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ABSTRACT 38 

Obesity is an increasing global health concern and is associated with a broad range of 39 

morbidities. The gut microbiota are increasingly recognized as important contributors to obesity 40 

and cardiometabolic health. This study aimed to characterize oral and gut microbial 41 

communities, and evaluate host:microbiota interactions between clinical obesity classifications. 42 

We performed 16S rDNA sequencing on fecal and salivary samples, global metabolomics 43 

profiling on plasma and stool samples, and dietary profiling in 135 healthy individuals. We 44 

grouped individuals by obesity status, based on body mass index (BMI), including lean (BMI 18-45 

24.9), overweight (BMI 25-29.9), or obese (BMI ≥30). We analyzed differences in microbiome 46 

composition, community inter-relationships, and predicted microbial function by obesity status. 47 

We found that salivary bacterial communities of lean and obese individuals were 48 

compositionally and phylogenetically distinct. An increase in obesity status was positively 49 

associated with strong correlations between bacterial taxa, particularly with bacterial groups 50 

implicated in metabolic disorders including Fretibacterium, and Tannerella. Consumption of 51 

sweeteners, especially xylitol, significantly influenced compositional and phylogenetic 52 

diversities of salivary and fecal bacterial communities. In addition, obesity groups exhibited 53 

differences in predicted bacterial metabolic activity, which was correlated with host’s metabolite 54 

concentrations. Overall, obesity was associated with distinct changes in bacterial community 55 

dynamics, particularly in saliva. Consideration of microbiome community structure, and 56 

inclusion of salivary samples may improve our ability to understand pathways linking microbiota 57 

to obesity and cardiometabolic disease. 58 

IMPORTANCE 59 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2021. ; https://doi.org/10.1101/2021.10.12.464168doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.12.464168
http://creativecommons.org/licenses/by-nc/4.0/


4 
 

Obesity is a worldwide epidemic that is associated with a wide range of health issues. 60 

Microbiota were shown to influence metabolism and obesity development. Our study aimed to 61 

evaluate the interactions between obesity, salivary and fecal microbiota, and metabolite 62 

concentrations in healthy individuals. The oral bacterial community was more impacted by the 63 

obesity status of the host than fecal microbiota. Consistently for oral and fecal microbiota, the 64 

number of strong interactions between bacteria increased with the increase in the obesity status. 65 

Several predicted microbial metabolic pathways that were shown to be associated with metabolic 66 

health were uniquely enriched between obesity groups. In addition, these metabolic pathways 67 

were correlated with plasma and stool metabolites. Our results suggest that oral microbiota might 68 

better reflect the obesity status of the host than fecal microbiota, and that correlations between 69 

microbial taxa are altered during obesity.  70 

 71 

INTRODUCTION 72 

Obesity is a growing worldwide epidemic and is linked to a range of health issues 73 

including hypertension, type 2 diabetes, asthma, coronary heart disease, Alzheimer’s disease and 74 

cancer [1-5]. Known risk factors include imbalances between calorie intake and expenditure, 75 

genetics, stress, and disruptions in the endocrine system [1, 6]; however much remains unknown. 76 

Better characterization of mechanisms predisposing to obesity could enable novel prevention and 77 

treatment strategies. 78 

The composition of an individual’s microbiota is increasingly being recognized as a contributor 79 

to obesity risk [7-9]. Microbiota can influence the host’s metabolic phenotype both by directly 80 

affecting energy and nutrient availability [10-14], and through modulation of signaling pathways 81 
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[15-22]. Previous studies suggested that the fecal symbiotic bacterial community of obese 82 

individuals is less diverse than that of lean individuals [8, 23]. In addition, the abundance of 83 

several bacterial taxa including Lactobacillus, Pervotella, Alistipes, Akkermansia, and others 84 

vary with obesity status [7, 9]. Salivary microbiota of lean and obese individuals also differ in 85 

diversity and composition  [9, 24-27]. Abundance of several salivary bacterial taxa including 86 

Campylobacter, Aggregatibacter, and Veillonella was reported to be positively associated with 87 

obesity [28-30]. Higher abundances of Bacteroidetes, Spirochaetes, and Firmicutes were 88 

observed in lean individuals [9, 31, 32]. However, data are contradictory, even for rather 89 

abundant bacteria taxa. For example, the abundance of intestinal Lactobacillus was reported to 90 

be both positively and negatively associated with obesity [7, 33-35]. These discrepancies may be 91 

due in part to complex interactions between microbial community members, where metabolic 92 

activity of individual bacterial taxa can vary based on the activity of other microbes in the 93 

community [36-39]. Consideration of interactions between members of microbiota might be 94 

essential to improve identification of bacterial mechanisms underlying obesity. 95 

