
1

Architect: a tool for producing high-quality metabolic models through

improved enzyme annotation
Nirvana Nursimulu, Alan M. Moses and John Parkinson

Supplementary information

Table of contents

Page Section

2 A. Individual enzyme annotation tools

2

2

3

4

6

6

7

B. Ensemble approaches

 Majority rule

 EC-specific tool

 Naïve Bayes

 Training on different tool combinations

 Logistic regression model

 Random forest

8

8

9

9

C. Methods of analyzing results

 Performance measures

 Performance on multi-functional proteins

 Performance on test set based on sequence similarity to training data

10

10

11

11

12

13

D. Metabolic model reconstruction

 KEGG database: curation

 BiGG databases and addition of non-EC associated reactions via sequence

 similarity

 Relevant simulation details

 Identification of gap-filling candidates required for biomass production

 Essentiality experiments

13 E. Model reconstruction: technical details

15

15

15

F. Additional results

 3.1a Filtering multifunctional enzyme predictions has minimal impact on performance

 3.4 Comparing gene essentiality results

16

16

17

19

20

G. Supplementary Tables

 1: Overlap of in silico determined essential genes with those found essential in vivo.

 2: Comparisons of various aspects of model reconstruction for C. elegans, N. meningitidis

 and E. coli.

 3: Breakdown of annotations of SwissProt sequences by individual and ensemble methods

 into true positives, true negatives, false positives and false negatives

 4: Breakdown of organism-specific annotations by ensemble and individual tool into true

 positive, false positive and false negative.

21 H. Bibliography

2

A. Individual enzyme annotation tools

 We ran the following enzyme annotation tools: EFICAz v2.5.1 [1], PRIAM [2], DETECT

v2 [3], EnzDP [4] and CatFam [5]. For each tool, we only considered complete EC annotations

(that is, of the form x.x.x.x, where x is a number). We labelled as “high-confidence” predictions

that satisfy the following criteria for each tool: those predictions labelled as “high-confidence” in

EFICAz; those achieving a score above the cutoff of 0.2 and 0.7 in PRIAM and EnzDP

respectively; and those passing the EC-specific cutoffs of DETECT v2. The cutoff of 0.7 was

found optimal when looking at EnzDP’s performance on the training data (Figure 1 below), while

the 0.2 cutoff was suggested in the README file associated with PRIAM for sequences of non-

bacterial origin. We considered all predictions from CatFam to be of high-confidence. Remaining

predictions from EFICAz were considered to be of “low-confidence”. For the other 3 tools,

remaining predictions with a score of at least 0.0001 were considered “low-confidence”

predictions. These levels of confidence are used in feature vector construction when training and

testing the ensemble methods. In general, each element of a feature vector represents the level of

confidence in a tool’s prediction.

Figure 1: Macro-precision, macro-recall and F1-score of (i) EnzDP and (ii) PRIAM at different cutoffs. Performance

is summarized over 80% of Architect’s entire training database; this corresponds to the portion of the database used

to train the ensemble methods which were then tested with performance summarized in Figure 1 of the main text.

B. Ensemble approaches

Majority rule

 One of the simplest benchmarking methods we employ to combine predictions from

multiple classifiers is through a majority rule. Here, we explore three main voting schemes: (M1)

simple majority, (M2) plurality voting [6], and (M3) unanimous voting. When a simple majority

rule (M1) is applied, an EC is assigned to a protein if it is predicted by at least half (that is 3) of

all tools applied. In plurality voting (M2), a protein is assigned the EC predicted by most methods;

this is a more relaxed version of M1 such that agreement by fewer than 3 tools for an EC is allowed.

On the other hand, unanimous voting (M3) is the most conservative of the majority rules, where

an EC is assigned to a protein sequence only if all 5 enzyme annotation tools agree. In another

 acro F1 acro precision acro recall

0

0.1

0.

0.3

0.

0.

0.

0.

0.8

0.

1

0 0.1 0. 0.3 0. 0. 0. 0. 0.8 0. 1

0

0.1

0.

0.3

0.

0.

0.

0.

0.8

0.

1

0 0.1 0. 0.3 0. 0. 0. 0. 0.8 0. 1

(i (ii

3

version of the M1 and M3 rules (M1.5, M3.5), rather than considering as the “maximum” number

of tools, we define a different “maximum” for each EC, counting it as the total number of tools

that can actually predict that EC. Furthermore, we present results of experimenting with only high-

confidence predictions from each method, or on all predictions. We note that both in cross-

validation and on the test data (Table 1), applying M2 on the high-confidence dataset gives the

best result, and therefore present results from this rule unless otherwise specified.

Table 1: Performance of various voting rules for enzyme annotation in cross-validation and on test set.

The suffixes “_low” and “_high” indicate whether both all or only high-confidence predictions were considered

respectively.

Flavour of voting rule

Averaged macro-F1

over cross-validation Macro-F1 on test set

M1_low 82.5% 82.0%

M1.5_low 67.6% 67.3%

M2_low 84.0% 80.9%

M3_low 41.8% 41.8%

M3.5_low 78.7% 77.9%

M1_high 82.1% 81.7%

M1.5_high 90.4% 89.5%

M2_high 90.7% 90.4%

M3_high 39.9% 39.8%

M3.5_high 77.6% 77.0%

EC-specific tool

Another benchmarking method is to find, for each EC, the tool(s) which performs best in

the training set, and to retain predictions of that EC in the test set only when made by the best-

performing tool(s). We define the best-performing tool as the tool that achieves the highest F1-

score on the training data. To control for differences across the data from influencing what defines

the top-performer for an EC, we find the tool(s) achieving the highest F1-measure over each four-

fifths of the training data in cross-validation. A method that is the top-performer for an EC across

all 5 four-fifths of the data is marked as a “high-confidence EC-specific tool”, and is otherwise

marked as a “low-confidence EC-specific tool” (given that it is the top performer for some but not

all parts of the training data).

