3, Klf6/KLF6, and Nos1/NOS1, or vicinity to either a glomerulus or granular cell 
structure (within 250 pixels) (Fig S55). Ultimately, we selected approximately 22% of the MD 
structures curated with KNN. 
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Lastly, we assigned unique cell type labels to the beads having more than one label, with the 
following criteria. Amongst beads classified as both GC and glomerulus-specific cells, we found 
that the overlapping beads on average had higher expression of Ren1 than the rest of the granular 
cell population (Fig S52). As a result, overlapping beads maintained their glomerulus cell type 
assignments. Beads classified as both GC and MD cells were assigned to the group in which they 
had the higher gene expression marker. 

 PCT, DCT, and CD-PC Detection 

We curated PCT, DCT, and CD-PC-annotated beads in a similar manner. Polygons 
encapsulating glomeruli, granular cell clusters, and MD clusters were identified with alpha = 
0.01, and all instances of curated CD-IC, CD-PC, DCT, and PCT beads were removed from their 
areas. On calls of DCT and CD-PC in the cortex and medulla separately and all PCT, we ran our 
KNN-filtration method, selecting parameters that maintained beads contained within tubule 
structures. Additional filtering was done with the Python package alphashape (v. 1.0.2) 
(https://alphashape.readthedocs.io/en/latest/), which output a polygon encapsulating most of the 
beads of the cell type of interest. All beads outside of the alphashape were filtered. Remaining 
PCT beads within our proposed medulla region of each array were removed  (Fig S56-58). 

CD-IC Detection 

We first combined CD-A-IC and CD-B-IC cell calls and called them CD-IC. Because it is 
possible to find singular CD-IC beads that occur within CD-PC tubular structures, CD-IC 
isolation was done by concatenating CD-IC beads with curated CD-PC beads in the cortex and 
medulla separately, and running KNN-filtration. Following this step, we aimed to remove 
remaining CD-IC beads that occurred within dense clusters outside of CD-PC tubules. We 
further filtered any instances of CD-IC beads that were located further than a distance of 100 
pixels from the polygon surrounding CD-PC tubules using the distance() method from the 
Python package Shapely (v. 1.7.0) (https://github.com/Toblerity/Shapely) (Fig S59). 

Polygons encapsulating glomeruli, granular cell clusters, and MD clusters were identified with 
alpha = 0.05, and all instances of curated CD-IC, CD-PC, DCT, and PCT beads were removed 
from their areas. TAL beads were removed only from glomerulus and granular cell areas. 

Immune Cell, Fibroblast, and vSMC Detection 

Because our human single cell reference dataset20 had only an immune cell cluster, we parsed out 
macrophages from our immune-annotated beads by identifying those that expressed either 
C1qa/C1QA or C1qb/C1QB51. 

Because fibroblasts, vascular smooth muscle cells, and immune cells do not have a clear 
underlying structure, we did not use KNN-filtration here. 

TAL beads were removed only from glomerulus and granular cell areas.  

Spatial Outlier Detection 
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Abundant cell types such as PCTs, TAL, and endothelial cells that reach the edges of arrays 
sometimes spilled over outside of the array area. Because these distant beads are no longer 
associated with coordinates across tissue space, they were deemed spatial outliers and eliminated 
from the analysis. Detection of these outliers was accomplished by the anomaly detection 
algorithm ensemble.IsolationForest() from the Python package scikit-learn. For every Slide-seq 
array, all raw coordinates were fed into the isolation forest algorithm, and outliers were thrown 
out. Lastly, curated beads from each cell type class were merged with the filtered set of 
coordinates. 

Cell Type Structure Assignment 

Certain cell types formed discrete, classifiable groupings across arrays. CD-IC, CD-PC, and 
DCT formed tubular islands, GC and MD cells formed elliptical structures, and mesangial cells, 
endothelial cells, and podocytes comprised circular glomeruli. Formulating structure aggregates 
were motivated by two downstream analyses: (1) morphology quantifications and (2) 
transcriptomic characterizations. 

First, we identified individual structures with cluster.KMeans(), from the Python package scikit-
learn, on the coordinates of each curated cell type. With podocytes, mesangial cells, and 
endothelial cells within glomeruli, GC, and MD cells, K was determined to be the number of 
dense clusters of points visualized in a scatter plot of curated coordinates. For CD-PC, and DCT, 
where each cell type comprises a single biological structure, but is characterized by natural 
partitions, K was determined by a silhouette analysis. Here, we searched for a K that maximizes 
the difference between minimum average out-of-cluster distances and average within-cluster 
distances. For every k in {2,...,max(number of beads, 50)}, we computed 
metrics.silhouette_score() of cluster.KMeans(K=k) from the Python package scikit-learn. We 
ultimately used the K-means clustering results with K being the number of clusters 
corresponding with the maximum silhouette score. CD-IC beads were assigned to their nearest 
CD-PC cluster (Fig S34-51). 

Quantifying the Morphology of Glomeruli 

In order to address the hypothesis that glomerular morphology differs between the disease states 
of kidney tissue, we computed the following morphology metrics for every glomerulus: (1) area, 
(2) percentage of podocytes, (3) percentage of mesangial cells, and (4) percentage of endothelial 
cells. In order to compute the area of glomeruli, the convex hull of each glomerulus was found 
with the Python package alphashape (v. 1.0.2), using the function alphashape() with alpha = 0. 
This step returned a convex polygon enclosing all points in every glomerulus, along with an area 
attribute.  

