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HIGHLIGHTS:

1. Phylogenomics using genome-wide nuclear markers yielded a well-supported topology

for Athene and Glaucidium lineages.

2. Three different methods of phylogenetic tree construction showed that Forest Owlet is an

early split from all other Athene species.

3. Divergence dating in the bayesian framework puts the Forest Owlet age between 5.0my

to 5.5my.
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ABSTRACT: Phylogenetic relationships are often challenging to resolve in recent/younger

lineage when only a few loci are used. Ultra Conserved Elements (UCE) are highly conserved

regions across taxa that help resolve shallow and deep divergences. We utilized UCEs harvested

from whole genomes to assess the phylogenetic position and taxonomic affiliation of an

endangered endemic owlet in the family Strigidae – the Forest Owlet Athene blewitti. The

taxonomic placement of this species has been revised multiple times. A multigene study

attempted to address the question but showed a discrepancy across datasets in its placement of

the species within genus Athene. We assembled a dataset of 5018 nuclear UCE loci with

increased taxon sampling. Forest Owlet was found to be an early split from the Athene clade but

sister to other Athene; and consistent across three approaches - maximum likelihood, bayesian,

and the multispecies coalescence. Divergence dating using fossil calibrations suggest that the

Athene lineage split from its ancestor about 7.6Mya, and the Forest Owlet diverged about

5.2Mya, consistent with previous multigene approaches. Despite osteological differences from

other Athene, we suggest the placement of the Forest Owlet as a member of the Athene to

emphasize its evolutionary relationship.
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Graphical Abstract:

1. INTRODUCTION:

The hierarchy of systematic classification of organisms into taxa is based on the various

biological pieces of evidence, i.e. morphology, genetics, palaeontology, etc. Taxonomic revisions

to the existing classification arise with the addition of new species and understanding the

relationships between the sister species (Kennedy et al., 2005). Information on biodiversity is

vital for ecological and environmental assessments and subsequent evolutionary studies

(Meredith et al., 2019). Mitochondrial markers and whole mitogenomes have been used

extensively with nuclear markers to establish phylogenetic relationships among the species

(Mueller, 2006). However, mitochondrial data have exhibited strong biases in phylogenetic

placements across taxa (Luo et al., 2012; Zhong et al., 2011). In recent years, exomes (Wang et

al., 2020) and Ultra Conserved Elements (UCE) have been used in phylogenetic analyses to

resolve the nodes across taxa (Jarvis et al., 2014; Oliveros et al., 2019). The Tetrapod UCEs are
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conserved over millions of years across taxa, including birds (Faircloth et al., 2012), mammals

(McCormack et al., 2012), and amphibians (Newman and Austin, 2016). These UCEs with

variable flanking regions have proven helpful in resolving deep and shallow phylogenetic

relationships within and across species (Erickson et al., 2020; Smith et al., 2014), including those

that multigene phylogeny failed to resolve (Gilbert et al., 2015; McCormack et al., 2012). In

some cases, the data type (Multigenes, Introns, UCE) has a more significant influence on the

tree’s topology than the taxon sampling (Reddy et al., 2017).

The Forest Owlet is an endangered species endemic to central India, belonging to the typical owl

family Strigidae and rediscovered in 1997 (King and Rasmussen, 1998). Its phylogenetic

placement has always been under debate among taxonomists (Koparde et al., 2018). In 1873 A.O

Hume described the species under genus Heteroglaux owing to the difference in the nostril

morphology and smaller head compared to Athene (Hume, 1873). However, Ali and Ripley (Ali

and Ripley, 1983) treated the Forest Owlet as Athene, as did a few others, including Monroe and

Sibley (1997) and Roche (2000). In 2013 Forest Owlet was placed back in the genus

Heteroglaux based on the collected specimens' morphological and osteological features

(Rasmussen and Collar, 2013). Later in 2018, a multigene study using two mitochondrial genes

and three nuclear genes suggested that Forest Owlet is nested within the Athene clade (Koparde

et al., 2018). This was also followed in the International Ornithological Committee bird list (IOC

World Bird List v8.2, 2018) and Birds of the World (Holt et al., 2020). However, there was a

discordance between mitochondrial and nuclear genes with regard to the placement of  Forest

Owlet within the genus Athene (Koparde et al., 2018). Hence, in this study, we proposed to

investigate the Forest Owlet's phylogenetic placement, evolutionary relationships and re-assess

relationships with other Athene species with additional data, using several thousand Ultra

Conserved Elements.

