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Abstract: 118 

Plasma lipids are heritable modifiable causal factors for coronary artery disease, the leading cause of death globally. 119 

Despite the well-described monogenic and polygenic bases of dyslipidemia, limitations remain in discovery of lipid-120 

associated alleles using whole genome sequencing, partly due to limited sample sizes, ancestral diversity, and 121 

interpretation of potential clinical significance. Increasingly larger whole genome sequence datasets with plasma lipids 122 

coupled with methodologic advances enable us to more fully catalog the allelic spectrum for lipids.  Here, among 66,329 123 

ancestrally diverse (56% non-European ancestry) participants, we associate 428M variants from deep-coverage whole 124 

genome sequences with plasma lipids. Approximately 400M of these variants were not studied in prior lipids genetic 125 

analyses. We find multiple lipid-related genes strongly associated with plasma lipids through analysis of common and rare 126 

coding variants. We additionally discover several significantly associated rare non-coding variants largely at Mendelian 127 

lipid genes. Notably, we detect rare LDLR intronic variants associated with markedly increased LDL-C, similar to rare 128 

LDLR exonic variants. In conclusion, we conducted a systematic whole genome scan for plasma lipids expanding the 129 

alleles linked to lipids for multiple ancestries and characterize a clinically-relevant rare non-coding variant model for lipids.    130 
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Introduction 131 

Discovery of rare alleles linked to plasma lipids (i.e., low-density lipoprotein cholesterol [LDL-C], high-density 132 

lipoprotein cholesterol [HDL-C], total cholesterol [TC], and triglycerides [TG]) continue to yield important translational 133 

insights toward coronary artery disease (CAD), including PCSK9 and ANGPTL3 inhibitors now available in clinical 134 

practice1,2,3,4,5. The monogenic and polygenic bases of plasma lipids are well-suited to population-based discovery 135 

analyses and confer broader insights for genetic analyses of complex traits. We now evaluate numerous newly 136 

catalogued, largely rare, alleles never previously systematically analyzed with lipids. 137 

Analyses of imputed array-derived genome-wide genotypes and whole exome sequences in hundreds of 138 

thousands of increasingly diverse individuals continue to uncover low-frequency protein-coding variants linked to lipids. 139 

Due to purifying selection, causal variants conferring large effects tend to occur relatively more recently, and are thus rare 140 

and often specific to families or communities6. Most discovery analyses for large-effect rare alleles have focused on the 141 

analysis of disruptive protein-coding variants given (1) well-recognized constraint in coding regions, (2) incomplete 142 

genotyping of rare non-coding sequence given relative sparsity of deep-coverage (i.e., >30X) whole genome sequencing 143 

(WGS), and (3) better prediction of coding versus non-coding sequence variation consequence1,7,8,9,10,11,12. We recently 144 

described a statistical framework incorporating multi-dimensional reference datasets paired with genomic data to improve 145 

rare coding and non-coding variant analyses for WGS analysis of lipids and other complex traits13,14. Furthermore, 146 
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including individuals of non-European ancestry facilitates the discovery of both novel alleles at established loci as well as 147 

novel loci14,15,16.  148 

Here, we examine the full allelic spectrum with plasma lipids using whole genome sequences and harmonized 149 

lipids from the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) 150 

program17,18. We studied 66,329 participants and 428 million variants across multiple ancestry groups – 44.48% 151 

European, 25.60% Black, 21.02% Hispanic, 7.11% Asian and 1.78% Samoan. We identified robust allelic heterogeneity at 152 

known loci with several novel variants at these loci; we additionally identified novel loci and pursued replication in 153 

independent cohorts (31.50% non-European samples). We then explored the association of genome-wide rare variants 154 

with lipids, with detailed explorations of rare coding and non-coding variant models at known Mendelian dyslipidemia 155 

genes. Our systemic effort yields new insights for plasma lipids provides a framework for population based WGS analysis 156 

of complex traits.  157 

 158 

Results 159 

Overview 160 

We studied the TOPMed Freeze8 dataset of 66,329 samples from 21 studies and performed genome-wide 161 

association studies (GWAS) separately for the four plasma lipid phenotypes (i.e., LDL-C, HDL-C, TC and TG) using 28M 162 

individual autosomal variants (minor allele count [MAC] > 20) and aggregated rare autosomal variant (minor allele 163 
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frequency [MAF] < 1%) association testing for 417M variants (Fig. 1, Supplementary Fig. 1). Secondarily, we associated 164 

individual variants with minor allele frequencies (MAF) > 0.01% within each ancestry group to detect ancestry-specific 165 

lipid-associated alleles. We intersected our results with currently published array-based GWAS results15 to identify novel 166 

associations with lipids. We performed replication analyses for the putative novel associations identified, in up to 167 

approximately 45,000 independent samples with array-based genotyping imputed to TOPMed. Finally, we conducted rare 168 

variant association studies as multiple aggregate tests across the genome to identify gene-specific functional categories 169 

and non-coding genomic regions influencing plasma lipid concentrations. 170 

 171 

TOPMed baseline characteristics 172 

The TOPMed Informatics Research Center (IRC) and TOPMed Data Coordinating Center (DCC) performed quality 173 

control, variant calling, and calculated the relatedness of population structures of Freeze 8 data17. We studied 66,329 174 

samples across 21 cohorts and 41,182 (62%) were female. The ancestry distribution was 29,502 (44.46%) White, 16,983 175 

(25.60%) Black, 13,943 (21.02%) Hispanic, 4,719 (7.11%) Asian, and 1,182 (1.78%) Samoan (Supplementary Table 1). 176 

The mean (standard deviation [SD]) age of the full cohort was 53 (15.00) years which varied by cohort from 25 (3.56) 177 

years for Coronary Artery Risk Development in Young Adults (CARDIA) to 73 (5.38) years for Cardiovascular Health 178 

Study (CHS). The Amish cohort had a higher-than-average concentration of LDL-C (140 [SD 43] mg/dL) and HDL-C (56 179 

[SD 16] mg/dL) as well as lower TG (median 63 [IQR 50] mg/dL) consistent with the known founder mutations in APOB 180 
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and APOC37,8,14. In the Women’s Health Initiative (WHI) cohort, the TC (230 [SD 41] mg/dL) and TG (median 129 [IQR 181 

87] mg/dL) concentrations were higher than for other cohorts as previously described12. We accounted for lipid-lowering 182 

medications and fasting status and inverse rank normalized the phenotypes as before12,14 which are further detailed in the 183 

Methods. The adjusted normalized lipid concentrations for the four lipids were similar across the cohorts. 184 

 A total of 428M variants passed the quality criteria with an average depth >30X in 22 autosomes. 202M variants 185 

were singletons, 417M were rare variants (MAF<1%), and 11M were common or low frequency variants (MAF>1%) with 186 

differences by cohort (Supplementary Table 2).  187 

 188 

Individual variant associations with lipids 189 

Approximately 28M variants with MAC > 20 were individually associated with LDL-C, HDL-C, TC and TG. We used 190 

p-value < 5x10-9 to claim significance as previously recommended for whole genome sequencing common variant 191 

association studies14,19. The total numbers of variants that met our significance threshold were 2,214, 2,314, 2,697 and 192 