We specifically considered the confidence with which each tool makes a prediction to

identify EC-specific best tools. Therefore, for an EC x, we construct feature vectors (v) to indicate

whether an annotation tool predicts EC x (whether with low- or high-confidence), and further

indicate (with an additional feature) if the prediction is made with high-confidence. For each

prediction of EC x:

𝑣1 = {
1 if CatFam has made this prediction (1)
0 otherwise

𝑣2 = {
2 if DETECT has made this prediction with high confidence
1 if DETECT has made this prediction
0 otherwise

𝑣3 = {
2 if EFICAz has made this prediction with high confidence
1 if EFICAz has made this prediction
0 otherwise

4

𝑣4 = {
2 if EnzDP has made this prediction with high confidence
1 if EnzDP has made this prediction
0 otherwise

𝑣5 = {
2 if PRIA has made this prediction with high confidence
1 if PRIA has made this prediction
0 otherwise

Thus, this algorithm can identify tools that perform best for an EC only when their high-

confidence predictions are considered.

Using predictions from “low-confidence EC-specific tools” (that is, top performers on at

least a subset of the data) gives the best results on the test data, and therefore we present results

from this technique unless otherwise specified (Table 2).

Table 2: Performance of the different flavours of the EC-specific best tool on test set

Applying EC-specific best

tools that are found: Macro-F1 on test set

on at least a subset of training data 97.1%

on all subsets of training data 94.8%

Naïve Bayes

 We built a naïve Bayes classifier for each EC class. For a particular EC predicted for a

protein, we calculate the likelihood score in the prediction as follows, where n here is the number

of tools that can predict the EC:

𝑝(𝑦 = 1|𝑣1 = 𝛼1, 𝑣2 = 𝛼2, … , 𝑣𝑛 = 𝛼𝑛) =
𝑝(𝑦 = 1) ∙ ∏ 𝑝(𝑣𝑖 = 𝛼𝑖|𝑦 = 1)𝑛

𝑖=1

∑ 𝑝(𝑦 = 𝑘)𝑘∈{0,1} ∙ ∏ 𝑝(𝑣𝑖 = 𝛼𝑖|𝑦 = 𝑘)𝑛
𝑖=1

(2)

y is a binary variable denoting the membership of the protein in the EC class (true if and only if

y  =  1).   We calculate p(𝑦 = 𝑘) as follows:

𝑝(𝑦 = 1) =
number of proteins actually in EC class

number of proteins either predicted or actually in EC class
(3)

𝑝(𝑦 = 0) =
number of proteins not actually in EC class (i.e., false positives)

number of proteins either predicted or actually in EC class
 (4)

vi represents the value of the feature vector of the ith tool. As per the nature of naïve Bayes, we

make the assumption that the predictions of individual tools are conditionally independent from

each other given the class label y. As detailed below, we experimented with different feature

vector constructions corresponding to different methods of calculating p(𝑣𝑖|𝑦 = 𝑘).

Approximating distribution of features using a Bernouilli distribution

(i) Considering high-confidence predictions only

We only consider high-confidence predictions made by individual tools, such that the feature

vectors are constructed as follows:

5

𝑣𝑖 = {
1 if the ith tool predicted this EC with high-confidence (5)

0 otherwise

i ranges from 1 to m where m is the number of tools that can predict the EC in question. Then:

𝑝(𝑣𝑖 = α𝑖|𝑦 = 𝑘) =
(number of proteins for which 𝑣𝑖=α𝑖 and 𝑦=𝑘) + 1

(number of proteins for which 𝑦=𝑘) + 2
(6)

where the constants added to the numerator and denominator are due to Laplace smoothing.

(ii) Considering all predictions

We consider all predictions made by individual tools, whether with low- or high-confidence:

𝑣𝑖 = {
1 if the ith tool predicted this EC (7)

0 otherwise

We use equation (6) as given above.

(iii) Accounting for the level of con iden e in ls’ predi i ns

We consider all predictions made by individual tools, and have each feature reflect the level of

confidence with which the prediction is made by the corresponding tool. All CatFam predictions

are considered of high-confidence. Therefore, for ECs predictable by CatFam:

𝑣1 = {
1 if CatFam predicted this EC (8)

0 otherwise

For other tools that can predict the EC in question, we use the following:
𝑣𝑖

= {
2 if the ith tool has made this prediction with high-confidence (9)

1 if the ith tool has made this prediction with low-confidence
0 otherwise

Approximating distribution of continuous scores with a normal distribution, and categorical

features with a Bernouilli distribution

Here, for predictions made by DETECT, EnzDP and PRIAM, we assume that the actual confidence

scores with which an EC is predicted follows a normal distribution. For each of these tools, we

compute the sample mean (µ) and the sample standard deviation (σ) of the scores for the

corresponding proteins. Then, for a score s:

𝑝(𝑣𝑖 = 𝑠|𝑦 = 𝑘) =
1

σ√2π
𝑒−

1
2

(
𝑠−μ

σ
)

2

 (10)

CatFam and EFICAz predictions are not given with scores. Therefore, when assigning the value

of the feature corresponding to these tools, we use equations (8) and (9) respectively.

We found, as part of cross-validation and testing, that while there was little difference

between the performance of the different flavours of naïve Bayes (Table 3), using high-confidence

predictions only (i.e. (i)) gives the highest performance. Therefore, results correspond to these

classifiers are presented in the paper.

6

Table 3: Performance of various flavours of naïve Bayes classifiers in cross-validation and on test set. The results of

applying the different flavours of naïve Bayes are indicated by the suffixes. ((i : “_high”, (ii : “_all”, (iii):

“_categorical”, and (iv : “_mixed”)

Flavour of naïve Bayes

Averaged macro-F1

over cross-validation Macro-F1 on test set

bernouilli_all 96.2% 96.4%

bernouilli_high 97.2% 97.4%

bernouilli_categorical 97.0% 97.2%

bernouilli_mixed 96.7% 97.2%

We would like to point out that in the case of the naïve Bayes classifier, as with the

following algorithms, in cases where proteins with an EC x are found to never be falsely predicted

in training, the algorithm assigns EC x whenever a prediction is made by the same tools found to

never make a false positive prediction in training.