We hypothesized that the presence of obesity, in the absence of known disease, would 96 

associate with differences in microbiome composition and function. We further hypothesized 97 

that community structure and bacterial inter-relationships would differ by obesity status. We 98 

evaluated the differences in compositional and phylogenetic diversity of salivary and fecal 99 

microbiota between obesity groups in a well-characterized sample of healthy individuals. We 100 

examined interractions between bacterial taxa based on obesity status of the host, and showed 101 

that predicted bacterial metabolic activity varies between obesity groups and is correlated with 102 

intestinal and circulating metabolite concentrations.  103 

MATERIALS AND METHODS 104 
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Study population. 105 

We analyzed data from the ABO Study (n=135) as described previously [40-42]. Briefly, healthy 106 

non-pregnant and non-lactating women and men were recruited to a cross-sectional study. 107 

Participants completed dietary profiling (validated 3-day food records, and DHQ II food 108 

frequency questionnaires [FFQ]), and provided stool, saliva, and blood samples. Height and 109 

weight were measured at the study visit. Individuals were classified based on body mass index 110 

(BMI, weight (kg)/height (m)-squared), including lean (BMI 18-24.9; fecal samples n=76, saliva 111 

samples n=49), overweight (BMI 25-29.9; fecal samples n=34, saliva samples n=19), or obese 112 

(BMI ≥30, fecal samples n=25, saliva samples n=16), to explore differences in composition and 113 

function of microbiota by obesity. All participants provided written informed consent. The study 114 

was approved by the Institutional Review Boards of the University of Pennsylvania and 115 

Vanderbilt University. 116 

Sample Profiling. 117 

As we have previously described, 16S rDNA sequencing of the bacterial V4 fragment was 118 

performed on Illumina MiSeq platform using 135 fecal and 85 saliva samples to identify 119 

bacterial community composition [42]. Global metabolomics profiling of fecal and plasma 120 

samples, from a subset of individuals (n=75) was performed at Metabolon (Metabolon Inc., 121 

Morrisville, NC, United States).  122 

Pre-analysis processing. 123 

Sequences alignment and normalization. Pre-analysis processing of 16SrRNA reads was 124 

performed with R v4.0.2 [43]. Demultiplexed sequences were filtered, forward and reverse reads 125 

were merged, and resulted sequences were assigned to amplicon sequence variants (ASVs), with 126 
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the default settings of DADA2 pipeline v1.18.0 [44]. Chimeric sequences were also removed 127 

with the dada2 package v1.18.0  [44].  Sequence variants were assigned taxonomy with dada2 128 

and SILVA v138.1 database [44, 45]. ASVs counts were normalized with cumulative sum 129 

scaling method implemented in the metagenomeSeq v1.32.0 package [46]. In the salivary 130 

samples, we identified 1,932 ASVs that belonged to 12 phyla, 19 classes, 44 orders, 70 families, 131 

134 genera, and 229 bacterial species. In our fecal samples, we identified 5,000 ASVs that 132 

belonged to 16 phyla, 26 classes, 55 orders, 86 families, 270 genera, and 338 bacterial species. 133 

Alpha diversity. Normalized ASVs counts were used to calculate species richness, 134 

Shannon, and Gini–Simpson alpha diversity indices with the vegan v2.5.7 package [47]. Beta 135 

diversity. Bray-Curtis distances were calculated with vegan v2.5.7 [47]. Unrooted neighbor-136 

joining tree was computed with the ape package v5.5 [48]. The tree was optimized based on 137 

generalized time-reversible model implemented in the phangorn v2.5.5 package [49, 50]. Lastly, 138 

weighted and unweighted Unifrac distances between each sample were calculated with the 139 

phyloseq v1.30.0 package [51].  140 

Functional potential of the bacterial communities was predicted with PICRUSt2 141 

according with the default pipeline [52]. Predictions were made for Enzyme Commission 142 

numbers (EC), Kyoto Encyclopedia of Genes and Genomes orthologs (KO), and MetaCyc 143 

pathways [52-55]. In accordance with PICRUSt2 authors’ recommendations, the resulting data 144 

were transformed with centered-log ratio transformation implemented in the ALDEx2 v1.24.0 145 

package [56].  146 

Statistical Analysis. 147 
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Statistical analysis and data visualization was done with R v3.6.1 [43]. Beta diversity 148 

distances between obesity groups were compared with pairwise permutational multivariate 149 

analysis of variance, based on the vegan package v2.5.7 [47]. The difference in alpha diversity 150 

measurements was evaluated with Wilcoxon signed-rank test, implemented in the rstatix v0.7.0 151 

package [57]. In order to evaluate if the obesity groups can be classified based on abundance of 152 

bacterial taxa and inferred functional abundances (based on EC, KO, and MetaCyc 153 

classification), we used linear discriminant analysis, implemented in in the MASS package v7.3-154 

51.4 [58]. In addition, we repeated linear discriminant analysis using only the 15 most abundant 155 

bacterial taxa, in order to evaluate if the dominant bacterial taxa were sufficient for 156 

discrimination of the communities, with the obesity status. The results were visualized by 157 

plotting the first and second linear discriminants, with the ggplot2 v3.2.1 and the ggpubr v0.4.0 158 

packages [59, 60]. The difference in abundances of bacterial taxa and predicted ECs, KOs, and 159 

