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ABSTRACT 
Cell cycle is a fundamental process for cell growth and proliferation, and its dysregulation leads 

to many diseases. How metabolic networks are regulated and rewired during the cell cycle is 

unknown. Here we apply a dynamic genome-scale metabolic modeling framework (DFA) to 

simulate a cell cycle of cytokine-activated murine pro-B cells. Phase-specific reaction activity 

predicted by DFA using time-course metabolomics were validated using matched time-course 

proteomics and phospho-proteomics data. Our model correctly predicted changes in methionine 

metabolism at the G1/S transition and the activation of lysine metabolism, nucleotides 

synthesis, fatty acid elongation and heme biosynthesis at the critical G0/G1 transition into cell 

growth and proliferation. Metabolic fluxes predicted from proteomics and phosphoproteomics 

constrained metabolic models were highly consistent with DFA fluxes and revealed that most 

reaction fluxes are regulated indirectly. Our model can help predict the impact of changes in 

nutrients, enzymes, or regulators on this critical cellular process. 
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INTRODUCTION 
The cell cycle is a fundamental biological process vital for growth and survival of organisms. 

Many proteins and genes that are involved in the cell cycle regulation and control have been 

identified and characterized across diverse species (Hartwell and Weinert, 1989; Hunt, 1991; 

Hunt et al., 2011; Norbury and Nurse, 1992; Nurse, 1994; Nurse, 2000). Each cell cycle in 

healthy cells is typically characterized by 4 distinct phases under precise control: G1 phase for 

cell growth and molecular preparation for DNA synthesis, S phase for DNA synthesis, G2 phase 

for molecular preparation for cell division, and M phase for cell division. If cells are not dividing 

or proliferating, they are in a resting or G0 state. Dysregulation of the cell cycle often leads to 

diseases such as cancer, diabetes, heart disease, neurodegenerative disease, and aging 

(Ahuja et al., 2007; Bicknell and Brooks, 2008; Boehm and Nabel, 2003; Chandler and Peters, 

2013; Cozar-Castellano et al., 2006; El-Badawy and El-Badri, 2016; Hartwell, 1992; Hartwell et 

al., 2006; Hartwell et al., 1994; Hartwell and Kastan, 1994; Hinault et al., 2008; Icard et al., 

2019; Kamb, 1995; Massague, 2004; Rane and Reddy, 2000; Sarsour et al., 2009; Swanton, 

2004).  

 

The cell cycle regulation in mammalian cells is more complex than that in simpler organisms 

such as yeast. With advent of high-throughput sequencing technologies, several transcriptomic 

analyses have been performed in mammalian cells to study cell cycle genes on a global level 

(Bar-Joseph et al., 2008; Grant et al., 2013; Liu et al., 2017; Pena-Diaz et al., 2013; Whitfield et 

al., 2002). The numbers of cell cycle genes identified in those studies vary from ~650 to ~2500. 

In contrast to transcriptomics, studies on proteomics and especially metabolomics of cell cycle 

have been generally lacking. To address this gap, we previously carried out mass spectrometry-

based quantitative temporal proteomics and metabolomics to study an IL-3-dependent cell cycle 

in murine pro-B cells (Lee et al., 2017). We found that the cell cycle in murine pro-B cells exhibit 

cancer-like metabolic reprogramming at multiple molecular levels. In addition, the methionine 

consumption rate is the highest in the G1 phase among all essential amino acids. 

 

Our data also highlight the complexity of metabolic changes that occur during the cell cycle. A 

theoretical model that explains the dynamics of this process is currently lacking. Such a model 

would allow us to understand the ramifications of alterations in the levels of enzymes, nutrients, 

metabolites, or regulators in this critical cellular process. However, it is challenging to create 

such a model as a typical mammalian cell contains thousands of metabolic reactions. This 

metabolic network is in turn regulated by an equally complex network of regulators, including 
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transcription factors for gene expression and protein kinases for phosphorylation. The size and 

complexity of metabolism and its regulation makes it challenging to predict the metabolic 

behavior of cells.  

 

To address this, here we apply a theoretical framework called Genome-Scale Metabolic-

modeling (GSM). GSM is widely used to study metabolism of systems with thousands of 

reactions and to predict the metabolic state of various organisms based on thermodynamics, 

mass-balance and stoichiometric constraints (Nilsson and Nielsen, 2017; O'Brien et al., 2015; 

Shlomi et al., 2008; Yizhak et al., 2015). GSM can calculate metabolic reaction activity (i.e., 

fluxes) on a global level, which is infeasible to measure experimentally.  