Training on different tool combinations

We experimented with training on predictions from different combinations (or subsets) of tools.

Here we built Naïve Bayes classifiers using only high-confidence predictions from individual

tools. The feature vectors for each EC are constructed as described in (6) with the following

exceptions:

1. Predictions coming only from tools of interest are considered.

2. The length of the feature vector is now the number of tools in the combination of interest

that can also predict the EC.

Logistic regression model

 We train a logistic regression model for each EC class to examine the impact of using a

weighted combination of classifiers. In this case, our feature vectors are constructed using one-

hot encoding, reflecting—except in the case of CatFam—whether the EC was predicted and if so

whether it was done with high- or low-confidence; in the case of CatFam, the encoding only

reflects whether a prediction was made or not. As with naïve Bayes, we build the feature vector

to be of a length reflecting the tools that can predict the EC in question.

 We performed five-fold cross-validation to find the optimal value for parameter C when

using either L1- or L2-regularization. The cost function for the logistic regression model we train

for each EC is as follows in the case of L2-regularization

1

2
𝑤 ⋅ 𝑤 + 𝐶 ∑ log (𝑒−𝑦𝑖(𝑋𝑖

𝑇𝑤+𝑐) + 1)

𝑛

𝑖=1

(11)

and in the case of L1-regularization

‖𝑤‖1 + 𝐶 ∑ log (𝑒−𝑦𝑖(𝑋𝑖
𝑇𝑤+𝑐) + 1)

𝑛

𝑖=1

(12)

Here, n is the number of training examples and i indexes over each of these examples. w is

a vector for which wj is the weight for the jth feature; Xi is the feature vector representing the ith

training example; yi is the label of the ith training example where 𝑦𝑖 = 1 if the ith protein belongs

to the EC class and 𝑦𝑖 = 0 otherwise. C represents the inverse of the regularization strength (that

7

is, smaller values of C result in higher regularization as the norm of the weight vector grows more

important in the cost function).

We also compute regression models by applying a correction for class imbalance. Class

imbalance arises given that for each EC, the number of positive examples (true positives and false

negatives) is not typically comparable to the number of negative examples (EC falsely predicted

by any tool . To do so, we used the “balanced” option in the SciKit-learn package [7, 8], which

calculates class weights i for class i as follows:

σ𝑖 =
∑ 𝑁𝑖

𝑘
𝑖=1

𝑘 ∙ 𝑁𝑖

(13)

 Here, k is the total number of classes (k=2 in this report), and Ni is the number of training

examples with label i. The class weight is applied to the cost function as follows in the case of

L2-regularization

1

2
𝑤 ⋅ 𝑤 + 𝐶 ∑ σ𝑖 ⋅ log (𝑒−𝑦𝑖(𝑋𝑖

𝑇𝑤+𝑐) + 1)

𝑛

𝑖=1

(14)

and in the case of L1-regularization

‖𝑤‖1 + 𝐶 ∑ σ𝑖 ⋅ log (𝑒−𝑦𝑖(𝑋𝑖
𝑇𝑤+𝑐) + 1)

𝑛

𝑖=1

(15)

As a consequence, the error in predicting the smaller class (either positive or negative examples

for an EC) is amplified when minimizing the value of the cost function.

During cross-validation, we find the following values of C to give the highest macro-

averaged F1-score. Therefore, we use the corresponding values on the test set.

Table 4: Optimal C-value as found through cross-validation for various settings of logistic regression.

Regularization Balanced? C

L1 No 400

L1 Yes 90

L2 No 1000

L2 Yes 10

Random forest

 We train a random forest classifier [9] for each EC class. Each feature vector here is of

length 5, each cell representing the confidence of the EC prediction by the corresponding tool.

𝑣1 = {
1 if CatFam has made this prediction (16)
0 otherwise

𝑣2 = {
2 if DETECT has made this prediction with high confidence
1 if DETECT has made this prediction with low-confidence
0 otherwise

𝑣3 = {
2 if EFICAz has made this prediction with high confidence
1 if EFICAz has made this prediction with low-confidence
0 otherwise

𝑣4 = {
2 if EnzDP has made this prediction with high confidence
1 if EnzDP has made this prediction with low-confidence
0 otherwise

8

𝑣5 = {
2 if PRIA has made this prediction with high confidence
1 if PRIA has made this prediction with low-confidence
0 otherwise

We built random forest classifiers optimized per EC as follows. We performed cross-validation

for each EC, varying the seed to 3 values to account for the inherent randomness in the construction

of random forest classifiers, and found the simplest settings of the hyper-parameters that provided

the best F1-score. The hyper-parameters, sorted by decreasing priority, are as follows (with values

indicated in parentheses): number of trees (10, 20, 30, 40, 50, 100), maximum tree depth (2, 4, 6,

8, 10), number of features to consider when performing a split (2 or 5), and whether the gini or the

entropy function is considered to measure the quality of a split.

In each case, we also separately experimented with using two types of balanced random

forest classifiers and a non-balanced random forest classifier. With the balanced random forest

classifier (referred to simply as “balanced” , class imbalance is corrected when building the trees;

in another flavor of the balanced classifier, the bootstrap sample upon which each tree is grown is

considered when corrected class imbalance (referred to as “balanced_subsample” . Little

difference in overall performance on the test set was found (Table 5); for convenience, we show

the results when using the non-balanced random forest classifier.

Table 5: Performance of various flavours of random forest classifiers on test set

Flavour of random forest Macro-F1 on test set

Balanced subsample 97.2%

Balanced 97.3%

Not balanced 97.3%

C. Methods of analyzing results

Performance measures

On an enzymatic dataset, we measure performance for a single enzyme class i through

precision (pi) and recall (ri).