2,442 for LDL-C, HDL-C, TC and TG, respectively, and after clumping20 the numbers of variants were 357, 338, 324, and 193 

289, respectively. Of these variants, most were previously demonstrated to be associated with plasma lipids either at the 194 

variant- or locus-level15 (Supplementary Table 3, Supplementary Fig. 2). 195 

 To identify putative novel variant associations, we compared our results to a recent multi-ethnic lipid GWAS among 196 

312,571 participants of the Million Veteran Program (MVP)15 as well as the GWAS Catalog (All associations(v1.0) file 197 
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dated 06/04/2020) (Fig. 2). We clumped (window 250 kb, r2 0.5) significant variants using Plink20 and queried these in the 198 

GWAS Catalog and MVP. Among genome-wide significant variants, we tabulated ‘known-position’ (variant previously 199 

associated), ‘known-loci’ (variants not previously significantly associated with the corresponding lipid phenotype but within 200 

500 kb of a known locus, thereby representing additional allelic heterogeneity), and ‘novel’ variants (variants not in a 201 

known lipid locus) (Supplementary Table 3).  202 

 The novel variants, tabulated in Table 1, are divided into two subsets – ‘novel variants’ or variants at established 203 

lipid loci for another lipid phenotype, and ‘novel loci,’ representing new loci associations for any lipid phenotype. For 204 

example, the CETP locus is well-known for its link to HDL-C, but we now found that rs183130 (16:56957451:C:T, MAF 205 

28.3%) at the locus is associated with LDL-C. Similarly, the variants rs7140110 (13:113841051:T:C, MAF 27.8%) GAS6 206 

and rs73729083 (7:137875053:T:C, MAF 4.5%) CREB3L2 are newly associated with TC, while previous studies showed 207 

that rs73729083 associates with LDL-C21 and rs7140110 associates with LDL-C22 and TG23. Index variants at novel loci 208 

were typically low frequency variants often observed in non-European ancestries, so we also conducted ancestry-specific 209 

association analyses for these alleles (Supplementary Table 4). For example, 12q23.1 (12:97352354:T:C, MAF 0.3%) 210 

and 4q34.2 (4:176382171:C:T, MAF 0.2%) associations with LDL-C are specific to Hispanic (MAF 1.3%) and Black (MAF 211 

0.6%) populations, respectively and among Asians (MAF 1.5%) alone, 11q13.3 (11:69219641:C:T, MAF 0.2%) was 212 

associated with TG. One variant initially passing the novel locus filter for HDL-C (RNF111 - rs112147665, beta = 8.664, p-213 

value = 6.51x10-10), was in LD (r=0.7) with LIPC p.Thr405Met (rs113298164) which is known to be associated with HDL-214 
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C. The lead variant from MVP was 604 kb away from the RNF111 variant but the rare LIPC missense variant p.Thr405Met 215 

was 421 kb away. Conditional analysis accounting for LIPC p.Thr405Met rendered the non-coding variant near RNF111 216 

variant non-significant (beta = 4.351, p-value = 2.47x10-02), therefore we reclassified RNF111 variant as a known-position 217 

variant. Ancestry-specific GWAS did not yield additional novel loci beyond our larger trans-ancestry GWAS. Majority of 218 

genome significant single variants were captured by previous lipid GWAS15, but ancestry specific novel-hits are unique to 219 

WGS TOPMed data. 220 

 Due to the paucity of available diverse WGS datasets with lipids of comparable size, we pursued replication with 221 

two genome-wide array-based genotyped datasets imputed to TOPMed WGS17,24 : Mass General Brigham (MGB) 222 

Biobank (N=25,137) and Penn Medicine Biobank (N=20,079)25,26, the replication cohorts had diverse ancestry distribution, 223 

where non-European samples accounted for 15.77% in MGB Biobank and 51.20% in Penn Medicine Biobank 224 

(Supplementary Table 5). We brought seven putative novel variants with p-values < 5x10-9 forward for replication. The 225 

three common variants, rs183130 (CETP), rs7140110 (GAS6) and rs73729083 (CREB3L2), that were associated with 226 

both LDL-C and TC in TOPMed also replicated in MGB and two (rs183130, rs73729083) replicated in Penn Biobank at an 227 

alpha level of 0.05 and consistent direction of effect (Table 1). The two variants that were associated in both replication 228 

studies were most significantly associated among African Americans in TOPMed (rs183130: beta = -2.762 mg/dL, p-value 229 

= 5.71x10-07; rs73729083: beta = -3.725 mg/dL, p-value = 5.25x10-07). Low-frequency variants from specific ancestry 230 

groups associated with lipids in TOPMed were not replicated but we cannot rule out the possibility of reduced power due 231 
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to general underrepresentation of non-white ancestry groups in the replication data. In exploratory analyses, we extended 232 

the same approach for variants discovered to have 5x10-9 < p-value < 5x10-7 but did not observe replication 233 

(Supplementary Table 6).  234 

 235 

CETP locus, HDL-C, and LDL-C 236 

CETP is a well-recognized Mendelian HDL-C gene and the locus was previously known to be significantly 237 

associated with HDL-C, TC and TG at genome-wide significance15. Pharmacologic CETP inhibitors have shown strong 238 

associations with increased HDL-C but mixed effects for LDL-C reduction in clinical trials27,28,29,30. We found that the CETP 239 

locus variant rs183130 (chr16:56957451:C:T, MAF 28.3%, intergenic variant) was associated with reduced LDL-C 240 

concentration (beta = -1.568 mg/dL, SE = 0.264, p-value = 2.88x10-09). The lead HDL-C-associated variant at the locus, 241 

rs3764261 (chr16:56959412:C:A, MAF 30.3%), was associated with 3.5 mg/dL increased HDL-C (p-value = 8.03x10-283), 242 

and rs183130 was associated with 3.9 mg/dL increased HDL-C (p-value < 1x10-284) as well. Among the ancestry groups 243 

analyzed, rs183130 was most significantly associated with LDL-C among those of African ancestry (beta = -2.762 mg/dL, 244 

p-value = 5.71x10-07) (Supplementary Table 7). We next investigated variants by their HDL-C and LDL-C effects within 245 

this locus (+/- 500kb of rs183130 and rs3764261) (Fig. 3). We identified five variants showing at least suggestive (p-value 246 

< 5x10-07) association with both HDL-C and LDL-C. Though variants with strong LD (linkage disequilibrium) existed, 247 

ancestry-specific analyses showed that the stronger LDL-C effects were among those of African ancestry.  248 
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To better understand the mechanisms for HDL-C and LDL-C effects at the CETP locus, we pursued colocalization 249 

with eQTLs from 3 tissues (Liver, Adipose Subcutaneous and Adipose Visceral [Omentum]) from GTEx31. We analyzed 5 250 

LDL-C and 441 HDL-C associated (p-values < 5x10-07) variants. We correlated eQTL effect estimates for genes at the 251 

locus with lipid outcome effect estimates. Indeed, CETP gene expression effects were strongly negatively correlated with 252 

