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A. Individual enzyme annotation tools 

 We ran the following enzyme annotation tools: EFICAz v2.5.1 [1], PRIAM [2], DETECT 

v2 [3], EnzDP [4] and CatFam [5].  For each tool, we only considered complete EC annotations 

(that is, of the form x.x.x.x, where x is a number).  We labelled as “high-confidence” predictions 

that satisfy the following criteria for each tool: those predictions labelled as “high-confidence” in 

EFICAz; those achieving a score above the cutoff of 0.2 and 0.7 in PRIAM and EnzDP 

respectively; and those passing the EC-specific cutoffs of DETECT v2.  The cutoff of 0.7 was 

found optimal when looking at EnzDP’s performance on the training data (Figure 1 below), while 

the 0.2 cutoff was suggested in the README file associated with PRIAM for sequences of non-

bacterial origin. We considered all predictions from CatFam to be of high-confidence.  Remaining 

predictions from EFICAz were considered to be of “low-confidence”.  For the other 3 tools, 

remaining predictions with a score of at least 0.0001 were considered “low-confidence” 

predictions.  These levels of confidence are used in feature vector construction when training and 

testing the ensemble methods.  In general, each element of a feature vector represents the level of 

confidence in a tool’s prediction. 

 

 
Figure 1: Macro-precision, macro-recall and F1-score of (i) EnzDP and (ii) PRIAM at different cutoffs.  Performance 

is summarized over 80% of Architect’s entire training database; this corresponds to the portion of the database used 

to train the ensemble methods which were then tested with performance summarized in Figure 1 of the main text.   

 

 

B. Ensemble approaches 

 

Majority rule 

 One of the simplest benchmarking methods we employ to combine predictions from 

multiple classifiers is through a majority rule.  Here, we explore three main voting schemes: (M1) 

simple majority, (M2) plurality voting [6], and (M3) unanimous voting.  When a simple majority 

rule (M1) is applied, an EC is assigned to a protein if it is predicted by at least half (that is 3) of 

all tools applied.  In plurality voting (M2), a protein is assigned the EC predicted by most methods; 

this is a more relaxed version of M1 such that agreement by fewer than 3 tools for an EC is allowed.  

On the other hand, unanimous voting (M3) is the most conservative of the majority rules, where 

an EC is assigned to a protein sequence only if all 5 enzyme annotation tools agree.  In another 
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version of the M1 and M3 rules (M1.5, M3.5), rather than considering   as the “maximum” number 

of tools, we define a different “maximum” for each EC, counting it as the total number of tools 

that can actually predict that EC.  Furthermore, we present results of experimenting with only high-

confidence predictions from each method, or on all predictions.  We note that both in cross-

validation and on the test data (Table 1), applying M2 on the high-confidence dataset gives the 

best result, and therefore present results from this rule unless otherwise specified.  

 
Table 1: Performance of various voting rules for enzyme annotation in cross-validation and on test set.   

The suffixes “_low” and “_high” indicate whether both all or only high-confidence predictions were considered 

respectively. 

Flavour of voting rule 

Averaged macro-F1  

over cross-validation Macro-F1 on test set 

M1_low 82.5% 82.0% 

M1.5_low 67.6% 67.3% 

M2_low 84.0% 80.9% 

M3_low 41.8% 41.8% 

M3.5_low 78.7% 77.9% 

M1_high 82.1% 81.7% 

M1.5_high 90.4% 89.5% 

M2_high 90.7% 90.4% 

M3_high 39.9% 39.8% 

M3.5_high 77.6% 77.0% 

 

 

EC-specific tool 

Another benchmarking method is to find, for each EC, the tool(s) which performs best in 

the training set, and to retain predictions of that EC in the test set only when made by the best-

performing tool(s).  We define the best-performing tool as the tool that achieves the highest F1-

score on the training data.  To control for differences across the data from influencing what defines 

the top-performer for an EC, we find the tool(s) achieving the highest F1-measure over each four-

fifths of the training data in cross-validation.  A method that is the top-performer for an EC across 

all 5 four-fifths of the data is marked as a “high-confidence EC-specific tool”, and is otherwise 

marked as a “low-confidence EC-specific tool” (given that it is the top performer for some but not 

all parts of the training data).   

We specifically considered the confidence with which each tool makes a prediction to 

identify EC-specific best tools. Therefore, for an EC x, we construct feature vectors (v) to indicate 

whether an annotation tool predicts EC x (whether with low- or high-confidence), and further 

indicate (with an additional feature) if the prediction is made with high-confidence.  For each 

prediction of EC x: 

 

𝑣1 = {
1 if CatFam has made this prediction                                                                                                                             (1)
0 otherwise                                                                                                                                                                            

 

𝑣2 = {
2 if DETECT has made this prediction with high confidence
1 if DETECT has made this prediction                                        
0 otherwise                                                                                         

 

𝑣3 = {
2 if EFICAz has made this prediction with high confidence
1 if EFICAz has made this prediction                                        
0 otherwise                                                                                      
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𝑣4 = {
2 if EnzDP has made this prediction with high confidence
1 if EnzDP has made this prediction                                        
0 otherwise                                                                                    

 

𝑣5 = {
2 if PRIA  has made this prediction with high confidence
1 if PRIA  has made this prediction                                        
0 otherwise                                                                                                                                                                      

 

 

 

Thus, this algorithm can identify tools that perform best for an EC only when their high-

confidence predictions are considered.   

Using predictions from “low-confidence EC-specific tools” (that is, top performers on at 

least a subset of the data) gives the best results on the test data, and therefore we present results 

from this technique unless otherwise specified (Table 2). 

