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Abstract 
Our understanding of the world is shaped by inferences about underlying structure. For 

example, at the gym, you might notice that the same people tend to arrive around the same time 

and infer that they are friends that work out together. Consistent with this idea, after participants 

are presented with a temporal sequence of objects that follows an underlying community 

structure, they are biased to infer that objects from the same community share the same 

properties. Here, we used fMRI to measure neural representations of objects after temporal 

community structure learning and examine how these representations support inference about 

object relationships. We found that community structure learning affected inferred object 

similarity: when asked to spatially group items based on their experience, participants tended to 

group together objects from the same community. Neural representations in perirhinal cortex 

predicted individual differences in object grouping, suggesting that high-level object 

representations are affected by temporal community learning. Furthermore, participants were 

biased to infer that objects from the same community would share the same properties. Using 

computational modeling of temporal learning and inference decisions, we found that inductive 

reasoning is influenced by both detailed knowledge of temporal statistics and abstract 

knowledge of the temporal communities. The fidelity of temporal community representations in 

hippocampus and precuneus predicted the degree to which temporal community membership 

biased reasoning decisions. Our results suggest that temporal knowledge is represented at 

multiple levels of abstraction, and that perirhinal cortex, hippocampus, and precuneus may 

support inference based on this knowledge.  
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Introduction 
The world is richly structured in many ways that may help guide decision making; however, this 

structure is not always directly observable and must often be inferred based on limited data. The 

sequence in which events occur may be an important factor in providing clues about underlying 

structure (Gershman et al., 2017; Schapiro et al., 2013; Varga et al., n.d.). For example, when at 

the gym, you might notice that a group of people tends to enter near the same time. Based on 

this observation, you might infer that they are friends that work out together. This inference of 

membership within a friend group could then be used to support further reasoning; for example, 

if you learn that one member of the group is a student at a local university, you might then 

assume that other members of the group also go to that university. In this way, knowledge about 

temporal statistics may influence reasoning about non-temporal structure in the world. 

 Recent studies have used a temporal community structure paradigm to examine learning 

of latent structure through statistical learning (Schapiro et al., 2013, 2016) and determine how 

this learning may affect reasoning (Pudhiyidath et al., 2019). In the temporal community 

structure paradigm, participants are presented with sequences of items that are generated 

according to an underlying network structure that defines connections between items (Fig. 1a). 

After presentation of each item, any other connected item may be presented next with equal 

probability (Fig. 1b). Items within a community are interconnected, and there are only sparse 

connections between communities; as a result, items in the same community tend to appear 

nearby in time to one another. After observing item sequences, participants are more likely to 

report perceived event boundaries at transitions between communities, indicating that they have 

learned about the latent community structure of the items (Schapiro et al., 2013). Learning of 

temporal community structure also biases subsequent inductive reasoning about items 

(Pudhiyidath et al., 2019). After presentation of item sequences generated based on a temporal 

community structure, participants were told a property of a cue item (e.g., that it likes the desert) 

and asked to decide which of two other items shares that property. Adults were more biased 

than children to select an item that shared the same temporal community with the cue item. This 

result suggests that, in adults, temporal knowledge about item communities influenced 

reasoning about non-temporal properties of the items (Pudhiyidath et al., 2019). However, the 

specific computational and neural mechanisms that support generalization of temporal 

knowledge to make decisions in new contexts remain unclear. Here, we used fMRI and 

computational modeling to investigate how temporal knowledge is represented in the brain and 

how this knowledge affects inference decisions. 
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Figure 1. (a) Temporal community structure with novel 3D objects assigned to its 21 nodes. The connections 
between nodes indicate which objects may follow one another in succession in a structured sequence. Nodes are 
divided into three distinct communities (purple, red, green). Darker circles indicate central nodes, i.e., objects that 
are connected to all other objects in the same community. Lighter circles indicate boundary nodes, i.e., objects that 
are connected to the five central nodes and another boundary object in a different community. The arrows show an 
example sequence through the network, starting with the outlined object; arrow color corresponds to position within 
the sequence. (b) A structured sequence of objects corresponding to the path illustrated in (a). 

Computational models of associative learning and reinforcement learning suggest that, 

after exposure to sequences of items, participants learn to predict what items will follow any 

given presented item (Momennejad, 2020; Momennejad et al., 2017; Schapiro et al., 2013, 

2017). Successor representation (SR) models propose that predictions about upcoming states 

or items are stored in an SR that reflects not only one-step transitions, but also longer-range 

transitions (Dayan, 1993). For any given item, the SR stores the number of expected future 

visits to every other item. Expected visits are discounted based on the expected delay before 

visiting them, causing the SR to emphasize items that will be visited relatively soon. When an 

SR model was trained on the temporal community structure task, it learned predictive 

representations that reflected the community structure, associating items in the same 

community more strongly than items in different communities (Stachenfeld et al., 2017). This 

result suggests that SR learning might be able to account for influences of community structure 

on event segmentation (Schapiro et al., 2013) and inference (Momennejad, 2020; Pudhiyidath 
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et al., 2019). However, while the SR is sensitive to the community structure, it also represents 

other details of the temporal statistics of the paradigm, such as the connections between 

communities (Stachenfeld et al., 2017). The SR has been theorized to support formation of 

compressed representations that are more abstract (Momennejad, 2020; Stachenfeld et al., 

2017). Therefore, SR learning might support reasoning based on community structure either 

directly through knowledge of temporal statistics, or indirectly by supporting learning of abstract 

structure (here, the community membership of each item). 

 Learning of temporal statistics is thought to be facilitated by the hippocampus (Schapiro 

et al., 2014; Schlichting et al., 2017), which has been proposed to encode SRs that reflect 

predictions about upcoming states (Brunec et al., 2018; Stachenfeld et al., 2017). Hippocampal 

activation patterns in response to objects reflect the co-occurrence statistics of those objects: 

Objects that frequently followed one another during learning come to have more similar 

activation patterns after learning (Schapiro et al., 2012). Furthermore, recent work suggests that 

the hippocampus supports memory performance in statistical learning tasks. Developmental 

changes in anterior hippocampus volume predict individual differences in statistical learning 

performance across development (Schlichting et al., 2017), and statistical learning is disrupted 

in patients with hippocampal damage (Covington et al., 2018; Schapiro et al., 2014). After 

exposure to sequences of objects generated based on temporal community structure, patterns 

of activation in the hippocampus reflect community membership, with greater similarity among 

items in the same community compared to items in different communities (Schapiro et al., 

2016). However, the behavioral relevance of these community representations remains unclear, 

as the relationship between hippocampal community structure representations and reasoning 

behavior has not yet been investigated. 

 The prefrontal cortex (PFC) has also been found to represent community structure after 

learning. A previous study found that the inferior frontal gyrus (IFG) increased in activation as 

multiple items from the same community were presented in succession, suggesting that it is 

sensitive to community structure (Schapiro et al., 2013). IFG activation patterns also reflected 

community membership, with greater observed similarity among object presentations from the 

same community compared to objects in different communities (Schapiro et al., 2013). 

However, these results were observed during presentation of ordered sequences that visited all 

objects in the same community in succession, and IFG activation was sensitive to the position 

within these sequences. Therefore, it remains unclear whether IFG represents the community 

membership of individual objects or instead represents a context-dependent activation pattern 

reflecting the current community. There is also evidence that medial prefrontal cortex (mPFC) is 
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sensitive to community structure. While Schapiro and colleagues did not find evidence that 

mPFC activation patterns are more similar for items from the same community compared to 

items from different communities, mPFC activation was increased during a sequence of object 

presentations from the same community compared to boundaries between communities 

(Schapiro et al., 2013). Furthermore, in studies on prospective memory, the mPFC has been 

found to represent intended upcoming tasks (Momennejad & Haynes, 2012, 2013), raising the 

possibility that it might also represent predicted upcoming items within a given community. The 

mPFC is also functionally and structurally connected to hippocampus and has been proposed to 

form low-dimensional representations of task structure (Mack et al., 2020; Morton et al., 2020; 

Morton & Preston, 2021). These findings raise the possibility that mPFC may form an abstract 

representation of task structure that reflects object community membership. 

 To examine how neural representations of temporal knowledge relate to reasoning 

behavior, we collected fMRI data in a temporal community structure paradigm. We first 

presented participants with sequences of objects drawn from an underlying temporal community 

structure (Fig. 1). We then used fMRI to measure neural representations of the objects. While 

prior work measured object representations during predictable sequences that followed the 

community structure of the task (Schapiro et al., 2013, 2016), here we measured patterns of 

activation elicited by the objects presented in random order (Fig. 2a). This strategy allowed us to 

measure the representation of each object separately without any influence of sequence-based 

predictions, to determine whether representations of individual objects reflect learning of the 

community structure. We examined object pattern similarity in hippocampus, IFG, and mPFC to 

test whether objects in the same community were represented more similarly to each other 

compared to objects in different communities. 

We next examined whether neural representations of community structure predicted 

decisions that require making inferences about object similarity and object properties. 

Participants were asked to group objects within a spatial grid based on their experience with the 

objects, allowing us to examine whether temporal community structure learning affected the 

inferred similarity of the objects (Fig. 2d). We tested whether participants tended to group 

together items from the same temporal community and examined whether this tendency was 

predicted by neural representations of temporal community structure. We then examined 

whether learning about the temporal associations of the objects affected inductive reasoning 

about object properties (Fig. 2b). 