HDL-C effects (Liver: ρ -0.933, p-value 4.01x10-17; Adipose Subcutaneous: ρ -0.762, p-value 8.87x10-12; Adipose Visceral: 253 

ρ -0.739, p-value 5.52x10-10) (Supplementary Fig. 3). However, CETP expression effects were not significantly 254 

correlated with LDL-C (Liver: ρ 0.007, p-value 0.99; Adipose Subcutaneous: ρ 0.344, p-value 0.57; Adipose Visceral: ρ -255 

0.59, p-value 0.29). Given the possibility that the observed lack of correlation for LDL-C could be due to reduced power 256 

from a limited number of variants attaining a suggestive p-value (< 5x10-07), we repeated the analysis with a subset of 122 257 

nominally significant (p-value < 0.05) LDL-C associated variants in this locus. Indeed, CETP gene expression effects were 258 

strongly positively correlated with LDL-C effects (Liver: ρ 0.957, p-value 2.28x10-08; Adipose Subcutaneous: ρ 0.922, p-259 

value 1.34 x10-15; Adipose Visceral: ρ 0.868, p-value 6.09x10-11).  260 

 261 

Rare variant aggregates associated with lipids 262 

I) Gene-Centric associations 263 

We next evaluated the association of aggregated rare (MAF<1%) variants, linked to protein-coding genes (‘gene-264 

centric’). We employed a Bonferroni-corrected significance threshold of 0.05/20,000=2.5x10-06 for coding and non-coding 265 
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 14

gene-centric rare variant analyses (Supplementary Fig. 4).  We identified 102 coding and 160 non-coding gene-centric 266 

rare variant aggregates significantly associated with at least one of the four plasma lipid phenotypes in nonconditional 267 

analysis (Supplementary Table 8-9). We secondarily conditioned our significant aggregate sets on variants individually 268 

associated with lipid levels from the GWAS catalog, MVP summary statistics and the TOPMed data. We identified 74 269 

coding and 25 non-coding rare variants aggregates associated with at least one lipid level after conditional analyses 270 

(Supplementary Table 10-11).  271 

 Most of the coding gene-centric sets remained significant after secondary conditioning while a minority of non-272 

coding gene-centric sets remained significant after conditioning. Significant genes identified from coding rare variant 273 

analyses included multiple known Mendelian lipid genes including LCAT, LDLR, and APOB (Supplementary Table 10). 274 

RFC2 putative loss-of-function mutations (combined allele frequency < 0.002%) were significantly associated with 275 

triglycerides (p-value 2x10-06) representing a putative novel association for triglycerides. The RFC2 aggregate set (plof) 276 

was associated with reduced TG (beta = -0.89 for log[TG]). The persistently significant regions identified from non-coding 277 

rare variant analyses linked to genes included the UTR (untranslated region) for CETP and promoter-CAGE (CAGE- Cap 278 

Analysis of Gene Expression sites) around APOA1 for HDL-C, and APOE promoter-CAGE, APOE enhancer-DHS (DHS - 279 

DNase hypersensitivity sites), and EHD3 promoter-DHS for total cholesterol (Supplementary Table 11). Most of the 280 

coding aggregates had larger effects compared to non-coding aggregates, and among the non-coding aggregates SPC24 281 
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non-coding aggregate (enhancer-CAGE) at the LDLR locus had the strongest effect for LDL-C (beta = 2.320 mg/dL; p-282 

value = 1.75x10-05).  283 

 284 

II) Region-Based associations 285 

 We also performed unbiased region-based rare variant association analyses tiled across the genome with both 286 

static and dynamic window sizes. We first evaluated 2.6M regions statically at 2 kb size and 1 kb window overlap by the 287 

sliding window approach. Statistical significance was assigned at 0.05/(2.6x1-06)=1.88x10-08. We identified 28 significantly 288 

associated windows with at least one lipid phenotype. After conditioning on variants individually associated with the 289 

corresponding lipid phenotype, we identified two regions at LDLR still significantly associated with both total cholesterol 290 

and LDL-C although these regions included both intronic and exonic variants (Supplementary Table 12). LDLR intron 1, 291 

which encodes LDLR-AS1 (LDLR antisense RNA 1) on the minus strand, had suggestive evidence for association with TC 292 

(p-value 3.17x10-6) with -2.76 mg/dL reduction in TC. A prior study identify that a common variant (rs6511720, MAF 0.11) 293 

in LDLR intron 1 is associated with increased LDLR expression in a luciferase assay and reduction in LDL-C32. When 294 

adjusting for rs6511720, the significance improved (p-value 1.43x10-8) with -3.35 mg/dL reduction in TC.  295 

 For dynamic window scanning of the genome, we implemented the SCANG method33. The SCANG procedure 296 

accounts for multiple testing by controlling the genome-wide error rate (GWER) at 0.133. In the dynamic window-based 297 

workflow, STAAR-O detected 51 regions significantly associated with at least one lipid phenotype after conditioning on 298 
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known variants (Supplementary Table 13). Most of the regions mapped to known Mendelian lipid genes, including LCAT 299 

(8.7x10-13) for HDL-C, and LDLR (2.4x10-28, 7.3x10-26) and PCSK9 (2.9x10-12, 5.5x10-12) for LDL-C and TC, respectively. 300 

Exon 4 aggregates of LDLR were specifically associated with 20 mg/dL increase in LDL-C. PCSK9 Exon2-Intron2 region 301 

spanning chr1:55043782-55045960 had significantly reduced LDL-C by 6 mg/dL (p-value = 3x10-13), and the effect 302 

persisted even with only Intron 2 rare variants of PCSK9 (-5 mg/dL, p-value = 2x10-8). Strikingly, in secondary analyses, 303 

we found evidence for very large effects for rare variants in LDLR Introns 2 and 3 (+21 mg/dL, p-value = 7x10-4) and 304 

LDLR Introns 16 and 17 (+17 mg/dL, p-value = 0.02), similar to rare coding LDLR mutations. While 32 of the significant 305 

dynamic windows also included exonic regions, there were also several dynamic windows significantly independently 306 

associated with lipids not containing exonic regions. For example, four non-coding windows (two overlapping) at 2p24.1, 307 

which harbors the Mendelian APOB gene, were significantly associated with LDL-C. Intronic non-coding regions were 308 

associated with both LDL-C and TC -associated windows at LPAL2-LPA-SLC22A3; for example LPAL2 Intron 3 was 309 

associated with a 3.7 mg/dL increase in TC. Non-coding TC-associated significant dynamic windows were near 310 

TOMM40/APOE. One rare variant signal observed was at TOMM40 Intron 6, where the ‘poly-T’ variant in this region is on 311 

the APOE4 haplotype and influences expressivity for Alzheimer’s disease age-of-onset34,35.  For HDL-C, we identified 312 

significant non-coding windows at an intergenic region near LPL and CD36 Intron 4. In the generation of the 313 

spontaneously hypertensive rat model, the deletion of intron 4 in Cd36 with resultant Cd36 deficiency has been mapped to 314 
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defective fatty acid metabolism in this model36. Several regions significant in SCANG were not even nominally significant 315 

in burden association analyses indicating the likelihood of causal variants with bidirectional effects. 316 