MetaCyc pathways, between obesity groups was evaluated with a pairwise t-test function, 160 

implemented in R v3.6.1 [43]. The correlations between abundances of bacterial taxa were 161 

calculated with Spearman’s rank correlation test, included in the Hmisc v4.5.0 package [61]. 162 

Resulted correlation matrices were used to construct network plots, using the corrr v0.4.3 163 

package [62]. In addition, the absolute values of correlation coefficients were compared between 164 

obesity groups with a pairwise Wilcoxon signed-rank test, implemented in the rstatix v.7.0 165 

package [57]. The influence of 133 recently consumed (from 3-day food records) and 185 166 

habitually consumed (from FFQ) nutrients on beta diversity distances was evaluated with 167 

permutational multivariate analysis of variance using a quadratic model [47]. The quadratic 168 

model was used as most living organisms, including bacteria  have an optimal range of 169 

environmental conditions rather than a linear relationship [63-65].  170 
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For enrichment analysis, we calculated the mean abundance of each KEGG ortholog for 171 

obesity groups and used them as input for MicrobiomeAnalyst (2021-07-01) shotgun data 172 

profiling tool, with the default settings [66]. False discovery rate (FDR) P-values were adjusted 173 

using the Benjamini–Hochberg correction, implemented in rstatix v0.7.0 package [57]. We note 174 

that usage of any particular FDR threshold is ambiguous and often varies between microbiome 175 

studies; weaker correlations that fail to hold up to p adjustment methods often have biological 176 

relevance. Premature rejection of associations falling below conservative p-value thresholds may 177 

lead to loss of biologically meaningful data. [67-72].  For this reason, statistical results below 178 

0.05 p-value threshold were considered to be significant. However, taking into account the 179 

difference in opinions and for the readers’ convenience, we report both unadjusted and FDR-180 

adjusted p-values in supplementary data.  181 

 182 

RESULTS 183 

Lean, overweight and obese individuals can be separated into distinct groups based 184 

on their oral and intestinal microbiota. 185 

Evaluating beta diversity distances, we observed that salivary microbiota communities of 186 

obese and lean individuals were significantly different as measured with Bray-Curtis and 187 

Weighted Unifrac distances (Supplement Table 1). Based on linear discriminant analysis (non-188 

overlapping confidence ellipses), obesity classes were separated by the abundances of bacterial 189 

ASVs (Fig. 1A). Obesity groups were also clearly characterized based on abundance of 190 

microbial species, genera, families, and orders but weaker based on classes and phyla 191 

(Supplement Figure 1). 192 
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In fecal samples, we did not observe a significant difference in beta diversity distances 193 

between any of the obesity groups (Supplement Table 1). However, based on a linear 194 

discriminant analysis, obesity groups could be classified based on abundance of bacterial ASVs 195 

(Fig. 1B). Obesity groups were also clearly characterized based on abundance of bacterial 196 

species, genera, families, and orders but weaker at class and phylum ranks (Supplemental 197 

Figure 2). We did not observe any significant differences in alpha diversity indices between 198 

obesity groups in saliva or feces (Supplement Table 2).  199 

Obesity status influences the abundance of individual bacterial taxa 200 

In saliva, we observed that abundances of Campylobacterota, Firmicutes, and 201 

Spirochaetota were significantly different between obesity groups at the phylum rank. Obesity 202 

groups were significantly different in the abundances of 5 bacterial classes, 10 orders, 17 203 

families, 33 genera, 52 species, and 409 individual ASVs (Supplement Table 3A). Across all 204 

taxonomic ranks, obese and lean individuals had the highest number of taxa that were 205 

significantly different in their abundances (Supplement Table 3A). We evaluated which of the 206 

15 most abundant bacteria taxa were the most influential for defining each of the obesity groups 207 

with a linear discriminant analysis. At the genera taxonomic rank, Campylobacter, Veillonella, 208 

Aggregatibacter, and Prevotella defined the obese group (Fig. 2). Although lean and overweight 209 

groups were not distinct from each other, Actinomyces and Haemophilus were characteristic for 210 

overweight group (Fig. 2). Overall, we note that the 15 most abundant bacteria taxa contribute 211 

only modestly to discrimination of obesity groups (Supplemental Fig. 3).  212 

In feces, at the phylum rank, only abundance of Fusobacteriota was significantly different 213 

between overweight and lean groups. Obesity groups were significantly different in the 214 

abundances of 2 bacterial classes, 8 orders, 10 families, 35 genera, 45 species, and 690 individual 215 
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ASVs (Supplement Table 3B). The highest number of significant differences between groups 216 

varied with taxonomic rank but was always between lean and one of the overweight/obese 217 

groups. Linear discriminant analysis indicated that at the genus taxonomic rank Agathobacter 218 

and Parabacteroides were influential in discriminating obese from lean groups (Fig. 2). 219 