During the reasoning task, participants were told a property of a cue object and asked to 

select which of two candidate objects shared that property. Each choice was between an object 
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in the same community as the cue and an object from a different community. Critically, there 

was no “correct” answer and participants did not receive feedback; this design allowed us to 

examine how temporal knowledge biases reasoning in new situations. Different trials were 

designed to examine relationships between objects that were either directly associated during 

learning (i.e., directly connected in the community structure) or only indirectly associated (i.e., 

members of the same temporal community, but not directly connected to one another in the 

structure and therefore not seen together during learning). Contrasting performance on these 

different trials allowed us to determine whether reasoning was related only to the transition 

statistics that participants learned directly, or whether their reasoning was also biased by 

inferred associations between objects that were in the same community but were not connected 

directly.  

To examine the influence of different forms of temporal knowledge on reasoning 

behavior, we compared different models of temporal knowledge based on either SR learning or 

abstract knowledge about latent community structure. Finally, we tested whether neural 

representations of temporal community structure in hippocampus, IFG, or mPFC predicted 

reasoning performance. Overall, our approach allowed us to determine how learning about 

temporal statistics influences inference-based decision making in new contexts. 
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Methods 

Participants 
Thirty-nine right-handed volunteers participated in the experiment (20 women; ages 18 to 33 

years; M = 24.59, SD = 4.62). Consent was obtained in accordance with an experimental 

protocol approved by the Institutional Review Board at the University of Texas at Austin. 

Participants received monetary compensation for their involvement in the study. Data from two 

participants were excluded for excessive movement. Data from the remaining 37 participants 

were included in all subsequent analyses (18 women; ages 18 to 33 years; M = 24.68, SD = 

4.80). 

Stimuli 

The stimuli consisted of images of 21 novel, computer generated 3D objects, selected from a 
larger set of previously developed object images (Hsu et al., 2014; Schlichting et al., 2015). The 

images of the objects were 400 pixels by 400 pixels. Object images were chosen to minimize 

visual similarity (e.g., color, shape) between objects. At the outset of the experiment, 

participants completed a familiarization task, wherein they learned the canonical orientation of 

each object. On each trial of the familiarization task, an object was presented for 3 s. 

Participants were instructed to pay close attention to the features and orientation of each object 

because they would later be asked to make judgments about object orientation. Between trials, 

a fixation cross was shown during an inter-stimulus interval (ISI) of 0.5 s. The 21 objects were 

randomly ordered, and the random sequence was presented twice. 

Temporal community structure 
To investigate how temporal statistical learning affects reasoning, we presented participants 

with object sequences generated based on a temporal community structure (Schapiro et al., 

2013). Each object was assigned to a node of a 21-node community structure graph (Fig. 1a) 

that specified the connections among the objects (Schapiro et al., 2013). The assignment of 

objects to nodes was randomized for each participant. In the temporal community structure, 

there were three distinct communities of objects that were connected to one another. Within 

each of the three communities, there were five central nodes and two boundary nodes. Each 

node was connected to six other nodes. The central nodes were connected to all the other 
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objects in that community. The boundary nodes were each connected to all of the central nodes 

in that community and to a boundary node from a different community. The two boundary nodes 

in each community were not connected to one another.  

The community structure was used to generate structured object sequences through 

random walks following the connections within the graph (Fig. 1b). During structured object 

sequences, after presentation of an object, the following object could be any of the six 

connected objects with equal probability. Central node objects were always followed by another 

object in the same community, while boundary objects had a 5/6 probability of transitioning to 

another object in its own community and a 1/6 probability of transitioning to another, connected 

community. The structured object sequences thus provided an opportunity to learn about both 

the transition probabilities among individual pairs of objects and the overall latent temporal 

community structure. 

Learning the temporal community structure  
After the object familiarization task, participants viewed structured object sequences generated 

from walks through the community structure (Fig. 1). The temporal structure learning task was 

divided into two parts. The first part, which occurred in a quiet testing room, provided 

participants with an opportunity to implicitly learn the underlying temporal community structure. 

The second part occurred during fMRI data acquisition, allowing us to measure how neural 

representations of the objects were affected by community structure learning. 
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Figure 2. (a) Participants first viewed structured sequences of objects derived from the temporal community 
structure graph. Next, participants were scanned during presentations of additional structured sequence blocks, 
which were intermixed with scrambled sequence blocks in which objects were presented in a random order that did 
not follow the temporal community structure. (b) Outside of the scanner, participants performed an inference task 
to measure how temporal structure learning affected reasoning about object properties. Participants were told that 
a cue object was found in one of three environments (ocean, desert, or forest) and asked to choose which of two 
objects (shown below the cued object) could also be found there. For each trial, one of the object choices shared 
the same temporal community as the cue, and the other object choice did not. There were three types of trials 
(central, boundary 1-away, and boundary 2-away) which varied in the degree to which the choice objects were 
directly or indirectly connected with the cue object in the structure graph. (c) The parsing task measured subjective 
perception of event boundaries. Participants were presented with object sequences that were generated either 
through a structured walk through the graph or a Hamiltonian walk in which the nodes were visited one-by-one in 
turn. Participants were told to press a button (i.e., indicate an event boundary) whenever they felt a subjective shift 
in the sequence. In the example sequence, the object's background color (not shown to participants) indicates its 
community; dark squares indicate central nodes and light squares indicate boundary nodes. (d) The grouping task 
measured the learned similarity of the objects and examined whether temporal knowledge generalized to a spatial 
grouping task. Participants were shown a grid with the 21 objects they had seen in the task randomly placed on it 
and were asked to group the objects based on their experience. 
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Initial structure learning 

During initial structure learning, each participant viewed a sequence of the novel 3D objects. 

Each object was presented for 1.5 s with no ISI. Unbeknownst to the participants, the object 

sequence was generated based on a temporal community structure (Fig. 1). For each 

participant, a structured sequence of 1575 objects was randomly generated following the graph 

structure; this sequence was then divided into five runs with 315 object presentations each. 

Across the five runs, each object was presented 75 times on average (standard deviation: 

M=17.39, SE=1.15), and there were 525 object presentations from each community on average 

(standard deviation: M=129.94, SE=10.42). Participants were given a chance to take a short 

break after each run. While viewing the sequence, participants completed an object rotation 

detection task. Participants made a response to every object presented, pressing one button if 

the object was in the canonical orientation they had learned during the familiarization phase or 

another button if it was in the incorrect, rotated orientation. Rotated object images were rotated 

90° counterclockwise from the canonical image. Unbeknownst to participants, objects were 

rotated when the current object was the same as the object presented two steps back. At the 

end of each run, participants were given feedback about their accuracy in the rotation detection 

task before they moved onto the next run. To confirm that participants were consistently 

attending to the object presentations, performance on the rotation detection task for each run 

was assessed using 𝑑!. For each participant and run, we tested whether performance was 

above chance using a permutation test. On each of 10000 iterations, the responses were 

permuted and 𝑑! was calculated based on the permuted responses. We then calculated a 𝑝-

value based on the permutation distribution to test whether performance was above chance on 

each run. To assess whether fatigue affected performance during later runs, we also tested 

whether 𝑑′ varied across runs using a one-way repeated measures ANOVA. 

Scanned structure learning 

Next, participants continued viewing object sequences and performing the rotation detection 

task while undergoing fMRI scanning, allowing us to measure the neural representations of the 

objects after exposure to the temporal community structure. Participants completed six 

functional scanning runs, each lasting approximately 10 minutes. Unbeknownst to participants, 

each run was divided into structured and scrambled blocks. Structured blocks were generated 

based on the temporal community structure graph, as in the initial community structure learning 

phase. In contrast, scrambled blocks did not follow the temporal community structure (Fig. 2a). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2021. ; https://doi.org/10.1101/2021.10.12.462707doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.12.462707
http://creativecommons.org/licenses/by-nc-nd/4.0/


During scrambled blocks, each of the 21 objects was presented in random order. These 

scrambled blocks allowed us to measure the neural representation of each object while 

controlling for effects of temporal autocorrelation (Purdon & Weisskoff, 1998), which were 

confounded with community structure during the structured blocks. Furthermore, prior work 

found that neural activation varied when multiple objects from the same temporal community 

were presented in succession (Schapiro et al., 2013). Here, we used the scrambled blocks to 

examine individual object representations in the absence of systematic order effects and 

determine how they have been shaped by temporal community learning. 

Each of the six runs contained seven blocks of 21 objects each, including five structured 

blocks and two scrambled blocks, for a total of 147 object presentations per run. Across the six 

runs, each object was presented 42 times on average (standard deviation: M=9.32, SE=0.58), 

and there were 294 object presentations from each community on average (standard deviation: 

M=65.40, SE=5.54). Each object presentation lasted for 1 s, during which participants pressed 

one button to indicate that the object was in the canonical orientation or another button to 

indicate that the object was rotated from its canonical orientation. Participants were not given 

feedback about their performance during the scanned phase. As with the initial structure 

learning task, we assessed performance on the orientation task by calculating 𝑑!. After each 

trial, a fixation cross was presented during a 1, 3, or 5 s ISI. There were an equal number of ISIs 

of each length in each run, with the order of ISI lengths randomized. Each run began and ended 

with 4 s of fixation. Within each run, the scrambled blocks occurred as either the third and sixth 

blocks (schedule 1), or as the second and fifth blocks (schedule 2); the block order started with 

schedule 1 and alternated across runs. The start of each structured block followed the temporal 

community graph, based on the object presented previously. All participants were given a short 

break (approximately 10 minutes) after completing the first three runs in the scanner to avoid 

fatigue, after which they returned to the scanner to complete the final three runs.  