The percentages of podocytes, mesangial cells, and endothelial cells in glomeruli were computed 
with the following protocol: for every glomerulus, we divided the number of beads classified as 
the cell type of interest by the total number of beads in the glomerulus. Statistical tests were 
performed with the Mann-Whitney U-test. 

Cell Type Proportion Quantification 
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In order to address whether there was a significant difference in the cell type composition of 
kidneys in diseased versus wild-type kidney tissue, we computed the proportion of every cell 
type in the medulla, cortex, and whole kidney in each of our arrays. That is, for every cell type in 
every region, we divided the number of beads classified as this cell type by the total number of 
beads in the region of interest or entire array. We then compared these quantifications between 
UMOD-KI and WT mice, BTBR ob/ob and BTBR wt/wt mice, and the healthy, DKD, and 
injured humans. Statistical tests were performed with the Mann-Whitney U-test (Fig S13, S19, 
S32-33). 

Transcriptomic Data Preprocessing 

We conducted quality control by computing the number of genes and UMIs per array and UMIs 
per cell type were quantified (Fig S30-31). Prior to running our transcriptomic analyses, we 
applied normalization and batch effect removal methods to our data, all done using the R 
package Seurat. In order to account for sequencing depth per bead, we normalized our data using 
the SCTransform() function50 on each array. Next, we combined the transcriptomic data in arrays 
with genotypes or disease states we planned on comparing (e.g., BTBR wt/wt and BTBR ob/ob 
mice, WT and UMOD-KI mice, and all humans) into a single data matrix. We ran 
SelectIntegrationFeatures() to find the top 3000 consistently variable features in the sctransform 
data across all arrays in each comparison grouping. SCTransform() was then run across all the 
data in each group at once, this time using the shared variable feature space discovered in the 
previous step. 

In order to remove batch effects, within each genotype or disease state grouping of mice and 
humans, we searched for differentially expressed genes across batches. We used the function 
FindAllMarkers() with the negative binomial test on the raw counts, filtering for genes 
characterized by a log fold-change of at least 0.05 and occurring in a minimum fraction of 0.05 
of the beads in each of the batch groups under comparison. The union of the sets of batch 
markers derived from disease states that we intended on comparing downstream were removed 
from the data (Fig S16, S21-22).  

Disease State Clustering and Differential Expression Analysis 

With regards to glomerulus-specific cell types, DCT, CD-IC, and CD-PC, where we had clusters 
of cells forming small, discrete structures, we decided to cluster on the structures rather than 
cells. Because Slide-seq beads don't always capture mRNA purely from a single cell type, we 
reasoned that in smaller structures, surrounded by a mixture of other cell types, edge beads 
would be prone to picking up mRNA from external cell types. To remove some of this noise, we 
averaged the sctransform residuals of the gene expression profiles of beads belonging to each of 
our previously-defined structures. Gene profiles consisting of sctransform residuals of cell types 
that did not form these smaller, discrete structures, such as TAL, vSMC, fibroblasts, 
macrophages, and other immune cells were not aggregated in this way. 

For dimensionality reduction, we performed uniform manifold approximation and reduction 
(UMAP) with the Python package umap-learn (v. 0.4.6)94. We chose the clustering algorithm that 
best fit the biological labels of our data in UMAP-space: hdbscan (v. 0.8.26)95 in the cases where 
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we clustered on cell type aggregates, and cluster.SpectralClustering() from scikit-learn in the 
cases where we clustered on the gene expression profiles of individual beads. 

Clusters were assigned a disease status based on the composition of points contained within 
them. That is, if a cluster contained > 70% structure aggregates or beads coming from diseased 
arrays, all data points within it were labeled as diseased (Fig S16, S21-22). 

Differential expression across clusters was performed with the function 
scanpy.tl.rank_genes_groups() from the Python package scanpy96, using the Wilcoxon rank-sum 
test and filtering for the top 100 differentially expressed genes in each cluster. Genes were called 
differentially expressed if their adjusted p-value, computed with the Benjamani-Hochberg 
correction method, fell below 0.05. For each DE gene, the average log fold-change was 
computed from the sctransform corrected counts, defined as the log10 transform of the difference 
in the average expression of the gene between the two clusters, added by one. 

Macrophage–Cell Neighbor Analysis and Statistics 

In order to explore cell neighborhoods and cell-cell interactions between macrophages and other 
cell types, we used a custom analysis. For every macrophage bead of interest, we looked at all of 
its neighbors within a radius of 25 pixels using the function neighbors.radius_neighbors_graph() 
from the Python package scikit-learn. For every array, we were then able to compute the spatial 
interaction of a cell type, A, with a cell type, B, as the number of times A is a neighbor of B, 
normalized to the square-root of the product of the total number of cells A and total number of 
cells B. This normalization accounted for overall frequency of each cell type and all possible 
interactions between the two cell types of interest across arrays.  