 
Table 2: Performance of the different flavours of the EC-specific best tool on test set 

Applying EC-specific best  

tools that are found: Macro-F1 on test set 

on at least a subset of training data 97.1% 

on all subsets of training data 94.8% 

 

Naïve Bayes 

 We built a naïve Bayes classifier for each EC class.  For a particular EC predicted for a 

protein, we calculate the likelihood score in the prediction as follows, where n here is the number 

of tools that can predict the EC: 

 

𝑝(𝑦 = 1|𝑣1 = 𝛼1, 𝑣2 = 𝛼2, … , 𝑣𝑛 = 𝛼𝑛) =
𝑝(𝑦 = 1) ∙ ∏ 𝑝(𝑣𝑖 = 𝛼𝑖|𝑦 = 1)𝑛

𝑖=1

∑ 𝑝(𝑦 = 𝑘)𝑘∈{0,1} ∙ ∏ 𝑝(𝑣𝑖 = 𝛼𝑖|𝑦 = 𝑘)𝑛
𝑖=1

(2)
 

 

 

y is a binary variable denoting the membership of the protein in the EC class (true if and only if 

y  =  1).   We calculate p(𝑦 = 𝑘) as follows: 

 

𝑝(𝑦 = 1) =
number of proteins actually in EC class 

number of proteins either predicted or actually in EC class
(3)

𝑝(𝑦 = 0) =
number of proteins not actually in EC class (i.e., false positives)

number of proteins either predicted or actually in EC class
 (4)

 

 

vi represents the value of the feature vector of the ith tool.  As per the nature of naïve Bayes, we 

make the assumption that the predictions of individual tools are conditionally independent from 

each other given the class label y.  As detailed below, we experimented with different feature 

vector constructions corresponding to different methods of calculating p(𝑣𝑖|𝑦 = 𝑘). 

 

Approximating distribution of features using a Bernouilli distribution  

(i) Considering high-confidence predictions only 

We only consider high-confidence predictions made by individual tools, such that the feature 

vectors are constructed as follows:  
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𝑣𝑖 = {
1 if the ith tool predicted this EC with high-confidence                                                                                         (5)

0 otherwise                                                                                 
 

 

i ranges from 1 to m where m is the number of tools that can predict the EC in question.  Then: 

 

𝑝(𝑣𝑖 = α𝑖|𝑦 = 𝑘) =
(number of proteins for which 𝑣𝑖=α𝑖 and 𝑦=𝑘) + 1

(number of proteins for which 𝑦=𝑘) + 2
(6)  

 

where the constants added to the numerator and denominator are due to Laplace smoothing. 

 

(ii) Considering all predictions 

We consider all predictions made by individual tools, whether with low- or high-confidence: 

 

𝑣𝑖 = {
1 if the ith tool predicted this EC                                                                                                                                (7)

0 otherwise                                                                                 
 

 

We use equation (6) as given above. 

 

(iii) Accounting for the level of con iden e in    ls’ predi  i ns 

We consider all predictions made by individual tools, and have each feature reflect the level of 

confidence with which the prediction is made by the corresponding tool.  All CatFam predictions 

are considered of high-confidence.  Therefore, for ECs predictable by CatFam: 

 

𝑣1 = {
1 if CatFam predicted this EC                                                                                                                                       (8)

0 otherwise                                                                                 
 

 

For other tools that can predict the EC in question, we use the following: 
𝑣𝑖

= {
2 if the ith tool has made this prediction with high-confidence                                                                          (9)

1 if the ith tool has made this prediction  with low-confidence
0 otherwise                                                                                                                                                                                 

 

 

Approximating distribution of continuous scores with a normal distribution, and categorical 

features with a Bernouilli distribution 

Here, for predictions made by DETECT, EnzDP and PRIAM, we assume that the actual confidence 

scores with which an EC is predicted follows a normal distribution.  For each of these tools, we 

compute the sample mean (µ) and the sample standard deviation (σ) of the scores for the 

corresponding proteins.  Then, for a score s: 

𝑝(𝑣𝑖 = 𝑠|𝑦 = 𝑘) =
1

σ√2π
𝑒−

1
2

(
𝑠−μ

σ
)

2

 (10)
 

CatFam and EFICAz predictions are not given with scores.  Therefore, when assigning the value 

of the feature corresponding to these tools, we use equations (8) and (9) respectively. 

We found, as part of cross-validation and testing, that while there was little difference 

between the performance of the different flavours of naïve Bayes (Table 3), using high-confidence 

predictions only (i.e. (i)) gives the highest performance.  Therefore, results correspond to these 

classifiers are presented in the paper. 
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Table 3: Performance of various flavours of naïve Bayes classifiers in cross-validation and on test set.  The results of 

applying the different flavours of naïve Bayes are indicated by the suffixes. ((i : “_high”, (ii : “_all”, (iii): 

“_categorical”, and (iv : “_mixed”) 

Flavour of naïve Bayes 

Averaged macro-F1 

over cross-validation Macro-F1 on test set 

bernouilli_all 96.2% 96.4% 

bernouilli_high 97.2% 97.4% 

bernouilli_categorical 97.0% 97.2% 

bernouilli_mixed 96.7% 97.2% 

 

 

We would like to point out that in the case of the naïve Bayes classifier, as with the 

following algorithms, in cases where proteins with an EC x are found to never be falsely predicted 

in training, the algorithm assigns EC x whenever a prediction is made by the same tools found to 

never make a false positive prediction in training.  

 

Training on different tool combinations 

We experimented with training on predictions from different combinations (or subsets) of tools.  

Here we built Naïve Bayes classifiers using only high-confidence predictions from individual 

tools.  The feature vectors for each EC are constructed as described in (6) with the following 

exceptions: 

1. Predictions coming only from tools of interest are considered. 

2. The length of the feature vector is now the number of tools in the combination of interest 

that can also predict the EC. 

