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Abstract 

Relating individual differences in cognitive traits to brain functional organization is a long-lasting 

challenge for the neuroscience community. Individual intelligence scores were previously 

predicted from whole-brain connectivity patterns, extracted from functional magnetic resonance 

imaging (fMRI) data acquired at rest. Recently, it was shown that task-induced brain activation 

maps outperform these resting-state connectivity patterns in predicting individual intelligence, 

suggesting that a cognitively demanding environment improves prediction of cognitive abilities. 

Here, we use data from the Human Connectome Project to predict task-induced brain activation 

maps from resting-state fMRI, and proceed to use these predicted activity maps to further predict 

individual differences in a variety of traits. While models based on original task activation maps 

remain the most accurate, models based on predicted maps significantly outperformed those based 

on the resting-state connectome. Thus, we provide a promising approach for the evaluation of 

measures of human behavior from brain activation maps, that could be used without having 

participants actually perform the tasks. 
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Introduction 

Cognitive abilities and psychological traits widely differ between individuals. The search for 

objective measures of individual traits is a long-lasting challenge for the scientific community, 

spanning psychological questionnaires, behavioral tests and more recently, brain imaging-derived 

measures (Haynes and Rees, 2006). Specifically, it has recently been shown that individual scores 

of general intelligence could be predicted using individuals’ task-induced brain activation patterns, 

acquired while performing a task inside a magnetic resonance imaging (MRI) scanner (i.e., task-

functional MRI, hereafter referred to as task-fMRI) (Greene et al., 2018; Sripada et al., 2020). 

However, tasks used in fMRI studies are often tedious and time-consuming, require participants 

cooperation and should be pre-designed to target the cognitive domain of interest. What if, 

alternatively, individual traits could be predicted from ‘task’ activation maps without the need to 

actually perform any task? 

Resting-state (rs) fMRI is a procedure in which no explicit task is introduced to participants while 

they are scanned (Biswal et al., 1995).The rs-fMRI signal can be analyzed to extract patterns of 

functional connectivity, reflecting time-synchronous activity of spatially distinct brain areas 

commonly represented as the rs-connectome (Sporns, 2011). In the last few years, the rs-

connectome was found to be stable enough to be used as a fingerprint to detect identity (Finn et 

al., 2015), to correlate with behavioral and demographic measurements (Smith et al., 2015) as well 

as personality traits (Cai et al., 2020; Dubois et al., 2018a), and was also linked to individuals’ 

genetic profile (Colclough et al., 2017). Functional connectivity fingerprinting and the prediction 

of individual measures from resting-state connectivity are methods under constant development 

(Kashyap et al., 2019; Kong et al., 2019; Shen et al., 2017). However, rs-connectome-based 

predictions of intelligence were less successful than predictions based on task-fMRI data (Gao et 

al., 2019; Greene et al., 2018; Sripada et al., 2020). A widespread explanation for this is that 

placing the brain in a more cognitively demanding state (e.g., task vs. rest) improves brain-based 

prediction of intelligence in a way analogous to treadmill testing of cardiac function (Greene et al., 

2018; Sripada et al., 2020). 

Still, brain activity and connectivity are tightly linked. Patterns of functional connectivity show a 

striking spatial correspondence with various task-induced brain activation patterns (Smith et al., 

2009), and features of functional connectivity were shown to accurately predict task-induced 
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activations on an individual basis across a wide range of cognitive domains (Cole et al., 2016; 

Tavor et al., 2016). In the present work we aim to predict individual-specific cognitive measures, 

such as general intelligence, using task-free functional MRI scans. Our hypothesis is that task 

activation maps predicted from resting-state connectivity patterns (hereafter referred to as 

“connTask” maps), can be used to predict individual traits. Furthermore, we hypothesize that 

predictions of individual traits using models based on these “connTask” maps would be more 

accurate than predictions derived from models based on the rs-connectome directly. Thus, we 

suggest a novel approach for accurate estimation of cognitive abilities from a simple and effortless 

fMRI scan, without actually performing any task. 