In order to see if the cell-cell interaction neighborhoods were unique, we controlled for all other 
cell types. For humans, to determine if interactions between LYVE1+ macrophages versus their 
newly defined neighbors were unique, we also looked at cell interaction frequencies of all 
macrophages versus all other cell types in the medulla. For mice, to determine if interactions 
between all macrophages and their newly defined neighbors in the medulla were unique, we also 
looked at cell interaction frequencies of all macrophages versus all other cell types in mouse 
cortex.  

In order to define differences between healthy and injured tissue, we performed further statistical 
analysis. For humans, cell type interaction frequencies for all LYVE1+ macrophages versus all 
cells, and all macrophages versus all cells were compared across healthy and injured medulla. 
For mice, cell type interaction frequencies for all macrophages versus all cells were compared 
across the cortex and medulla in UMOD-KI and UMOD-WT mice. The statistical test used to 
compare interaction frequencies between healthy and disease tissue was the Mann-Whitney U-
test, correcting p-values with the Benjamani-Hochberg method.  

These new analyses are now presented as dot plots showing relative proportions of cell types 
normalized across healthy and disease tissue. Specifically, dot plots were generated showing the 
interaction frequency of macrophages (all macrophages or a subset, i.e. LYVE1+) versus every 
other cell type in the tissue array. The color of the dots indicates the intensity of the interaction 
(red, increased; blue, decreased interaction). The size of the dots indicates the adjusted p-value 
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for cell-cell interactions and significance is shown by a black outline around the dot (adjusted p-
value < 0.05). Cell types not represented in the dot plot had no interactions with macrophages of 
interest. 

Glomerulus and Granular Cell Distance Computation 

In order to analyze the spatial relationship between glomeruli and GC, we aimed to compare the 
distances between the two structures across genotypes in mice and used two different methods. 
In the first method, using the previously-computed K-means cluster centers, we computed the 
Euclidean distances between the cluster centers of all glomeruli and granular cell structures in 
every array. We then searched for glomerulus-granular cell structure pairs at a minimum distance 
to each other. Distances were then compared between BTBR wt/wt and BTBR ob/ob mice. In the 
second method, we computed the minimum Euclidean distances between the edges of the convex 
hulls encompassing glomeruli and granular cell structures using the distance() method from the 
Python package Shapely. The distribution of distances was then compared between arrays of 
BTBR wt/wt and BTBR ob/ob mice. Statistical tests were performed with the Mann-Whitney U-
test. 

UPR Pathway Analysis in UMOD Mice 

A list of UPR-specific genes was acquired from Adamson et al., 201679.  Genes appearing in < 
50% of the UMOD-KI and WT transcriptomic data matrices were removed. The select set of 
genes were then subset from the raw transcriptomic data of each of our UMOD-KI and WT 
mouse arrays and all data was combined into a single matrix. Beads expressing at least one 
feature of the UPR signature were maintained for the rest of the analysis. In order to account for 
sequencing depth of each bead, we ran the SCTransform() method from the R package Seurat. 
Next, we averaged the sctransform-normalized gene expression profiles of beads classified as 
being TAL in the medulla, per mouse. Differential expression was performed across aggregated 
gene expression profiles of TAL-medulla beads in UMOD-KI and WT mice. Here, we used the 
function scanpy.tl.rank_genes_groups() from the Python package scanpy with the Wilcoxon 
rank-sum test. We called genes differentially expressed if their adjusted p-value, computed with 
the Benjamani-Hochberg method, fell below 0.05. In order to visualize these gene expression 
differences across UMOD-KI and WT mice, we used the method clustermap() from the python 
package seaborn (v. 0.10.1)97, performing min-max normalization for every gene. The same 
protocol was followed in order to conduct DE across TAL-cortex and PCT beads in UMOD-KI 
and WT mice as negative controls. 
 

 

 
 

 
 

 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2021. ; https://doi.org/10.1101/2021.10.10.463829doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.10.463829
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 

1. Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression 

at high spatial resolution. Science 363, 1463–1467 (2019). 

2. Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with 

Slide-seqV2. Nat. Biotechnol. 39, 313–319 (2021). 

3. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial 

transcriptomics. Science 353, 78–82 (2016). 

4. Giebisch, G. Coupled ion and fluid transport in the kidney. N. Engl. J. Med. 287, 913–919 

(1972). 

5. Muto, Y. et al. Single cell transcriptional and chromatin accessibility profiling redefine cellular 

heterogeneity in the adult human kidney. Nat. Commun. 12, 2190 (2021). 

6. Chen, L., Chou, C.-L. & Knepper, M. A. Targeted Single-Cell RNA-seq Identifies Minority Cell 

Types of Kidney Distal Nephron. J. Am. Soc. Nephrol. (2021) doi:10.1681/ASN.2020101407. 

7. Kaur, H. & Advani, A. The study of single cells in diabetic kidney disease. J. Nephrol. (2021) 

doi:10.1007/s40620-020-00964-1. 

8. Meng, Y. et al. Transcriptional Profiling Reveals Kidney Neutrophil Heterogeneity in Both 

Healthy People and ccRCC Patients. J Immunol Res 2021, 5598627 (2021). 

9. Chen, Z. et al. A single-cell survey of the human glomerulonephritis. J. Cell. Mol. Med. (2021) 

doi:10.1111/jcmm.16407. 