𝑝𝑖 =  
tpi

tpi + fpi

(17)

𝑟𝑖 =  
tpi

tpi + fni

(18)

In the above, tpi, fpi and fni represent the number of true positives, false positives and false

negatives for the ith enzyme class, respectively. In terms of summary statistics over all ECs, we

macro-average precision and recall so as to equally represent enzyme classes within the dataset,

irrespective of class size. We extend the equation for calculating macro-averaged precision and

recall as given in [10] as follows:

9

𝑃𝑀 =
∑ 𝑝𝑖

𝑙𝑃∩𝑅
𝑖=1

𝑙𝑃

(19)

𝑅𝑀 =
∑ 𝑟𝑖

𝑙𝑅
𝑖=1

𝑙𝑅

(20)

Here, lP is the number of classes predicted by the method/tool, lR is the actual number of

classes in the dataset, and 𝑙𝑃∩𝑅 is the number of classes predicted by the method/tool but also

actually present in the dataset. Therefore, (19) penalises the prediction of classes not present in

the dataset. As we equally value precision and recall, we often report the performance using the

F1-score as given below:

𝐹1 = 2  ×  
𝑃𝑀 × 𝑅𝑀

𝑃𝑀 + 𝑅𝑀

(21)

 We note that, unless macro-averaging is specified (such as when annotations between

models, or between organisms are compared), we compute precision and recall over the entire

dataset as follows (i.e. finding the number of predictions that is either a true positive, false positive

or false negative over any class i). This is also referred to as micro-averaging [10]:

𝑃 =  
∑ tpi𝑖

∑ tpi𝑖 + ∑ fpi𝑖

(22)

𝑅 =  
∑ tpi𝑖

∑ tpi𝑖 + ∑ fni𝑖

(23)

On a non-enzymatic dataset, we measure performance in terms of specificity (or the true

negative rate) as given below.

specificity =  
tn

tn + fp
(24)

 Here, tn and fp denote the number of true negative and the number of false positives

respectively (respectively: the number of non-enzymes correctly not predicted to be enzymes, and

incorrectly predicted to be enzymes).

Performance on multi-functional proteins

We computed the performance of individual tools and ensemble methods on proteins

associated with more than one EC. We identified such proteins as those associated with more than

one complete EC number. We used the same measures as given in equations (17)-(21) to compute

performance on multifunctional proteins; that is, we treat the predictions of individual ECs (that

may or may not co-occur) separately.

When focusing on performance on multi-functional proteins and concerning those ECs that

are predictable by all tools, we only consider performance on those multi-functional proteins

assigned in SwissProt with all ECs predictable by all tools.

Performance on test set based on sequence similarity to training data

 We further compared the performance of each classifier on the test dataset, stratified based

on its similarity to training data. For these purposes, we employed as measure the maximum test-

to-training sequence identity, abbreviated as MTTSI (also used in [1, 11]). For each EC

represented in the entire dataset, we calculate the sequence identity of test sequences against

training sequences belonging to the same enzyme class (using DIAMOND [12]); then, given a

10

MTTSI measure of x%, we calculate macro-precision and macro-recall for those sequences from

the test set sharing a maximum sequence identity of x% to any of the corresponding training

sequences (restricting ourselves to results with E-value at most 0.1).

D. Metabolic model reconstruction

KEGG database: curation

The KEGG database [13] was set up as one of the databases that can be used for metabolic model

reconstruction. First, all KEGG reactions and corresponding equations were downloaded. KEGG

reaction-EC mappings were used to capture biochemical reactions catalyzed by different enzymes.

Post-processing steps were further undertaken to finally produce the reaction database ultimately

used for metabolic network reconstruction, comprising 9,509 reactions. These post-processing

steps are outlined below.

Removal of duplicate metabolites and reactions, and macromolecular processing

KEGG contains instances of equivalent reactions and compounds, especially in the case of glycans

which have both glycan identifiers and compound identifiers (respectively of the form Gxxxxx

and Cxxxxx, where x is a digit). Such metabolites were identified and a single one retained in the

reaction database, duplicate reactions subsequently removed. Reactions involving

macromolecular processes were excluded from the reaction database. These were identified by

scanning reactions with undefined stoichiometries (such as an n instead of an actual number), or

with the same compound appearing on both sides of the equation. Reactions marked as incomplete

or unclear in KEGG were also removed. Reactions (1,204 in the entire reaction database)

involving generic compounds (identified in KEGG as being generic or not having a formula) are

separately output for user consideration.

Determination of reaction reversibility

Reactions were by default marked as reversible (lower bound of -1000 and upper bound of 1000).

However, following the rule of thumb outlined in [14], reactions involving the transfer of a

phosphate from an ATP molecule were set as irreversible, with the exception of ATP synthetase

(ECs 2.3.3.8 and 6.2.1.18 respectively corresponding to reactions R00352 and R01322).

Spontaneous and non-enzymatic reactions

173 biochemical reactions are marked in KEGG as either spontaneous or non-enzymatic (in the

“Comment” section of the entry and are thus considered as being present in network

reconstructions irrespective of EC annotation. In the case of KEGG, the following default

reactions are also included in all initial draft reconstructions: (i) those enabling the diffusion of

small hub metabolites (water, oxygen, carbon dioxide, ammonia, diphosphate, phosphate and

protons); (ii) those enabling the interconversion of glucose into its two stereoisomers; (iii)

conversion of various fatty acyl-CoA metabolites into a generic acyl-CoA metabolite; and (iv) a

reaction accounting for energy expenditure for non-growth associated reasons.