2. OBJECTIVES:

Assess the phylogenetic status of the Forest Owlet Athene blewitti with genomic (Ultra

Conserved Elements -UCE) data and determine its date of divergence.
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3. METHODS:

3.1 DNA extraction and sequencing:

DNA was extracted from blood collected from adult Forest Owlet (with due permits) with

Qiagen DNeasy Blood and Tissue kit following the manufacturer's protocol, with minor

alterations. The extract was quantified using a Qubit 4 fluorometer and screened on a 1% agarose

gel. DNA was sequenced on the Illumina NovaSeq 6000 sequencer (150bp paired-end reads),

targeting 100X coverage.

3.2 Analyses:

Harvesting UCE and collating existing UCE data:

Raw sequence reads were inspected for overall quality, adapter content, and the number of reads

to ensure they met the required quality standards (TrimGalore! ). Reads were filtered to remove1

poor-quality or uncalled bases and adapters before assembling into contigs denovo using Megahit

1.2.9 (Li et al., 2016). Ultra Conserved Elements loci were harvested following Phyluce tutorial

III (Faircloth, 2016). Assembled contigs of previously sequenced UCE data for the Strigidae

family and outgroups were obtained from Dryad (Salter et al., 2020). Spotted Owlet and Jungle

Owlet whole-genome sequences generated for another study (Natesh et al., 2020) were also

denovo assembled and used to harvest the UCEs, as described above. Next, we followed the

Phyluce Tutorial I (Faircloth, 2016) to align, trim and concatenate the data for the downstream

process. For this study, we renamed taxa following the IOC World Bird list taxonomy (IOC

World Bird List v11.2, 2021). Detailed methods are explained in the supplementary materials.

3.3 Phylogenetic analyses with UCE data:

The concatenated sequences were exported to phylip and nexus formats for further analyses. We

used three approaches to reconstruct trees, as described below. For the Maximum Likelihood and

Bayesian trees, we used the GTR GAMMA model. For the Maximum Likelihood tree (RAxML

8.2; Stamatakis, 2014), 20 searches were done for the best tree, which was then combined with

1 https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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1000 bootstrap replicates. For the Bayesian tree, we used ExaBayes 1.5 (Aberer et al., 2014) to

perform four independent runs of 2 Markov chains for 2 million generations each. In addition,

we also used a multispecies coalescent approach - SVDquartets, implemented in PAUP* 4.0a16

(Swofford and Sullivan, 2003). This method uses only single site-based information and helps

side-step issues related to incomplete lineage sorting and estimation of gene trees (Chifman and

Kubatko, 2014). Details of the runs and model convergence are described in the supplementary

materials. All the trees were visualised in FigTree v1.4.3 (Rambaut, 2012).

3.4 Divergence time dating:

We estimated divergence dates in a Bayesian framework using the MCMCTree program (PAML

4.8; dos Reis and Yang, 2011). This uses the Taylor expansion to avoid calculating likelihood at

every MCMC iteration for the divergence time estimation (dos Reis and Yang, 2011). We used

the gene tree from Bayesian inference as the input gene tree. Two priors, the overall substitution

rate (rgene gamma) and rate drift parameter (sigma2 gamma), were set to G (1 58.2) and G (1

1.2), respectively, with independent rates clock model (Rannala and Yang, 2007). The Strigidae

family has several fossil records, especially from North America and Europe (Kurochkin and

Dyke, 2011). We included three fossil records which are spread across the clades/tribes, i.e.

oldest Athene fossil record (3.6My-5.4My) (Pavia et al., 2014), MRCA of Strigiformes

(63.5-68.5My) (Kurochkin and Dyke, 2011) and the common ancestor of Bubo scandiacus and

Bubo nipalensis (4my) (König et al., 2008) It is argued that using multiple fossil constraints with

upper and lower bounds gives a more rational divergence estimation time (Benton and

Donoghue, 2007; Inoue et al., 2010). We used the mcmctree_tree_prep package to include fossil2

constraints in the tree and used it as input for MCMCtree. Tracer 1.7 (Rambaut et al., 2018) was

used to check for the convergence of the likelihood and other parameters. The output was

visualised in FigTree v1.4.3 (Rambaut, 2012). Detailed methods and settings are described in the

Supplementary Materials.

2 https://github.com/kfuku52/mcmctree_tree_prep
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4. RESULTS:

Sequencing yielded 614.5 million raw reads for the Forest Owlet. UCE harvesting from the

denovo assembled contigs resulted in 4920, 4953, and 4948 loci for Forest Owlet, Jungle Owlet

and Spotted Owlet, respectively (Detailed statistics for denovo assembly (Table1) and UCEs

(Table2) in Supplementary materials). Across taxa, we enriched 5018 loci shared by at least 38

taxa, which resulted from 4326 alignments. The 75% complete concatenated matrix had

2,240,927 bp and 121,747 informative sites.