 

Logistic regression model 

 We train a logistic regression model for each EC class to examine the impact of using a 

weighted combination of classifiers.  In this case, our feature vectors are constructed using one-

hot encoding, reflecting—except in the case of CatFam—whether the EC was predicted and if so 

whether it was done with high- or low-confidence; in the case of CatFam, the encoding only 

reflects whether a prediction was made or not.  As with naïve Bayes, we build the feature vector 

to be of a length reflecting the tools that can predict the EC in question. 

 We performed five-fold cross-validation to find the optimal value for parameter C when 

using either L1- or L2-regularization.  The cost function for the logistic regression model we train 

for each EC is as follows in the case of L2-regularization 

1

2
𝑤 ⋅ 𝑤 + 𝐶 ∑ log (𝑒−𝑦𝑖(𝑋𝑖

𝑇𝑤+𝑐) + 1)

𝑛

𝑖=1

(11) 

 

and in the case of L1-regularization 

‖𝑤‖1  +  𝐶 ∑ log (𝑒−𝑦𝑖(𝑋𝑖
𝑇𝑤+𝑐) + 1)

𝑛

𝑖=1

(12) 

 

Here, n is the number of training examples and i indexes over each of these examples. w is 

a vector for which wj is the weight for the jth feature; Xi is the feature vector representing the ith 

training example; yi is the label of the ith training example where 𝑦𝑖 = 1 if the ith protein belongs 

to the EC class and 𝑦𝑖 = 0 otherwise.  C represents the inverse of the regularization strength (that 
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is, smaller values of C result in higher regularization as the norm of the weight vector grows more 

important in the cost function). 

We also compute regression models by applying a correction for class imbalance.  Class 

imbalance arises given that for each EC, the number of positive examples (true positives and false 

negatives) is not typically comparable to the number of negative examples (EC falsely predicted 

by any tool .  To do so, we used the “balanced” option in the SciKit-learn package [7, 8], which 

calculates class weights i for class i as follows:  

σ𝑖 =
∑ 𝑁𝑖

𝑘
𝑖=1

𝑘 ∙ 𝑁𝑖

(13) 

 

 Here, k is the total number of classes (k=2 in this report), and Ni is the number of training 

examples with label i.  The class weight is applied to the cost function as follows in the case of 

L2-regularization 

1

2
𝑤 ⋅ 𝑤 + 𝐶 ∑ σ𝑖 ⋅ log (𝑒−𝑦𝑖(𝑋𝑖

𝑇𝑤+𝑐) + 1)

𝑛

𝑖=1

(14) 

and in the case of L1-regularization 

‖𝑤‖1 + 𝐶 ∑ σ𝑖 ⋅ log (𝑒−𝑦𝑖(𝑋𝑖
𝑇𝑤+𝑐) + 1)

𝑛

𝑖=1

(15) 

 

As a consequence, the error in predicting the smaller class (either positive or negative examples 

for an EC) is amplified when minimizing the value of the cost function. 

During cross-validation, we find the following values of C to give the highest macro-

averaged F1-score.  Therefore, we use the corresponding values on the test set. 

 
Table 4: Optimal C-value as found through cross-validation for various settings of logistic regression. 

 
Regularization Balanced? C 

L1 No 400 

L1 Yes 90 

L2 No 1000 

L2 Yes 10 

 

Random forest 

 We train a random forest classifier [9] for each EC class.  Each feature vector here is of 

length 5, each cell representing the confidence of the EC prediction by the corresponding tool. 

 

𝑣1 = {
1 if CatFam has made this prediction                                                                                                                            (16)
0 otherwise                                                                                                                                                                          

 

𝑣2 = {
2 if DETECT has made this prediction with high confidence
1 if DETECT has made this prediction with low-confidence
0 otherwise                                                                                         

 

𝑣3 = {
2 if EFICAz has made this prediction with high confidence
1 if EFICAz has made this prediction with low-confidence
0 otherwise                                                                                       

 

𝑣4 = {
2 if EnzDP has made this prediction with high confidence
1 if EnzDP has made this prediction with low-confidence
0 otherwise                                                                                     
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𝑣5 = {
2 if PRIA  has made this prediction with high confidence
1 if PRIA  has made this prediction with low-confidence
0 otherwise                                                                                                                                                                       

 

  

We built random forest classifiers optimized per EC as follows.  We performed cross-validation 

for each EC, varying the seed to 3 values to account for the inherent randomness in the construction 

of random forest classifiers, and found the simplest settings of the hyper-parameters that provided 

the best F1-score.  The hyper-parameters, sorted by decreasing priority, are as follows (with values 

indicated in parentheses): number of trees (10, 20, 30, 40, 50, 100), maximum tree depth (2, 4, 6, 

8, 10), number of features to consider when performing a split (2 or 5), and whether the gini or the 

entropy function is considered to measure the quality of a split. 

In each case, we also separately experimented with using two types of balanced random 

forest classifiers and a non-balanced random forest classifier.  With the balanced random forest 

classifier (referred to simply as “balanced” , class imbalance is corrected when building the trees; 

in another flavor of the balanced classifier, the bootstrap sample upon which each tree is grown is 

considered when corrected class imbalance (referred to as “balanced_subsample” .  Little 

difference in overall performance on the test set was found (Table 5); for convenience, we show 

the results when using the non-balanced random forest classifier. 