Although lean and overweight groups were not clearly separated, lean group was primarily 220 

characterized by Blautia and Ruminococcus (Fig. 2). Similar to what we observed in salivary 221 

samples, the most abundant fecal bacteria taxa were not the most influential variables for 222 

discriminating samples based on obesity status (Supplemental Figure 4).   223 

 224 

The number of strong correlations between bacterial taxa vary by obesity status. 225 

We hypothesized that microbial community inter-relationships, as evidenced by 226 

correlations between taxa, would differ by obesity status. We assessed the number of strong 227 

correlations (>= |0.7|) between abundances of microbial taxa in saliva and stool samples by 228 

obesity group and found evidence for increasing inter-dependence in the setting of obesity (Fig 229 

3). Among microbiota genera in saliva, there were 67 strong correlations in the obese group, 32 230 

in the overweight, and only 5 strong correlations in the lean group. The absolute means of 231 

correlation coefficients were significantly different between all groups, and this observed pattern 232 

remained across all taxonomic ranks (Supplement Table 4). We observed a similar pattern in 233 

fecal samples, with 52 strong correlations between microbiota genera in the obese group, 20 in 234 

the overweight group, and only 8 in the lean group. The absolute values of the correlation 235 

coefficients, for abundances of the bacterial taxa were significantly different between all obesity 236 

groups. Obese individuals had more strong correlations between bacterial taxa than lean 237 
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individuals across all phylogenetic ranks except  phylum, at which no group had strong inter-238 

bacterial correlations. (Supplement Table 4). 239 

Nutritional Factors Influencing Bacterial Communities.   240 

We examined the relationships between dietary variables and the overall bacterial 241 

community, to identify influential nutrients from recent (3-day food records) and habitual (food 242 

frequency questionnaire) consumption. We applied Bray-Curtis, weighted Unifrac, and 243 

unweighted Unifrac distances, and assessed both linear and quadratic relationships. For recently-244 

consumed nutrient, xylitol and pectins had significant linear relationships across all 3 methods, 245 

while inositol, glucose and omega-3 polyunsaturated fatty acids approached significance for 246 

quadratic relationships across all 3 methods (Supplement Table 5). For habitually-consumed 247 

nutrients, no nutrients displayed consistent linear relationships across all methods, while for 248 

quadratic relationships, sorbitol and pinitol, as well as dairy cheese and yogurt were consistently 249 

associated (Supplement Table 6). In the fecal bacterial community, recently-consumed pectins, 250 

folate, and fiber had consistent significant linear relationships, while oxalic acid, formononetin, 251 

biochanin A, and the ratio of polyunsaturated to saturated fat had consistent quadratic 252 

relationships (Supplement Table 5). For habitually-consumed foods, there were consistent 253 

linear relationships with cheese and vegetables, in addition to vegetable-derived nutrients (beta 254 

carotene, oxalic acid, Vitamin K). Significant quadratic relationships were observed for grains 255 

and processed meats, in addition to xylitol, caffeine, sodium and potassium (Supplement Table 256 

6). 257 

Analysis of inferred metabolic pathways reveals enrichment in 2-oxocarboxylic acid 258 

metabolism in lean individuals in oral and intestinal microbiota 259 
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We hypothesized that functional activity of microbiota, as predicted using PICRUSt2, 260 

would differ by obesity status. We assessed differences in inferred function between obesity 261 

groups, and found that obesity served as a good classifier for enzyme counts (ECs), KEGG 262 

orthologs (KOs), and MetaCyc pathways abundances in saliva (Fig. 4). There were 969 263 

significant differences in ECs, 3,915 in KOs and, 177 significant differences in the abundance of 264 

MetaCyc pathways across all groups (Supplement Table 7). In all cases, lean and obese 265 

individuals had the highest number of differences. 2-oxocarboxylic acid metabolism, terpenoid-266 

quinone biosynthesis, and D-glutamine and D-glutamate metabolism KEGG pathways were 267 

enriched in lean individuals but not in obese group (Supplement Table 8). The obese group was 268 

uniquely enriched in fluorobenzoate, sulfur, and several amino acid metabolic pathways. 269 

Similarly, obesity groups could be characterized based on abundance of MetaCyc 270 

pathways, KOs, and ECs in fecal samples (Fig. 4). We observed 128 significant differences 271 

between the obesity groups in ECs, 391 in KOs, and 19 in MetaCyc pathways (Supplement 272 

Table 7), spread across lean, overweight and obese groups. The lean group was uniquely 273 

enriched in 2-oxocarboxylic acid metabolism, D-glutamine and D-glutamate metabolism, and 274 

pentose and glucuronate interconversions, when compared with obese group. The obese group 275 

was enriched in C5-branched dibasic acid, lipoic acid, and one-carbon KEGG metabolic 276 

pathways (Supplement Table 8).  277 

 278 

Abundance of inferred bacterial metabolic enzymes/pathways influences host’s 279 

metabolites’ concentrations. 280 
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We were interested in whether predicted functional activity would associate with 281 

measured metabolic activity, as assessed by metabolomic profiling of plasma and stool. We 282 

observed high numbers of correlations with predicted saliva microbial activity across all 3 283 

databases (EC: 78,635 with plasma, 82,722 with stool; KO: 249,473 plasma, 263,616 stool; 284 