Assessing knowledge of temporal community structure  
After the scanned structure learning phase, a series of behavioral tasks assessed knowledge of 

the temporal statistics of the objects and examined how temporal knowledge affects decisions 

that rely on inference. We measured temporal knowledge using a parsing task that 

characterized whether temporal community structure affected event segmentation. We further 

examined whether temporal knowledge was generalized to a spatial grouping task, which 

assessed the subjective similarity of the objects. Finally, we tested whether temporal statistical 

learning affected reasoning using an inductive inference task. To avoid influences of the other 
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tasks on inductive inference, the inductive inference task was completed first, followed by the 

parsing task and the spatial grouping task. 

Parsing task 

The parsing task allowed us to assess whether temporal community structure learning affected 

perception of event boundaries. In this task, participants were shown object sequences and told 

to press a button (i.e., parse the sequence) whenever they believed that there was a “shift” in 

the object sequence (Fig. 2c) (Schapiro et al., 2013). Participants were told to use their intuition 

and to refer to their experiences thus far in the experiment to determine where shifts might be 

occurring. Based on prior work (Schapiro et al., 2013), we predicted that participants would be 

more likely to make a parse response after transitions between communities. 

During the parsing task, participants viewed object sequences, which were divided into 

three runs of 252 objects. Each object was shown on the screen for 1.5 s, with no ISI between 

objects. Each run contained 12 blocks with 21 objects each. Each block was either a random 

walk through the temporal graph structure (i.e., a structured sequence like those encountered 

during structure learning) or a Hamiltonian walk (Fig. 2c). In Hamiltonian walks, participants saw 

each object in the graph in a sequential order that followed the outer edges of the graph. Within 

each run, blocks alternated between random walks and Hamiltonian walks, starting with a 

random walk. Each Hamiltonian walk was randomly selected to follow either a predetermined 

forward order or a backward version of the same walk (Schapiro et al., 2013). These 

Hamiltonian paths were included to ensure that parsing responses could not be solely explained 

by changes in the temporal statistics of object presentations, as each object was only presented 

once in each block. In contrast, during random walks, objects in the same community are more 

likely to repeat in relatively quick succession, while objects in a new community likely have not 

been observed recently. As a result, parsing responses might occur more frequently after 

community transitions because of object novelty rather than knowledge about temporal 

structure. 

To measure the influence of temporal community structure on event segmentation, we 

examined the probability of making a parse response after a transition from one community to 

another. Following prior work (Schapiro et al., 2013), we counted a community transition only 

after there had been at least four objects presented from the same community in succession, in 

case participants were disinclined to make parse responses in close succession to one another. 

We compared the probability of parsing on these community transition trials (i.e., when there 

were at least four trials with objects in the same community, followed by presentation of an 
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object in a different community) compared to the probability of parsing on other trials. We 

calculated this difference in parsing probability separately for the structured and Hamiltonian 

blocks. The difference in parsing probability between community transition trials and other trials 

served as a measure of knowledge of the temporal community structure. 

Grouping task 

In the grouping task, participants were asked to group objects within a spatial grid based on 

their experiences in the study. The grouping task involved inferring the relative strength of the 

relationships among all the objects, based on limited information obtained during the temporal 

structure learning task. This task thus allowed us to assess whether temporal knowledge 

influenced inference behavior in a spatial task. Participants were shown a 19x11 rectangular 

grid on a computer screen, with the 21 objects uniformly and randomly dispersed across its 

coordinates (Fig. 2d). Participants were instructed to use the computer mouse to group the 

objects on the grid. They were asked to group the objects based on their intuition and what they 

had witnessed thus far in the experiment and were instructed to not use the physical similarity of 

the objects to guide their responses. To group the objects, participants clicked on an object and 

then clicked on the space on the grid where they wanted to move it. Participants were given as 

long as they needed to complete the task. 

Using the final positions of the objects, we calculated the Euclidean distance between 

objects in the same community and objects in different communities. We hypothesized that the 

spatial distances between objects would reflect the temporal community structure, with shorter 

distances between objects in the same community. We found that there was substantial 

individual variability in how participants used the grid to separate groups. For example, some 

participants placed groups in different corners of the grid, while others placed all objects in a 

small area, using less than a third of the grid. Therefore, we focused mainly on the distances 

among objects in the same community, which are less sensitive to individual differences in the 

strategy used to separate groups. 

Inductive inference task 

During the inductive inference task, we tested whether learning of the temporal relationships 

between objects influenced reasoning about properties of the objects. Specifically, participants 

were told the habitat where a cue object is found (ocean, desert, or forest) and then were asked 

to infer which of two different choice objects shared the same habitat as the cue (Fig. 2b). On 

each inference trial, the cue object appeared at the top of the screen with a statement about its 
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environment (e.g., "This object above is found in the FOREST."), with the two choice objects 

shown at the bottom of the display. Unbeknownst to the participants, the stated habitat of each 

cue object corresponded to the community it belonged to in the graph structure. On each 

inference trial, one of the choices was another object from the same temporal community as the 

cued object, while the other choice was an object from a different community to the cued object. 

This task structure allowed us to examine whether participants were biased to infer shared 

properties among objects from the same community. On each trial, participants were given 8 s 

to select one of the two choice objects with a button press. After the participant responded, a 

fixation cross was presented for 0.5 s, followed by the next trial.  

Each participant completed 42 inference trials. Each of the 21 objects was used as the 

cue object on two trials. Inference trials were divided into three different trial types: central, 

boundary 1-away, and boundary 2-away (Fig. 2b). These trial types were designed to examine 

both the influence of knowledge about individual transitions between object pairs (i.e., the 

frequency with which a pair of objects was adjacent in the sequence) and the influence of 

abstract knowledge about the temporal community structure (i.e., whether two objects were in 

the same community or different communities). On each of the 30 central inference trials, each 

of the objects was a central node within the temporal graph structure. Participants were given a 

choice between (1) a central object in the same community as the cue and (2) a central object 

from a different community. The central trials therefore involved choosing between an object 

that was directly connected to the cue and in the same community, and an object that was only 

indirectly connected and in a different community. 

In contrast, the boundary trials controlled for direct associations between objects while 

examining whether participants were influenced by knowledge of the community structure. In 

the six boundary 1-away trials, the cue object was a boundary node in the community graph, 

and the choice objects were both directly connected to the cue object in the graph (i.e., they 

were 1 connection away from the cue object). Participants chose between (1) a central object 

from the same community as the cue and (2) a boundary object from a different community. 

Finally, there were six boundary 2-away trials, in which the cue object was a boundary node and 

the choice objects were only indirectly connected to the cue object in the graph, with a minimum 

path length of two connecting the cue object to each of the choice objects. Participants chose 

between (1) the other boundary object in the same community as the cue and (2) a central 

object in a different community. Notably, on boundary 2-away trials, neither choice object was 

directly associated with the cue item; as a result, any temporal bias observed on these trials 

could not be based on direct associations. 
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For each trial type, we examined whether participants were biased by the temporal 

community structure to infer that objects in the same community were from the same 

environment. We measured this bias using a temporal bias score defined as the proportion of 

trials for which the participant selected the same-community object minus the proportion of trials 

for which the participant selected the different-community object. A bias score of 1 indicates 

maximum bias toward inferring shared properties among same-community objects, while a bias 

score of 0 indicates no temporal bias. Given the relatively small number of inference trials, we 

did not anticipate that inference decisions would be affected by learning of the environment 

associated with each cue object. Nevertheless, to confirm that inference decisions reflected 

prior structure learning rather than learning during the inference phase, we tested whether 

temporal bias varied with time during the inference task. If learning did occur during the 

inference task, then performance would increase during later trials. We divided the 42 inference 

trials into six bins of seven trials each, and used a one-way repreated-measures ANOVA to test 

whether temporal bias (collapsed over trial types) varied with trial bin. 

Modeling of temporal bias in the inference task 
To better understand how participants make inductive inferences about shared object 

properties, we simulated inference task performance using different competing models. The 

inductive inference task examined the effects of direct associations and indirect associations, 

allowing us to contrast different forms of temporal knowledge that might bias reasoning 

decisions. Each model assumed that inference of shared object properties was proportional to 

the strength of association of the objects in memory. We compared two models of association 

strength: successor representation (SR) and community membership. The SR stores the 

temporally discounted expected frequency with which each object would be visited, conditional 

on a given object having been presented (Dayan, 1993; Momennejad, 2020). The SR was 

initialized as an n x n matrix of zeros, where n is the number of objects. The SR was then 

updated using temporal difference learning during presentation of object sequences during the 

structure learning task, according to 

𝑴(𝑠) = 𝑴(𝑠) + 𝛼(onehot(𝑠new) + 𝛾𝑴(𝑠new) −𝑴(𝑠)), 

where 𝑴(𝑠) is the SR for state 𝑠, 𝛼 is a learning rate parameter (0 < 𝛼 < 1), 𝛾 is a discount 

parameter (0 < 𝛾 < 1) that determines the predictive horizon of the SR, and onehot(𝑠new) is a 

vector of all zeros with a 1 for successor state 𝑠new. For simplicity, in our simulations we fixed 

𝛼 = 0.1, following prior work (Stachenfeld et al., 2017). We simulated learning through the five 
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runs of the initial structure learning and the six runs of the scanned structure learning tasks, 

updating the SR based on the object sequences presented in each run. Note that, in the 

scanned structure learning tasks, the scrambled blocks may cause some unlearning of the 

community structure. This unlearning was accounted for in the model, which still demonstrated 

clear community structure after simulation of the scanned structure learning runs (Fig. 6a). 

 We compared the SR model of object associations with a model that assumed that, after 

community structure learning, objects become associated with an abstract, reduced-

dimensionality representation of the community structure. Abstract representations, which 

discard details of individual items to focus on common structure, have been theorized to guide 

decision making in a range of tasks, including associative inference, spatial navigation, and 

category learning (Mack et al., 2017; Morton et al., 2020; Stachenfeld et al., 2017; Varga et al., 

n.d.). Here, we assumed that an abstract representation of the temporal community structure 

would focus on the community membership of each item, while discarding other details, such as 

whether two objects were directly or indirectly connected. We modeled the influence of abstract 

community representations on decision making by assuming that objects within the same 

community were associated (with strength 1) in an association matrix 𝑾 and objects in different 

communities were not associated (strength 0). 