Several gene-centric non-coding aggregates associated with lipids near known monogenic lipid genes but mapped 317 

to another gene at the locus via annotations. Therefore, we performed downstream conditional analyses adjusting the 318 

gene-centric non-coding results for rare coding variants (MAF<1%) within known lipid monogenic genes (Supplementary 319 

Table 14). When accounting for both common and rare coding variants at the nearby familial hypercholesterolemia LDLR 320 

gene, SPC24-enhancer DHS was significantly associated with total cholesterol (p-value= 3.01x10-11) and with suggestive 321 

evidence for LDL-C (p-value= 1.57x10-06). In a similarly adjusted model, LDLR-enhancer-DHS showed a strong 322 

association with TC (p-value 5.18x10-12). When adjusting for known common variants as well as rare coding variants in 323 

PCSK9, both PCSK9-enhancer DHS and PCSK9-promoter DHS were significantly associated with total cholesterol.  (Fig. 324 

4, Supplementary Fig. 5). Through this procedure, CETP UTR retained significance for its independent association with 325 

HDL-C as well as the putatively novel gene EHD3-promoter DHS association with TC. However, the non-coding gene-326 

centric APOC3 and APOE associations were rendered non-significant for HDL-C and TC, respectively. 327 

 Since we cannot rule out the possibility of reduced power for genome-wide rare variant analyses, we leveraged 328 

current knowledge of 22 Mendelian lipid genes for more focused exploratory analyses14. We validated most genes in rare 329 

variant coding analyses. The genes with the strongest coding signals typically had at least nominal evidence of gene-330 

centric non-coding rare variant associations (Supplementary Table 15, Supplementary Fig. 6). When rare coding 331 
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variants were introduced into the model, the evidence for non-coding rare variant associations were largely unchanged. 332 

Our findings expanding the currently described genetic basis for hypercholesterolemia to include rare non-coding variation 333 

at LDLR and PCSK9 (Fig. 5).  334 

 335 

Discussion 336 

Conducting one of the largest population-based WGS association analyses, we now simultaneously interrogate 337 

and establish a common, rare coding, and rare non-coding variant model for a complex trait. Utilizing 66,329 diverse 338 

individuals with deep-coverage WGS, we interrogated 428M variants with plasma lipids expanding the allelic series to rare 339 

non-coding variants, often within introns, of Mendelian lipid genes with prior robust rare coding variant support. Our 340 

observations have important implications for plasma lipids as well as the genetic basis of complex traits more broadly. 341 

WGS of diverse ancestries enables both allelic and locus heterogeneity for complex traits. Population genetic 342 

analyses have largely been enriched for individuals of European descent37. Genetic association of plasma lipids using 343 

arrays or whole exome sequencing among Europeans have yielded several important insights regarding plasma lipids and 344 

the causal determinants of CAD5,4,38,39,40. Similar increasingly larger studies among non-Europeans have often yielded 345 

new genetic loci and sometimes new genes, such as PCSK91,15,41,42,16. Such differences have also led to concerns about 346 

the use of polygenic risk scores gleaned from much larger European GWAS of complex traits for non-Europeans43. Aided 347 

by the availability of WGS data, we identify new putative loci associated with lipids in non-Europeans. Furthermore, our 348 
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study enabled the discovery of several novel alleles at known loci, with richly distinct allelic heterogeneity across ancestry 349 

groups. For example, HDL-C-raising CETP locus variants linked to CETP gene expression were only associated with 350 

LDL-C reduction among those of African ancestry. While all pharmacologic CETP inhibitors increase HDL-C, only those 351 

that decrease LDL-C also reduce cardiovascular disease risk27,28,30,29. Given the contribution of genetic differences, 352 

clinical trials with more diverse samples would show insights.  353 

Our study now provides increasingly robust evidence for a rare non-coding variant model for complex traits. Our 354 

rare non-coding variant associations in both gene-centric and sliding window models were largely restricted to the introns 355 

of Mendelian lipid genes with prior robust rare coding variant support consistent with biologic plausibility44. Rare intronic 356 

variants, often impacting splicing, have been previously implicated in afflicted Mendelian families or small exceptional 357 

case series, often through candidate gene approaches45,46,47,48. We discovered one example of a rare non-coding signal 358 

without prior rare coding support – i.e., EHD3. We obtained estimates of phenotypic effect using burden tests. For most 359 

regions, even nominal significance was not detected using burden testing indicating the likelihood of variants with 360 

bidirectional effects further complicating clinical interpretation. When burden signals were detected, observed effects were 361 

typically larger than common non-coding variants and less than rare coding variants, with the exception of LDLR, 362 

consistent with whole genome mutational constraint models49,50,51. 363 

The detection of independent rare non-coding variant signals has remained elusive largely due to limited sample 364 

sizes with requisite WGS and limitations in the interpretation of rare non-coding variation functional consequence. 365 
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Previously, we used annotated functional non-coding sequence in 16,324 TOPMed participants, and found that rare non-366 

coding gene regions associated with lipid levels, but they were not independent of individually associated single 367 

variants14. Using STAAR, we observed putative rare non-coding variant associations for lipids independent of individual 368 

variants associated with lipids in TOPMed.  369 

WGS can improve diagnostic yield beyond the current standard of next-generation gene panel sequencing for 370 

dyslipidemias. A very small fraction with severe hypercholesterolemia and features consistent with strong genetic 371 

predisposition have a familial hypercholesterolemia variant in LDLR, APOB, or PCSK952,53. The presence of familial 372 

hypercholesterolemia variants is independently prognostic for CAD, beyond lipids, and merits the consideration of more 373 

costly lipid-lowering medications52,53,54,55. We now observe that rare LDLR variants in Introns 2, 3, 16, and 17 lead to 374 

approximately 0.5 standard deviation increase in LDL-C, approximating effects observed with clinically reported exonic 375 

familial hypercholesterolemia variants in LDLR55. Small studies have indicated the possibility of rare intronic LDLR 376 

variants causing familial hypercholesterolemia due to altered splicing, which we now observe in our unbiased population-377 

based WGS study56,57. A WGS approach to lipid disorders, particularly for familial hypercholesterolemia, will markedly 378 

improve the diagnostic yield beyond existing limited approaches. 379 

Our dynamic window approach may also improve the clinical curation of exonic variants. Among the data used to 380 

curate exonic variants is the use of in silico functional prediction tools58. Although evolutionary constraint measures are 381 

typically employed, such tools are largely agnostic to functional domain. As it relates to lipids, disruptive APOB and 382 
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PCSK9 exonic variants can lead to strikingly opposing directions with large effects for LDL-C depending on 383 

locations1,8,59,60. Using SCANG33, we detect a significant association with large effect for LDLR Exon 4 itself. This 384 

observation supports the pathogenicity of LDLR Exon 4 disruptive variants among patients with severe 385 

hypercholesterolemia. The majority of familial hypercholesterolemia variants worldwide occur in Exon 4 of LDLR61,62,63,64. 386 