Balancing reactions

Reactions were verified for being balanced, including with an R group, by verifying whether the

sum of elements on the left and right of the chemical equation match. Those that could be easily

11

fixed with commonly occurring metabolites were fixed; reactions that remained unbalanced were

discarded. In a last step, we verified that reactions were balanced by performing simulations

involving the entire reaction database. In short, the reaction database, lacking exchange reactions,

represents a closed system through which there can be no metabolite consumption or production;

in the presence of imbalance, we expect that there would be a metabolite that could enter or exit

the system. For these purposes, we performed flux balance analysis simulations (as described

later), setting the objective function as production or consumption of a separate metabolite in each

simulation. We then found that there were no metabolites that could either be produced or

consumed in these experiments, confirming the nature of our database as a closed system.

BiGG databases and addition of non-EC associated reactions via sequence similarity

In addition to the KEGG database, we constructed Architect such that it can use various

BiGG-based databases for model reconstruction. These are taken from the CarveMe

reconstruction tool, and as described in [15], have been curated extensively. Four reaction

databases are thus available, in addition to a universal database of metabolism: databases specific

to Gram-positive and Gram-negative bacteria, as well as those concerning archaeal and

cyanobacterial species. The ECs associated with each gene is parsed out and is used by Architect’s

model reconstruction module.

Furthermore, given the presence of gene-associated reactions that are not linked to any EC

in the BiGG-based databases, Architect uses sequence similarity to find evidence for the presence

of such reactions. Therefore, we compiled a database consisting of protein sequences associated

with each of these reactions by using information from CarveMe’s GitHub repository

(https://github.com/cdanielmachado/carveme).

Last, we identified a set of reactions in the BiGG database marked as either spontaneous

or non-enzymatic in the different databases (557 and 548 reactions in the archaeal and

cyanobacterial databases respectively, and 547 in each of the Gram-positive, Gram-negative and

main databases). As in the case of the KEGG reaction database, such reactions are always included

in metabolic models reconstructed by Architect.

Relevant simulation details

Through our gap-filling procedure, we intend to supplement the draft model with reactions

necessary for production of biomass (as defined by the user). In particular, we find a small set of

reactions whose addition to the model enables flux through the biomass reaction, while prioritizing

those with higher confidence from enzyme annotation. The following details mathematical

formulations relevant to metabolic simulations using flux balance analysis and related concepts,

followed by details of the gap-filling formulation.

Flux Balance Analysis (FBA)

Flux Balance Analysis maximizes flux through an objective function (like biomass

production) given reaction equations and physicochemical constraints such as lower and upper

bounds for reaction fluxes. It is formulated as the following linear programming (LP) problem

[16].

max 𝑐𝑇𝑣 (25)

such that Sv = 0,

12

and 𝑣𝐿 ≤ 𝑣 ≤ 𝑣𝑈

Given a metabolic model with m metabolites and n reactions, the flux distribution is the only

variable in the formulation and is given by v, a vector of length n where vi represents the flux

through the ith reaction; 𝑣𝐿 and 𝑣𝑈 (both vectors of length n) constrain the reaction fluxes. S is an

m by n stoichiometric matrix, representing the stoichiometries of the m involved metabolites in n

model reactions; the constraint “Sv = 0” enforces steady state within the system. The n-vector c is

used to indicate the ratio of reaction fluxes to maximize; in particular, we maximize flux through

the objective function (at index k) by setting 𝑐𝑖 = 1 when 𝑖 = 𝑘, and 𝑐𝑖 = 0 otherwise.

Flux Variability Analysis (FVA)

For a given fraction (f) of the optimal value of the objective function as computed using

FBA (α), the allowable range of flux [𝑣𝑖,𝑚𝑖𝑛, 𝑣𝑖,𝑚𝑎𝑥] through the ith reaction can be computed

through flux variability analysis through separate minimization and maximization LP formulations

[17]:

min/max 𝑣𝑖 (26)

such that Sv = 0,

𝑣𝐿 ≤ 𝑣 ≤ 𝑣𝑈,

and 𝑐𝑇v ≥ 𝑓 ⋅ α

Dead-end metabolites and their identification

Given the steady-state assumption inherent within FBA, a metabolite which is neither

exported nor imported but strictly present within the network can neither accumulate nor deplete;

that is, any metabolite produced must be completely consumed, and vice-versa. As a consequence,

reactions involved with a metabolite that is either not consumed or not produced (called a dead-

end) cannot carry flux [18]. We adopt the following procedure to identify those metabolites that

are dead-ends due to network structure and reaction reversibility. We scan each row of the

stoichiometric matrix and identify those reactions that either consume or produce the metabolite

in question. If the metabolite is involved in only 1 reaction, it is marked as a dead-end. Otherwise,

if it is only produced or consumed (the reactions involved also being irreversible), the metabolite

is identified as a dead-end.

Identification of gap-filling candidates required for biomass production

Given a high-confidence metabolic model and a user-specified biomass reaction (as

described in the main text), reactions from the reaction database and exchange reactions for

deadend metabolites may still not suffice to produce some biomass components; therefore, we

initially find biomass components for which a demand reaction is clearly required. To do so, we

first create a universal metabolic network consisting of high-confidence reactions and all other

reactions from the entire reaction database; we call this network N. We verify that reactions in the

universal network suffice to produce biomass. If not, we perform multiple flux balance analysis

(FBA) simulations, individually maximizing production of each biomass component; for each

component that cannot be produced, a demand reaction is created. Such a reaction is marked as

essential and added to N.

13

We then prioritize amongst gap-filling candidates as follows. We perform flux variability

analysis on gap-filling reactions in N and find those reactions that can carry non-zero flux to

produce at least 50% of the optimal flux through the biomass function in the universal database

(that is, those having 𝑣𝑖,𝑚𝑖𝑛 ≠ 0 or 𝑣𝑖,𝑚𝑎𝑥 ≠ 0). These constitute our gap-filling candidates. We

further mark as essential those gap-filling candidates required for biomass production: such

reactions can only carry non-zero flux (that is, 𝑣𝑖,𝑚𝑖𝑛 > 0 or 𝑣𝑖,𝑚𝑎𝑥 < 0). The other reactions form

our set R of gap-filling candidates.