MetaCyc: 15,633 plasma, 17,915 stool). The highest number of correlations was observed with 285 

valerate and isoeugenol sulfate in plasma samples and with inosine in stool samples 286 

(Supplement Table 9). We similarly observed high numbers of correlations between predicted 287 

stool microbial activity and metabolites (EC: 92,852 with plasma, 109,830 with stool; KO: 288 

299,557 plasma, 332,789 stool; MetaCyc: 18,179 plasma, 17,728 stool). The highest number of 289 

correlations was observed with 1-palmitoyl-GPE and CMPF in plasma samples and steviol in 290 

stool samples (Supplement Table 9). 291 

DISCUSSION  292 

Obesity has been linked to alterations in microbiota, however the relative importance of 293 

gut and oral microbiota is unclear. We aimed to identify microbial signatures of obesity using 294 

both stool and salivary samples in healthy individuals classified as normal weight, overweight or 295 

obese based on their BMI. We observed that obesity status was associated with differences in 296 

bacterial community composition and shifts in inter-microbial relations that were especially 297 

evident in the salivary bacterial community. Although salivary and fecal microbiota were largely 298 

impacted by different nutrients, dietary sweeteners were associated with both composition and 299 

phylogenetic diversity of both the oral and gut bacterial communities. In addition, samples from 300 

obese and lean individuals were enriched in several unique metabolic pathways, inferred activity 301 

of which was correlated with plasma and stool metabolite concentrations.  302 

Obesity influences microbial community composition, especially in saliva. 303 
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In agreement with published research, we observed that oral bacterial community 304 

composition was distinct between lean and obese individuals [24-27]. In our work, we also 305 

observed that the difference in salivary bacterial composition between obese and lean individuals 306 

extends to phylogenetic diversity measurements. Consistent with previous research, we also 307 

observed some differences in gut bacterial communities between obese and lean groups, however 308 

in our work the differences were not supported by Bray-Curtis or weighted Unifrac distances 309 

[73, 74]. Our results suggest that at the level of the whole community, salivary microbiota 310 

composition better reflects the difference in obesity status than fecal microbiota.  311 

With the analysis restricted to the dominant bacterial taxa, we observed a strong influence 312 

of Campylobacter, Aggregatibacter, Veillonella, and Prevotella on characterizing the obese 313 

group in salivary samples. Interestingly, all of these bacterial genera have been shown to be 314 

correlated not only with obesity but also with oral diseases, especially periodontitis [28-30, 75-315 

77]. Considering the whole bacterial community (abundance >20 reads), we observed that some 316 

of the bacteria taxa with lower abundance had a stronger effect on differentiation of the obese 317 

group than dominant bacteria, including Shuttleworthia at the genus rank and Mycoplasmataceae 318 

at the family rank that were also significantly more abundant in the obese group. Previous studies 319 

identified a correlation between Mycoplasmataceae and obesity [78, 79]. Although to the best of 320 

our knowledge, no previous works associated Shuttleworthia with obesity in humans, it was 321 

associated with obesity and elevated weight in model organisms [80-82]. In addition, similar to 322 

what we observed with the dominant bacteria taxa, Shuttleworthia and Mycoplasmataceae are 323 

associated with periodontitis [83, 84]. 324 

 In the fecal samples, the dominant bacterial genera that characterized the obese group 325 

were Agathobacter and Parabacteroides. Agathobacter and Parabacteroides were shown to be 326 
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associated with metabolic disorders in humans and a murine model [85-88]. Similar to what we 327 

observed in the saliva samples, several less abundant bacterial taxa that were previously 328 

associated with obesity, including Mitsuokella and Neisseria, at the genus rank and 329 

Fusobacteriaceae and Gemellaceae, at the family rank, produced more impact on separation of 330 

obese and lean categories than dominant bacterial taxa [73, 89-92]. Proportionally to all 331 

identified taxa, more organisms were significantly different in abundance between lean and 332 

obese groups in saliva samples, when compared with fecal samples, which might suggest that 333 

sampling oral microbiota may be more informative in identifying microbial biomarkers of 334 

obesity. Given the relative ease of collection of saliva as compared with stool, this could 335 

facilitate increased accessibility for research into the microbial contributors to obesity and 336 

cardiometabolic disease; however this remains to be confirmed in independent studies.  337 

Number of strong correlations between bacterial taxa increases with the obesity 338 

status. 339 

In saliva samples, bacterial taxa exhibited the highest inter-microbial connectivity (strong 340 

correlations >= 0.7) in obese individuals. In the obese group, the highest connectivity was 341 

observed for Fretibacterium (eight connections), F0058 (seven connections), Mycoplasma 342 

(seven connections), and Tannerella (seven connections). Several of these genera, including 343 

Fretibacterium, F0058, and Tannerella were shown to be correlated with metabolic disorders 344 