Conventional rare coding variant analyses aggregate all exonic variants for a transcript. Here, we demonstrate an 387 

opportunity for exon-level rare variant association testing. 388 

Our study has important limitations. First, while our study is large for a WGS study by contemporary standards, it is 389 

dwarfed by existing GWAS datasets limiting power for novel discovery. Nevertheless, by using WGS in diverse ancestries, 390 

we can study hundreds of millions new variants. Second, prediction of rare non-coding variation consequence to prioritize 391 

causal variants remains a challenge thereby limiting power65. The striking difference for most STAAR and burden results 392 

also highlights bidirectional effects for rare non-coding variants within the same region and further challenges for clinical 393 

utility. Third, given the paucity of multi-ancestral WGS datasets with lipids, our analyses are largely restricted to TOPMed. 394 

For single variant associations, we pursued TOPMed-imputed GWAS datasets but were limited by the lack of ancestral 395 

diversity. As TOPMed is a consortium of multiple different cohorts, we demonstrate consistencies by cohort. Furthermore, 396 

rare variant non-coding signals were largely restricted to regions with rare variant coding signals supporting biological 397 

plausibility. 398 
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In conclusion, using WGS and lipids among 66,329 ancestrally diverse individuals we expand the catalog of alleles 399 

associated with lipids, including allelic heterogeneity at known loci and locus heterogeneity by ancestry. We characterize 400 

the common, rare coding, and rare non-coding variant model for lipids. Lastly, we now demonstrate a monogenic-401 

equivalent model for rare LDLR intronic variants predisposing to marked alterations in LDL-C, currently not recognized in 402 

current population or clinical models for LDL-C. 403 

 404 

Online Methods 405 

Dataset 406 

i) Contributing studies 407 

The discovery cohort includes whole genome sequenced (WGS) data of 66,329 samples from 21 studies of the 408 

Trans-Omics for Precision Medicine (TOPMed) program with blood lipids available17. The overall goal of TOPMed is to 409 

generate and use trans-omics, including whole genome sequencing, of large numbers of individuals from diverse 410 

ancestral backgrounds with rich phenotypic data to gain novel insights into heart, lung, blood, and sleep disorders. The 411 

Freeze 8 data includes 140,306 samples out of which 66,329 samples qualified with lipid phenotype. Freeze 8 dataset 412 

passed the central quality control protocol implemented by the TOPMed Informatics Research Core (described below) 413 

and was deposited in the dbGaP TOPMed Exchange Area.  414 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted O
ctober 12, 2021. 

; 
https://doi.org/10.1101/2021.10.11.463514

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/2021.10.11.463514
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23

The studies included in the current dataset, along with their abbreviations and sample sizes, contains the Old Order 415 

Amish (Amish, n=1,083), Atherosclerosis Risk in Communities study (ARIC, n=8,016), Mt Sinai BioMe Biobank (BioMe, 416 

n=9,848), Coronary Artery Risk Development in Young Adults (CARDIA, n=3,056), Cleveland Family Study (CFS, n=579), 417 

Cardiovascular Health Study (CHS, n=3,456), Diabetes Heart Study (DHS, n=365), Framingham Heart Study (FHS, 418 

n=3,992), Genetic Studies of Atherosclerosis Risk (GeneSTAR, n=1,757), Genetic Epidemiology Network of Arteriopathy 419 

(GENOA, n=1,046), Genetic Epidemiology Network of Salt Sensitivity (GenSalt, n=1,772), Genetics of Lipid-Lowering 420 

Drugs and Diet Network (GOLDN, n=926), Hispanic Community Health Study - Study of Latinos (HCHS_SOL, n=7714), 421 

Hypertension Genetic Epidemiology Network and Genetic Epidemiology Network of Arteriopathy (HyperGEN, n=1,853), 422 

Jackson Heart Study (JHS, n=2,847), Multi-Ethnic Study of Atherosclerosis (MESA, n=5,290), Massachusetts General 423 

Hospital Atrial Fibrillation Study (MGH_AF, n=683), San Antonio Family Study (SAFS, n=619), Samoan Adiposity Study 424 

(SAS, n=1,182), Taiwan Study of Hypertension using Rare Variants (THRV, n=1,982) and Women’s Health Initiative 425 

(WHI, n=8,263) (Please see Supplementary Text for additional details). The multi-ancestral data set included individuals 426 

from White (44%), Black (26%), Hispanic (21%), Asian (7%), and Samoan (2%) ancestries. Study participants granted 427 

consent per each study’s Institutional Review Board (IRB) approved protocol. Secondarily, these data were analyzed 428 

through a protocol approved by the Massachusetts General Hospital IRB. Supplementary Table 1 details the number of 429 

samples across different studies and ancestral group. 430 
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The replication cohorts include TOPMed-imputed genome-wide array data from the Mass General Brigham (MGB) 431 

and Penn Medicine Biobanks which consist of 25,137 samples and 20,079 samples respectively26,25. We curated the 432 

MGB Biobank and Penn Medicine Biobank phenotype data from the corresponding electronic health record databases in 433 

accordance with corresponding institutional IRB approvals. Consent was previously obtained from each participant 434 

regarding storage of biological specimens, genetic sequencing, access to all available electronic health record (EHR) 435 

data, and permission to recontact for future studies. The MGB Biobank consists of 54% and Penn Medicine Biobank 436 

consist of 52% female samples and average ages were 55.89 years and 58.35 years, respectively (Supplementary 437 

Table 5).  438 

 439 

ii) Phenotypes 440 

The primary outcomes in this study included LDL cholesterol (LDL-C), HDL cholesterol (HDL-C), total cholesterol 441 

(TC) and triglycerides (TG) phenotypes. LDL-C was either directly measured or calculated  by the Friedewald equation 442 

when triglycerides were <400 mg/dL. Given the average effect of lipid lowering-medicines, when lipid-lowering medicines 443 

were present, we adjusted the total cholesterol by dividing by 0.8 and LDL-C by dividing by 0.7, as previously done14. 444 

Triglycerides remained natural log transformed for analysis. Fasting status was accounted for with an indicator variable. 445 

We harmonized the phenotypes across each cohort18 and inverse rank normalization of the residuals of each race 446 

within each cohort scaled by the standard deviation of the trait and adjusted for covariates12. We included covariates such 447 
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as age, age2, sex, PC1-11, study-groups as well as Mendelian founder lipid variants APOB p.R3527Q and APOC3 448 

p.R19X for the Amish cohort7,66,8. Supplementary Table 1 provides the distributions of each of the four lipid phenotypes 449 

by cohort, ancestral groups, and gender. We executed similar steps of phenotype harmonization and normalization for the 450 

replication cohorts. Additionally, we adjusted the MGB Biobank for study-center and array-type, and Penn Medicine 451 

Biobank for ancestry and BMI in addition to the other common covariates. 452 

 453 

iii) Genotypes 454 

Whole genome sequencing of goal >30X coverage was performed at seven centers (Broad Institute of MIT and 455 