Essentiality experiments

In a reaction knock-out experiment, FBA is performed following the deletion of reactions

of interest (setting 𝑣𝑖 = 0 for the ith reaction). In the case where the value of the objective function

is consequently zero (taken here as any value less than 0.0001), the deleted reaction is identified

as essential.

In this study, gene essentiality experiments were performed. For gold-standard and

CarveMe models, reactions that ought to be deleted following deletion of a gene were found by

interpreting Boolean statements representing gene-protein-reaction associations [14] given in the

model. If biomass could not be produced, the gene in question was marked as essential. In the

case of the models reconstructed by Architect, a different procedure was applied for identifying

essential genes given that gene-protein-relationships are not directly predicted by our pipeline.

Here, we assume a one-to-one relationship between gene and protein, and an OR-relationship

between multiple proteins that may be associated with a particular reaction. We note that as a

consequence of the latter assumption, only genes uniquely associated to at least one reaction may

be found essential in a model reconstructed by Architect.

E. Model reconstructions: technical details

Supplementary Table 2 summarizes the information that went into metabolic model reconstruction

and accompanying comparisons for the organisms of interest in this paper. The following gives

technical details on how the model reconstructions were made using CarveMe, PRIAM and

Architect.

CarveMe reconstructions

All CarveMe reconstructions were performed as follows:
carve <fasta_file>

In the case of E. coli, we note that running CarveMe with or without minimal media (as defined

by CarveMe) yields the same network:
carve <fasta_file> -g M9

Given that we ran CarveMe without defined media, we only include an import reaction for glucose

for the Architect models. To ensure comparability, we used the same biomass as used by CarveMe

for model reconstruction in Architect, as indicated in the table above.

PRIAM reconstructions

14

In addition to the specification of the --complete_genome, --cn and --nc flags, all

PRIAM-based reconstructions were performing using the following parameters:
--pt: 0.5

--mp: 60

--cc: T

Architect reconstructions

When Architect was run on the BiGG reaction database, non-EC gene-associated reactions

were included in the models when predicted at an E-value lower than 10-20.

When running Architect, the default integrality constraint is set at 10-8, and can be

increased in case of error (such as due to timeout or out-of-memory). This was done in the case

of C. elegans, whose reconstruction with the BiGG database was performed under a reduced

integrality constraint of 10-7.

Links to external databases are included in the SBML output using the MetaNetX database

[19].

15

F. Additional results

3.1a Filtering multifunctional enzyme predictions has minimal impact on performance

Architect’s enzyme annotation module, as presented in the text, reports all high-confidence

predictions made for each protein thus offering the possibility of annotating a protein with multiple

enzyme activities. Such functionality is of interest given that approximately 5% of enzymes

annotated by SwissProt are multifunctional (Supplemental Figure 1C). Consequently, such

enzyme annotation tools as PRIAM (Claudel-Renard, Chevalet et al. 2003), EFICAz (Kumar and

Skolnick 2012) and EnzDP (Nguyen, Srihari et al. 2015) have additional logic for filtering multiple

EC-annotations. Here, we investigated integrating the following heuristic with the random forest,

logistic regression and naïve Bayes classifiers: proteins are assigned the highest-scoring EC and

allowed additional high-confidence ECs only if they co-occur with the top-scoring EC at least 10

times in the training data. Comparing the performance of the ensemble methods on subsections of

the data composed only of single- and multifunctional proteins, we found that the application of

the heuristic improved macro-precision for the single-functional proteins, but with a significant

decrease in the macro-recall of the multifunctional proteins (Supplemental Figures 4 and 5).

Given that the addition of this heuristic impacts performance on this class of proteins, Architect’s

enzyme annotation module outputs all EC predictions.

3.4 Comparing gene essentiality predictions

Beyond enzyme annotations, we were interested in comparing the performance of models

generated by Architect and CarveMe in metabolic flux-based simulations exploring predictions of

gene essentiality. PRIAM-based reconstructions were excluded from these comparisons as they

require additional refinements to be used as models of metabolic flux. Further, only models based

on the two bacterial species (N. meningitidis and E. coli) were examined to avoid the potentially

confounding influence of assigning reactions to specific subcellular compartments. In the

subsequent comparisons, precision and recall were computed with reference to gene deletion

studies performed in vivo [20, 21]. In general, there is little difference in the precision and recall

of CarveMe and Architect (whether using the KEGG or the BiGG database for model

reconstruction or relying only on EC annotations obtained from either EnzDP or PRIAM; Figure

3 and Supplemental Figures 12 and 13). However, lower recall was obtained when DETECT

predictions were used in isolation, highlighting again the value of high predictive range in tools

involved in model reconstruction. At the same time, models generated from all reconstruction tools

generally exhibited low recall with respect to predicting gene essentiality. This relatively high rate

of false negatives may be explained by several factors including: (1) certain essential genes may

have been excluded from reconstructed models or misassigned function; (2) key Boolean

relationships between multiple genes associated with a single reaction — such as with heteromeric

enzyme complexes [14] — may not be captured in the models; or (3) the biomass equation used

during model simulations may be incomplete. Interestingly, of the genes experimentally found to

be essential, 78% and 83% were incorporated into Architect models for N. meningitidis and E. coli

respectively built using KEGG; however, most of these (43% and 37% respectively) were not

predicted to be essential (Supplemental Table 1), suggesting avenues for improving Architect by

either limiting pathways predicted from ECs (thereby reducing pathway redundancy and

highlighting the essentiality of certain genes), or through better representations of gene-protein-

reaction relationships.

16

G. Supplementary Tables

Supplementary Table 1: Overlap of in silico determined essential genes with those found essential in vivo.