 We simulated the inference task based on the association strengths between the cue 

object 𝑖 and the two choice objects 𝑗 and 𝑘 on each trial. The probability of choosing an object 𝑗 

was based on a Softmax choice rule, according to 

𝑃(object	𝑗|cue	𝑖) =
exp D𝑨(𝑖, 𝑗)𝜏 G

exp D𝑨
(𝑖, 𝑗)
𝜏 G + exp D𝑨(𝑖, 𝑘)𝜏 G

, 

where 𝑨 = 𝑴 for the SR model, 𝑨 = 𝑾 for the community model, and 𝜏 is a temperature 

parameter. The 𝜏 parameter controls whether the object with highest association strength is 

selected with high probability (low 𝜏) or whether responses are made more probabalistically, 

with both objects being selected equally often at high 𝜏. For each model, we calculated the 

overall log-likelihood of the inference data by summing the log-transformed response 

probabilities of all trials. 

We also considered a hybrid model where both SR and community strength matrices 

could contribute to inference decisions. A weight parameter 𝑤%, where 𝑛 indicates the trial type, 

determined how strongly each matrix was weighted in determining inference responses: 

𝑨 = 𝑤%𝑴+ (1 − 𝑤%)𝑾 
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We hypothesized that the strength matrices might be differentially recruited on different trial 

types. For example, one might first retrieve memories of temporal associations (stored in the SR 

matrix), and only retrieve abstract community associations if no strong temporal associations 

are found in memory. In this case, abstract community associations would be most important on 

the boundary 2-away trials. To allow for such a possibility, in our model fits, the 𝑤 parameter 

was estimated for each trial type separately.  

 Models were implemented in the publicly available Tesser package (Morton et al., 2021)  

using Python 3.7.6 with Numpy 1.18.1 and Cython 0.29.23. We estimated model parameters by 

using a differential evolution parameter search implemented in Scipy 1.4.1, to estimate 

parameters that maximized the likelihood of the observed inference responses. Each search 

was run 10 times with different random starting parameters and the best-fitting parameters were 

selected across the different searches. Best-fitting parameters were then used to determine the 

fitted probability for each trial to select the within-community object. The temporal bias for each 

trial was calculated as 2𝑃(within) − 0.5 to obtain a measure where 1 indicates complete 

temporal bias toward inferring common properties for objects in the same community, 0 

indicates no temporal bias, and -1 indicates a bias toward inferring common properties for 

objects in different communities. 

 Finally, we compared the SR, community, and hybrid models based on their log-

likelihood and the number of free parameters in each model, using AIC (Akaike, 1998). AIC 

prefers models with higher log-likelihood and fewer free parameters. We also calculated AIC 

weights, which estimate the conditional probability of each model in a set being the best model, 

in terms of minimizing Kullback-Leibler discrepancy (Wagenmakers & Farrell, 2004). 

fMRI data collection 
Imaging data were collected with a 3T Siemens Skyra at the Biomedical Imaging Center at The 

University of Texas at Austin. There were a total of six functional scans acquired using a T2*-

weighted multiband-accelerated echo-planar imaging (EPI) pulse sequence (TR: 2000ms, TE: 

30ms, flip angle: 73°, FOV: 220mm, 75 slices, 1.7x1.7x1.7 mm voxels, multiband factor: 3, 

GRAPPA factor: 2, phase partial Fourier: 7/8). A single-band reference (SBRef) image was also 

collected at the start of each EPI scan to aid in alignment to anatomical scans. A field map (TR 

= 628ms, TE = 5ms/7.46ms, flip angle = 5°, 64 slices, 1.7×1.7×2mm voxels) was collected prior 

to the first functional scan to correct for distortions in the magnetic field in functional scans 1–3. 

A second field map was collected after the break and used to correct for distortions in functional 

scans 4–6. Two oblique coronal T2-weighted (T2w) structural images were acquired 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2021. ; https://doi.org/10.1101/2021.10.12.462707doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.12.462707
http://creativecommons.org/licenses/by-nc-nd/4.0/


perpendicular to the main axis of the hippocampus (TR: 13150ms, TE: 82 ms, flip angle: 150°, 

60 slices, 0.4 x 0.4 mm in-plane resolution, 1.5 mm through-plane resolution) to facilitate 

segmentation of hippocampal anatomy. These images were co-registered and averaged to 

generate a mean coronal image for each participant. A T1-weighted 3D MPRAGE volume was 

collected (TR: 1900ms, TE: 2.43ms, flip angle: 9°, FOV: 256 mm, 192 slices, 1x1x1mm voxels) 

to facilitate alignment and normalization of the functional data. 

fMRI data preprocessing 
Imaging data were converted to Brain Imaging Data Structure (BIDS) format 1.4.1 (K. J. 

Gorgolewski et al., 2016) using Heudiconv 0.9.0 (Yaroslav et al., 2020) and custom Python 

3.7.6 scripts (Morton et al., 2021). Preprocessing of imaging data was performed using 

fMRIPrep 20.2.1 (O. Esteban et al., 2018; O. and M. Esteban, 2020), which is based on Nipype 

1.5.1 (O. Esteban et al., 2020; K. Gorgolewski et al., 2011). 

Anatomical data preprocessing 

The T1w image was corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection 

(Tustison et al., 2010), distributed with ANTs 2.3.3 (Avants et al., 2008), and used as T1w-

reference throughout the workflow. The T1w-reference was then skull-stripped with a Nipype 

implementation of the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as 

target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and 

gray-matter (GM) was performed on the brain-extracted T1w using fast, distributed with FSL 

5.0.9 (Zhang et al., 2001). Brain surfaces were reconstructed using recon-all, distributed with 

FreeSurfer 6.0.1 (Dale et al., 1999), and the brain mask estimated previously was refined with a 

custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived 

segmentations of the cortical gray-matter of Mindboggle (Klein et al., 2017). Volume-based 

spatial normalization to a standard space (MNI152NLin2009cAsym) was performed through 

nonlinear registration with antsRegistration (ANTs 2.3.3), using brain-extracted versions of both 

the T1w reference and the T1w template. The following template was used for spatial 

normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c (Fonov et al., 2009). 

Hippocampus was automatically segmented based on both the T1w and averaged T2w scans 

using the segmentHA_T2 program from FreeSurfer 7.1.1. (Iglesias et al., 2015; Saygin et al., 

2017). 
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Functional data preprocessing 

For each of the six BOLD runs per subject, the following preprocessing was performed. First, a 

reference volume and its skull-stripped version were generated from the SBRef scans. A B0-

nonuniformity map (or field map) was estimated based on a phase-difference map calculated 

with a dual-echo GRE (gradient-recall echo) sequence, processed with a custom workflow of 

SDCFlows inspired by the epidewarp.fsl script and further improvements in HCP Pipelines 

(Glasser et al., 2013). The fieldmap was then co-registered to the target EPI reference run and 

converted to a displacements field map (amenable to registration tools such as ANTs) with 

FSL’s fugue and other SDCflows tools. Based on the estimated susceptibility distortion, a 

corrected EPI reference was calculated for a more accurate co-registration with the anatomical 

reference. 

The BOLD reference was then co-registered to the T1w reference using bbregister 

(FreeSurfer), which implements boundary-based registration (Greve & Fischl, 2009). Co-

registration was configured with six degrees of freedom. Head-motion parameters with respect 

to the BOLD reference (transformation matrices, and six corresponding rotation and translation 

parameters) are estimated before any spatiotemporal filtering using FSL’s mcflirt (Jenkinson, 

2002). BOLD runs were slice-time corrected using 3dTshift from AFNI 20160207 (Cox & Hyde, 

1997). The BOLD time-series were resampled into the standard MNI152NLin2009cAsym space 

with native functional resolution (1.7 mm isometric). 

In addition to head-motion estimates calculated during motion correction, confounding 

time-series were calculated based on the preprocessed BOLD: framewise displacement (FD), 

DVARS and average signals within white matter and cerebrospinal fluid. FD was computed  

as the relative root mean square displacement between affines (Jenkinson et al., 2002). The 

confound time series derived from head motion estimates and global signals were expanded 

with the inclusion of temporal derivatives for each. All resamplings were performed with a single 

interpolation step by composing all the pertinent transformations (i.e., head-motion transform 

matrices, susceptibility distortion correction, and co-registrations to anatomical and output 

spaces). Resamplings were performed using antsApplyTransforms (ANTs), configured with 

Lanczos interpolation to minimize the smoothing effects of other kernels (Lanczos, 1964). Many 

internal operations of fMRIPrep use Nilearn 0.6.2 (Abraham et al., 2014), mostly within the 

functional processing workflow. For more details of the pipeline, see the section corresponding 

to workflows in fMRIPrep’s documentation. 
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Regions of interest 
Based on prior work examining the neural representation of temporal community structure, we 

identified hippocampus, inferior frontal gyrus (IFG), and medial prefrontal cortex (mPFC) as a 

priori regions of interest (ROIs) (Schapiro et al., 2013, 2016). We defined a hippocampal ROI 

based on the automatic FreeSurfer segmentation of the T1w and T2w anatomical scans for 

each participant. Subject hippocampal head, body, and tail ROIs were transformed to the 

MNI152NLin2009cAsym template space using antsRegistration with MultiLabel interpolation, 

pooled to generate right and left hippocampus ROIs, and averaged across participants to create 

probabilistic masks. We then thresholded these masks at 0.25 to obtain right and left 

hippocampal ROIs in template space. 