To test our hypotheses, we used the data of 847 participants from the Human Connectome Project 

(HCP) who underwent resting-state and several task-fMRI scans, as well as multiple behavioral 

tests performed outside of the scanner (see methods) (Barch et al., 2013; Glasser et al., 2013; Smith 

et al., 2013; Van Essen et al., 2012). As a measure of intelligence, we calculated individual general 

cognitive ability (G) scores based on 10 cognitive tests, using a previously suggested factor 

analysis approach (Dubois et al., 2018b). We used a 10-fold cross-validation approach to generate 

a variety of connTask maps, and predict individual G-scores using a Brain Basis Set modeling 

paradigm  (Sripada et al., 2020, 2019a) (see methods and Figure 1). We predicted intelligence 

scores using either original task activation maps, connTask maps or resting-state functional 

connectomes, and compared the success of predictions derived from these different inputs. In 

addition, we devised models that combine data from multiple task-activation/connTask maps and 

compared their success to models based on a single map (see methods).   
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Materials and Methods 

Data and participants 

We used the data from the Human Connectome Project (HCP) (Van Essen et al., 2012) for all 

subsequent analyses. The dataset includes functional and structural minimally pre-processed 

(Glasser et al., 2013) scans (1200 subjects release).  

We included participants that performed all the relevant behavioral and cognitive tests (see G-

score construction, section 2.6), and completed all the resting-state and task fMRI sessions, barring 

the Motor task, which was left out of further analysis due to its weak contribution to the prediction 

of intelligence (Sripada et al., 2020), and the low specificity of its connTask maps (Tavor et al., 

2016). These criteria resulted in a dataset of 847 participants. 

All acquisition parameters and image processing pipelines are described in detail in Glasser et al 

(2013). Briefly, all fMRI data (rest and task alike) were scanned with a TR of 0.72s. Each 

participant included in this study had four resting-state fMRI runs with a total of 1,200 timepoints 

per run, and performed all necessary tasks fMRI scans.  

As part of the HCP’s pre-processing procedure, all functional data were de-noised using FMRIB’s 

ICA-based Xnoiseifier (FIX) (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014), which 

identifies independent components of structured artefacts in the data, and regresses them out. This 

is the standard method for nuisance regression in the HCP. This procedure ensures that the “cleaned” data 

is minimally affected by noise sources such as white-matter signal or motion effects, as these are 

represented as noise components and are regressed out of the data. The “cleaned” data was then 

resampled and “projected” onto a surface representation consisting of 91,282 "grayordinates" in 

standard space. Data were aligned and registered using Multimodal Surface Matching (MSMAll) 

(Robinson et al., 2018).  

As for the task fMRI, data provided by the HCP were already post-processed and included 

statistical analysis. All tasks in the HCP were performed in a block-design manner, and activity 

estimates were computed for the time series from preprocessed functional scans using FSL's FILM 

(FMRIB's Improved Linear Model with autocorrelation correction) (Woolrich et al., 2001). 

“Blocks” of each type of stimuli included in each task, were convolved with a double gamma 

canonical hemodynamic response function (Glover, 1999) to generate the main model regressors. 
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All tasks were performed twice, and the statistical maps provided by the HCP are the result of the 

second level analysis, that provides a mean result for each contrast across both runs. 

The Working Memory task included 405 time-points, with 25 seconds long blocks, and 4 blocks 

per condition (0-back, 2-back); The Gambling task included 253 time-points, with 28 seconds long 

blocks, and 2 blocks per condition (reward, punish); The Language task included 316 time-

points, with blocks of varying length (average ~30 seconds, math and story blocks were maintained 

at same length), and 4 blocks per condition (math, story); The Social task included 274 time-points, 

with 23 seconds long blocks and 2 or 3 blocks per condition (run 1 contained 2 Social and 3 

Random blocks and Run 2 contained 3 Social and 2 Random blocks.); The Relational task included 

232 time-points with 16 seconds long blocks, and 3 blocks per condition (relational, control); The 

Emotion task included 176 time-points, with 18 seconds long block and 3 blocks per condition 

(face, shape). 