[31, 93-96]. In addition, all of the most connected bacterial taxa were associated with 345 

periodontitis [83, 94, 97, 98]. In the lean group, the most connected bacteria exhibited less strong 346 

connections than in obese group and were Atopobium (three connections), Megasphaera (two 347 

connections), and Prevotella 7 (two connections). Abundance of Atopobium was shown to be 348 

reduced in obese individuals [99]. Previous research indicated that the abundance of 349 
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Megasphaera might increase after anti-obesity treatments [100, 101]. Prevotella was shown to 350 

be associated with plant rich diet and increase in abundance after antidiabetic treatment, however 351 

the genus is very diverse [102-104].  352 

In the fecal samples, the most connected bacterial genera identified in obese group were 353 

Christensenellaceae R7 group (eight connections) and Ruminococcaceae UCG-005 (five 354 

connections). Christensenellaceae R7 and Ruminococcaceae UCG-005 were shown to be 355 

associated with plasma lipoproteins and triglycerides [105]. Ruminococcaceae UCG-005 was 356 

also shown to be positively correlated with body weight and weight gain in a swine model [106, 357 

107]. In addition, several bacterial taxa previously implicated in metabolic disorders, including 358 

Actinomyces, Ruminiclostridium, and Lachnospiraceae exhibited strong inter-bacterial 359 

correlations in the obese but not in the lean group [74, 108-110]. The most connected genus in 360 

lean individuals was Ruminococcaceae NK4A214 (three connections). Previous research 361 

identified a negative correlation between Ruminococcaceae NK4A214 and high fat diet and 362 

hypertension [111, 112]. However, Christensenellaceae R-7 group and Ruminococcaceae UCG-363 

005 were also among few genera (total three) that had more than one strong correlation in lean 364 

individuals.  365 

The impact of the higher degree of microbial interconnectivity observed in obese 366 

individuals is unclear but may represent a shift from relative independence of bacterial taxa to a 367 

state more reliant on mutualistic relationships. Obesity is often associated with several 368 

physiological and environmental conditions that have the potential to act as stressors for the 369 

microbial community, including micronutrient deficiency, increased levels of reactive oxygen 370 

species, and increase in c-reactive protein concentrations and inflammatory response in the host 371 

[113-116]. In accordance with the stress gradient hypothesis, several studies demonstrated that 372 
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presence of environmental stressors often increases positive facilitation between microbial taxa 373 

in the community [117-120]. In addition, it was demonstrated that nutritional stress could 374 

increase the number of connections, in a co-occurrence network of the microbiota members 375 

[121].  In agreement with these observations, we found that in the obese individuals, almost all 376 

of the strong inter-microbial correlations were positive.  377 

Sweeteners and other nutrients influence compositional and phylogenetic diversity 378 

of salivary and fecal bacterial communities. 379 

We observed that recently and habitually consumed nutrients influenced bacterial 380 

communities. For salivary samples, recently consumed nutrients influenced bacterial community 381 

more than habitually consumed nutrients, for both compositional and phylogenetic beta diversity 382 

distances. Sugars and sugar alcohols, especially xylitol, mannitol, sorbitol, and pectin were 383 

especially influential factors impacting the bacterial community, based on compositional and 384 

phylogenetic diversity measurements. Interestingly, all of the listed compounds with the 385 

exception of pectin are used as sweeteners [122, 123]. Although the effect of sweeteners on gut 386 

microbiota was extensively shown in humans and animal models, the studies on oral bacteria 387 

community are limited [124, 125]. To the best of our knowledge, this work is the first report on 388 

the correlation between dietary sweeteners and phylogenetic diversity of the human’s salivary 389 

bacterial community.  390 

Fecal microbiota community was consistently more influenced by habitual nutrient 391 

consumption than recently consumed nutrients, which might suggest a more stable microbial 392 

community. Similar to the saliva samples, consumption of xylitol and pectin influenced 393 

compositional and phylogenetic diversity of fecal microbiota. Consumption of sweeteners, 394 

including xylitol was reported to influence intestinal bacterial community composition [124]. 395 
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Pectin consumption was also shown to be correlated with compositional changes in the intestinal 396 

microbiota [126, 127]. In our study, compositional and phylogenetic measurements of the fecal 397 

microbiota were also consistently influenced by consumption of vegetables and plant-derived 398 

compounds including fiber, oxalic acid, formononetin, and daidzein. Consumption of fiber, 399 

formononetin, and daidzein was show to have microbiota-mediated beneficial effects on host’s 400 

metabolic health [128, 129] In addition, habitual consumption of cholesterol and fatty acids also 401 

produced a significant effect on compositional and phylogenetic diversity distances of the fecal 402 

microbiota in our study. 403 

Bacterial communities of obesity groups are associated with enrichment in predicted 404 

metabolic pathways, which are correlated with host’s metabolite concentrations. 405 