 

GSM methods assume a steady state of metabolite concentration and hence not directly 

applicable to dynamic systems. To address this limitation, we have recently developed a 

dynamic GSM framework using time-course metabolomics, called dynamic flux activity or DFA 

(Chandrasekaran et al., 2017). In our previous studies, DFA accurately predicted metabolic 

fluxes during transition between stem cell states, and the response of cancer cells to metabolic 

perturbations (Chandrasekaran et al., 2017; Nelson et al., 2019).  

 

Here we develop a new DFA model of the IL-3-induced mammalian cell cycle using our time-

course metabolomics data. We model each cell cycle phase sequentially by DFA using our 

phase-specific metabolomics data, providing a comprehensive map of metabolic regulation 

involving all phases of the cell cycle. Our phase-specific dynamic models are validated by 

matching proteomics and phosphoproteomics data and also corroborate our previous findings. 

Furthermore, we discover phase-specific reactions and pathways that offer novel insight into 

biochemical mechanisms of the cell cycle. 
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DATA AND METHODS 
Time-course metabolomics and proteomics data of a mammalian cell cycle 

We previously generated time-course mass spectrometry-based proteomics and metabolomics 

data to investigate a cellular transition from a quiescence state to the first cell cycle in response 

to IL-3 activation in a murine pro-B cell line (Lee et al., 2017). Our proteomics, intracellular and 

extracellular metabolomics data sets match each other consisting of 6 time points over the first 

cell cycle. The proteomics was done in duplicates and the metabolomics in triplicates. To build 

our metabolic network model, we use the metabolomics data of 155 intracellular and 173 

extracellular metabolites. We use 2,666 proteins of high confidence for model evaluation.  

 

Phosphoproteomics of the cell cycle 

We generated phosphoproteomics data matching to our time-course metabolomics and 

proteomics data across (6 time points; no biological replicate; unpublished). We use the 

phosphoproteomics data for model evaluation as a proof-of-concept of our analytical framework 

in addition to the proteomics data. Briefly, phosphopeptides were enriched using titanium 

dioxide (TiO2) and 6-plex tandem mass tags (TMT) were used for mass spectrometry analysis 

as in our previous proteomics study (Lee et al., 2017). We obtained abundance profiles of high-

confidence 3,095 phosphopeptides for 1,552 proteins across the 6 time points. The occurrence 

distribution of the 3 phosphorylated residues, serine (S), threonine (T), and tyrosine (Y), is as 

follows: S – 85%, T – 13%, and Y – 2%. About 96% of the 1,552 proteins have less than 6 

phosphorylation sites. About 84% of them are found to be phosphorylated at one of the 3 

residues, about 15% of them at 2 different residues, and 1% (14 proteins) at all of the 3 

residues. 

 

Metabolic network data 

For metabolic network modeling, we use the well-established human metabolic network 

reconstruction, Recon1 (Duarte et al., 2007), which is also a good approximation for mouse 

models as we showed in our previous work (Chandrasekaran et al., 2017). It consists of 3744 

reactions, 2766 metabolites, 1496 metabolic genes, and 2004 metabolic enzymes curated from 

literature. 

 

Dynamic metabolic network modeling 

We previously developed a dynamic metabolic network modeling framework, called DFA or 

Dynamic Flux Activity (Chandrasekaran et al., 2017), which is based on flux balance analysis 
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(FBA) and utilizes time-course metabolomics data. In this framework, metabolite level changes 

over time are set to be non-zero in contrast to FBA, reflecting a non-steady state. DFA solves 

an optimization problem maximizing an objective, in this case, the biomass objective (vbiomass) 

while satisfying the stoichiometric constraints that represent the metabolic network architecture. 

In addition, two flux activity coefficients (�⃗�	𝑎𝑛𝑑	�⃗�) are defined for each metabolite which 

represent deviations from measured metabolite rate of change. DFA identifies flux vectors or 

distributions for all reactions in the network across the time course that best fits the 

metabolomics data (Fig. 1).  