We used the Z-score maps provided by the HCP for all contrasts described in Table 1 with no 

further analysis. Additional details regarding task design and processing can be found in (Barch et 

al., 2013) 

Task Domain Contrasts 

Working Memory 

2bk>0bk 
2bk 
0bk 

Language Math-Story 

Social 

Random 
TOM 

TOM-Random 

Relational 
Rel 

Match 

Gambling 
Punish 
Reward 

Emotion Faces-Shapes 

Table 1. Task contrasts used in further analyses. Contrasts in bold 
were used as exemplars in the main analysis. Additional contrasts 
were used in the analyses presented in supplementary figures S8 and 
S12. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2021. ; https://doi.org/10.1101/2021.10.12.464045doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.12.464045
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 7 of 27 
 

Construction of connectivity-derived task activation (connTask) maps  

Connectivity-derived task activation maps were calculated according to the method suggested by 

Tavor and colleagues (Tavor et al., 2016), for which all codes are publicly available. The procedure 

is described in Figure 1A and detailed below. 

Cross-validation 

ConnTask maps were predicted using the following procedure in a10-fold cross validation routine, 

where in each iteration 9/10 of the participants were used as the training set and the remaining 

participants were used as the test set. Considering the fact that the HCP dataset includes siblings, 

we made sure that in each iteration of the cross-validation process, participants who are genetically 

related were allocated to the same group (train/test), as to prevent over-fitting (Colclough et al., 

2017).  

Feature extraction 

The feature extraction procedure included four steps, designed to yield a set number of functional 

connectivity maps, to be used in the prediction model. 

1. First, in order to reduce the dimensionality and prepare the data for the following steps, all the 

training set’s pre-processed resting-state fMRI data were combined using an iterative group 

principal component analysis (PCA) procedure (Smith et al., 2014). This step is aimed to 

concatenate a large number of participants; an iterative PCA was shown to yield a very accurate 

approximation to a concatenation of the whole dataset while having very low memory 

requirements (Smith et al., 2014). In each iteration of this procedure, data from one resting-

state scan (1200 timepoints) were added, and the overall dimensionality was reduced to a set 

of 1000 group-level components. 

2.  Group independent component analysis (ICA) (Beckmann et al., 2005) was performed on the 

training set’s reduced data using FastICA (Hyvärinen, 1999), yielding 45 spatially-independent 

cortical components to be used as seeds for connectivity analysis. Five of these components 

were manually classified as noise according to their spatial maps and removed from further 

analyses (see Supplementary Figure S1). 

3. Dual regression was performed on the cortical components against individual time-series, to 

produce subject-specific cortical independent component (IC) maps (Beckmann et al., 2009) 
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for all participants, test and training sets alike. In dual regression, the first regression uses the 

cortical group-ICA maps as regressors to get an individual time-series for each component per 

participant. The second regression uses the individual time-series as regressors to get 

individual spatial maps. Thus, this step produces individual seeds to be used in the following 

connectivity analysis. 

4. Last, the subject-specific IC maps were used as seeds in a weighted seed-to-vertex analysis. 

As such, individual IC maps were regressed against individual rs-fMRI time-series in order to 

yield one time-course per spatial map. Each time course was then correlated with the original 

rs-fMRI data to produce an individual connectivity map for each IC map. In the original work 

by Tavor and colleagues, weighted seed-to-vertex connectivity maps were created also for 

additional 32 sub-cortical components. Of these, we included 3 cerebellar components that 

were created through group-ICA. The remaining sub-cortical components had little to no 

contribution to the prediction success, and thus were kept out of the procedure we implemented 

in this work. 

Model fitting and prediction 

A general linear model was used to map the functional connectivity features to task data (i.e. 

individual z-score contrast maps derived from fMRI task analysis). For each task activation map 

(i.e., a specific contrast of a specific task), a specific model was fitted. As performed in Tavor et 

al., 2016, all models were broken down spatially into 50 non-overlapping regions of interest. 

Regions were defined according to the resting-state data, using ICA, and allocating vertices to 

parcels using a majority-vote on the ICA result. Within each of these 50 parcels, a general linear 

model was used to relate connectivity features to activation data, using the training set’s data. Prior 

to model fitting, all features were normalized and standardized across the whole brain.  