10. Sidhom, E.-H. et al. Targeting a Braf/Mapk pathway rescues podocyte lipid peroxidation in 

CoQ-deficiency kidney disease. J. Clin. Invest. 131, (2021). 

11. Wu, H. et al. Comparative analysis of kidney organoid and adult human kidney single cell and 

single nucleus transcriptomes. doi:10.1101/232561. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2021. ; https://doi.org/10.1101/2021.10.10.463829doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.10.463829
http://creativecommons.org/licenses/by-nc-nd/4.0/


12. Park, J. et al. Comprehensive single cell RNAseq analysis of the kidney reveals novel cell types 

and unexpected cell plasticity. doi:10.1101/203125. 

13. Clark, A. R. et al. Single cell transcriptomics reveal disrupted kidney filter cell-cell interactions 

after early and selective podocyte injury. doi:10.1101/2020.07.30.229666. 

14. Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of 

kidney disease. Science 360, 758–763 (2018). 

15. Stewart, B. J. et al. Spatiotemporal immune zonation of the human kidney. Science 365, 1461–

1466 (2019). 

16. Young, M. D. et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of 

renal tumors. Science 361, 594–599 (2018). 

17. Menon, R. et al. Single cell transcriptomics identifies focal segmental glomerulosclerosis 

remission endothelial biomarker. JCI Insight 5, (2020). 

18. Lake, B. B. et al. A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy 

and pathophysiology of human kidneys. Nat. Commun. 10, 2832 (2019). 

19. Ransick, A. et al. Single-Cell Profiling Reveals Sex, Lineage, and Regional Diversity in the 

Mouse Kidney. Dev. Cell 51, 399–413.e7 (2019). 

20. Subramanian, A. et al. Obesity-instructed TREM2high macrophages identified by comparative 

analysis of diabetic mouse and human kidney at single cell resolution. 

doi:10.1101/2021.05.30.446342. 

21. Schroeder, A. W. et al. Novel Human Kidney Cell Subsets Identified by Mux-Seq. 

doi:10.1101/2020.03.02.973925. 

22. Goltsev, Y. et al. Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed 

Imaging. Cell 174, 968–981.e15 (2018). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2021. ; https://doi.org/10.1101/2021.10.10.463829doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.10.463829
http://creativecommons.org/licenses/by-nc-nd/4.0/


23. Schürch, C. M. et al. Coordinated Cellular Neighborhoods Orchestrate Antitumoral Immunity at 

the Colorectal Cancer Invasive Front. Cell 183, 838 (2020). 

24. Xia, C., Fan, J., Emanuel, G., Hao, J. & Zhuang, X. Spatial transcriptome profiling by MERFISH 

reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc. 

Natl. Acad. Sci. U. S. A. 116, 19490–19499 (2019). 

25. Xia, C., Babcock, H. P., Moffitt, J. R. & Zhuang, X. Multiplexed detection of RNA using 

MERFISH and branched DNA amplification. doi:10.1101/505784. 

26. Chen, Y.-C. SABER enables highly multiplexed and amplified detection of DNA and RNA in 

cells and tissues. doi:10.1242/prelights.4809. 

27. Alon, S. et al. Expansion sequencing: Spatially precise in situ transcriptomics in intact biological 

systems. Science 371, (2021). 

28. Choi, H. M. T. et al. Third-generation in situ hybridization chain reaction: multiplexed, 

quantitative, sensitive, versatile, robust. doi:10.1101/285213. 

29. Raghubar, A. M. et al. Spatially resolved transcriptome profiles of mammalian kidneys illustrate 

the molecular complexity of functional nephron segments, cell-to-cell interactions and genetic 

variants. doi:10.1101/2020.09.29.317917. 

30. Ferreira, R. M. et al. Integration of spatial transcriptomic and single cell sequencing identifies 

expression patterns underlying immune and epithelial cell cross-talk in acute kidney injury. 

doi:10.1101/2021.01.19.427258. 

31. Lake, B. B. et al. An atlas of healthy and injured cell states and niches in the human kidney. 

bioRxiv 2021.07.28.454201 (2021) doi:10.1101/2021.07.28.454201. 

32. Melo Ferreira, R. et al. Integration of spatial and single cell transcriptomics localizes epithelial-

immune cross-talk in kidney injury. JCI Insight (2021) doi:10.1172/jci.insight.147703. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2021. ; https://doi.org/10.1101/2021.10.10.463829doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.10.463829
http://creativecommons.org/licenses/by-nc-nd/4.0/


33. Wyatt, C. M., Shineski, M., Chertow, G. M. & Bangalore, S. ISCHEMIA in chronic kidney 

disease: improving the representation of patients with chronic kidney disease in cardiovascular 

trials. Kidney International vol. 89 1178–1179 (2016). 

34. Yip, J. Regulation of NK Cell-mediated Tubular Epithelial Cell Death and Kidney Ischemia-

reperfusion Injury by the NKR-P1B Receptor and Clr-b. (2012). 

35. Kramann, R. & Menzel, S. Mouse Models of Kidney Fibrosis. Methods Mol. Biol. 2299, 323–

338 (2021). 

36. Sharfuddin, A. A. & Molitoris, B. A. Pathophysiology of ischemic acute kidney injury. Nature 

Reviews Nephrology vol. 7 189–200 (2011). 