 

To create a dynamic model of the entire cell cycle, we aim to infer metabolic flux during every 

temporal transition using DFA. To do this, we model the IL-3-induced cell cycle by a sequence 

of 4 linearized cell-cycle phases, i.e., 4 DFA models, using our intracellular and extracellular 

metabolomics. Since DFA requires at least 2 time points from time-course metabolomics data to 

calculate the relative rate of change of each metabolite, we divided our cell cycle data into 4 

groups to model the cell cycle phases as follows: 0 – 4 hours for G0/G1, 4 – 12 hours for G1, 12 

– 16 hours for G1-S, and 16 – 20 hours for G2/M. Therefore, we constructed 4 DFA models by 

mapping temporal metabolite measurements onto Recon1 and obtained flux distributions for 

each phase. The metabolite mapping between our metabolomics data and Recon1 was done by 

the MetaboAnalyst webtool (Chong et al., 2018) and manual curation using canonical IDs from 

HMDB and ChEBI databases and chemical formulae. The overview of our approach is shown in 

Fig. 1. Modeling was done in MATLAB and python as in our previous work (Shen et al., 2019b). 

 

Model evaluation by comparison with differentially expressed proteins and phosphoproteins 

We use our matching time-course proteomics and phosphoproteomics data for evaluation of our 

predictions, which are orthogonal to the metabolomics data. We hypothesize that the reactions 

with high (or low) flux activity predicted by the cell cycle model should overlap with reactions 

with high (or low) enzyme levels from proteomics or phosphoproteomics data. To conduct this 

analysis, each proteomics enzyme was matched to its associated reaction, enabling a direct 

comparison between proteomics abundance and DFA model fluxes. We assess the significance 

of the overlap using hypergeometric tests for both top model reactions and top proteins or 

phosphoproteins identified using maximum fold change (MFC), standard deviation (SD), and a 

range of fold change thresholds. 
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Model evaluation by comparison with metabolic fluxes derived from proteomics and 

phosphoproteomics data  

We use the linear version of the iMAT algorithm, which we developed previously for 

transcriptomics-based flux prediction (Shen et al., 2019a), to predict fluxes based on proteomics 

and phosphoproteomics data. Fluxes from these models were then compared with DFA model 

predictions for further validation. To predict fluxes from proteomics data, we evaluated all 6 

temporal phase pairs from the 4 phases: G0 to G1, G0 to S, G0 to G2/M, G1 to S, G1 to G2/M, 

and S to G2/M. For each phase pair, we used the DFA-predicted fluxes as the initial phase and 

the lists of up-/down-regulated proteins or phosphoproteins between the two phases to predict 

fluxes at the final phase. We then calculated ratios of final to initial fluxes. The same ratios of 

final to initial fluxes for each phase pair were computed for DFA model reactions, enabling a 

direct comparison between DFA reaction predictions and proteomics/phosphoproteomics 

reactions. To find overlaps, we used ratio thresholds of 1.1, 1.25, 1.5, and 2.0, i.e., 10%, 25%, 

50%, and 100% flux increase from the initial to final phases and assessed significance with 

hypergeometric tests and fold enrichment.  
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RESULTS 
1. Metabolic network modeling of a mammalian cell cycle 

We were able to map 126 of 155 intracellular metabolites and 131 of 173 extracellular 

metabolites from our metabolomics data (Lee et al., 2017) onto Recon1 (Duarte et al., 2007) for 

the 6 time points with 4-hour intervals covering the first cell cycle after IL-3 activation of murine 

pro-B cells from a G0 resting state (Fig. 1). As described in Methods, by applying DFA to the 

time-course metabolomics data, we constructed a sequence of 4 DFA models for 4 cell-cycle 

phases: 0 – 4 hours for G0/G1, 4 – 12 hours for G1, 12 – 16 hours for G1-S, and 16 – 20 hours 

for G2/M (Fig. 1). Using the 4 DFA models we obtained flux distributions of metabolic reactions 

for the IL-3-induced first cell cycle. 