Construction of rs-connectomes 

For each participant, the time-series from all 4 runs of rs-fMRI scans were normalized, 

concatenated and demeaned. We used a parcellation that separates the cortex into 360 non-

overlapping areas (Glasser et al., 2016), and calculated the averaged resting-state time-series 

within each parcel. Pearson’s correlation coefficients were computed between each pair of parcels. 
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Further processing of the data 

All fMRI data were scaled and normalized before being used for prediction, using scikit-learn’s 

(Buitinck et al., 2013) StandardScaler. Original task-activation maps were masked to include only 

cortical data, in order to make them comparable with the connTask data, where activity is predicted 

only for the cortex. Removing the subcortical areas from the original task-activation data has 

actually improved the prediction results compared with whole-brain maps. 

Trait prediction procedures 

Cross-validation 

Similar to the prediction of the connTask maps, the prediction of individual traits was also 

performed using a 10-fold cross validation routine, taking into account the family structure in the 

HCP data. In each iteration, a model was trained on 9/10 of the data, and predictions were yielded 

for 1/10 of the data, while genetically related participants are kept in either the training or the test 

datasets. Importantly, data splits were identical in the two cross-validation procedures (e.g., 

connTask maps prediction and trait prediction) meaning that for each 1/10 of the data, connTask 

   
Figure 1. Data processing pipelines. A) connTask prediction pipeline from rs-fMRI time series to individual 
task-induced brain-activation (adapted from Tavor et al., 2016) B) Individual trait prediction pipeline using Brain 
Basis Set modeling (Sripada et al., 2020, 2019a). Colors encode the subset of the sample on which the procedure 
was performed. 
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maps were predicted using the remaining 9/10 of the data, and also trait prediction was based on 

the same 9/10 of the data.  

Brain Basis Set prediction pipeline 

We utilized the Brain Basis Set (BBS) prediction pipeline proposed by Sripada and colleagues 

(Sripada et al., 2020, 2019a) using multiple functionalities provided by the Scikit-Learn python 

package (Buitinck et al., 2013). 

The BBS prediction pipeline is composed of 4 steps: 

A) The training sets’ fMRI data is reduced using Principal Components Analysis (PCA) to a 

predetermined number of components K. 

B) These components are regressed against the individual data of every participant, to yield a 

number we refer to as an “expression score”.  

C) The training sets’ expression scores are used to fit a linear model that predicts the desired 

trait. 

D) The model is applied on the test set. 

These steps are visualized in figure 1B. 

This pipeline was used for all predictions performed on a single input (i.e., original task 

activation maps, connTask maps or resting-state connectomes). 

Pipeline adaptation for multiple inputs 

We further adapted the pipeline to enable a combination of features extracted from multiple inputs 

(i.e., task/connTask maps). The leading notion in devising this procedure was to prevent an 

inflation of the number of features used in the regression model as we add more map inputs. 

With this notion in mind, we set a total number of components, to be extracted from all inputs 

combined (T, for total), which is kept uniform across all types of combinations (e.g., the same T 

is used when combining 2 maps or 6). Once T is set, steps A+B are performed for each input 

separately, with K being defined as !

"#$%&'	)*	+",#-.
. Thus, a sum of T “expression scores” is 

calculated for each subject. 

We then reduce the number of features from T to a predetermined number, F, by correlating each 

“expression score”, across participants, to the predicted trait, and choosing the top F correlated 
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scores. Steps C+D are then performed using the remaining F features, with the minor change of 

using a regularized linear model, to better handle the larger number of features. 

We fitted an Elastic Net regression model with an L1 ratio of 0.001, which is almost equivalent to 

ridge (L2) regression. The penalty factor was determined in a nested 5-fold cross validation process 

(i.e., a separate cross validation performed in each iteration on the training set folds only). We used 

Scikit-Learn’s ElasticNetCV. 

Pipeline parameters 

We implemented the single-input BBS pipeline with a K of 75, as in Sripada et al (Sripada et al., 

2020, 2019b; Taxali et al., 2021).  

We implemented the expanded, multi-input, BBS pipeline with a T (i.e., total number of 

components extracted across inputs) of 300 and an F (i.e., number of features after reduction using 

correlation analysis) of 160. 