37. Yu, S. M.-W. & Bonventre, J. V. Acute Kidney Injury and Progression of Diabetic Kidney 

Disease. Advances in Chronic Kidney Disease vol. 25 166–180 (2018). 

38. Hudkins, K. L. et al. BTBR Ob/Ob mutant mice model progressive diabetic nephropathy. J. Am. 

Soc. Nephrol. 21, 1533–1542 (2010). 

39. O’Brien, P. D. et al. BTBR ob/ob mice as a novel diabetic neuropathy model: Neurological 

characterization and gene expression analyses. Neurobiology of Disease vol. 73 348–355 (2015). 

40. O’Brien, P. D. et al. Gender-specific differences in diabetic neuropathy in BTBR ob/ob mice. 

Journal of Diabetes and its Complications vol. 30 30–37 (2016). 

41. Piret, S. E. et al. A mouse model for inherited renal fibrosis associated with endoplasmic 

reticulum stress. Dis. Model. Mech. 10, 773–786 (2017). 

42. Devuyst, O. et al. Autosomal dominant tubulointerstitial kidney disease. Nat Rev Dis Primers 5, 

60 (2019). 

43. Dvela-Levitt, M. et al. Small Molecule Targets TMED9 and Promotes Lysosomal Degradation 

to Reverse Proteinopathy. Cell 178, 521–535.e23 (2019). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2021. ; https://doi.org/10.1101/2021.10.10.463829doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.10.463829
http://creativecommons.org/licenses/by-nc-nd/4.0/


44. Olinger, E. et al. Clinical and genetic spectra of autosomal dominant tubulointerstitial kidney 

disease due to mutations in UMOD and MUC1. Kidney Int. 98, 717–731 (2020). 

45. Gibier, J.-B. et al. MUC1 Mitigates Renal Injury and Inflammation in Endotoxin Induced Acute 

Kidney Injury by Inhibiting the TLR4-MD2 Axis and Reducing Pro-Inflammatory Macrophages 

Infiltration. Shock (2021) doi:10.1097/SHK.0000000000001742. 

46. Dvela-Levitt, M., Shaw, J. L. & Greka, A. A Rare Kidney Disease To Cure Them All? Towards 

Mechanism-Based Therapies for Proteinopathies. Trends Mol. Med. 27, 394–409 (2021). 

47. Shamam, Y. M. & Hashmi, M. F. Autosomal Dominant Tubulointerstitial Kidney Disease. in 

StatPearls (StatPearls Publishing, 2021). 

48. Jaitin, D. A. et al. Lipid-Associated Macrophages Control Metabolic Homeostasis in a Trem2-

Dependent Manner. Cell vol. 178 686–698.e14 (2019). 

49. Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888–1902.e21 (2019). 

50. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq 

data using regularized negative binomial regression. Genome Biol. 20, 296 (2019). 

51. Zimmerman, K. A. et al. Single-Cell RNA Sequencing Identifies Candidate Renal Resident 

Macrophage Gene Expression Signatures across Species. J. Am. Soc. Nephrol. 30, 767–781 

(2019). 

52. Harvey, N. L. & Gordon, E. J. Deciphering the roles of macrophages in developmental and 

inflammation stimulated lymphangiogenesis. Vasc. Cell 4, 15 (2012). 

53. Lim, H. Y. et al. Hyaluronan Receptor LYVE-1-Expressing Macrophages Maintain Arterial 

Tone through Hyaluronan-Mediated Regulation of Smooth Muscle Cell Collagen. Immunity 49, 

1191 (2018). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2021. ; https://doi.org/10.1101/2021.10.10.463829doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.10.463829
http://creativecommons.org/licenses/by-nc-nd/4.0/


54. Zhu, Z. et al. TREM2 suppresses the proinflammatory response to facilitate PRRSV infection via 

PI3K/NF-κB signaling. PLOS Pathogens vol. 16 e1008543 (2020). 

55. Turnbull, I. R. et al. Cutting edge: TREM-2 attenuates macrophage activation. J. Immunol. 177, 

3520–3524 (2006). 

56. Deczkowska, A., Weiner, A. & Amit, I. The Physiology, Pathology, and Potential Therapeutic 

Applications of the TREM2 Signaling Pathway. Cell 181, 1207–1217 (2020). 

57. Xiong, X. et al. Landscape of Intercellular Crosstalk in Healthy and NASH Liver Revealed by 

Single-Cell Secretome Gene Analysis. Mol. Cell 75, 644–660.e5 (2019). 

58. Tang, W. et al. TREM2 acts as a tumor suppressor in hepatocellular carcinoma by targeting the 

PI3K/Akt/β-catenin pathway. Oncogenesis 8, 9 (2019). 

59. Greka, A. & Mundel, P. Cell Biology and Pathology of Podocytes. Annual Review of Physiology 

vol. 74 299–323 (2012). 

60. Yao, J., Oite, T. & Kitamura, M. Gap junctional intercellular communication in the 

juxtaglomerular apparatus. Am. J. Physiol. Renal Physiol. 296, F939–46 (2009). 

61. Kosovic, I. et al. Connexin Signaling in the Juxtaglomerular Apparatus (JGA) of Developing, 

Postnatal Healthy and Nephrotic Human Kidneys. Int. J. Mol. Sci. 21, (2020). 