Harvard, Northwest Genomics Center, New York Genome Center, Illumina Genomic Services, PSOMAGEN [formerly 456 

Macrogen], Baylor College of Medicine Human Genome Sequencing Center and McDonnell Genome Institute [MGI] at 457 

Washington University). In most cases, all samples for a given study within a given Phase were sequenced at the same 458 

center (Supplementary Text). The reads were aligned to human genome build GRCh38 using a common pipeline across 459 

all centers (BWA-MEM).  460 

The TOPMed Informatics Research Core at the University of Michigan performed joint genotype calling on all 461 

samples in Freeze 8. The variant calling “GotCloud” pipeline (https://github.com/statgen/topmed_variant_calling) is under 462 

continuous development and details on each step can be accessed through TOPMed website for Freeze8 463 

(https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-methods-freeze-8)17. The resulting BCF files were split by 464 
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study and consent group for distribution to approved dbGaP users. Quality control was performed at each stage of the 465 

process, poor variant quality was indicated by missing rate >20%, mappability score <0.8, mean depth of coverage 466 

>500X, and Ti/Tv ratio, by the Sequencing Centers, the IRC and the TOPMed Data Coordinating Center (DCC). The 467 

VCF/BCF files were converted to GDS (Genomic Data Structure) format by the DCC and were deposited into the dbGap 468 

TOPMed Exchange Area. 469 

The genetic relationship matrix (GRM) is an N*N matrix of relatedness information of the samples included in the 470 

study and was computed centrally using ‘PC-relate’ R package (version: 1.24.0)67. Using the ‘Genesis’ R package 471 

(version:2.20.1)68 we generated subsetted GRM for the samples with plasma lipid profiles. The GDS files with the variants 472 

were annotated internally by curating data from multiple database sources using Functional Annotation of Variant–Online 473 

Resource (FAVOR (http://favor.genohub.org)13. This study used the resultant aGDS (annotation GDS) files. 474 

 The MGB Biobank replication cohort was genotyped using three different arrays (Multiethnic Exome Global (Meg), 475 

Human multi-ethnic array (Mega), and Expanded multi-ethnic genotyping array (Megex)), and we separately imputed the 476 

data using TOPMed imputation server with default parameters69,70. This study applied the Version-r2 of the imputation 477 

panel, it includes 97,256 reference samples and ~300M genetic variants. The Illumina Global Screening array was used 478 

to genotype the Penn Medicine Biobank. Penn Medicine Biobank TOPMed imputation was performed using EAGLE70 and 479 

Minimac71 software. For this study we downloaded variants that passed a min R2 threshold of 0.3.  480 

 481 
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Single Variant Association 482 

We performed genome-wide single variant association analyses for autosomal variants with minor allele frequency 483 

(MAF) greater than 0.1% across the dataset with each of the four lipid phenotypes. We implemented the SAIGE-QT72 484 

method, which employs fast linear mixed models with kinship adjustment, in Encore (https://encore.sph.umich.edu/) for 485 

single variant association analyses. We additionally adjusted the model for covariates (PC1-PC11, age, sex, age2, and 486 

study-groups [cohort-race subgrouping]). 487 

 We conducted single variant association replications for putative novel variants. After comparing the results with 488 

published lipid GWAS summary statistics, we filtered putative novel GWAS variants based on a stringent whole genome-489 

wide significant threshold (alpha = 5x10-9)73. Replication was performed in the MGB and Penn Medicine Biobanks where 490 

models were fitted as indicated above. Additionally, we adjusted the MGB Biobank for study recruitment center and array 491 

and Penn Medicine Biobank for ancestry and BMI. In the MGB Biobank, we selected lipid concentrations closest to the 492 

sample acquisition time point and adjusted for statins if prescribed within one year prior to sample acquisition. In the Penn 493 

Biobank, we utilized each participant’s median lipid concentration for replication; statins prescribed prior to lipid 494 

concentration used were adjusted in the models. Additionally, we carried out meta-analysis using fixed effects model 495 

based on inverse-variance-weighted effect size for the two replication cohorts using METASOFT74. 496 

 497 

Rare variant association test  498 
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We performed rare variant association (RVA) using the Variant-Set Test for Association using Annotation 499 

infoRmation (STAAR) pipeline13 from STARtopmed R package. STAARpipeline is a regression-based framework that 500 

permits adjustment of covariates, population structure, and relatedness by fitting linear and logistic mixed models for 501 

quantitative and dichotomous traits75, . We chose STAAR to leverage the annotation information and associated scores 502 

that were available for TOPMed Freeze 8 data to incorporate the analysis of rare non-coding variants from whole genome 503 

sequencing. The method implements genome-wide scanning of rare variants (MAF<0.01) in gene-centric and region-504 

based workflows. For each variant set, STAARpipeline calculates a set-based p-value using the STAAR method, which 505 

increases the analysis power by incorporating multiple in silico variant functional annotation scores capturing diverse 506 

genomic features and biochemical readouts13. We aggregated rare variants into multiple groups for coding and non-507 

coding analyses. For the coding region, we defined five different aggregate masks of rare variants 1) plof (putative loss-of-508 

function), plof-Ds (putative loss-of-function or disruptive missense), missense, disruptive-missense, and synonymous. For 509 

the non-coding regions, we used seven rare variant masks: 1) promoter-CAGE (promoter variants within Cap Analysis of 510 

Gene Expression [CAGE] sites77,78), 2) promoter-DHS (promoter variants within DNase hypersensitivity [DHS] sites 79), 3) 511 

enhancer-CAGE (enhancer within CAGE sites78), 4) enhancer-DHS (enhancer variants within DHS sites80), 5) UTR (rare 512 

variants in 3' untranslated region [UTR] and 5' UTR untranslated region), 6) upstream, and 7) downstream. Detailed 513 

explanations of the regions defined based on these masks is discussed within STAARpipeline13.  514 
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In the gene-centric workflows, for both coding (within exonic boundaries) and non-coding (promoter: +/- 3kb 515 

window of transcription starting site (TSS), enhancer: GeneHancer predicted regions) regions, we considered only genes 516 

with at least two rare variants (i.e., 18,445 genes in all 22 autosomes). In the region-based workflows, we implemented two 517 

protocols: 1) a ‘sliding window’ approach, where we aggregated rare variants within 2-kb sliding windows and with 1-kb 518 

overlap length, and 2) a ‘dynamic window’ approach, where we executed SCANG33 method and aggregated dynamically 519 

variant-sets between 40-300 variants per set, where the method systematically scans the whole genome with overlapping 520 

windows of varying sizes. The STAARtopmed R-package implements multiple rare-variants aggregate tests including 521 

SKAT81, Burden82 and ACAT83 and integrates them as STAAR-O13. We performed gene-centric and region-based rare 522 

variant tests using annotated GDS files of TOPMed. 523 

We completed aggregate tests as three-step process. In the first step, we fitted a null model using glmmkin() 524 

function in STAARtopmed. The null model was fitted for each of the four lipid phenotypes adjusted for all covariates and 525 

relatedness except the genotype of interest. In the second step, we ran genome wide gene-centric and region-based rare-526 

variant aggregate tests. The third step directed conditional analyses, where the results were adjusted for previously 527 

known significantly lipid-associated (i.e., p < 5x10-8 in external datasets) individual variants from GWAS Catalog84 and 528 