The value for T was chosen as to ensure that even when a model is based on a combination of up 

to 6 different inputs (as in the largest combination tested in this study), the number of components 

extracted from each single input will not be less than 50. The Value for F was chosen by examining 

20 different values, ranging between 50 to 250 (see Supplementary Figure S2). 

Construction of the G-score 

We conducted an exploratory factor analysis, following the procedure suggested by Dubois and 

colleagues (Dubois et al., 2018) and the code made available by them. 

Participants were included in this analysis if they completed all relevant tasks, and their MMSE 

(Mini-Mental State Examination) score was greater than 26. This left a total of 1,181 participants. 

Unadjusted scores from ten cognitive tasks were used in the analysis, including seven tasks from 

the NIH Toolbox (Dimensional Change Cart Sort, Flanker Task, List Sort Test, Picture Sequence 

Test, Picture Vocabulary Test, Pattern Completion Test, Oral Reading Recognition Test), and three 

tasks from the Penn Neurocognitive Battery (Penn Progressive Matrices, Penn Word Memory 

Test, Variable Short Penn Line Orientation Test). This means that some of the participants 

included in this analysis are not included in any further analyses, due to lacking MRI data (whether 

rest or task). However, their inclusion here increases the statistical power of modeling the latent 

intelligence factor (g). 
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We performed the exploratory factor analysis in a 10-fold cross validation procedure, such that the 

g-scores for each 1/10 of the participants were produced using weights calculated on the data of 

the other 9/10 of the participants. 

Assessment of significant differences in prediction results 

In order to assess whether there is a significant difference between the accuracy of the predictions 

based on two different data-sets (e.g., connTask map and rs-connectome), we performed 1000 

iterations where we split the data randomly to training and test sets (9/10 train, 1/10 test, family 

structure taken into consideration), and predicted behavioral scores.  In every iteration, prediction 

success for each data-set was measured by Pearson’s r between actual and predicted scores. 

Significant differences in prediction success were detected using a non-parametric, related samples 

test (Wilcoxon signed ranks test), which takes into account the overlap in training sets across 

iterations (Demšar, 2006).  

We compared prediction success of models based on 14 different contrasts, or combinations of 

contrasts, to the prediction success of a model based on resting state connectivity. We performed 

this comparison using original task maps as well as connTask maps, which resulted in a total of 

28 comparisons. Therefore, all p values were corrected using Bonferroni correction for multiple 

comparisons, for 28 comparisons. 

The comparison of predictions of in-scanner and out-of-scanner measurements followed a similar 

procedure. While the main analysis compared values of prediction success from two different 

models predicting the same target score, in this analysis we compared the ratio or amount by which 

the models based on original task activation maps outperformed models based on connTask maps, 

in various traits. 

Assessment of significance of prediction success against a null distribution 

We assessed model prediction success significance using a permutation test. To create the “null 

distribution” against which we then compare our result, we ran each model 10,000 times with the 

target variable (i.e., the cognitive score we wish to predict) being shuffled for each iteration. We 

recorded the prediction success from each of those iterations, which represents the “null 

distribution” of prediction success scores, and assigned the real model a p value of  
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"#$%&'	)*	$)/&0.	123+&4+"5	1	%&--&'	.2)'&	-31"	-3&	'&10	)"&

-)-10	"#$%&'	)*	,&'$#-1-+)".
, meaning that the minimal possible p value 

is 0.0001. 

This p value was compared to a Bonferroni corrected to 29 comparisons, as we added a comparison 

for the resting-state connectome. 

Construction of model contribution maps 

In order to visualize the distribution of predictive information in each task contrast, we multiplied 

each component derived from the data reduction step of the BBS pipeline (see step A in the BBS 

prediction pipeline above) by its corresponding beta coefficient from the linear model (see step 

D). These weighted components were then summed, within and across the 10 folds, to yield the 

model contribution maps. The process is described by Equation (1): 

(1)																																	Model	contribution	map	 = 	IIJ+K ∙ M+K

NO

KPQ

NR

+PQ

 

Where S* is the number of fold used in the cross-validation routine, S2 is the number of 

components yielded in the dimensionality reduction step (step A in the BBS pipeline), J+K is the 

T-3  components in the U-3 iteration, and M+K is the beta coefficient assigned to the “expression score” 

associated with J+K in the prediction model (step D in the BBS pipeline). 