62. Bachmann, S. & Oberbäumer, I. Structural and molecular dissection of the juxtaglomerular 

apparatus: new aspects for the role of nitric oxide. Kidney Int. Suppl. 67, S29–33 (1998). 

63. Tang, J. et al. Urinary Renin in Patients and Mice With Diabetic Kidney Disease. Hypertension 

74, 83–94 (2019). 

64. Lin, Y.-C., Chang, Y.-H., Yang, S.-Y., Wu, K.-D. & Chu, T.-S. Update of pathophysiology and 

management of diabetic kidney disease. J. Formos. Med. Assoc. 117, 662–675 (2018). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2021. ; https://doi.org/10.1101/2021.10.10.463829doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.10.463829
http://creativecommons.org/licenses/by-nc-nd/4.0/


65. Clark, A. F. et al. Renin-1 is essential for normal renal juxtaglomerular cell granulation and 

macula densa morphology. J. Biol. Chem. 272, 18185–18190 (1997). 

66. Hanhof, C. J. A. O. et al. Modeling Distal Convoluted Tubule (Patho)Physiology: An Overview 

of Past Developments and an Outlook Toward the Future. Tissue Engineering Part C: Methods 

vol. 27 200–212 (2021). 

67. He, B. et al. Single-cell RNA sequencing reveals the mesangial identity and species diversity of 

glomerular cell transcriptomes. Nat. Commun. 12, 2141 (2021). 

68. Tighe, J. R. The pathology of renal ischaemia. Journal of Clinical Pathology vols s3-11 114–124 

(1977). 

69. Gomez, R. A. et al. Recruitment of renin gene-expressing cells in adult rat kidneys. Am. J. 

Physiol. 259, F660–5 (1990). 

70. Martini, A. G. & Danser, A. H. J. Juxtaglomerular Cell Phenotypic Plasticity. High Blood Press. 

Cardiovasc. Prev. 24, 231–242 (2017). 

71. Yokoi, H. et al. Overexpression of connective tissue growth factor in podocytes worsens diabetic 

nephropathy in mice. Kidney Int. 73, 446–455 (2008). 

72. Lipson, K. E., Wong, C., Teng, Y. & Spong, S. CTGF is a central mediator of tissue remodeling 

and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair 5, 

S24 (2012). 

73. Garg, P. A Review of Podocyte Biology. American Journal of Nephrology vol. 47 3–13 (2018). 

74. May, C. J., Saleem, M. & Welsh, G. I. Podocyte dedifferentiation: a specialized process for a 

specialized cell. Front. Endocrinol.  5, 148 (2014). 

75. Chuang, P. Y. & He, J. C. Signaling in Regulation of Podocyte Phenotypes. Nephron Physiology 

vol. 111 9–p15 (2009). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2021. ; https://doi.org/10.1101/2021.10.10.463829doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.10.463829
http://creativecommons.org/licenses/by-nc-nd/4.0/


76. Gil, C. L., Hooker, E. & Larrivée, B. Diabetic Kidney Disease, Endothelial Damage, and 

Podocyte-Endothelial Crosstalk. Kidney Medicine vol. 3 105–115 (2021). 

77. Muhl, L. et al. Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast 

and mural cell identification and discrimination. Nat. Commun. 11, 3953 (2020). 

78. Miao, Z. et al. Single cell regulatory landscape of the mouse kidney highlights cellular 

differentiation programs and disease targets. Nat. Commun. 12, 2277 (2021). 

79. Adamson, B. et al. A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic 

Dissection of the Unfolded Protein Response. Cell 167, 1867–1882.e21 (2016). 

80. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic 

regulation. Science 334, 1081–1086 (2011). 

81. Karagöz, G. E., Acosta-Alvear, D. & Walter, P. The Unfolded Protein Response: Detecting and 

Responding to Fluctuations in the Protein-Folding Capacity of the Endoplasmic Reticulum. Cold 

Spring Harb. Perspect. Biol. 11, (2019). 

82. Chen, W.-T. et al. Spatial Transcriptomics and In Situ Sequencing to Study Alzheimer’s Disease. 

Cell 182, 976–991.e19 (2020). 

83. Navarro, J. F. et al. Spatial Transcriptomics Reveals Genes Associated with Dysregulated 

Mitochondrial Functions and Stress Signaling in Alzheimer Disease. iScience 23, 101556 (2020). 

84. Lein, E., Borm, L. E. & Linnarsson, S. The promise of spatial transcriptomics for neuroscience 

in the era of molecular cell typing. Science 358, 64–69 (2017). 

85. Roth, R., Kim, S., Kim, J. & Rhee, S. Single-cell and spatial transcriptomics approaches of 

cardiovascular development and disease. BMB Rep. 53, 393–399 (2020). 

86. Carlberg, K. et al. Exploring inflammatory signatures in arthritic joint biopsies with Spatial 

Transcriptomics. Sci. Rep. 9, 18975 (2019). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2021. ; https://doi.org/10.1101/2021.10.10.463829doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.10.463829
http://creativecommons.org/licenses/by-nc-nd/4.0/


87. Saviano, A., Henderson, N. C. & Baumert, T. F. Single-cell genomics and spatial 

transcriptomics: Discovery of novel cell states and cellular interactions in liver physiology and 

disease biology. J. Hepatol. 73, 1219–1230 (2020). 