Million Veterans Program (MVP)15 GWAS summary statistics. To obtain effect estimates of significant aggregate sets, we 529 

associated the cumulative genotypes (binary scores) based on the variants forming the aggregates and used Glmm.Wald 530 
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test from GMMAT R package75(version 1.3.1). For significantly-associated window-based rare variant aggregations, we 531 

trimmed the exonic variants and estimated the effects with only non-coding variants.  532 

 533 

CETP gene expression and lipid trait colocalization 534 

 We studied the correlation of LDL-C and HDL-C effects with eQTL effects at chromosome 16q13, which includes 535 

CETP. We downloaded GTEx eQTL build 38 (version8) data for Liver, Adipose Subcutaneous and Adipose Visceral 536 

(Omentum) tissues from GTEx Portal on 16/APR/202085. We selected eQTLs with nominal significance (p-value<0.05) 537 

and utilized the eQTL-gene pairs with the most significant p-values. Genes with at least 5 eQTLs were selected for the 538 

colocalization analysis. We selected variants with a suggestive significance (p-value < 5x10-7) for LDL-C or HDL-C effects 539 

within 500 kb of the lead locus variant. We performed Pearson correlation tests between the lipid effect estimates and 540 

gene expression effects (slope) from GTEX.   541 

  542 
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Figure Legends 969 

Fig1: Overall study schematic. The analyses were conducted using the multi-ancestral TOPMed freeze8 data to 970 

associate whole genome sequence variation with lipid phenotypes (i.e., LDL-C, HDL-C, TC and TG). A total of 66,329 971 

samples with lipids quantified data from five ancestry groups were analyzed. Single variant GWAS were carried out using 972 

SAIGE on the Encore platform using SNPs with MAC >20. Both trans-ancestry and ancestry-specific GWAS were 973 

conducted. Genome-wide rare variant (MAF < 1%) gene-centric and region-based aggregate tests were grouped and 974 

analyzed using STAARtopmed. Finally, single variant and rare variant associations at Mendelian dyslipidemia genes were 975 

investigated in further detail. 976 

TOPMed – Trans-Omics for Precision Medicine; HDL-C – High-Density Lipoprotein Cholesterol; LDL-C – Low-Density 977 

Lipoprotein Cholesterol; TC – Total Cholesterol; TG – Triglycerides; GWAS – Genome Wide Association Study; SAIGE – 978 

Scalable and Accurate Implementation of GEneralized mixed model; MAC – Minor Allele Count; MAF – Minor Allele 979 

Frequency; SNPs – Single nucleotide polymorphisms. 980 

Fig2: Summary of single variant genome wide association. Representation of the single variant GWAS results from 981 

TOPMed Freeze 8 whole genome sequenced data of 66,329 samples. Each quarter represents a different lipid 982 

phenotype, and dots extending in clock-wise fashion represent variants with increasing evidence of association as noted 983 

by -log10(p-value), which was truncated at 200. The outer three circles show the GWAS data from TOPMed freeze8 984 

where variants binned to nominally significant (p-value 0.05 - 5x10-07), suggestive significant (p-value 5x10-07 - 5x10-09) 985 
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and genome wide significant (p-value < 5x10-09). The inner three circles compare our TOPMed results with known 986 

significantly associated lipid loci and variants from the MVP summary statistics and GWAS catalog to the identified novel 987 

variants and loci that are genome-wide significant from the current study, respectively. 988 

TOPMed – Trans-Omics for Precision Medicine; GWAS – Genome Wide Association Study; MVP – Million Veteran 989 

Program. 990 

Fig3: Comparison of effects estimates for HDL-C and LDL-C among variants in the CETP locus. The color scale of 991 

the data points was based on -log10 p-values from HDL-C association and the size of each data point was based on -992 

log10 p-values of LDL-C association. Variants which are genome wide significant with LDL-C are represented as 993 

chromosome:position:reference allele:alternate allele. 994 

HDL-C – High-Density Lipoprotein Cholesterol; LDL-C – Low-Density Lipoprotein Cholesterol. 995 

Fig4: Conditional analysis of coding rare-variants from the same gene and a near-by gene. Non-coding rare variant 996 

sets significantly associated with TC and TG after the conditional analysis on known variants are shown with additional 997 

adjustment on rare-coding variants. The additional adjustment for rare-coding variants were carried out for the same gene 998 

of the aggregate set and for certain gene aggregates (SPC24) the conditional analysis was carried out with a nearby 999 

Mendelian gene. After adjusting for rare-coding variants and known variants, EHD3 signal drops minimally, whereas 1000 

signal from PCSK9 (promoter-DHS, enhancer-DHS), LDLR-loci (enhancer-DHS, SPC24 enhancer-DHS) enhances 1001 

significantly. APOB1, SPC24 (enhancer-CAGE), HBB and APOE signal drops after the conditional analysis on rare-coding 1002 
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variants. The different colored dots on the plot represents the conditional STAAR-O p-values when adjusting for known 1003 

variants (Set1) and rare-coding variants of the same or near-by gene. 1004 

STAAR – variant-Set Test for Association using Annotation information; TC – Total Cholesterol; TG – Triglycerides; CAGE 1005 

– Cap Analysis of Gene Expression; DHS – DNase hypersensitivity. 1006 

Fig5: Influence of common and rare variants with hypercholesterolemia. In addition to monogenic contributions from 1007 

rare variants in Mendelian hypercholesterolemia genes, multiple genome-wide significant LDL-C-associated common 1008 

variants also yield a polygenic basis for hypercholesterolemia. In the present work, we now identify rare non-coding 1009 

variants in proximity of Mendelian hypercholesterolemia genes, specifically LDLR and PCSK9, that also contribute to the 1010 

genetic basis of hypercholesterolemia. 1011 

LDL-C – Low-Density Lipoprotein Cholesterol  1012 
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   1014 

Associated 
Lipid 

Phenotype 

Novel 
variant 
class 

Variants (Gene) 

TOPMed Freeze8 (N=66329) MGB Biobank (N=25137) Penn Medicine Biobank (N=20079) Meta Analysis 
(METASOFT) 

TOPMed TOPMed TOPMed MGB 
Biobank 

MGB 
Biobank 

MGB 
Biobank 

Penn 
Medicine 
Biobank 

Penn  
Medicine 
Biobank 

Penn  
Medicine 
Biobank Beta P-value 

Effect 
Estimate P-value MAF Effect 

Estimate P-value MAF Effect 
Estimate P-value MAF 

LDL-C 
Novel 
locus 12:97352354:T:C -12.439 4.88x10-09 0.003 1.055 8.08x10-01 0.002 11.441 3.19x10-01 0.001 2.357 5.62 x10-01  

LDL-C 
Novel 

variant 
16:56957451:C:T 

(CETP) -1.568 2.88x10-09 0.283 -1.375 1.53x10-04 0.309 -2.35 1.54x10-04 0.578 -1.624 2.21 x10-07 