Quantification of meaningful contribution from each rs-network 

In order to quantify the contribution of each of the seven canonical resting-state networks (Yeo et 

al., 2011) to the prediction model, we used the HCP’s workbench command (Marcus et al., 2011) 

function “wb_command -cifti-find-clusters” to find clusters of meaningful contribution in the 

model contribution maps. We set the surface-value-threshold to the 0.99 percentile of each map’s 

values (“contribution power” in arbitrary units) and the surface-minimum-area to 15 mm2. We 

then counted the number of significantly contributing clusters in each of the resting-state networks, 

separately for the prediction from original and connTask maps and for the prediction from single 

vs. multiple contrasts.  
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Results  

Prediction of intelligence scores 

As hypothesized, connTask-based models performed significantly better than the model based on 

rs-connectome (V < 0.0001, Bonferroni corrected for 28 comparisons; Figures 2-3, and 

Supplementary Table S2). All models yielded predictions that were significantly more accurate 

than chance, as asserted by a permutation test (V < 0.005, Bonferroni corrected for 28 

comparisons). For both original and connTask data, models that combined features extracted from 

multiple maps resulted in an improved prediction. Group-level prediction accuracy was generally 

higher using original task activation maps rather than predicted ones. However, for each task there 

was a considerable subset of participants (ranging from 39% to 49%) for which predictions based 

on the connTask maps were even more accurate than those based on original task maps (see 

Supplementary Figures S3-4). 

Prediction of other individual traits  

The same analyses were carried out to predict more specific measures of intelligence, such as 

reading ability and matrix resolution scores. Additionally, we examined the model’s ability to 

predict a personality trait, “openness to experience”, the personality dimension best predicted from 

rs-connectomes (Dubois et al., 2018). Results were similar to the main analysis, showing 

significantly more accurate predictions by models based on connTask maps rather than on the rs-

connectome (V < 0.0001, Bonferroni corrected for 28 comparisons; see Supplementary Figures 

S5-7).  
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Figure 2. G-score prediction success of models based on real activation maps, predicted activation maps and 
the rs-connectome. Prediction success was estimated by the Pearson correlation between predicted and observed 
G-scores (in blue, referring to the left y-axis) and the mean squared error of the prediction (in red, referring to the 
right y-axis). Error bars depict standard error of the measurement between cross-validation folds. A) Prediction 
success of models based on original task activation maps. B) Prediction success of models based on resting-state 
fMRI derived data (rs-connectomes and connTask maps). All connTask-based models were significantly more 
accurate than the rs-connectome based model (V < 0.0001, Bonferroni corrected for 28 comparisons). 
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Figure 3. Scatter plots showing G scores prediction success from original and connTask maps of two 
representative tasks as well as from the rs-connectome. Each point represents a single participant’s real and 
predicted G scores. Pearson’s r is reported at the bottom-right corner of each plot. Predictions from connTask maps 
(right, lower panel) were more accurate than those based on the rs-connectome (left panel) but less accurate than 
predictions based on the original task activation maps (right, top panel) 

Prediction of in-scanner cognitive scores 

While the individual traits predicted in this work were collected in tests performed outside of the 

scanner,  it is intriguing to examine our proposed method's ability to predict scores of tasks 

performed in-scanner as well.  

For this purpose, we used the working-memory task, as this task had a relevant ‘within-scanner’ 

score. We predicted individual scores from the in-scanner task (N-back task), using models based 

on the original and connTask maps of this task (specifically, the ‘2bk’ contrast), as well as a model 

based on the resting-state connectome. In line with the main analysis results, predictions of the N-

back task scores were significantly more accurate when using the connTask maps than the rs-

connectome ([ < 0.0001). Interestingly, however, the amount by which the model based on the 

original activation maps outperformed the model based on connTask maps was significantly larger 

for the in-scanner measurement than for the out-of-scanner measurements ([ < 0.0001, Figure 4). 