 

2. Flux prediction and metabolic network dynamics across the cell cycle 

We predicted a total of 820 active metabolic reactions in the 4 phases of the cell cycle (Figs. 2A 

and 2B; Supplementary Table S1). The highest flux values in forward and reverse directions 

occur in the same reactions in all the phases: calcium/sodium antiporter for the forward reaction 

(positive flux values) and L-glutamate secretion via secretory vesicle (ATP driven) for the 

reverse reaction (negative flux values). The total absolute flux is highest at the G0/G1 transition 

and the second highest at the G1/S transition. The biomass objective is largest at the G0/G1 

transition as in the total absolute flux (Fig. 2C). The second largest is in G2/M where cells 

divide. Flux predictions across the cell cycle phases were projected onto a map of the human 

metabolic network reconstruction, Recon1, for visual inspection of dynamic changes of 

mammalian cell cycle metabolism (Fig. 3). The highest activities across the cell cycle phases 

occur in different parts of the network. Nucleotide metabolism, glutathione and nicotinamide 

metabolism pathways have the highest activity in the G0 phase, folate metabolism in G1, 

glycine, serine, and threonine metabolism in G1/S, and extracellular transport in G2/M. 

 

3. Model evaluation using proteomics and phosphoproteomics data 

We first evaluated our models by comparing the top enzymes from the top reactions of the 

models and our matching proteomics data (Fig. 4A). All overlaps at 5 different thresholds of 10 – 

50% for the top proteins from the proteomics data, either by standard deviation (SD) or by 

maximum fold change (MFC), are statistically significant by the hypergeometric test with p < 

0.05 (Fig. 4B). This is also true when we use the phosphoproteomics data of 1,332 

phosphoproteins with 3,873 phosphosites: p = 2.0e-4 ~ 0.057 for SD and p = 2.57e-6 ~ 3.3e-4 

for MFC. The top phosphoproteins identify a distinct set of reactions that are not identified by 
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the top proteins from the proteomics. For a more specific illustration of model validation, we 

previously discovered that methionine consumption is highest in the mid-late G1 phase of the 

cell cycle, among all essential amino acids (Lee et al., 2017). Our model predicted that the total 

flux of 9 methionine-related reactions is highest at the G1/S transition, validating our previous 

finding and offering insight into biochemical mechanisms. 

 

4. Phase-specific reactions and processes 

Having validated our model, our flux predictions reveal phase-specific reactions, which can be 

visualized by a heatmap of normalized flux data and a hierarchical clustering as in Fig. 5A. The 

number of unique forward/reverse reactions is highest at the G0/G1 transition (Fig. 5B), 

agreeing with the highest total absolute flux and the largest biomass objective described above 

(Fig. 2A and 2C). The second highest total number of unique reactions is in the G2/M phase of 

cell division, agreeing with the second highest biomass (Fig. 5B). Mapping from phase-specific 

reactions to metabolic pathways or processes also reveals phase-specific pathways and 

common pathways (Fig. 6). We find that lysine metabolism, nucleotides synthesis, fatty acid 

elongation, extracellular/mitochondrial/peroxisomal transport systems, and heme biosynthesis 

are major active processes at the G0/G1 transition, which suggests an inter-connected 

biochemical mechanism for the critical transition into cell cycle, growth, and proliferation. 

 

5. Consistency with proteomics-based and phosphoproteomics-based flux predictions 

With the model validation and meaningful biological interpretations above, we turned our 

attention to flux predictions by indirect methods based on the proteomics and 

phosphoproteomics data. This is to evaluate consistency with the metabolomics-based method, 

which is more directly related to reaction fluxes using substrate levels. To do this, DFA fluxes 

were used as the initial phase for each of the 6 phase pairs. Then, using a linear version of the 

iMAT algorithm (Shen et al., 2019a) and proteomics-derived sets of up- and down-regulated 

proteins between phases, fluxes for the final phase were predicted. The same approach was 

taken for phosphoproteomics. Fluxes from proteomics and phosphoproteomics models were 

compared with the metabolomics-based DFA predictions by quantifying the overlaps of top 

differentially active reactions for the 6 phase pairs (see Methods). At all ratio thresholds of 1.1, 

1.25, 1.5, and 2.0, all overlaps are statistically significant with p-values between 6.3e-3 and 

1.42e-102 by hypergeometric tests and fold enrichment values between 3.686 and 20.107 

(Table 1). As an example of these overlaps, p-values at the highest threshold of 2.0 are 2.52e-

89 for the G0-G1 transition and 6.26e-97 for the G0-G2. Phosphoproteomics overlaps are 
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similarly significant with p-values of 4.52e-90 for the G0-G1 and 1.35e-93 for the G0-G2 at the 

2.0 threshold. For the G0-G1 at the 2.0 threshold, 76 of the 92 proteomics fluxes overlap with 

model flux predictions. For phosphoproteomics at the same threshold and transition, 76 of the 

91 phosphoproteomics fluxes overlap with model predictions. 