 

 

 

 
Table 5: Performance of various flavours of random forest classifiers on test set 

Flavour of random forest Macro-F1 on test set 

Balanced subsample 97.2% 

Balanced 97.3% 

Not balanced 97.3% 

 

 

C. Methods of analyzing results  

  

Performance measures 

On an enzymatic dataset, we measure performance for a single enzyme class i through 

precision (pi) and recall (ri). 

𝑝𝑖 =  
tpi

tpi + fpi

(17) 

 

𝑟𝑖 =  
tpi

tpi + fni

(18) 

 

 

In the above, tpi, fpi and fni represent the number of true positives, false positives and false 

negatives for the ith enzyme class, respectively. In terms of summary statistics over all ECs, we 

macro-average precision and recall so as to equally represent enzyme classes within the dataset, 

irrespective of class size.  We extend the equation for calculating macro-averaged precision and 

recall as given in [10] as follows: 
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𝑃𝑀 =
∑ 𝑝𝑖

𝑙𝑃∩𝑅
𝑖=1

𝑙𝑃

(19) 

𝑅𝑀 =
∑ 𝑟𝑖

𝑙𝑅
𝑖=1

𝑙𝑅

(20) 

 

Here, lP is the number of classes predicted by the method/tool, lR is the actual number of 

classes in the dataset, and 𝑙𝑃∩𝑅 is the number of classes predicted by the method/tool but also 

actually present in the dataset.  Therefore, (19) penalises the prediction of classes not present in 

the dataset.  As we equally value precision and recall, we often report the performance using the 

F1-score as given below: 

𝐹1 = 2  ×  
𝑃𝑀 × 𝑅𝑀

𝑃𝑀 + 𝑅𝑀

(21) 

 

 We note that, unless macro-averaging is specified (such as when annotations between 

models, or between organisms are compared), we compute precision and recall over the entire 

dataset as follows (i.e. finding the number of predictions that is either a true positive, false positive 

or false negative over any class i).  This is also referred to as micro-averaging [10]: 
  

𝑃 =  
∑  tpi𝑖

∑  tpi𝑖 + ∑ fpi𝑖

(22) 

 

𝑅 =  
∑  tpi𝑖

∑  tpi𝑖 + ∑ fni𝑖

(23) 

 

On a non-enzymatic dataset, we measure performance in terms of specificity (or the true 

negative rate) as given below. 

specificity =  
tn

tn + fp
(24) 

 Here, tn and fp denote the number of true negative and the number of false positives 

respectively (respectively: the number of non-enzymes correctly not predicted to be enzymes, and 

incorrectly predicted to be enzymes). 

 

Performance on multi-functional proteins 

We computed the performance of individual tools and ensemble methods on proteins 

associated with more than one EC.  We identified such proteins as those associated with more than 

one complete EC number.  We used the same measures as given in equations (17)-(21) to compute 

performance on multifunctional proteins; that is, we treat the predictions of individual ECs (that 

may or may not co-occur) separately. 

When focusing on performance on multi-functional proteins and concerning those ECs that 

are predictable by all tools, we only consider performance on those multi-functional proteins 

assigned in SwissProt with all ECs predictable by all tools. 

 

Performance on test set based on sequence similarity to training data 

 We further compared the performance of each classifier on the test dataset, stratified based 

on its similarity to training data.  For these purposes, we employed as measure the maximum test-

to-training sequence identity, abbreviated as MTTSI (also used in [1, 11]).  For each EC 

represented in the entire dataset, we calculate the sequence identity of test sequences against 

training sequences belonging to the same enzyme class (using DIAMOND [12]); then, given a 
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MTTSI measure of x%, we calculate macro-precision and macro-recall for those sequences from 

the test set sharing a maximum sequence identity of x% to any of the corresponding training 

sequences (restricting ourselves to results with E-value at most 0.1). 

 

D. Metabolic model reconstruction 

 

KEGG database: curation 

 

The KEGG database [13] was set up as one of the databases that can be used for metabolic model 

reconstruction.  First, all KEGG reactions and corresponding equations were downloaded.  KEGG 

reaction-EC mappings were used to capture biochemical reactions catalyzed by different enzymes.  

Post-processing steps were further undertaken to finally produce the reaction database ultimately 

used for metabolic network reconstruction, comprising 9,509 reactions.  These post-processing 

steps are outlined below. 

 

Removal of duplicate metabolites and reactions, and macromolecular processing 

KEGG contains instances of equivalent reactions and compounds, especially in the case of glycans 

which have both glycan identifiers and compound identifiers (respectively of the form Gxxxxx 

and Cxxxxx, where x is a digit).  Such metabolites were identified and a single one retained in the 

reaction database, duplicate reactions subsequently removed.  Reactions involving 

macromolecular processes were excluded from the reaction database.  These were identified by 

scanning reactions with undefined stoichiometries (such as an n instead of an actual number), or 

with the same compound appearing on both sides of the equation.  Reactions marked as incomplete 

or unclear in KEGG were also removed.  Reactions (1,204 in the entire reaction database) 

involving generic compounds (identified in KEGG as being generic or not having a formula) are 

separately output for user consideration. 

 

Determination of reaction reversibility 

Reactions were by default marked as reversible (lower bound of -1000 and upper bound of 1000).  

However, following the rule of thumb outlined in [14], reactions involving the transfer of a 

phosphate from an ATP molecule were set as irreversible, with the exception of ATP synthetase 

(ECs 2.3.3.8 and 6.2.1.18 respectively corresponding to reactions R00352 and R01322).  