In both saliva and fecal samples, microbiota of the lean individuals were enriched in 2-406 

oxocarboxylic acid metabolism and D-glutamine and D-glutamate metabolism, based on 407 

functional prediction. 2-Oxocarboxylic acid metabolism is involved in ornithine and lysine 408 

biosynthesis, supplementation of which were shown to have a potential for improving metabolic 409 

health [130-132]. D-Glutamine concentrations were shown to be decreased in obese individuals 410 

and glutamine supplementation may alleviate obesity symptoms [133, 134]. Metabolic pathways 411 

enriched in the microbiota of obese individuals included one-carbon metabolism, which was 412 

previously shown to contribute to the development of obesity[135]. In addition, steatosis was 413 

shown to be associated with one carbon metabolism’s gene expression [136]. Enrichment in 414 

other pathways such as lipoic acid metabolism and degradation of valine, leucine, and isoleucine 415 

might be a response to increase in oxidative stress and branched-chain amino acids 416 

concentrations, often associated with obesity [137-139].  417 
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Multiple host’s metabolites were significantly correlated with abundance of KOs 418 

involved in enriched pathways. For example, the abundance of KOs, predicted in salivary 419 

samples and involved in 2-oxocarboxylic acid metabolism influenced the concentration of 435 420 

plasma and 326 stool metabolites. Alpha-ketobutyrate was shown to be a biomarker of insulin 421 

resistance and glucose intolerance and in our study exhibited a negative correlation with more 422 

than half of the 2-oxocarboxylic acid metabolism pathway’s KOs, predicted from saliva samples 423 

[140, 141]. In addition, KOs involved in 2-oxocarboxylic acid metabolism were correlated with 424 

adenosine and steviol in stool samples, both of which were shown to be beneficial for patients 425 

with metabolic disorders [142, 143].  426 

Our study had considerable strengths, including availability of salivary and fecal 427 

microbial profiling, in addition to metabolic phenotyping, in a robust sample size. There were 428 

also some limitations inherent in all microbiome projects that are based on 16S rRNA 429 

sequencing. Namely, the necessity of choosing a specific segment of the gene, sequence filtering 430 

methods, reference database for taxonomic identification, and even normalization methods are 431 

all know to cause a degree of bias between studies. In addition, results presented in this study are 432 

largely based on relative abundances of the identified microbial taxa and therefore might not be 433 

interpreted as causative. Therefore, future studies would be necessary to demonstrate the 434 

directions of interactions between the host and its oral and intestinal microbiota.  435 

CONCLUSIONS 436 

 In this study we identified differences in salivary and fecal symbiotic bacterial 437 

communities based on obesity status, in a population of otherwise healthy individuals. Our 438 

results suggest that inter-correlations between bacterial taxa are altered in the setting of obesity 439 

and suggest distinct differences in community dynamics at increasing levels of obesity. 440 
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Consideration of microbial community correlation structure might be more informative than 441 

measurement of relative abundances of bacteria taxa or diversity measurements alone. In 442 

addition, across multiple comparisons, salivary microbiota provided a more distinct pattern of 443 

differentiation between obese and lean individuals, than fecal microbiota. Previous studies have 444 

primarily focused on analysis of gut microbiota in obesity, however our data suggest that 445 

sampling oral microbiota might be a better choice in search of the bacterial biomarkers 446 

associated with obesity.  447 
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TABLES AND FIGURES 732 

 733 

 734 

Figure 1: Obesity groups can be discriminated by the abundance of salivary or fecal 735 

microbiota. Linear discriminant analysis of A) ASVs identified in salivary samples B) ASVs 736 

identified in fecal samples. ASVs with abundance of less than 20 sequences were filtered out. 737 

Obesity groups are represented by color, lean group by red, overweight group by green, and 738 

obese group by blue. Confidence ellipses are shaded. Normal data ellipses are unfilled and 739 

leveled to include 50% of the samples. 740 
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 746 

 747 

Figure 2: Obese and lean groups can be characterized by the abundance of 748 

dominant bacteria genera. Linear discriminant analysis of the 15 most abundant bacterial 749 

genera identified in A) Salivary samples B) Fecal Samples. Obesity groups are represented by 750 

color, lean group by red, overweight group by green, and obese group by blue. The higher 751 

abundance of bacterial genera in the obesity groups is indicated by the direction of the vector 752 

rays. The intensity of vector rays’ color corresponds to the strength of the impact. Confidence 753 

ellipses are shaded. Normal data ellipses are unfilled and leveled to include 50% of the samples. 754 
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 760 

Figure 3: Number of strong connections between bacterial genera increases with the 761 

obesity status. Spearman’s rank correlation network between A) Salivary bacterial genera of 762 

lean individuals; B) Salivary bacterial genera of overweight individuals; C) Salivary bacterial 763 

genera of obese individuals; D) Fecal bacterial genera of lean individuals; E) Fecal bacterial 764 

genera of overweight individuals; F) Fecal bacterial genera of obese individuals. For A-C 765 

included genera had minimum abundance of 30 sequences and for D-F minimum abundance of 766 