88. Chen, H. et al. Dissecting Mammalian Spermatogenesis Using Spatial Transcriptomics. 

doi:10.1101/2020.10.17.343335. 

89. Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 281–286 

(2021). 

90. Elia, I. & Haigis, M. C. Metabolites and the tumour microenvironment: from cellular 

mechanisms to systemic metabolism. Nat Metab 3, 21–32 (2021). 

91. Song, W. M. & Colonna, M. The identity and function of microglia in neurodegeneration. Nat. 

Immunol. 19, 1048–1058 (2018). 

92. Choi, H. M. T. et al. Third-generation hybridization chain reaction: multiplexed, quantitative, 

sensitive, versatile, robust. Development 145, (2018). 

93. Garreta, R. & Moncecchi, G. Learning scikit-learn: Machine Learning in Python. (Packt 

Publishing Ltd, 2013). 

94. McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: Uniform Manifold Approximation 

and Projection. Journal of Open Source Software vol. 3 861 (2018). 

95. McInnes, L., Healy, J. & Astels, S. hdbscan: Hierarchical density based clustering. The Journal 

of Open Source Software vol. 2 205 (2017). 

96. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data 

analysis. Genome Biol. 19, 15 (2018). 

97. Waskom, M. seaborn: statistical data visualization. Journal of Open Source Software vol. 6 3021 

(2021). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2021. ; https://doi.org/10.1101/2021.10.10.463829doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.10.463829
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgments: We thank Rajesh Thakker at the University of Oxford for providing the 
UMOD-KI mice used in this study, Sophia Liu for discussions and advice on immune cells, 
Pawan Kumar for generation of beads used in the arrays, Jilong Li for developing the 
computational pipeline used to map sequencing data to spatial locations, Dylan Cable for advice 
on RCTD, Aleks Goeva for advice and code for mapping cell types with NMF-reg, Terri Woo 
for performing PAS staining on kidney tissue, Michael Howard for mouse husbandry and 
treatments, and Jillian Shaw, Juanchi Pablo, and Aviv Regev for comments on the manuscript. 
The authors thank all members of the Greka and Chen labs for comments and suggestions. 

Funding:  
BroadIgnite (JLM)  
CZI Seed Networks grant number CZI2019-02447 (AG, FC) 
NIH grants DK095045 and DK099465 (AG) 
 
Author contributions: JLM conceived of and designed the study, collected mouse tissue, 
performed all slide-seqV2 and HCR experiments, supervised data analysis, drafted figures, and 
wrote the manuscript. TN performed data analysis for slide-seqV2 data, drafted figures, and 
wrote the manuscript. QSW supervised and performed data analysis for slide-seqV2 data, 
provided high level direction for data analysis, and wrote the manuscript. HC developed 
computational methods for both HCR and slide-seqV2, performed HCR image analysis, and 
wrote the manuscript. EM generated all slide-seqV2 arrays. KAV assisted with procurement of 
human samples, AS performed computational analysis of human and BTBR wt/wt mouse single 
cell data used for mapping cell types on slide-seqV2 data, and KAV and AS contributed to 
findings on LYVE1+ and Trem2+ macrophages from single cell analysis of human and mouse 
kidneys. KL designed immune cell interaction schematics. RRS performed experiments using the 
original slide-seq version 1 protocol. BM performed analysis of NMF-reg cell mappings and cell 
type interactions. RMH collected images of PAS stained tissue. KK and AW assisted with 
procurement of human samples. EZM provided Slide-seqV2 arrays for this study. FC provided 
Slide-seqV2 arrays for this study, assisted with study design and implementation, and provided 
input on results. AG supervised the study and wrote the manuscript. All authors reviewed and 
provided input on the manuscript.  

 
Competing interests: FC and EZM are inventors on a pending patent application related to the 
development of Slide-seq. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2021. ; https://doi.org/10.1101/2021.10.10.463829doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.10.463829
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Fig. 1. Slide-seqV2 spatial transcriptomics in human kidney informs methods to identify 
and quantify cell-cell interactions frequency and cell neighborhoods. (A) Schematic 
demonstrating the Slide-seqV2 method. A 10µm sagittal section of kidney is placed onto a Slide-
seqV2 array. The arrays bind to RNA in the tissue and result in a spatial transcriptome with 
cDNA containing a barcode from each bead. (B) Medulla arrays showing all cell mappings and 
spatial locations of LYVE1+ macrophages in large red circles. Images of individual cell 
populations are plotted in Fig S61-62. Scale bars, 500µm. (C-D) Uniquely enabled by the spatial 
resolution, we identified neighboring cell types in the medulla of healthy and injured human 
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kidney. LYVE1+ macrophages interact with endothelial cells (ECs) and distal convoluted tubular 
epithelial cells (DCTs) in healthy human medulla. These interactions are decreased in injured 
medulla. Dot plot shows the interaction frequency of (C) LYVE1+ macrophages and (D) all 
macrophages versus every other cell type in the tissue array. The color of the dots indicates the 
intensity of the interaction (red, increased; blue, decreased interaction). The size of the dots 
indicates the adjusted p-value for cell-cell interactions, and significance is shown by a black 
outline around the dot (adjusted p-value < 0.05). Cell types not represented in the dot plot had no 
interactions with macrophages of interest.  
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2021. ; https://doi.org/10.1101/2021.10.10.463829doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.10.463829
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Fig. 2. Near single cell spatial resolution in diabetic mouse kidney reveals an expansion of 
granular cells, and a disrupted blood flow regulating apparatus.  
(A) Arrays displaying cell types in BTBR wt/wt (left) and BTBR ob/ob diabetic mice (right). 
Images of individual cell populations are plotted in Fig S64. Scale bars, 500µm. (B-F) Plots from 
Slide-seq arrays showing (B) average area of glomeruli (p-value <0.0001), (C) percentage of 
beads classified as podocytes, (D) percentage of beads classified as glomerular endothelial cells, 
(E) percentage of beads classified as glomerular mesangial cells, (F) percentage of beads 
classified as granular cells (p-value 0.0009) in BTBR wt/wt and BTBR ob/ob mice. (G) Plot 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2021. ; https://doi.org/10.1101/2021.10.10.463829doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.10.463829
http://creativecommons.org/licenses/by-nc-nd/4.0/