 

Spontaneous and non-enzymatic reactions 

173 biochemical reactions are marked in KEGG as either spontaneous or non-enzymatic (in the 

“Comment” section of the entry  and are thus considered as being present in network 

reconstructions irrespective of EC annotation.  In the case of KEGG, the following default 

reactions are also included in all initial draft reconstructions: (i) those enabling the diffusion of 

small hub metabolites (water, oxygen, carbon dioxide, ammonia, diphosphate, phosphate and 

protons); (ii) those enabling the interconversion of glucose into its two stereoisomers; (iii) 

conversion of various fatty acyl-CoA metabolites into a generic acyl-CoA metabolite; and (iv) a 

reaction accounting for energy expenditure for non-growth associated reasons. 

 

Balancing reactions 

Reactions were verified for being balanced, including with an R group, by verifying whether the 

sum of elements on the left and right of the chemical equation match.  Those that could be easily 
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fixed with commonly occurring metabolites were fixed; reactions that remained unbalanced were 

discarded.  In a last step, we verified that reactions were balanced by performing simulations 

involving the entire reaction database.  In short, the reaction database, lacking exchange reactions, 

represents a closed system through which there can be no metabolite consumption or production; 

in the presence of imbalance, we expect that there would be a metabolite that could enter or exit 

the system.  For these purposes, we performed flux balance analysis simulations (as described 

later), setting the objective function as production or consumption of a separate metabolite in each 

simulation.  We then found that there were no metabolites that could either be produced or 

consumed in these experiments, confirming the nature of our database as a closed system. 

 

BiGG databases and addition of non-EC associated reactions via sequence similarity 

 

In addition to the KEGG database, we constructed Architect such that it can use various 

BiGG-based databases for model reconstruction.  These are taken from the CarveMe 

reconstruction tool, and as described in [15], have been curated extensively.  Four reaction 

databases are thus available, in addition to a universal database of metabolism: databases specific 

to Gram-positive and Gram-negative bacteria, as well as those concerning archaeal and 

cyanobacterial species.  The ECs associated with each gene is parsed out and is used by Architect’s 

model reconstruction module.   

Furthermore, given the presence of gene-associated reactions that are not linked to any EC 

in the BiGG-based databases, Architect uses sequence similarity to find evidence for the presence 

of such reactions.  Therefore, we compiled a database consisting of protein sequences associated 

with each of these reactions by using information from CarveMe’s GitHub repository 

(https://github.com/cdanielmachado/carveme). 

Last, we identified a set of reactions in the BiGG database marked as either spontaneous 

or non-enzymatic in the different databases (557 and 548 reactions in the archaeal and 

cyanobacterial databases respectively, and 547 in each of the Gram-positive, Gram-negative and 

main databases).  As in the case of the KEGG reaction database, such reactions are always included 

in metabolic models reconstructed by Architect.   

 

Relevant simulation details 

 

Through our gap-filling procedure, we intend to supplement the draft model with reactions 

necessary for production of biomass (as defined by the user).  In particular, we find a small set of 

reactions whose addition to the model enables flux through the biomass reaction, while prioritizing 

those with higher confidence from enzyme annotation.  The following details mathematical 

formulations relevant to metabolic simulations using flux balance analysis and related concepts, 

followed by details of the gap-filling formulation. 

 

Flux Balance Analysis (FBA) 

Flux Balance Analysis maximizes flux through an objective function (like biomass 

production) given reaction equations and physicochemical constraints such as lower and upper 

bounds for reaction fluxes.  It is formulated as the following linear programming (LP) problem 

[16]. 

max 𝑐𝑇𝑣 (25) 

such that Sv = 0, 
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and 𝑣𝐿 ≤ 𝑣 ≤ 𝑣𝑈 

 

Given a metabolic model with m metabolites and n reactions, the flux distribution is the only 

variable in the formulation and is given by v, a vector of length n where vi represents the flux 

through the ith reaction; 𝑣𝐿 and 𝑣𝑈 (both vectors of length n) constrain the reaction fluxes.  S is an 

m by n stoichiometric matrix, representing the stoichiometries of the m involved metabolites in n 

model reactions; the constraint “Sv = 0” enforces steady state within the system. The n-vector c is 

used to indicate the ratio of reaction fluxes to maximize; in particular, we maximize flux through 

the objective function (at index k) by setting 𝑐𝑖 = 1 when 𝑖 =  𝑘, and 𝑐𝑖 = 0 otherwise.   

 

Flux Variability Analysis (FVA) 

For a given fraction (f) of the optimal value of the objective function as computed using 

FBA (α), the allowable range of flux [𝑣𝑖,𝑚𝑖𝑛, 𝑣𝑖,𝑚𝑎𝑥] through the ith reaction can be computed 

through flux variability analysis through separate minimization and maximization LP formulations 

[17]: 

min/max 𝑣𝑖 (26) 

such that Sv = 0, 

𝑣𝐿 ≤ 𝑣 ≤ 𝑣𝑈, 

and 𝑐𝑇v ≥ 𝑓 ⋅ α 

 

Dead-end metabolites and their identification 

 

Given the steady-state assumption inherent within FBA, a metabolite which is neither 

exported nor imported but strictly present within the network can neither accumulate nor deplete; 

that is, any metabolite produced must be completely consumed, and vice-versa.  As a consequence, 

reactions involved with a metabolite that is either not consumed or not produced (called a dead-

end) cannot carry flux [18].  We adopt the following procedure to identify those metabolites that 

are dead-ends due to network structure and reaction reversibility.  We scan each row of the 

stoichiometric matrix and identify those reactions that either consume or produce the metabolite 

in question.  If the metabolite is involved in only 1 reaction, it is marked as a dead-end.  Otherwise, 

if it is only produced or consumed (the reactions involved also being irreversible), the metabolite 

is identified as a dead-end.  
 