 

LDL-C 
Novel 
locus 4:176382171:C:T -16.086 2.82x10-09 0.002 -13.340 1.71x10-01 0.001 4.716 3.52x10-01 0.005 0.882 8.44 x10-01  

TC 
Novel 

variant 
13:113841051:T:C 

(GAS6) 1.731 1.12x10-09 0.278 0.890 3.94x10-02 0.304 0.416 5.50x10-01 0.563 0.758 3.89 x10-02 

 

TC 
Novel 

variant 
7:137875053:T:C 

(CREB3L2) -4.106 7.54x10-11 0.045 -4.755 1.06x10-02 0.013 -3.365 7.62x10-03 0.118 -3.803 2.69 x10-04 

 

TG 
Novel 
locus 11:69219641:C:T 0.232 1.98x10-09 0.002 -0.047 7.33x10-01 0.000 0.202 7.82x10-02 0.001 0.101 2.53 x10-01  

TG 
Novel 

variant 
13:107551611:C:T 

(FAM155A) 0.052 6.78x10-10 0.045 0.016 4.68x10-01 0.014 0.039 3.26x10-01 0.016 0.021 2.62 x10-01 
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Table 1. Putative novel variants identified in TOPMed and evidence for replication. Variants identified as novel after 1015 

comparing with the GWAS catalog and MVP summary statistics for associations with lipid phenotypes, including LDL-C, 1016 

TC, and TG. All effect estimates are in mg/dL units, except for TG which was log-transformed in analysis thereby 1017 

representing fractional change. Variants are categorized as novel loci or novel variant (i.e., known locus associated with 1018 

another lipid phenotype) and the genes assigned to the variants per TOPMed whole genome sequence annotations 1019 

(WGSA) are listed. Data is provided for the discovery (TOPMed freeze8) and replication cohorts (MGB Biobank and Penn 1020 

Medicine Biobank). Meta-analysis with the replication cohorts was carried out and the corresponding beta and p-values 1021 

are provided. 1022 

GWAS – Genome Wide Association Study; MVP – Million Veteran Program; LDL-C – Low-Density Lipoprotein 1023 

Cholesterol; TC – Total Cholesterol; TG – Triglycerides; TOPMed – Trans-Omics for Precision Medicine; WGSA – Whole 1024 

Genome Sequence Annotations. 1025 
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Fig. 1 1027 

Overall study schematic. The analyses were conducted using the multi-ancestral TOPMed freeze8 data to associate 1028 

whole genome sequence variation with lipid phenotypes (i.e., LDL-C, HDL-C, TC and TG). A total of 66,329 samples with 1029 

lipids quantified data from five ancestry groups were analyzed. Single variant GWAS were carried out using SAIGE on the 1030 

Encore platform using SNPs with MAC >20. Both trans-ancestry and ancestry-specific GWAS were conducted. Genome-1031 

wide rare variant (MAF < 1%) gene-centric and region-based aggregate tests were grouped and analyzed using 1032 

STAARtopmed. Finally, single variant and rare variant associations at Mendelian dyslipidemia genes were investigated in 1033 

further detail. 1034 

TOPMed – Trans-Omics for Precision Medicine; HDL-C – High-Density Lipoprotein Cholesterol; LDL-C – Low-Density 1035 

Lipoprotein Cholesterol; TC – Total Cholesterol; TG – Triglycerides; GWAS – Genome Wide Association Study; SAIGE – 1036 

Scalable and Accurate Implementation of GEneralized mixed model; MAC – Minor Allele Count; MAF – Minor Allele 1037 

Frequency; SNPs – Single nucleotide polymorphisms. 1038 
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 1041 
Fig. 2 1042 

Summary of single variant genome wide association. Representation of the single variant GWAS results from 1043 

TOPMed Freeze 8 whole genome sequenced data of 66,329 samples. Each quarter represents a different lipid 1044 

phenotype, and dots extending in clock-wise fashion represent variants with increasing evidence of association as noted 1045 

by -log10(p-value), which was truncated at 200. The outer three circles show the GWAS data from TOPMed freeze8 1046 

where variants binned to nominally significant (p-value 0.05 - 5x10-07), suggestive significant (p-value 5x10-07 - 5x10-09) 1047 

and genome wide significant (p-value < 5x10-09). The inner three circles compare our TOPMed results with known 1048 

significantly associated lipid loci and variants from the MVP summary statistics and GWAS catalog to the identified novel 1049 

variants and loci that are genome-wide significant from the current study, respectively. 1050 

TOPMed – Trans-Omics for Precision Medicine; GWAS – Genome Wide Association Study; MVP – Million Veteran 1051 

Program. 1052 
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Fig. 3 1055 
 1056 
Comparison of effects estimates for HDL-C and LDL-C among variants in the CETP locus. The color scale of the 1057 

data points was based on -log10 p-values from HDL-C association and the size of each data point was based on -log10 p-1058 

values of LDL-C association. Variants which are genome wide significant with LDL-C are represented as 1059 

chromosome:position:reference allele:alternate allele. 1060 

HDL-C – High-Density Lipoprotein Cholesterol; LDL-C – Low-Density Lipoprotein Cholesterol.  1061 
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Fig. 4 1063 

Conditional analysis of coding rare-variants from the same gene and a near-by gene. Non-coding rare variant sets 1064 

significantly associated with TC and TG after the conditional analysis on known variants are shown with additional 1065 

adjustment on rare-coding variants. The additional adjustment for rare-coding variants were carried out for the same gene 1066 

of the aggregate set and for certain gene aggregates (SPC24) the conditional analysis was carried out with a nearby 1067 

Mendelian gene. After adjusting for rare-coding variants and known variants, EHD3 signal drops minimally, whereas 1068 

signal from PCSK9 (promoter-DHS, enhancer-DHS), LDLR-loci (enhancer-DHS, SPC24 enhancer-DHS) enhances 1069 

significantly. APOB1, SPC24 (enhancer-CAGE), HBB and APOE signal drops after the conditional analysis on rare-coding 1070 

variants. The different colored dots on the plot represents the conditional STAAR-O p-values when adjusting for known 1071 

variants (Set1) and rare-coding variants of the same or near-by gene. 1072 

STAAR – variant-Set Test for Association using Annotation information; TC – Total Cholesterol; TG – Triglycerides; CAGE 1073 

– Cap Analysis of Gene Expression; DHS – DNase hypersensitivity. 1074 
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Fig. 5 1078 

Influence of common and rare variants with hypercholesterolemia. In addition to monogenic contributions from rare 1079 

variants in Mendelian hypercholesterolemia genes, multiple genome-wide significant LDL-C-associated common variants 1080 

also yield a polygenic basis for hypercholesterolemia. In the present work, we now identify rare non-coding variants in 1081 

proximity of Mendelian hypercholesterolemia genes, specifically LDLR and PCSK9, that also contribute to the genetic 1082 

basis of hypercholesterolemia. 1083 

LDL-C – Low-Density Lipoprotein Cholesterol 1084 
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