We defined IFG ROIs based on FreeSurfer segmentation of the T1w anatomical scans 

for each participant, including the pars opercularis, pars triangularis, and pars orbitalis labels in 

the ROI for each hemisphere. As for the hippocampal ROIs, individual subject ROIs were 

transformed to template space and averaged to create right and left probabilistic masks. The 

masks were then thresholded at 0.1. We followed a similar procedure to generate a gray matter 

ROI that included all cortical and subcortical regions of gray matter, thresholded at 0.1. An 

mPFC ROI was manually drawn on the MNI ICBM 152 Non-Linear 6th Generation 

Asymmetric (MNI152NLin6Asym) template based on published definitions of anatomical mPFC 

(Öngür et al., 2003; Price & Drevets, 2009). The mPFC ROI in MNI152NLin6Asym space was 

then transformed to our main template space (MNI152NLin2009cAsym) using 

antsRegistractionSyN.sh and antsApplyTransforms from ANTS 2.3.5 (Avants et al., 2010) and 

intersected with the gray matter mask to create the final ROI. 

Searchlight analyses 
We used searchlight analyses to examine whether temporal community structure is represented 

in the brain during the scanned part of the structure learning task. We focused specifically on 

the scrambled blocks, in which objects were presented in random order, to control for temporal 

autocorrelation and avoid systematic effects of object presentation order. This approach allowed 

us to determine whether the representations of individual objects had been affected by 

exposure to the temporal community structure. First, we used the SUSAN tool from FSL 6.0.4 

(Smith & Brady, 1997) to smooth the preprocessed BOLD images in template space, with a 4 

mm FWHM smoothing kernel. We then used a general linear model to estimate the pattern of 

activation that was elicited in response to each object during the scrambled blocks in each run.  
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We used Nilearn 0.7.1 and custom Python 3.7.0 code (Morton et al., 2021) to estimate 

object patterns using the least squares–separate (LS-S) approach (Mumford et al., 2012). 

Object presentations (each modeled with 1 s duration) were convolved with a canonical double-

Gamma hemodynamic response function to generate the predicted response time series for 

each object, separately for the scrambled and structured blocks. The activation of each object in 

the scrambled blocks was estimated using a separate model; modeled responses to other 

objects during the scrambled blocks were summed to create a single separate regressor. Each 

model also included regressors for each object presented during the structured blocks as 

regressors of no interest. Models also included 16 nuisance regressors generated by fMRIprep, 

consisting of 6 motion parameters and their temporal derivatives, and white matter and 

cerebrospinal fluid average signals and their temporal derivatives. Finally, each model included 

cosine basis functions to model slow fluctuations at less than 128 HZ. The LS-S modeling 

resulted in a beta series estimate of the activation at each voxel for each object in each run 

during the scrambled blocks. 

 We then used a searchlight analysis implemented in Brainiak 0.11.0 (Kumar et al., 2020)  

to test for neural representations of community structure. Separate searchlights were carried out 

for gray matter, left hippocampus, right hippocampus, left IFG, right IFG, and mPFC. In each 

searchlight sphere, we calculated all pairwise correlations between object patterns estimated 

based on the scrambled blocks in all runs. We then defined two bins for within-community and 

across-community pairings. The within-community comparisons included all pairs that were 

objects in the same community, were different objects, and were presented in different runs. 

The across-community comparisons were the same but only included pairs of objects that were 

in different communities. We calculated the mean within- and across-community similarity and 

took the difference between them to obtain a measure of neural community structure. This 

neural community structure statistic was compared to a baseline determined using a 

permutation test. Objects were randomly permuted the same way for each run, such that object 

identity was preserved but community structure was broken, and the neural community structure 

statistic was calculated. This process was repeated 1000 times to obtain a null distribution for 

the neural community structure statistic. The same permutation order was used across all 

searchlight spheres to preserve spatial structure in the permuted data. For each sphere, the 

actual statistic was compared to the permutation distribution to obtain a z-score. The randomise 

tool from FSL 5.0.11 was used to implement a sign-flipping test with 5000 permutations to 

determine voxel-level significance across subjects. 
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 We next examined whether neural community structure, which would reflect temporal 

learning, predicted non-temporal inference decisions about object grouping and object 

properties. We first tested whether neural community structure predicted performance on the 

grouping task, which involved using temporal knowledge to determine a spatial grouping of 

objects. To measure correlation between neural community structure and the grouping task, we 

first calculated the average Euclidean distance between items in the same community in the 

final object positions from the grouping task. These distances were z-scored across subjects 

and multiplied by -1 to obtain a measure of relative tendency to cluster same-community 

objects. We then used randomise to assess correlation between neural community structure 

representation and community clustering in the grouping task, comparing actual correlations to 

a permutation distribution based on randomly permuting grouping task scores. The grouping 

task searchlight allowed us to identify brain regions that may support inference about object 

similarity and generalization of temporal learning to a spatial task. Finally, to identify brain 

regions involved in inductive inference about object properties, we assessed correlation 

between neural community structure and temporal bias on the inference task. We calculated 

average temporal bias for each participant, collapsing across trial types, and z-scored the bias 

scores across subjects. We then tested whether there was correlation between neural 

community structure representation and temporal bias using randomise. 

To perform cluster correction of the searchlight results within each ROI, we used AFNI 

21.1.07 (Cox et al., 2017). We first estimated the residuals from a beta series model the same 

as the one used to estimate object patterns, except that all objects were included in a single 

model. We then used 3dFWHMx to estimate parameters of the spatial autocorrelation function 

for each run. We averaged these parameters over runs and participants to obtain estimated 

autocorrelation parameters for each ROI. Finally, we used 3dClustSim to estimate cluster extent 

thresholds to control the false-positive rate at 0.05, using three nearest neighbor clustering, one-

sided thresholding, and a voxel-wise threshold of 0.01. 

Software and data availability 
Code and Jupyter notebooks implementing the described analyses, including behavioral 

analysis, modeling, and representational similarity analysis, is publicly available (Morton et al., 

2021). Behavioral and neuroimaging data are available upon request. 
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Results 

Performance during temporal structure learning 
To assess whether participants consistently attended to the object sequences during temporal 

structure learning, we examined performance on the object orientation task. We calculated the 

sensitivity (measured using 𝑑′) of detecting objects that were rotated from their canonical 

orientation. Trials in which participants made no response, which were rare (relative frequency 

of no response: M=0.011, SE=0.002), were excluded from rotation detection analysis. Two runs 

(from different participants) were excluded due to errors in the recording of responses. The 

average detection sensitivity across all trials, including both the initial learning and scanned 

phases, was high (𝑑′: M=4.023, SE=0.110). Detection sensitivity was above chance for each 

participant in each run (𝑝 < 0.001, permutation test).  

To test whether fatigue affected performance during the structure learning task, we 

quantified whether performance varied between runs, either in initial learning phase that was not 

scanned, or during the scanned structure learning phase. We first used a one-way repeated 

measures ANOVA to test whether d' varied across the five runs from the initial learning phase. 

We observed a significant effect of run (𝐹[4, 144] = 31.90, 𝑝 = 5.05𝑥10&'(, 𝜂)* = 0.47), with 

performance increasing during the first three runs of the initial learning phase. Follow-up 𝑡-tests 

of adjacent runs found significant increases in performance between runs 1 and 2 (change: 

M=0.688, SE=0.109, 𝑡(36) = 6.322, 𝑝 = 0.000001, Cohen's 𝑑 = 0.914, FDR-BH corrected) and 

runs 2 and 3 (change: M=0.403, SE=0.101, 𝑡(36) = 3.990, 𝑝 = 0.00063, 𝑑 = 0.591, FDR-BH 

corrected). There was a decrease in performance between runs 3 and 4 (change: M=-0.266, 

SE=0.082, 𝑡(36) = 3.244, 𝑝 = 0.0034, 𝑑 = 0.411, FDR-BH corrected), but no change between 

runs 4 and 5 (𝑝 > 0.05, FDR-BH corrected). During the scanned structure learning, performance 

decreased but remained high (initial: M=4.208, SE=0.096; scanned: M=3.903, SE=0.066, 

𝑡[36] = 3.599, 𝑝 = 0.00096, 𝑑 = 0.950). There was no change in performance across the six 

scanned runs (𝐹[5, 170] = 1.79, 𝑝 = 0.117, 𝜂)* = 0.050). Overall, these results suggest that 

attention was sustained throughout the task, after an initial period of acclimating to the task. 

However, because participants did vary in their overall performance (𝑑′ range: 2.044 to 5.707), 

we included overall 𝑑′ as a covariate when examining individual differences in temporal 

knowledge expression, to control for individual differences in attention during temporal structure 

learning. 
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Community structure predicts perception of temporal boundaries 
Previous work found that exposure to temporal community structure affects the perception of 

event boundaries; when viewing sequences of objects, participants were more likely to indicate 

an event boundary after a transition between communities (Schapiro et al., 2013). We examined 

whether participants in our study exhibited similar event segmentation behavior during the 

parsing task. Specifically, we tested whether participants indicated an event boundary after 

transitions from one community to another, including only transitions that occurred after at least 

four consecutive steps into another community (Schapiro et al., 2013). We used a two-way 

repeated-measures ANOVA to examine whether parsing probability varied between object 

presentations that occurred at community transitions and other object presentations (Fig. 3a), 

and whether parsing depended on sequence type (Hamiltonian walk or structured random 

walk). We observed a significant main effect of parsing type (community transition vs. other; 

𝐹[1,36] = 15.132, 𝑝 = 0.00042, 𝜂)* = 0.296), no effect of sequence type (𝐹[1,36] = 1.622, 𝑝 =

0.212, 𝜂)* = 0.043), and no interaction (𝐹[1, 36] = 0.259, 𝑝 = 0.614, 𝜂)* = 0.007). These results 

are consistent with previous work (Schapiro et al., 2013) and demonstrate that participants 

perceived transitions between communities as event boundaries within the object sequence. 