 

Conducting the two evaluation methods above provided a more comprehensive explanation of 

how metabolomics-based fluxes aligned with proteomics and phosphoproteomics-derived 
fluxes. For example, for the G0/G1 transition at a fold change threshold of 10%, there were 236 

metabolomics-based DFA reactions that were differentially active. When overlapping these 
reactions with the proteomics data directly, 18 of the reactions were explained. By overlapping 

the DFA reactions with the proteomics-based reaction fluxes, 93 reactions were explained. At 

the same threshold for the phosphoproteomics, 18 reactions were explained by the 
phosphoproteomics data directly, which were distinct from the 18 reactions from the proteomics 

data, and 89 were explained by phosphoproteomics-based fluxes. As such, a more 
comprehensive coverage of the reactions was achieved through both methods. 
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DISCUSSION 
Cell cycle is a fundamental process in biology. Metabolic regulation of cell cycle is an important 

component controlling cell phase transitions, yet its understanding has been limited by the 

complexity of temporal metabolic changes. Metabolic network modeling has been a major 

mathematical approach for studying biochemical reactions and metabolic regulation in systems 

biology. However, no mathematical model of mammalian cell cycle metabolism exists. Modeling 

metabolism of cell cycle is challenging as it involves multiple phase transitions and the 

metabolic effects from different omics data occur at different time scales. In addition, traditional 

methods for integrating omics data with metabolic network models assume a steady-state 

system, whereas cell cycle is dynamic. Here we developed a dynamic metabolic network model 

for a mammalian cell cycle using time-course metabolomics based on our previous studies 

(Chandrasekaran et al., 2017; Lee et al., 2017). Our metabolomics-based model can describe 

each cell cycle phase in terms of flux distributions, which is consistent with the matching 

proteomics and phosphoproteomics data. Enzymes predicted to be differentially active by the 

model also show changes in expression or phosphorylation levels. However, given the inherent 

noisiness of metabolomics data with high variability among biological replicate samples (Lee et 

al., 2019), our flux predictions should be considered qualitatively plausible until validated by 

experimental flux measurements. 

 

Our analysis of the IL-3-induced cell cycle of murine pro-B cells revealed unique metabolic 

activity in each phase and that the G0/G1 transition phase has the largest number of active 

reactions as well as the highest biomass synthesis rate, which is meaningful because of its 

critical role in entry into the cell cycle and proliferation (Lee et al., 2017). In particular, there are 

multiple literature supports for our prediction of lysine metabolism, fatty acid elongation, and 

heme biosynthesis at the G0/G1 transition in relation to protein synthesis and cell growth 

(Gimple et al., 2019; Jang et al., 2020; Pran Babu et al., 2020; Yu et al., 2017). From the model 

validation using proteomics and phosphoproteomics, we find that those enzymes in our 

predicted high-flux reactions are likely to be enzymes of high expression changes in terms of 

both total proteins and phosphoproteins, as expected, and that reactions regulated by 

phosphoprotein level changes are distinct from those regulated by total protein level changes 

across the cell cycle. This may suggest a division of labor in metabolic regulation between 

different regulatory mechanisms, as revealed in our related work (Smith et al., 2021).  
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On the other hand, we showed that fluxes predicted using either proteomics or 

phosphoproteomics are consistent with fluxes predicted by metabolomics-based DFA 

predictions for all 6 phase pairs with varying thresholds. This suggests that proteomic and 

phosphoproteomic changes are distinct in abundance, whereas they result in flux changes in 

similar reactions. Of note, we point out that the overlap p-values are highly significant and 

several orders of magnitude higher than the overlaps observed through the first validation 

method. These results suggest that a small set of reactions are regulated directly by changing 

protein or phosphoprotein levels. By modeling systems-level metabolic consequences of 

regulating a small number of proteins or phosphoproteins, we were able to better explain the 

prediction of reaction flux changes. In addition, the predicted fluxes or reactions by the 

proteomics- and phosphoproteomics-based models were similar. This contrasts with the first 

validation case, where the reactions identified by top abundance changes from proteomics and 

phosphoproteomics were distinct. In this respect, the validation by the phosphoproteomics data, 

despite the caveat of no replicates, implies that the phosphorylation mechanism is meaningful in 

metabolic network modeling of the mammalian cell cycle. Indeed, independent of this work, we 

developed a new computational framework for predicting metabolic regulation by integrating 

metabolic network modeling with machine learning, called Comparative Analysis of Regulators 

of Metabolism (CAROM), to classify enzymes regulated by phosphorylation or acetylation 

across 4 species: bacteria, yeast, mouse, and human (Smith et al., 2021). In that study, we 

show that classification accuracy using our cell cycle model and the phosphoproteomics data is 

greater than 80%, suggesting the importance of phosphoproteomics data for mechanistic 

insights into metabolic regulation. 