Identification of gap-filling candidates required for biomass production 

 

Given a high-confidence metabolic model and a user-specified biomass reaction (as 

described in the main text), reactions from the reaction database and exchange reactions for 

deadend metabolites may still not suffice to produce some biomass components; therefore, we 

initially find biomass components for which a demand reaction is clearly required.  To do so, we 

first create a universal metabolic network consisting of high-confidence reactions and all other 

reactions from the entire reaction database; we call this network N.  We verify that reactions in the 

universal network suffice to produce biomass.  If not, we perform multiple flux balance analysis 

(FBA) simulations, individually maximizing production of each biomass component; for each 

component that cannot be produced, a demand reaction is created.  Such a reaction is marked as 

essential and added to N. 
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We then prioritize amongst gap-filling candidates as follows.  We perform flux variability 

analysis on gap-filling reactions in N and find those reactions that can carry non-zero flux to 

produce at least 50% of the optimal flux through the biomass function in the universal database 

(that is, those having 𝑣𝑖,𝑚𝑖𝑛 ≠ 0 or 𝑣𝑖,𝑚𝑎𝑥 ≠ 0).  These constitute our gap-filling candidates.  We 

further mark as essential those gap-filling candidates required for biomass production: such 

reactions can only carry non-zero flux (that is, 𝑣𝑖,𝑚𝑖𝑛 > 0 or 𝑣𝑖,𝑚𝑎𝑥 < 0).  The other reactions form 

our set R of gap-filling candidates. 
 

Essentiality experiments 

 

In a reaction knock-out experiment, FBA is performed following the deletion of reactions 

of interest (setting  𝑣𝑖 = 0 for the ith reaction).  In the case where the value of the objective function 

is consequently zero (taken here as any value less than 0.0001), the deleted reaction is identified 

as essential. 

In this study, gene essentiality experiments were performed. For gold-standard and 

CarveMe models, reactions that ought to be deleted following deletion of a gene were found by 

interpreting Boolean statements representing gene-protein-reaction associations [14] given in the 

model.  If biomass could not be produced, the gene in question was marked as essential.  In the 

case of the models reconstructed by Architect, a different procedure was applied for identifying 

essential genes given that gene-protein-relationships are not directly predicted by our pipeline.  

Here, we assume a one-to-one relationship between gene and protein, and an OR-relationship 

between multiple proteins that may be associated with a particular reaction.  We note that as a 

consequence of the latter assumption, only genes uniquely associated to at least one reaction may 

be found essential in a model reconstructed by Architect. 

 

 

E. Model reconstructions: technical details 

 

Supplementary Table 2 summarizes the information that went into metabolic model reconstruction 

and accompanying comparisons for the organisms of interest in this paper.  The following gives 

technical details on how the model reconstructions were made using CarveMe, PRIAM and 

Architect. 

 

CarveMe reconstructions 

 

All CarveMe reconstructions were performed as follows: 
carve <fasta_file> 

In the case of E. coli, we note that running CarveMe with or without minimal media (as defined 

by CarveMe) yields the same network: 
carve <fasta_file> -g M9 

Given that we ran CarveMe without defined media, we only include an import reaction for glucose 

for the Architect models.  To ensure comparability, we used the same biomass as used by CarveMe 

for model reconstruction in Architect, as indicated in the table above. 

 

 

PRIAM reconstructions 
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In addition to the specification of the --complete_genome, --cn and --nc flags, all 

PRIAM-based reconstructions were performing using the following parameters: 
--pt: 0.5 

--mp: 60 

--cc: T 

 

 

Architect reconstructions 

 

When Architect was run on the BiGG reaction database, non-EC gene-associated reactions 

were included in the models when predicted at an E-value lower than 10-20. 

When running Architect, the default integrality constraint is set at 10-8, and can be 

increased in case of error (such as due to timeout or out-of-memory).  This was done in the case 

of C. elegans, whose reconstruction with the BiGG database was performed under a reduced 

integrality constraint of 10-7. 

Links to external databases are included in the SBML output using the MetaNetX database 

[19]. 
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F. Additional results 

 

3.1a Filtering multifunctional enzyme predictions has minimal impact on performance 

Architect’s enzyme annotation module, as presented in the text, reports all high-confidence 

predictions made for each protein thus offering the possibility of annotating a protein with multiple 

enzyme activities. Such functionality is of interest given that approximately 5% of enzymes 

annotated by SwissProt are multifunctional (Supplemental Figure 1C).  Consequently, such 

enzyme annotation tools as PRIAM (Claudel-Renard, Chevalet et al. 2003), EFICAz (Kumar and 

Skolnick 2012) and EnzDP (Nguyen, Srihari et al. 2015) have additional logic for filtering multiple 

EC-annotations.  Here, we investigated integrating the following heuristic with the random forest, 

logistic regression and naïve Bayes classifiers: proteins are assigned the highest-scoring EC and 

allowed additional high-confidence ECs only if they co-occur with the top-scoring EC at least 10 

times in the training data. Comparing the performance of the ensemble methods on subsections of 

the data composed only of single- and multifunctional proteins, we found that the application of 

the heuristic improved macro-precision for the single-functional proteins, but with a significant 

decrease in the macro-recall of the multifunctional proteins (Supplemental Figures 4 and 5).  

Given that the addition of this heuristic impacts performance on this class of proteins, Architect’s 

enzyme annotation module outputs all EC predictions.   