 
Figure 3. Behavioral measures of community structure learning. (a) Parsing probability during sequence viewing. 
Sequences were either Hamiltonian or random walks through the temporal community structure graph. Parsing 
occurred more frequently after transitions between communities compared to other transitions. Points indicate 
individual participants; error bars indicate bootstrap 95% confidence intervals. (b) In the grouping task, participants 
placed within-community objects nearer to one another than across-community objects. (c) Participants showed 
evidence of a bias toward inferring the same properties for objects from the same communities. Positive scores 
indicate bias toward inferring common properties of objects from the same community. (d) Parsing performance 
(i.e., event segmentation after community transitions relative to segmentation after other transitions) predicted 
smaller distances between objects in the same community on the grouping task. Both measures were residualized 
against rotation detection performance. Shaded area indicates 95% confidence intervals for the best-fitting linear 
regression. (e) Parsing performance predicted temporal bias on the inference task. Both measures were 
residualized against rotation detection performance. *: p<0.05. 
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Subjective clustering of objects reflects community structure 
We next examined whether statistical learning of the temporal associations between objects 

affected the subjective similarity of those objects, based on the spatial grouping task. While prior 

work demonstrated that temporal community structure affects segmentation of temporal 

sequences, it remains unclear whether knowledge about community structure is specific to 

temporal sequences of objects, or whether learning also shapes knowledge about the objects 

themselves. To test for an influence of community structure learning on the grouping task, we 

calculated the mean Euclidean distance between objects for within-community object pairs and 

across-community object pairs (Fig. 3b). We found that within-community objects were grouped 

closer together than across-community objects (𝑡[36] = 4.555, 𝑝 = 0.00006, Cohen's 𝑑 =

0.854). This result suggests that temporal community structure affects not only perception of 

temporal sequences, but also affects the subjective similarity of objects. Furthermore, our 

results demonstrate that object community membership, which was initially learned through 

exposure to temporal sequences, influenced behavior in a spatial task. These results thus 

suggest that temporal learning led to formation of an abstract representation of community that 

could influence performance in distinct tasks. 

Community structure biases inferences about object properties 
We next tested whether temporal community structure affects reasoning about object 

properties. To assess how temporal knowledge affects inductive inference, participants were 

told a property of a cue object (i.e., the environment in which it is found; Fig. 2b) and asked 

which of two other objects shares that property. On each trial, one object was from the same 

community as the cue object, and one object was from a different community. Based on prior 

work (Pudhiyidath et al., 2019), we predicted that participants would be biased to select the 

object that shared the same community as the cue. While prior work focused on the overall 

tendency for community bias (Pudhiyidath et al., 2019), here we examined how bias varied 

depending on whether the cue item was directly or indirectly associated with each of the choice 

objects during learning. This analysis strategy allowed us to contrast the influence of different 

forms of temporal knowledge. Central trials required selecting between an object that was 

directly associated with the cue and an object that was indirectly associated with the cue. On 

these trials, inference decisions might be biased based on either knowledge of the direct 

association between the cue and the same-community object or knowledge that they shared the 

same community. On the boundary 1-away trials, both objects were directly associated with the 
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cue object. We hypothesized that the direct association between the cue and the different-

community object might reduce bias to select the same-community object. In contrast, on the 

boundary 2-away trials, neither object was directly associated with the cue object. These trials 

allowed us to examine the degree of same-community bias when object associations were 

indirect and therefore had to be inferred. We hypothesized that, if inference depended only on 

memory for direct associations between objects, then there would be no bias on the boundary 

2-away trials. In contrast, if inference depended on temporal community membership, then 

inference would be biased on the boundary 2-away trials. 

First, we tested whether bias changed over time during the inference task; such a 

change might indicate that participants learned about the environment associated with each 

object during the inference task itself. A one-way repeated-measures ANOVA found that bias 

did not vary with trial bin (𝐹[5,180] = 0.741, 𝑝 = 0.594, 𝜂)* = 0.020), confirming that temporal 

bias on the inference task reflected knowledge acquired during the structure learning phase 

rather than during the inference task itself. We next compared bias in inference responses for 

the different trial types. Consistent with our predictions, responses to central questions were 

significantly biased toward selection of within-community objects (𝑡[36] = 3.967, 𝑝 = 0.00050, 

FDR-BH corrected, 𝑑 = 0.652). In contrast, responses to boundary 1-away questions did not 

show bias toward one type of choice versus the other (𝑡[36] = −0.182, 𝑝 = 0.857, FDR-BH 

corrected, 𝑑 = 0.030), suggesting that the direct association between the cue and the two 

choice items eliminated bias based on temporal community. Responses to boundary 2-away 

questions were significantly biased toward selecting the within-community objects (𝑡[36] =

5.288, 𝑝 = 0.000019, FDR-BH corrected, 𝑑 = 0.869), suggesting that participants did not rely 

solely on memory for direct associations, but were also biased by abstract knowledge about the 

temporal community structure.  

Using a one-way repeated-measures ANOVA, we found a significant effect of question 

type (𝐹[2,72] = 14.270, 𝑝 = 0.000006, 𝜂)* = 0.284). Follow-up 𝑡-tests revealed significant 

differences between central and boundary 1-away trials (𝑡[36] = 3.297, 𝑝 = 0.0023, 𝑑 = 0.552), 

central and boundary 2-away trials (𝑡[36] = 2.581, 𝑝 = 0.015, 𝑑 = 0.534), and boundary 1-away 

and boundary 2-away trials (𝑡[36] = 4.736, 𝑝 = 0.00004, 𝑑 = 0.920). These results suggest that 

the relationship between the objects has an important impact on inference of object properties. 

Furthermore, the bias toward selecting within-community objects becomes stronger when there 

was no direct connection between the cue object and the object whose properties are being 

inferred. These results suggest that statistical learning of community structure biases decisions 

more when participants do not have direct experience upon which to draw. 
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Perception of event boundaries correlates with object clustering 

and inference 
We observed that participants perceived a change in the object sequences when there was a 

shift from one community to another (Fig. 3a), suggesting that participants were sensitive to the 

community structure when segmenting events during the parsing task. We hypothesized that 

participants’ ability to parse the communities would predict individual differences in the two 

tasks that required generalization of knowledge to new task contexts—grouping and inductive 

inference. For each participant, we calculated the difference in parsing probability between 

community transitions and other object presentations to obtain an overall measure of parsing 

performance. We then tested whether parsing behavior correlated with spatial community 

clustering in the grouping task and temporal bias on the inference task (averaged over trial 

type). In each regression analysis, we used partial correlation to control for d' during the rotation 

detection task as a measure of how well each participant attended to the object sequences 

during structure learning. 

We observed a significant correlation between parsing performance and within-

community distance in the grouping task (Fig. 3d; 𝑟 = −0.628, 𝑝 = 0.00005) after controlling for 

rotation detection performance. There was no correlation between parsing performance and 

across-community distance (𝑟 = 0.065, 𝑝 = 0.705) after controlling for rotation detection 

performance. This result is consistent with our observation that across-community distance 

varied substantially due to individual differences in the placement of groups within the response 

grid (see Methods). As across-community distance was not related to temporal knowledge, we 

focus on within-community distance for subsequent analysis of the grouping task. We also 

observed a significant correlation between parsing performance and temporal bias on the 

inference task, after controlling for rotation detection performance (Fig. 3e; 𝑟 = 0.336, 𝑝 =

0.045). These results suggest that the participants who were most knowledgeable about the 

boundaries of the communities were more likely to group communities together spatially after 

learning and more likely to use their knowledge of the temporal communities to make decisions 

about shared object properties. Finally, we examined whether object clustering in the grouping 

task was related to temporal bias on the inference task, after controlling for rotation detection 

performance. We did not find evidence of a relationship of temporal bias with within-community 

distance (𝑟 = −0.185, 𝑝 = 0.282), suggesting that the grouping and inference tasks might reflect 

somewhat distinct cognitive processes. 
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Inference decisions depend on both transition statistics and 

community structure 
To better understand how temporal community structure learning biases inference decisions 

about object properties, we developed a model of statistical learning and inference in our task. 

We found previously that inference behavior may depend on both knowledge of direct 

associations between objects and knowledge of temporal community membership. To examine 

these distinct influences on behavior, we compared models of temporal knowledge at different 

levels of abstraction. We first modeled statistical learning of object associations based on the 

successor representation (SR), which efficiently stores information about experienced 

sequences of states (Dayan, 1993; Momennejad, 2020; Momennejad et al., 2017; Stachenfeld 

et al., 2017). Given some current state (here, a currently presented object), the SR encodes a 

temporally discounted estimate of how frequently other states (i.e., other objects) will be visited 

in the future. Objects that are likely to be visited sooner will be weighted more strongly, but 

objects that are indirectly connected will also be represented as potential future states. We 

simulated learning of an SR using temporal difference learning (Momennejad, 2020; 

Stachenfeld et al., 2017). For each participant, the SR model was presented with the object 

sequence viewed by that participant. For each inference test trial, we took the current "state" as 

the cue object and calculated the predicted temporally discounted frequency at which each of 

the two choice objects would be visited from that cue object state (Fig. 4a). We assumed that 

the object with the higher predicted frequency was more likely to be selected.  