 

Our model is a proof-of-concept draft model and can be improved in many directions in future 

studies. For example, some inconsistencies in flux prediction may arise due to regulation not 

included in the current model such as allosteric feedback. This could be resolved by a 

combination of manual curation and automated curation by methods such as GEMINI 

(Chandrasekaran and Price, 2013). Another approach for model improvement would be Flux 

Variability Analysis to explore the redundancy in the network (Gudmundsson and Thiele, 2010; 

Mahadevan and Schilling, 2003).  

 

In conclusion, since cell cycle is a fundamental process in biology, our model and data may 

have a wide range of immediate applications in understanding development, ageing, and 
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metabolic disorders like cancer, with insights into various regulatory mechanisms that control 

metabolic dynamics during cell cycle and uncover phase-specific metabolic demands. 
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Figure 1. Overall workflow. We use Recon1 as our base metabolic network (Input 1; the map 

is from iPath3, https://pathways.embl.de/ipath3.cgi?map=metabolic) and our published time-

course metabolomics of the cell cycle (Input 2). We then build a dynamic model comprising all 

the 4 phases using DFA based on the time-course metabolomics data. The output is a flux 

distribution of all active reactions over time as shown in a toy metabolic network (taken from 

Wikipedia: Flux balance analysis). The heatmap shows all active reactions predicted across the 

cell cycle from our metabolomics data (See also Fig. 2). 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2021. ; https://doi.org/10.1101/2021.10.11.464012doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.11.464012
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

 
Figure 2. Flux prediction across the cell cycle. (A) Flux distributions for each cell cycle phase 

along with the total absolute flux in the inset bar plot. A total of 820 active reactions were 

predicted. (B) Heatmap of mean-normalized flux values across the cell cycle phases for the 820 

active reactions. A hierarchical clustering was done for those reactions. (C) Optimized values of 

the biomass objective function across the cell cycle phases. 
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Figure 3. Flux prediction dynamics over the first cell cycle. Reaction flux predictions at 

each cell cycle phase are shown in the metabolic network map of Recon1. Red and green lines 

represent reactions with high flux in the forward and reverse directions, respectively, with 

brighter colors for higher fluxes. Grey lines are inactive reactions with no fluxes. Each network 

visualization was created using the iPath3 webtool (http://pathways.embl.de). 
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Figure 4. Model evaluation and validation. (A) A schematic to show how the evaluation of our 

models were done by comparing the top enzymes from the top reactions of the models and our 

matching proteomics data. (B) Hypergeometric p-values of the overlap test from (A) for multiple 

thresholds. (C) A model validation was done against our previous experimental data of 

methionine consumption and the total flux of 9 methionine-related predicted reactions. 
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Figure 5. Prediction of active reactions and phase-specific reactions. (A) A heatmap of 

mean-normalized flux values for all 820 active reactions along with a hierarchical clustering. 

Phase-specific reactions are highlighted in boxes in light blue. (B) A bar plot of the numbers of 

phase-specific forward and reverse reactions for each phase. (C) A scatter plot of the total 

number of reactions and the total absolute flux for each phase. The inset is a bar plot of the 

biomass objective values across the phases.  
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Figure 6. Phase-specific pathways or processes. (A) A total flux for each metabolic pathway 

or process based on active reactions for each phase in the decreasing order. The top pathway 

or process for each phase is shown. (B) A Venn diagram for pathways or processes active in 

individual phases. (C) A circular bipartite graph between metabolic pathways or processes 

(nodes on the inner circle) and reactions (nodes on the outer circle) for all phases distinguished 

by different colors. Some of common and phase-specific pathways or processes are shown. 
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Table 1. Consistency between metabolomics-based DFA predictions and proteomics-
/phosphoproteomics-based flux predictions. 
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