 

3.4  Comparing gene essentiality predictions 

Beyond enzyme annotations, we were interested in comparing the performance of models 

generated by Architect and CarveMe in metabolic flux-based simulations exploring predictions of 

gene essentiality. PRIAM-based reconstructions were excluded from these comparisons as they 

require additional refinements to be used as models of metabolic flux. Further, only models based 

on the two bacterial species (N. meningitidis and E. coli) were examined to avoid the potentially 

confounding influence of assigning reactions to specific subcellular compartments. In the 

subsequent comparisons, precision and recall were computed with reference to gene deletion 

studies performed in vivo [20, 21].  In general, there is little difference in the precision and recall 

of CarveMe and Architect (whether using the KEGG or the BiGG database for model 

reconstruction or relying only on EC annotations obtained from either EnzDP or PRIAM; Figure 

3 and Supplemental Figures 12 and 13). However, lower recall was obtained when DETECT 

predictions were used in isolation, highlighting again the value of high predictive range in tools 

involved in model reconstruction. At the same time, models generated from all reconstruction tools 

generally exhibited low recall with respect to predicting gene essentiality. This relatively high rate 

of false negatives may be explained by several factors including: (1) certain essential genes may 

have been excluded from reconstructed models or misassigned function; (2) key Boolean 

relationships between multiple genes associated with a single reaction — such as with heteromeric 

enzyme complexes [14] — may not be captured in the models; or (3) the biomass equation used 

during model simulations may be incomplete. Interestingly, of the genes experimentally found to 

be essential, 78% and 83% were incorporated into Architect models for N. meningitidis and E. coli 

respectively built using KEGG; however, most of these (43% and 37% respectively) were not 

predicted to be essential (Supplemental Table 1), suggesting avenues for improving Architect by 

either limiting pathways predicted from ECs (thereby reducing pathway redundancy and 

highlighting the essentiality of certain genes), or through better representations of gene-protein-

reaction relationships. 



16 

 

G. Supplementary Tables 
 

Supplementary Table 1: Overlap of in silico determined essential genes with those found essential in vivo. 

 Method 

# TP # FP 
# FN  

(altogether) 

# essential 

genes not 

included  

in output 

model 

Precision Recall 

Recall 

(only 

considering 

genes 

included in 

model) 

N
. 

m
en

in
g

it
id

is
 

Architect-KEGG 80 23 160 53 77.7% 33.3% 42.8% 

Architect-BiGG 89 18 151 73 83.2% 37.1% 53.3% 

CarveMe 84 21 156 45 80.0% 35.0% 43.1% 

Arch-DETECT 47 17 193 74 73.4% 19.6% 28.3% 

Arch-EnzDP 77 26 163 72 74.8% 32.1% 45.8% 

Arch-PRIAM 77 20 163 60 79.4% 32.1% 42.8% 

E
. 

co
li

 

Architect-KEGG 76 14 173 43 84.4% 30.5% 36.9% 

Architect-BiGG 51 15 198 61 77.3% 20.5% 27.1% 

CarveMe 57 8 192 39 87.7% 22.9% 27.1% 

Arch-DETECT 37 15 212 81 71.2% 14.9% 22.0% 

Arch-EnzDP 64 15 185 59 81.0% 25.7% 33.7% 

Arch-PRIAM 53 15 196 47 77.9% 21.3% 26.2% 
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Supplementary Table 2: Comparisons of various aspects of model reconstruction for C. elegans, N. meningitidis and 

E. coli.  The number of reactions in reconstructed models that are not blocked (and corresponding number of 

metabolites) is indicated within brackets, except in the case of automatically reconstructed C. elegans models (*).  The 

number of exchange reactions added by Architect for deadend metabolites is given within brackets (**). 

 

 

  Organism 

  C. elegans N. meningitidis E. coli 
Architect, 

CarveMe and 

PRIAM-based 

reconstructions 

Source of 

protein 

sequences 

WormBase database Ensembl database UniProt 

Proteome ID: 

UP000000625 

Num of protein 

sequences 

20,483 2,063 4,391 

Architect 

reconstruction 

Biomass used Main CarveMe biomass 

(using KEGG identifiers 

when using KEGG 

database; same as for other 

organisms) 

Gram-negative 

CarveMe biomass 

 

Gram-negative 

CarveMe biomass 

 

Architect 

reconstruction 

using KEGG 

Num of protein 

sequences 

 

1,389 387 967 

Num of 

reactions* 

1,433 885 (347) 1,671 (864) 

Num of 

metabolites* 

1,530 1,082 (297) 1,689 (605) 

Num of gap-

filling 

reactions**  

32 (14) 20 (14) 10 (7) 

Architect 

reconstruction 

using KEGG 

and predictions 

from 

individual 

tools 

Num of 

reactions* 

DETECT: 1,025 

EnzDP: 1,271 
PRIAM: 1,356 

DETECT: 773 (301) 

EnzDP: 814 (323) 
PRIAM: 861 (342) 

DETECT: 1,108 (449) 

EnzDP: 1,500 (712) 
PRIAM: 1,697 (852) 

Num of 

metabolites 

DETECT: 1,221 

EnzDP: 1,402 

PRIAM: 1,474 

DETECT: 960 (256) 

EnzDP: 1,013 (282) 

PRIAM: 1,060 (295) 

DETECT: 1,329 (350) 

EnzDP: 1,586 (505) 

PRIAM: 1,720 (595) 

Num of gap-

filling 

reactions** 

DETECT: 38 (27) 

EnzDP: 42 (26) 

PRIAM: 41 (25) 

DETECT: 44 (31) 

EnzDP: 31 (25) 

PRIAM: 27 (21) 

DETECT: 44 (30) 

EnzDP: 23 (18) 

PRIAM: 19 (17) 

Architect 

reconstruction 

using BiGG 

Num of protein 

sequences 

432 298 670 

Num of 

reactions* 

1,409 1,600 (527)  3,023 (2,356) 

Num of 

metabolites* 

1,312 1,513 (400)  2,049 (1,387) 

Num of gap-

filling 

reactions** 

25 (10) 29 (12) 5 (2) 