This difference between in- and out-of-scanner measurements was also evident in a significant 
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difference in the ratio of prediction success between original and connTask maps, for G-scores and 

reading abilities prediction ([ < 0.0001;	Figure 4). 

 
Figure 4. Prediction of in-scanner and out-of-scanner measurements using models based on original and 
connTask maps of the Working Memory task, and the rs-connectome. Error bars depict standard error of the 
prediction success between cross-validation folds. Significance asterisks (**** [ < 0.0001) relate to either the 
absolute differences (teal) or the differences in ratio of prediction success (purple) between predictions made from 
original and connTask maps. The difference between connTask and rs-connectome based predictions was 
significant as well, for all the measurements shown here ([ < 0.0001). 

Investigating the predictive power of different brain networks 

To explore the contribution of different brain networks to the G-score prediction from each (actual 

or predicted) task contrast, we generated maps that quantify each vertex’s contribution to the 

prediction model (see methods and Supplementary Figure S8). We then counted the number of 

significantly contributing clusters in each resting-state network (Yeo et al., 2011). The largest 

number of contributing clusters was found in the frontoparietal, attention and default mode 

networks, indicating that these networks highly contributed to prediction success from both 

original and connTask activation maps (Supplementary Figure S8). The contribution of these 

networks to the G-score prediction was independent of task-activation prediction accuracy 

(Supplementary Figure S12).  
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Discussion  

Our findings demonstrate a successful prediction of a complex cognitive trait, general intelligence, 

as well as of more specific cognitive abilities (e.g., reading, matrix resolution) and even personality 

dimensions (e.g., openness), from brain function at rest. While most methods for predicting 

individual traits from rs-fMRI are based on transforming the rs-fMRI time-series to a parcellated 

connectivity matrix (i.e., the rs-connectome), the prediction presented here was achieved by 

representing the multi-dimensional resting-state data as task-induced brain-activation maps of 

unperformed tasks. Predictions of individual traits using models based on these maps were 

significantly better than predictions from models based on the rs-connectome. Our findings thus 

suggest that the standard connectome may not be the best representation of the resting-state signal 

for the purpose of predictive modeling, and encourage future studies to explore alternative 

representations. 

Brain areas in the frontoparietal, attention and default mode networks contributed the most to the 

prediction of general intelligence scores. The contribution of these networks to G-score prediction 

was independent of the accuracy of task-activation prediction (Figure S12) and was also evident 

in G-scores prediction from the original activity maps (Figure S8). This finding is in line with 

previous literature linking the frontoparietal and default mode networks to individual differences 

in intelligence. Specifically, resting-state functional connectivity within and across the 

frontoparietal and default mode networks has been positively correlated with G-scores in a cohort 

of 317 unrelated HCP participants (Hearne et al., 2016). Consistently, differential activation of 

these networks during cognitive tasks performance was associated with inter-individual 

differences in intelligence scores (Basten et al., 2013). Our findings therefore add to the 

accumulating evidence regarding the brain networks that support human intelligence. 

In addition to the predictions of general intelligence scores, reading ability, matrix resolution and 

openness to experience, which are all based on tests performed outside the MRI scanner, we tested 

our proposed approach’s ability to predict scores obtained during an fMRI scan, i.e., the working 

memory (N-back) scores. While our results confirmed that connTask-based models outperform 

connectome-based models in predictions of in-scanner measurements, they also revealed a larger 

gap in prediction success between connTask and original task-based models, compared to this gap 

in prediction of out-of-scanner measurements. 
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This finding points to two factors that may influence performance of cognitive tasks:  first, 

participants’ general cognitive ability, which is a rather fixed trait within an individual, and second, 

the current cognitive state during task performance. Whereas both factors may be represented 

in data acquired during task performance, resting-state data only capture participants' traits 

(Gratton et al., 2018). Therefore, predictions of in-scanner tasks may be more accurate when based 

on data that reflect both the trait and state of the task-performing participants. A trait vs. state 

representation may also offer an explanation as to why predictions of the global G 

factor were actually higher when using the connTask maps as opposed to the 

original task activation maps in a large number of participants (see Supplementary figures S3-4): 

it is possible that for those participants, the volatile state while performing the task was actually a 

disturbance for the prediction of a general trait. 