Concatenated data (ML and Bayesian -Supplementary Figure 1 & 2) and Multispecies

Coalescent (SVD Quartets - Supplementary Figure 3) based methods produced identical tree

topologies, and the relations among the species remained the same for the Athene and

Glaucidium lineages, with high node supports (Figure 1). Athene brama and Athene jacquinoti

share a common ancestor and are sisters to Athene noctua, whereas Athene superciliaris and

Athene cunicularia are sister species. Using thousands of conserved nuclear loci in all three tree

construction methods, Forest Owlet was recovered as an early split from all other Athene species.

Our divergence dating analysis (Figure 1) recovered a 5.25my divergence of Athene blewitti

from its most recent ancestor (95% HPD 5.0my-5.5my), whereas the Athene brama and Athene

jacquinoti diverged about 2.4mya (95% HPD 1.3my-3.6my). Athene noctua, a sister to Athene

brama and Athene jacquinoti, is 3.6my old (95%HPD 2.5my-4.6my). Athene cunicularia and

Athene superciliaris split about 3.6mya (95% HPD 2.2my-4.5my).

Glaucidium radiatum and Glaucidium capense split about 3.5mya (95% HPD 2.2my-4.6my),

and the entire Strigidae family diversified about 65.1Mya. (95% HPD 63.3my-68my).
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Figure 1: Phylogram of the divergence dating (A) and Cladogram of Bayesian Inference (B).

All nodes have 100% posterior probability if not indicated otherwise. Node bars represent

95%HPD. Species in red colour are the ones included in this study. Collapsed species broadly

belong to the Striginae clade.

5. DISCUSSION:

In this study, we reconstruct maximum-likelihood, Bayesian inference, and coalescence-based

phylogenies to infer the phylogenetic position of the Forest Owlet, with respect to the Athene

clade, within the Strigidae group. Our analysis contradicts some findings of previous
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phylogenetic assessments but reaffirms others. We find that the Forest Owlet is an early split

from the Athene clade, whereas, in Koparde et al., 2018, it is nested within Athene, either as

sister to the clade from Madagascar Americas or to the Eurasian Athene species. We recovered

the Spotted Owlet Athene brama as sister to Solomon's Boobook Athene jaqcuinoti in all tree

construction methods. Two previous studies, (Koparde et al., 2018; Sun et al., 2020), suggested

that it is sister to the Little Owl Athene noctua since A. jacquinoti was not included in that study.

Nevertheless, our divergence date estimates using UCE data agree with the previous estimates

for the Athene group and Strigidae family (Jarvis et al., 2014; Koparde et al., 2018; Prum et al.,

2015). This study adds considerable data over previous assessments and adds two Athene species

to the global phylogeny. Therefore, it is unlikely that the topology for the Athene clade will

change in subsequent analyses without substantially different methods.

However, the genus Glaucidium (Pygmy Owls), regardless of the inclusion of Jungle Owlet,

remains under-represented (15% complete) and requires further evaluation.

Species with small ranges and specific niche requirements may have unique evolutionary

histories, and Forest Owlet is one such species (Koparde et al., 2018) Estimating robust

phylogenetic relationships is thus central to understanding evolutionary relationships (Edwards,

2009). However, ecological and morphological characters are also highly informative and can

provide substantial insights. The Forest Owlet shares traits with other species in the genus

Athene but has differences as well. The extreme similarities in the plumage of Forest Owlet with

the Spotted Owlet, an Athene, could be a case of symplesiomorphy. The Athene clade, as

circumscribed here sensu lato, is also marked by wide variations in activity time, ranging from

primarily nocturnal (Athene superciliaris), and largely crepuscular (Athene brama, Athene

noctua) to largely diurnal (Athene cunicularia) (König et al., 2008). Forest Owlet is known to be

primarily diurnal and crepuscular. Osteological features and external morphological features

such as heavily feathered toes, less spotted crown set the Forest Owlet apart from other Athene

species, elucidated in detail by (Rasmussen and Collar, 2013), who chose to assign the species to

Heteroglaux. Thus, weighing these aspects, taxonomically, the Forest Owlet can either be

classified as a member of Athene or placed in its own monotypic genus Heteroglaux. However,
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we assign the species to Athene, as a resurrection of Hetereoglaux would render the remaining

taxa under Athene paraphyletic unless A. cunicularia and A. superciliaris are also moved to

monotypic genera.

Well-resolved phylogenies are the backbone for many ecological or evolutionary studies,

including exploration of diversity, biogeography, evolutionary history, and adaptation. Among

modern vertebrates, birds are one of the most diverse groups of organisms (Brusatte et al., 2015)

and the quest to understand the evolutionary relationships among species has been ongoing.

However, despite birds being a generally well-sampled group, South-Asian diversity remains

under-represented in global phylogenies (Reddy, 2014), which may limit or even bias inferences

from such datasets. UCE data are increasingly being used for greater resolution and provide

comparable datasets across taxonomic groups.
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