While the SR reflects detailed information about transition probabilities, we hypothesized 

that participants might also learn an abstract representation of the objects that purely reflects 

their community membership (Fig. 4b). We assumed that, in this case, the cue would support 

inference of shared properties with any objects in the same community, but not objects from 

other communities. This model thus assumes that inference decisions will not depend on 

whether objects were directly associated during learning, but instead only based on whether 

they were in the same community as the cue object. 

 We first examined whether either the SR model or the community membership model 

could account for the temporal bias observed for the central, boundary 1-away, and boundary 2-

away trials. We found that the SR model with best-fitting parameters (gamma=1.000, tau=1.337) 

provided a reasonable fit to the central and boundary 1-away trials, but incorrectly predicted that 

boundary 2-away questions should exhibit less temporal bias (Fig. 4a). In contrast, the 

community membership model with best-fitting parameters (tau=2.655) incorrectly predicted that 
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all inference trials should exhibit the same amount of temporal bias, as the same-community 

object was always favored regardless of how closely connected it or the other object were to the 

cue object (Fig. 4b). 

 
Figure 4. Models of inductive inference task performance based on learned similarity of object pairs. (a) Successor 
representation (SR) matrix and model fit to inference behavior. The SR matrix after learning (left) is shown for one 
example participant based on the object sequences that they observed, with a learning rate of 0.1 and a 
discounting factor of 0.95. The matrix shows the expected temporally discounted frequency of visiting each 
inference object after viewing the cue object. The bar plot (right) shows the fit of the SR model to average temporal 
bias for each inference test type. Bars show observed performance (with bootstrap 95% confidence intervals); red 
dots show model estimates. The model incorrectly predicts that temporal bias should be low on the boundary 2-
away trials. (b) Within-community similarity model. This model of object similarity assumes that objects in the same 
community have a similarity of 1 and objects in different communities have a similarity of 0 (left). The model 
incorrectly predicts that there will be equal bias for each trial type (right). (c) The hybrid model simulates inference 
as being influenced by a weighted combination of SR and within-community similarity. Based on the model fit, the 
central and boundary 1-away inference trials weight the SR more heavily, while the boundary 2-away questions 
weight only the within-community similarity matrix (left). The hybrid model correctly fits the differences in temporal 
bias between the trial types (right). 

 Neither the SR or community membership models could completely account for the 

pattern of bias on the inference task. This finding is consistent with our behavioral results, which 

suggest that the boundary 1-away and boundary 2-away trials may rely on distinct forms of 
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temporal knowledge. Specifically, there was no bias when both choices were directly associated 

with the cue (boundary 1-away), suggesting that direct associations influence inference 

behavior. In contrast, we observed strong bias when neither choice as directly associated with 

the cue (boundary 2-away), suggesting that participants also learn about temporal community 

membership. We therefore next examined whether a hybrid model using both SR and 

community membership could fit performance on the inference task. Inference decisions were 

modeled as being based on a weighted combination of SR and community membership. We 

estimated the relative weight of the components separately for each trial type. The hybrid model 

obtained a good fit to the temporal bias observed for each of the inference trial types (Fig. 4c). 

We compared the fits for the SR, community, and hybrid models to inference test performance, 

while controlling for model complexity. We found that the hybrid model performed the best 

overall (wAIC=0.989, AIC=2697.630), followed by the community model (wAIC=0.011, 

AIC=2706.568) and the SR model (wAIC=0.00006, AIC=2717.155). Examining the best-fitting 

parameters of the hybrid model, we found that, while the central trials and boundary 1-away 

trials mostly relied on the SR, boundary 2-away trials exclusively weighted community 

membership (Fig. 4c; the other best-fitting parameters were: 𝛾 = 0.974, 𝜏 = 1.392). In both the 

central and boundary 1-away trials, responses may be informed by direct experience, as the 

cue object was directly connected to at least one of the choice objects. In contrast, in boundary 

2-away trials, participants must choose between two objects that were never presented adjacent 

to the cue object (except rarely, during the scrambled blocks of the scanning task; see Fig. 2b). 

On these trials, we found evidence that participants instead make inference decisions based on 

the more abstract knowledge of the temporal community structure, resulting in a stronger 

temporal bias. 

Our modeling results suggest that that the boundary 1-away and boundary 2-away trials 

are particularly distinct, relying on an SR-like representation and a community-like 

representation, respectively. Boundary 1-away responses may depend on an SR-based 

mechanism, while boundary 2-away responses may depend on a more abstract representation 

of community structure. 

Anterior hippocampus represents temporal community structure 
We next examined whether exposure to temporal community structure affects the neural 

representation of individual objects. A previous study observed that, after exposure to temporal 

community structure, Hamiltonian sequences of objects elicited activation patterns in IFG 

(Schapiro et al., 2013) and hippocampus (Schapiro et al., 2016) that were more similar for 
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objects in the same community. The authors also observed that activation in IFG increased 

during a series of transitions within a given community, suggesting that the order in which the 

objects are presented may affect brain activation in response to object presentations. In the 

present study, we measured activation patterns of each object in the scrambled blocks of the 

scanning task (Fig. 2a), allowing us to quantify object representations in the absence of any 

predictable ordering. We tested whether objects in the same community were represented more 

similarly than objects in different communities, only comparing patterns across different 

scanning runs to control for pattern correlations within runs (Mumford et al., 2014). We used 

separate searchlight analyses to identify regions representing community structure, looking 

within a priori ROIs of right and left hippocampus, right and left IFG, and mPFC. Finally, a 

broader searchlight analysis included all cortical and subcortical grey matter. 

 We found that activation patterns in right anterior hippocampus were more correlated for 

objects in the same community than objects in different communities (Fig. 5; 𝑝 < 0.05, cluster-

corrected within the volume of the searchlight). The other searchlights did not reveal any 

significant clusters (𝑝 > 0.05, cluster-corrected). This result extends prior work showing 

evidence of temporal community structure representation in right anterior hippocampus 

(Schapiro et al., 2016) by demonstrating that object representations in hippocampus are 

sensitive to temporal community structure even when object presentation order is scrambled. In 

contrast to prior work (Schapiro et al., 2013), we did not observe any significant clusters in IFG. 

This difference may be due to the lack of a predictable order to the presented objects in the 

scrambled blocks, in contrast to the prior study in which objects were presented in an order 

taken from a Hamiltonian path through the temporal community structure graph (Schapiro et al., 

2013). This prior study found that IFG activity increased over multiple presentations within a 

community (Schapiro et al., 2013), which would not generally happen in the present study due 

to the random order in which objects were presented. 

 
Figure 5. Right anterior hippocampus similarity is greater for objects in the same community compared to objects in 
different communities. 
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Pattern similarity in perirhinal cortex predicts subjective object 

similarity 
We next examined whether neural pattern similarity predicted individual differences in the 

subjective similarity of objects in the grouping task. While prior work found that neural 

representations reflect temporal community structure (Schapiro et al., 2013, 2016), it remains 

unclear whether these representations are related to behavior. To characterize the functional 

significance of neural community representations, examined whether the similarity contrast 

(within- minus across-community similarity) for each participant was correlated with within-

community similarity from the grouping task. The whole-brain searchlight revealed that left 

perirhinal cortex was significantly correlated with within-community distance in the grouping task 

(Fig. 6a). Searchlights within hippocampus, IFG, and mPFC did not reveal any significant 

clusters (𝑝 > 0.05, cluster-corrected). These results suggest that, in participants who grouped 

together objects in the same community more closely during the grouping task, object 

representations in perirhinal cortex reflected the temporal community structure. We propose that 

learning of temporal community structure may shape high-level object representations in 

perirhinal cortex, which may then affect the subjective similarity of the objects, leading to tighter 

clustering of within-community objects in the grouping task. 

 
Figure 6. (a) A greater difference between within- and across-community similarity in left perirhinal cortex predicted 
smaller distance between same-community objects in the grouping task. (b) Left precuneus showed a greater 
difference between within- and across-community similarity for participants that were more biased by community 
structure on the inference task. 

Pattern similarity in precuneus and hippocampus predicts 

inference 
We next examined whether neural pattern similarity is related to individual differences in 

inference. We tested whether within-community minus across-community similarity was related 

to temporal bias on the inference task, averaged over all trials for each participant. The whole-
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brain searchlight revealed a region in left precuneus where neural representation of object 

community structure predicted increased bias on the inference task (Fig. 6b; 𝑝 < 0.05, cluster 

corrected). Searchlights within hippocampus and IFG did not reveal any significant clusters (𝑝 >

0.05, cluster corrected). Our results suggest that presentation of individual objects may result in 

activation of community-specific representations in precuneus; these representations might 

subsequently influence decision-making when participants are asked to infer which objects 

come from the same environment. We next used a regression analysis to examine whether 

precuneus pattern similarity was uniquely related to any specific inference test trial type. We 

found that precuneus pattern similarity was uniquely related to temporal bias on the boundary 1-

away trials (Fig. 7a; 𝑏 = 0.0165, 𝑝 = 0.044), but not the central (𝑏 = 0.0212, 𝑝 = 0.071) or 

boundary 2-away trials (𝑏 = −0.0086, 𝑝 = 0.200).  