 Method

TP # FP
FN

(altogether)

essential

genes not

included

in output

model

Precision Recall

Recall

(only

considering

genes

included in

model)

N
.

m
en

in
g

it
id

is

Architect-KEGG 80 23 160 53 77.7% 33.3% 42.8%

Architect-BiGG 89 18 151 73 83.2% 37.1% 53.3%

CarveMe 84 21 156 45 80.0% 35.0% 43.1%

Arch-DETECT 47 17 193 74 73.4% 19.6% 28.3%

Arch-EnzDP 77 26 163 72 74.8% 32.1% 45.8%

Arch-PRIAM 77 20 163 60 79.4% 32.1% 42.8%

E
.

co
li

Architect-KEGG 76 14 173 43 84.4% 30.5% 36.9%

Architect-BiGG 51 15 198 61 77.3% 20.5% 27.1%

CarveMe 57 8 192 39 87.7% 22.9% 27.1%

Arch-DETECT 37 15 212 81 71.2% 14.9% 22.0%

Arch-EnzDP 64 15 185 59 81.0% 25.7% 33.7%

Arch-PRIAM 53 15 196 47 77.9% 21.3% 26.2%

17

Supplementary Table 2: Comparisons of various aspects of model reconstruction for C. elegans, N. meningitidis and

E. coli. The number of reactions in reconstructed models that are not blocked (and corresponding number of

metabolites) is indicated within brackets, except in the case of automatically reconstructed C. elegans models (*). The

number of exchange reactions added by Architect for deadend metabolites is given within brackets (**).

 Organism

 C. elegans N. meningitidis E. coli
Architect,

CarveMe and

PRIAM-based

reconstructions

Source of

protein

sequences

WormBase database Ensembl database UniProt

Proteome ID:

UP000000625

Num of protein

sequences

20,483 2,063 4,391

Architect

reconstruction

Biomass used Main CarveMe biomass

(using KEGG identifiers

when using KEGG

database; same as for other

organisms)

Gram-negative

CarveMe biomass

Gram-negative

CarveMe biomass

Architect

reconstruction

using KEGG

Num of protein

sequences

1,389 387 967

Num of

reactions*

1,433 885 (347) 1,671 (864)

Num of

metabolites*

1,530 1,082 (297) 1,689 (605)

Num of gap-

filling

reactions**

32 (14) 20 (14) 10 (7)

Architect

reconstruction

using KEGG

and predictions

from

individual

tools

Num of

reactions*

DETECT: 1,025

EnzDP: 1,271
PRIAM: 1,356

DETECT: 773 (301)

EnzDP: 814 (323)
PRIAM: 861 (342)

DETECT: 1,108 (449)

EnzDP: 1,500 (712)
PRIAM: 1,697 (852)

Num of

metabolites

DETECT: 1,221

EnzDP: 1,402

PRIAM: 1,474

DETECT: 960 (256)

EnzDP: 1,013 (282)

PRIAM: 1,060 (295)

DETECT: 1,329 (350)

EnzDP: 1,586 (505)

PRIAM: 1,720 (595)

Num of gap-

filling

reactions**

DETECT: 38 (27)

EnzDP: 42 (26)

PRIAM: 41 (25)

DETECT: 44 (31)

EnzDP: 31 (25)

PRIAM: 27 (21)

DETECT: 44 (30)

EnzDP: 23 (18)

PRIAM: 19 (17)

Architect

reconstruction

using BiGG

Num of protein

sequences

432 298 670

Num of

reactions*

1,409 1,600 (527) 3,023 (2,356)

Num of

metabolites*

1,312 1,513 (400) 2,049 (1,387)

Num of gap-

filling

reactions**

25 (10) 29 (12) 5 (2)

CarveMe

reconstruction

Biomass used Main CarveMe biomass Gram-negative

biomass

Gram-negative

biomass

Num of

genes/protein

sequences

561 613 1,639

Num of

reactions*

1,538 1,569 (1,541) 2,833 (2,810)

Num of

metabolites*

1,100 1,138 (1,110) 1,735 (1,717)

18

Reconstruction

using PRIAM

Num of protein

sequences

920 452 1,052

Num of

reactions

1,387 867 1,890

Num of

metabolites

1,397 935 1,717

Gold-standard

models

Provenance WormJam [22]; version

2019_01_01 from

https://gh.wormjam.life

Nmb_iTM560 [21] iML1515 [20]

Num of genes 1,520 559 1,515

Num of

reactions*

3,632 (2,947) 1,527 (not available) 2,719 (2,459)

Num of

metabolites*

2,833 1,297 1,192

UniProt gold-

standard

annotations

Provenance Uniprot Uniprot Using annotations

for UP000000625

in SwissProt

Num of protein

sequences with

EC annotations

when

comparing

against KEGG-

based Architect

1,446 495 1,123

Num of protein

sequences with

EC annotations

when

comparing

against BiGG-

based Architect

659 504 1,111

Essentiality

results

Provenance Not applicable [21] [20]

19

Supplementary Table 3: Breakdown of annotations of SwissProt sequences by individual and ensemble methods into

true positives, true negatives, false positives and false negatives

 Enzymatic test set Non-enzymatic test set

 # TPs # FPs # FNs

prots
annotated

as enzymes

FP

annotations

TN

proteins

Sum of FP

annotations

In
d
iv

id
u

al
 t

o
o
ls

CatFam

31,364

3,644

13,209

5,090

5,159

288,977

8,803

DETECT_all

34,525

19,762

10,048

16,262

24,544

277,805

44,306

DETECT_high

34,158

1,476

10,415

2,110

2,163

291,957

3,639

EFICAz_all

32,466

5,099

12,107

3,909

4,283

290,158

9,382

EFICAz_high

31,606

2,569

12,967

1,497

1,505

292,570

4,074

EnzDP_all

39,649

134,150

4,924

49,229

151,923

244,838

286,073

EnzDP_high

37,930

821

6,643

1,587

1,760

292,480

2,581

PRIAM_all

43,099

2,430

1,474

4,293

4,870

289,774

7,300

PRIAM_high

42,845

1,227

1,728

2,149

2,597

291,918

3,824

E
n

se
m

b
le

 m
et

h
o

d
s

Majority rule

42,030

1,362

2,543

7,763

8,501

286,304

9,863

EC-specific

tool

43,430

479

1,143

10,500

10,961

283,567

11,440

Naïve Bayes

43,404

281

1,169

2,308

2,418

291,759

2,699

L1-regression

43,559

291

1,014

8,983

9,248

285,084

9,539

L2-regression

43,567

290

1,006

8,815

9,084

285,252

9,374

Random forest

43,595

297

978

8,601

8,899

285,466

9,196

20

Supplementary Table 4: Breakdown of organism-specific annotations by ensemble and individual tool into true