from Slide-seq arrays showing the average distance between the center of glomerulus and 
granular cell cluster in BTBR wt/wt and BTBR ob/ob mice (p-value 0.0018). Data was obtained 
from cross sections of 4 mice per genotype. (H) HCR validation images, showing Nphs2+ 
podocytes, Ren1+ granular cells, Slc12a1+ TAL, and all cells in DAPI. Scale bar 50µm. 
Disorganized Ren1+ cells are denoted with white arrows. (I) HCR quantification of (p-value 
<0.0001) and (J) HCR images of Ctgf+ Nphs2+ injured podocytes (arrows). Scale bar 50µm. 
Data obtained from entire cross sections of a kidney from 4 mice per genotype.  
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Fig. 3. Slide-seqV2 reveals disease-specific, medulla-restricted cell neighborhoods and 
injured epithelial cells in a mouse model of a toxic proteinopathy due to Umod mutations. 
(A) Arrays displaying all cell types in WT (left) and UMOD-KI mice (right). Images of 
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individual cell populations are plotted in Fig S65. Arrays showing delineation of cortex vs 
medulla in WT and UMOD-KI arrays where red beads show the spatial location and quantity of 
(B) fibroblasts and (C) macrophages. (D) Based on unbiased DGE, array plots show spatial 
mapping of  TAL (non-disease in purple; disease in red), fibroblast (non-disease in pink; disease 
in blue), and macrophage beads (non-disease in green; disease in orange) in WT and UMOD-KI 
tissue. Beads classified by DGE as “disease” map primarily onto the medulla of UMOD-KI 
arrays, compared to beads classified as “non-disease” that map primarily onto the medulla of WT 
arrays (fisher exact test p<10^-100). Scale bars, 500µm. (E) HCR images of Umod+ Ctgf+ 
double positive injured TALs. Scale bar, 50µm.  
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Fig. 4. Rare Trem2+ macrophage expansion associated with disease and localized 
specifically to kidney medulla. (A) Schematic showing location, cortex vs medulla, of Trem2+ 
macrophages and immediately adjacent neighboring cell types. (B-C) Uniquely enabled by high 
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spatial resolution, we quantified macrophage-neighbor cell interactions. Dot plots show average 
cell-cell interaction frequencies (relative proportions) for all macrophages in (B) cortex and (C) 
medulla. Significant interactions are displayed with a black border around colored circles. Cell 
types not represented in the dot plot had no interactions with macrophages of interest. (D) Arrays 
showing all cell mappings, cortex and medulla delineation, and spatial localization of Trem2+ 
macrophages in large red circles. Scale bars, 500µm. (E) Plots from Slide-seqV2 arrays showing 
percentage of beads classified as Trem2+ macrophages (p-value 0.003). Each point represents an 
array from 3 WT and 5 UMOD-KI mice. Error bars represent standard deviation of the mean. (F) 
Plots generated from HCR validation showing percentage of cells that are Trem2+ macrophages 
(p-value 0.0357). Each point represents a mouse. Error bars represent standard deviation of the 
mean. (G) HCR images from 2 different WT and UMOD-KI mice showing Trem2+ C1qb+ 
macrophages in the medulla (Umod). Scale bar 50µm. 
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Fig. 5. Spatially-restricted, cell-specific and disease-associated perturbations in 77 genes 
associated with the UPR in medullary TAL epithelial cells uniquely revealed by Slide-
seqV2. (A) Heatmap showing relative expression level of 77 UPR genes averaged across arrays 
in WT and UMOD-KI mice from medullary TAL beads. Tmed9 is indicated with a red arrow. 
Significant genes are denoted with an asterisk (Benjamani-Hochberg-corrected p<0.05). Violin 
plots showing expression level in medulla TAL (top) and all medulla TAL beads in arrays 
(middle, bottom) are shown with expression level for notable genes in (B) IRE1ɑ upregulated 
pathway gene, Slc35b1 and PERK upregulated pathway genes, (C) Trib3, (D) Mthfd2, and (E) 
Slc3a2. Scale bars, 500µm. 
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