 While there were no significant clusters in hippocampus or perirhinal cortex in the 

inference temporal bias searchlight, our behavioral and modeling results suggest that the 

different inference tests may involve distinct mechanisms. Therefore, we used a regression 

analysis to examine whether bias on any of the inference trial types was specifically related to 

hippocampal or perirhinal cortex community pattern similarity. We found that hippocampal 

pattern similarity differences were uniquely related to temporal bias on the boundary 2-away 

trials (Fig. 7b; 𝑏 = 0.0117, 𝑝 = 0.0311) but not the central (𝑏 = −0.0093, 𝑝 = 0.307) or boundary 

1-away (𝑏 = 0.0025, 𝑝 = 0.690) trials. Perirhinal pattern similarity differences were not related to 

temporal bias on any of the inference trial types (central: 𝑏 = 0.0094, 𝑝 = 0.119; boundary 1-

away: 𝑏 = −0.0058, 𝑝 = 0.160; boundary 2-away: 𝑏 = 0.0064, 𝑝 = 0.067). Overall, our results 

suggest that pattern similarity in hippocampus and precuneus is related to effects of temporal 

community structures on inference decisions about object properties. Furthermore, these 

 
Figure 7. (a) Community structure in the left precuneus cluster was uniquely related to temporal bias on the 
boundary 1-away inference trials. (b) Community structure in the right anterior hippocampus cluster was uniquely 
related to temporal bias on the boundary 2-away inference trials. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2021. ; https://doi.org/10.1101/2021.10.12.462707doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.12.462707
http://creativecommons.org/licenses/by-nc-nd/4.0/


relationships may be selective, with precuneus related to performance on the boundary 1-away 

trials and hippocampus related to performance on the boundary 2-away trials. 

Discussion 
Previous work found that exposure to temporal community structure biases inductive inference 

(Pudhiyidath et al., 2019), suggesting that knowledge of latent structure affects reasoning about 

object properties. However, the cognitive and neural mechanisms through which temporal 

statistical learning influences reasoning remained unclear. Here, we found evidence that 

temporal community structure affects both inference decisions about object similarity and 

inductive inference decisions about object properties. The fidelity of community structure 

representations in perirhinal cortex predicted the degree to which objects were grouped by 

community, suggesting that statistical learning may influence high-level object representations, 

which then bias similarity judgments. We found that temporal knowledge also biases inductive 

inference decisions about properties shared among different objects. Using computational 

modeling, we found that both detailed knowledge of temporal sequences and abstract 

knowledge of temporal community structure influence inductive inference decisions. These 

inductive inference decisions may be supported by hippocampus and precuneus, which 

represent the temporal community membership of objects more coherently for participants who 

exhibit stronger temporal bias during inductive inference. 

 We first examined whether temporal community structure affected perception of object 

similarity by asking participants to group the objects on a spatial grid. We found that objects that 

had been in the same community during learning were more likely to be grouped together. This 

result demonstrates that knowledge of latent community structure, which was originally learned 

through exposure to temporal sequences, influences behavior in a non-temporal spatial 

grouping task. The influence of temporal learning on object grouping may be driven by changes 

to object representations in perirhinal cortex. Participants who exhibited more coherent neural 

representations of temporal community in perirhinal cortex after temporal learning tended to 

group together objects in the same community. Perirhinal cortex is situated at the apex of the 

ventral visual processing stream (Miyashita, 2019; Suzuki & Amaral, 1994), and in contrast to 

earlier visual areas, object representations in perirhinal cortex reflect learned associations 

between objects (Naya et al., 2001; Sakai & Miyashita, 1991; Schapiro et al., 2012). 

Furthermore, perirhinal cortex is necessary for reactivation of associated objects in earlier visual 

areas (Higuchi & Miyashita, 1996; Miyashita, 2019) and has been proposed to help support 
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memory for associations between items (A. Mayes et al., 2007; A. R. Mayes et al., 2004; 

Ranganath, 2010b). Previous work found that object representations in perirhinal cortex reflect 

temporal proximity in a repeated sequence; objects nearer to one another had more similar 

representations after learning (Miyashita, 1988). Our results further suggest that object 

representations in perirhinal cortex are also sensitive to latent community structure. The 

formation of associations between items based on shared temporal context, as we observed 

here, has been proposed to be a key mechanism for learning about semantic relationships 

(Howard et al., 2011; Landauer & Dumais, 1997). Previous work suggests that neural 

representations in perirhinal cortex reflect semantic associations, which may help to 

disambiguate objects that are visually similar (Barense et al., 2010; Martin et al., 2018). Taken 

together with prior studies, our results suggest that learning of latent community structure may 

facilitate disambiguation of objects in perirhinal cortex based on their associated context. The 

representational differences among objects in different communities may then influence 

decisions about the subjective grouping of the objects. 

 In addition to influencing judgments of object similarity, temporal community structure 

biased inductive inference about object properties. This bias was greater for participants who 

exhibited consistent parsing at transitions between communities, suggesting that formation of 

temporal knowledge during sequence viewing caused bias based on temporal associations 

during inductive inference. Our results confirm prior findings that temporal community structure 

learning leads to biased inductive inference (Pudhiyidath et al., 2019). Critically, however, we 

found that the bias toward inferring shared properties among objects in the same community 

was strongest when participants had not learned any direct associations between the cue and 

either choice object (i.e., on boundary 2-away trials). In contrast, when both choice objects had 

been directly associated with the cue object (i.e., on boundary 1-away trials), there was no bias 

to select the object from the same community.  

Using computational modeling, we found that this pattern of results could be explained if 

inductive inference decisions were based on a combination of knowledge about object transition 

probabilities, as encoded in an SR (Dayan, 1993; Momennejad et al., 2017; Stachenfeld et al., 

2017) and an abstract low-dimensional representation of community membership. The SR has 

been proposed to support discovery of clusters (here, object communities) within states (here, 

the objects) (Momennejad, 2020; Stachenfeld et al., 2017), suggesting that an SR-like learning 

mechanism may support formation of both predictive representations of transition statistics and 

abstract representations of community membership. Our modeling results suggest that abstract 

community representations only influence inductive inference behavior when there are no direct 
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associations between the cue and the objects being considered. This shift in emphasis may be 

adaptive, focusing on direct experience when possible, and only relying on inferred latent 

structure when direct experience is not available. Our results are consistent with theoretical 

work suggesting that the temporal features of experience support inference about latent causes 

(Gershman et al., 2017). Latent cause inference has been proposed to be a critical mechanism 

for organizing memory, as it may allow individual experiences to be connected to detailed 

schemas that can guide reasoning (Varga et al., n.d.). 

 Furthermore, we found evidence that inductive inference based on latent community 

structure is supported by neural representations of community structure in the hippocampus. 

The hippocampus has previously been implicated in supporting statistical learning (Covington et 

al., 2018; Schapiro et al., 2013; Schlichting et al., 2017), potentially by forming SR-like 

predictions of upcoming states (Stachenfeld et al., 2017). The hippocampus is also thought to 

support binding of items with their associated contexts (Ranganath, 2010a; Tort et al., 2009). 

Here, our data suggest that the hippocampus forms associations between objects and their 

latent community context. We reproduced prior results finding community representations in 

right anterior hippocampus (Schapiro 2016), and further found that this property persists when 

objects are not presented in a predictable order. Hippocampal representations of community 

membership are thus activated in response to individual objects rather than only appearing 

during structured temporal sequences drawn from the temporal community structure graph. 

Hippocampus has also been proposed to integrate indirectly related items (Molitor et al., 2021; 

Schlichting et al., 2015); this mechanism of memory integration has been proposed to serve a 

critical role in deductive inference based on indirect associations (Bunsey & Eichenbaum, 1996; 

Molitor et al., 2021; Schlichting & Preston, 2015; Varga et al., n.d.). Consistent with the 

hypothesized role of hippocampus in supporting inference based on indirect associations, we 

found that the strength of temporal community structure representations in hippocampus was 

uniquely related to biased inference on the boundary 2-away trials, which required making 

decisions based on indirect associations. Integrative representations in hippocampus have 

previously been linked to deductive inference (i.e., given learned pairings of AB and BC items, A 

and C are also associated) (Molitor et al., 2021). Here, we find that hippocampal 

representations also predict inductive inference decisions, wherein a decision cannot be 

deduced from existing knowledge and must instead be extrapolated based on abstract 

knowledge of latent structure. 

 We found that neural representations of community structure in precuneus were also 

related to bias in the inductive inference task. The precuneus has previously been found to be 
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involved in encoding and retrieving contextual associations (Frings et al., 2006; Sreekumar et 

al., 2018; Wagner et al., 2005) and representing latent structure (Baldassano et al., 2017, 2018; 

Vaidya et al., 2021), suggesting that it may be involved in representing the community 

associated with each object. Furthermore, precuneus is activated during decisions about 

whether two objects are often found in the same context (e.g., a washer and a laundry hamper) 

or not (e.g., a microscope and a toy horse), and activation is greater when the pair of objects is 

related (Livne & Bar, 2016). The precuneus may similarly be recruited during inductive inference 

to determine whether two objects are associated with the same community and thus might 

share some of the same properties. We also found initial evidence that the precuneus may be 

selectively predictive of inductive inference decisions when items were directly associated 

during learning. Our modeling results suggest that these inductive inference decisions were 

driven by detailed temporal knowledge. Taken together, the neural and modeling results 

suggest that precuneus may support inductive inference decisions based on detailed temporal 

knowledge of object associations. Presentation of a cue object during the inductive inference 

task might trigger reactivation of associated latent task structure in precuneus. Representations 

of latent structure might then bias inductive inference decisions to favor generalization to objects 

that are associated within that latent structure. 

 In conclusion, we found that learning about statistical temporal associations influences 

both inference decisions about object relationships and inductive inference decisions about 

shared object properties. Reasoning decisions that require inductive inference appear to reflect 

retrieval of both temporal associations between objects, which may be supported by precuneus, 

and abstract community structure, which may be supported by hippocampus. Inference about 

latent causes, such as shared associations and temporal community structure, has been 

proposed to be a critical organizational feature of memory (Gershman et al., 2017). Our results 

suggest that latent cause inference may be influenced by multiple features of experience that 

compete to determine memory-based reasoning behavior. 
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