positive, false positive and false negative. This comparison is done against UniProt annotations for sequences used

in model reconstruction, and the predictions from the ensemble method come the naïve Bayes classifier for ECs in

Architect’s training database, and PRIA (high-confidence) otherwise.

Tool # TP
FP

in all

FP

on enzymes

FP on non-

enzymes

(# proteins in
brackets)

FP on

proteins

with
partial_ECs

FN

C
.
el

eg
a

n
s

DETECT

825
753 113 495 (486) 145 763

EnzDP

995
545 83 390 (335) 72 593

PRIAM

1,170
667 194 413 (374) 60 418

Architect

1,260
867 117 648 (613) 102 328

N
.

m
en

in
g

it
id

is
 DETECT

355
109 45 44 (43) 20 206

EnzDP

415
75 28 28 (26) 19 146

PRIAM

460
96 41 32 (29) 23 101

Architect

482
108 42 44 (41) 22 79

E
.

co
li

DETECT

648
231 144 29 (28) 58 762

EnzDP

1,087
186 120 33 (26) 33 323

PRIAM

1,253
145 92 16 (15) 37 157

Architect

1,257
173 102 24 (23) 47 153

21

H. Bibliography

1. Kumar, N. and J. Skolnick, EFICAz2.5: application of a high-precision enzyme function predictor to

396 proteomes. Bioinformatics, 2012. 28(20): p. 2687-8.
2. Claudel-Renard, C., et al., Enzyme-specific profiles for genome annotation: PRIAM. Nucleic Acids

Res, 2003. 31(22): p. 6633-9.
3. Nursimulu, N., et al., Improved enzyme annotation with EC-specific cutoffs using DETECT v2.

Bioinformatics, 2018. 34(19): p. 3393-3395.
4. Nguyen, N.N., et al., ENZDP: Improved enzyme annotation for metabolic network reconstruction

based on domain composition profiles. Journal of Bioinformatics and Computational Biology,
2015. 13(5).

5. Yu, C., et al., Genome-wide enzyme annotation with precision control: catalytic families (CatFam)
databases. Proteins, 2009. 74(2): p. 449-60.

6. van Erp, M., L. Vuurpijl, and L. Schomaker. An overview and comparison of voting methods for
pattern recognition. 2002. Niagara on the Lake, Ontario, Canada: IEEE.

7. Pedregosa, F., et al., Scikit-learn: machine learning in Python. Journal of Machine Learning
Research, 2011. 12: p. 2825-2830.

8. King, G. and L. Zeng, Logistic regression in rare events data. Political Analysis, 2001. 9(2): p. 137-
163.

9. Breiman, L., et al., Classification and Regression Trees. 1984, Boca Raton, FL: CRC press.
10. Sokolova, M. and G. Lapalme, A systematic analysis of performance measures for classification

tasks. Information Processing & Management, 2009. 45(4): p. 427-437.
11. Arakaki, A.K., Y. Huang, and J. Skolnick, EFICAz2: enzyme function inference by a combined

approach enhanced by machine learning. BMC Bioinformatics, 2009. 10: p. 107.
12. Buchfink, B., C. Xie, and D.H. Huson, Fast and sensitive protein alignment using DIAMOND.

Nature Methods, 2015. 12(1): p. 59-60.
13. Kanehisa, M., et al., KEGG as a reference resource for gene and protein annotation. Nucleic Acids

Res, 2016. 44(D1): p. D457-62.
14. Thiele, I. and B.O. Palsson, A protocol for generating a high-quality genome-scale metabolic

reconstruction. Nat Protoc, 2010. 5(1): p. 93-121.
15. Machado, D., et al., Fast automated reconstruction of genome-scale metabolic models for

microbial species and communities. Nucleic Acids Res, 2018. 46(15): p. 7542-7553.
16. Orth, J.D., I. Thiele, and B.O. Palsson, What is flux balance analysis? Nat Biotechnol, 2010. 28(3):

p. 245-8.
17. Mahadevan, R. and C.H. Schilling, The effects of alternate optimal solutions in constraint-based

genome-scale metabolic models. Metab Eng, 2003. 5(4): p. 264-76.
18. Ponce-de-León, M., F. Montero, and J. Peretó, Solving gap metabolites and blocked reactions in

genome-scale models: application to the metabolic network of Blattabacterium cuenoti. BMC
Syst Biol, 2013. 7(114).

19. Moretti, S., et al., MetaNetX/MNXref: unified namespace for metabolites and biochemical
reactions in the context of metabolic models. Nucleic Acids Res, 2021. 49(D1): p. D570-D574.

20. Monk, J.M., et al., iML1515, a knowledgebase that computes Escherichia coli traits. Nat
Biotechnol, 2017. 35(10): p. 904-908.

21. Mendum, T.A., et al., Interrogation of global mutagenesis data with a genome scale model of
Neisseria meningitidis. Genome Biology, 2011. 12.

22. Witting, M., et al., Modeling Meets Metabolomics-The WormJam Consensus Model as Basis for
Metabolic Studies in the Model Organism Caenorhabditis elegans. Front Mol Biosci, 2018. 5: p.
96.