CarveMe 

reconstruction 

Biomass used Main CarveMe biomass Gram-negative 

biomass 

Gram-negative 

biomass 

Num of 

genes/protein 

sequences 

561 613 1,639 

Num of 

reactions* 

1,538 1,569 (1,541) 2,833 (2,810) 

Num of 

metabolites* 

1,100 1,138 (1,110) 1,735 (1,717) 
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Reconstruction 

using PRIAM 

Num of protein 

sequences 

920 452 1,052 

Num of 

reactions 

1,387 867 1,890 

Num of 

metabolites 

1,397 935 1,717 

Gold-standard 

models 

Provenance WormJam [22]; version 

2019_01_01 from 

https://gh.wormjam.life 

Nmb_iTM560 [21] iML1515 [20] 

Num of genes 1,520 559 1,515 

Num of 

reactions* 

3,632 (2,947) 1,527 (not available) 2,719 (2,459) 

Num of 

metabolites* 

2,833 1,297 1,192 

UniProt gold-

standard 

annotations 

Provenance Uniprot Uniprot Using annotations 

for UP000000625 

in SwissProt 

Num of protein 

sequences with 

EC annotations 

when 

comparing 

against KEGG-

based Architect 

1,446 495 1,123 

Num of protein 

sequences with 

EC annotations 

when 

comparing 

against BiGG-

based Architect 

659 504 1,111 

Essentiality 

results 

Provenance Not applicable [21] [20] 
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Supplementary Table 3: Breakdown of annotations of SwissProt sequences by individual and ensemble methods into 

true positives, true negatives, false positives and false negatives 

 

  Enzymatic test set Non-enzymatic test set  

  # TPs # FPs # FNs 

# prots 
annotated  

as enzymes 

# FP 

annotations 

# TN 

proteins 

Sum of FP 

annotations 

In
d
iv

id
u

al
 t

o
o
ls

 

CatFam 

  

31,364  

      

3,644  

  

13,209  

                      

5,090  

                     

5,159  

           

288,977  

            

8,803  

DETECT_all 
  
34,525  

    
19,762  

  
10,048  

                    
16,262  

                   
24,544  

           
277,805  

          
44,306  

DETECT_high 

  

34,158  

      

1,476  

  

10,415  

                      

2,110  

                     

2,163  

           

291,957  

            

3,639  

EFICAz_all 

  

32,466  

      

5,099  

  

12,107  

                      

3,909  

                     

4,283  

           

290,158  

            

9,382  

EFICAz_high 
  
31,606  

      
2,569  

  
12,967  

                      
1,497  

                     
1,505  

           
292,570  

            
4,074  

EnzDP_all 

  

39,649  

  

134,150  

    

4,924  

                    

49,229  

                 

151,923  

           

244,838  

        

286,073  

EnzDP_high 

  

37,930  

         

821  

    

6,643  

                      

1,587  

                     

1,760  

           

292,480  

            

2,581  

PRIAM_all 
  
43,099  

      
2,430  

    
1,474  

                      
4,293  

                     
4,870  

           
289,774  

            
7,300  

PRIAM_high 

  

42,845  

      

1,227  

    

1,728  

                      

2,149  

                     

2,597  

           

291,918  

            

3,824  

E
n

se
m

b
le

 m
et

h
o

d
s 

Majority rule 
  
42,030  

      
1,362  

    
2,543  

                      
7,763  

                     
8,501  

           
286,304  

            
9,863  

EC-specific 

tool 

  

43,430  

         

479  

    

1,143  

                    

10,500  

                   

10,961  

           

283,567  

          

11,440  

Naïve Bayes 

  

43,404  

         

281  

    

1,169  

                      

2,308  

                     

2,418  

           

291,759  

            

2,699  

L1-regression 
  
43,559  

         
291  

    
1,014  

                      
8,983  

                     
9,248  

           
285,084  

            
9,539  

L2-regression 

  

43,567  

         

290  

    

1,006  

                      

8,815  

                     

9,084  

           

285,252  

            

9,374  

Random forest 

  

43,595  

         

297  

       

978  

                      

8,601  

                     

8,899  

           

285,466  

            

9,196  
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Supplementary Table 4: Breakdown of organism-specific annotations by ensemble and individual tool into true 

positive, false positive and false negative.  This comparison is done against UniProt annotations for sequences used 

in model reconstruction, and the predictions from the ensemble method come the naïve Bayes classifier for ECs in 

Architect’s training database, and PRIA  (high-confidence) otherwise. 

 

 

Tool # TP 
# FP 

in all 

# FP 

on enzymes 

# FP on non-

enzymes  

(# proteins in 
brackets) 

# FP on 

proteins 

with 
partial_ECs 

# FN 

C
. 
el

eg
a

n
s 

DETECT 
                 

825  
753 113 495 (486) 145 763 

EnzDP 

                 

995  
545 83 390 (335) 72 593 

PRIAM 

              

1,170  
667 194 413 (374) 60 418 

Architect 
              

1,260  
867 117 648 (613) 102 328 

N
. 

m
en

in
g

it
id

is
 DETECT 

                 

355  
109 45 44 (43) 20 206 

EnzDP 
                 

415  
75 28 28 (26) 19 146 

PRIAM 

                 

460  
96 41 32 (29) 23 101 

Architect 
                 

482  
108 42 44 (41) 22 79 

E
. 

co
li

 

DETECT 

                 

648  
231 144 29 (28) 58 762 

EnzDP 

              

1,087  
186 120 33 (26) 33 323 

PRIAM 

              

1,253  
145 92 16 (15) 37 157 

Architect 

              

1,257  
173 102 24 (23) 47 153 
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