We were able to accurately predict activity maps for a diverse selection of tasks and demonstrated 

that models based on combinations of task-activation maps are more accurate than those based on 

a single map. In fact, the combination of multiple contrast maps improved not only the prediction 

of traits from connTask maps but also from the actual activity maps (see Figure 2A), providing a 

high accuracy of 0.62 for G-scores prediction. While the use of actual activation maps for the 

purpose of trait prediction is preferable, it is not always feasible, such as in the case of non-

compliant populations, or existing datasets that do not include the task of interest. In such cases, 

prediction from connTask maps may be a promising alternative. 

The resting-state signal offers a considerable amount of information from which features for 

predictive modeling can be extracted by various statistical approaches. Prediction of individual 

task-activation maps from rs-fMRI, as we propose here, serves as a novel method for feature 

extraction. Even though there may be a specific, carefully designed fMRI task that could generate 

a better prediction for each trait than resting-state derived data, the approach we suggest provides 

the opportunity to produce activation maps for many different tasks at once, even tasks not 

included in the original dataset. This notion highlights the potential of our method to evaluate 

measures of human behavior and cognitive abilities, from a variety of (predicted) brain activity 

patterns, using data from a simple fMRI design. 

Moreover, since it does not require participants to actually perform any task, our method enables 

the study of unique populations, such as psychiatric or neurologic patients, which might not be 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2021. ; https://doi.org/10.1101/2021.10.12.464045doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.12.464045
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 20 of 27 
 

able to comply with in-scanner tasks. Several studies have already demonstrated successful 

predictions of task-induced activity patterns in such populations (Mill et al., 2020; Parker Jones et 

al., 2017; Tik et al., 2021), and in larger datasets, relating these predicted activity maps to 

behavioral and cognitive traits, or even symptoms, is a promising possibility. 

Given that our connTask maps were predicted from resting-state connectivity, one may wonder 

how could they produce an improved prediction of cognitive traits relative to the original resting-

state connectivity patterns. The additional information, beyond connectivity patterns, that enabled 

this improvement in prediction may lie in the task-prediction model itself, which was trained to 

relate between brain connectivity and activity. Thus, connTask activity maps serve as a novel 

representation of resting-state connectivity data, in which the vast data within resting state fMRI 

is reduced to a form that may be more appropriate for the study of brain-behavior associations 

(e.g., functional connectivity fingerprinting). 

Several limitations of this work that should be discussed concern the data used for our methods’ 

development and testing, taken from the Human Connectome Project 1200 subjects release. First, 

this dataset is unique in terms of acquisition (i.e., high spatial and temporal resolution), the amount 

of data available for each subject (e.g., 4 resting state scans amounting to a full hour) and 

processing, and is not representative for standard imaging protocols used in basic and clinical 

research. Hence, it is important for future studies to test our method performance on standard-

quality datasets. Second, while a recent work has suggested that brain-wide association studies 

should be based on very large amounts of data (] > 2000; (Marek et al., 2020)), here, we were 

limited by the number of HCP participants, and further limited our data pool by only including 

participants that completed all of the necessary scans and tests that are required for our analysis. It 

would be beneficial in the future to test this method on larger datasets including thousands of 

participants and more diverse populations, such as neuropsychiatric patients as mentioned above. 

Conclusion 

This work holds valuable impact on both basic research and clinical practice, as it can potentially 

make the scanning process considerably easier for participants to cooperate with, and could 

substantially simplify the design of a neuroimaging study. Our purposed method demonstrates the 

potential and versatility of the resting-state signal. This work emphasizes the extent by which the 

spontaneous activity of our brain can explain variation in cognitive traits and behavior, that can be 
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uncovered by carefully analyzing this spontaneous activity rather than fitting dedicated tasks to 

each cognitive trait of interest. In that sense, if we are to borrow the treadmill analogy (Greene et 

al., 2018; Sripada et al., 2020), we provide a “treadmill test for cognition” without actually walking 

the treadmill. 
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