20 sequences.  767 
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 768 

 769 

Figure 4: Obesity groups can be discriminated by metabolic potential predicted by 770 

PICRUSt2. Linear discriminant analysis of relative abundances of A) ECs inferred from saliva 771 

samples B) KOs inferred from saliva samples, C) MetaCyc pathways inferred from saliva 772 

samples, D) ECs inferred from fecal samples, E) KOs inferred from fecal samples, F) MetaCyc 773 

pathways inferred from fecal samples. Obesity groups are represented by color, lean group by 774 

red, overweight group by green, and obese group by blue. Confidence ellipses are shaded. 775 

Normal data ellipses are unfilled and leveled to include 50% of the samples. 776 

 777 
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Supplementary Figures’ Legends 780 

Supplement figure 1: Obesity groups could be characterized based on abundance of 781 

salivary bacterial taxa, especially at lower taxonomic ranks. Linear discriminant analysis of 782 

A) bacterial species, B) bacterial families, C) bacterial families, D) bacterial orders, E) bacterial 783 

classes F) bacterial phyla. Taxa with abundance of less than 20 sequences were filtered out. 784 

Obesity groups are represented by color, lean group by red, overweight group by green, and 785 

obese group by blue. Confidence ellipses are shaded. Normal data ellipses are unfilled and 786 

leveled to include 50% of the samples. 787 

Supplement figure 2: Obesity groups could be characterized based on abundance of fecal 788 

bacterial taxa, especially at lower taxonomic ranks. Linear discriminant analysis of A) 789 

bacterial species, B) bacterial genera, C) bacterial families, D) bacterial orders, E) bacterial 790 

classes F) bacterial phyla. Taxa with abundance of less than 20 sequences were filtered out. 791 

Obesity groups are represented by color, lean group by red, overweight group by green, and 792 

obese group by blue. Confidence ellipses are shaded. Normal data ellipses are unfilled and 793 

leveled to include 50% of the samples. 794 

Supplement figure 3: Lean and obese groups can be characterized by the abundance of 795 

dominant salivary bacterial taxa, across most taxonomic ranks. The results also indicate that 796 

the most abundant bacteria taxa are not the most influential for characterization of obesity 797 

groups. Linear discriminant analysis of 15 most abundant salivary bacterial A) Species, B) 798 

Families, C) Orders, D) Classes. Obesity groups are represented by color, lean group by red, 799 

overweight group by green, and obese group by blue. The intensity of vector rays’ color 800 

corresponds to the strength of the impact. Confidence ellipses are shaded. Normal data ellipses 801 

are unfilled and leveled to include 50% of the samples. 802 
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Supplement figure 4: Lean and obese groups can be characterized by the abundance of 803 

dominant fecal bacterial taxa across most taxonomic ranks. The results also indicate that 804 

most abundant bacteria taxa are not the most influential for characterization of obesity groups. 805 

Linear discriminant analysis of 15 most abundant fecal bacteria A) Species, B) Families, C) 806 

Orders, D) Classes. Obesity groups are represented by color, lean group by red, overweight 807 

group by green, and obese group by blue. The intensity of vector rays’ color corresponds to the 808 

strength of the impact. Confidence ellipses are shaded. Normal data ellipses are unfilled and 809 

leveled to include 50% of the samples. 810 

Supplementary Tables’ Legends 811 

Supplement Table 1: Salivary but not fecal samples exhibited a significant difference in 812 

compositional and phylogenetic distances between lean and obese groups. Pairwise 813 

comparisons of Bray-Curtis, Weighted and Unweighted Unifrac distances between obesity 814 

groups in salivary and fecal samples. 815 

Supplement Table 2: Obesity groups did not exhibit a significant variation in alpha 816 

diversity indices of salivary and fecal microbial communities. Pairwise comparisons of 817 

Shannon and Gini-Simpson indices’, as well as species richness values between obesity groups 818 

in salivary and fecal samples.  819 

Supplement Table 3: More salivary bacterial taxa exhibited a significant difference in their 820 

abundances between obesity group than fecal bacterial taxa. Pairwise comparisons of 821 

microbiota taxa abundances between obesity groups in A) salivary samples and B) fecal samples.  822 

Supplement Table 4: The number of strong correlations between bacterial taxa in salivary 823 

and fecal samples increased with the increase of the obesity status of the host. Pairwise 824 
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comparisons of absolute values for inter-bacterial correlation coefficients between obesity 825 

groups. 826 

Supplement Table 5: More of the recently consumed nutrients produce a significant effect 827 

on compositional and phylogenetic diversity distances of salivary samples than on fecal 828 

samples. The impact of changes in recently consumed nutrients on Bray-Curtis and Weighted 829 

and Unwheighted Unifrac distances of salivary and fecal samples. Sq stands for quadratic effect 830 

of the nutrient on beta diversity distances.  831 

Supplement Table 6: More of the habitually consumed nutrients produce a significant 832 

effect on compositional and phylogenetic diversity distances of fecal samples than on 833 

salivary samples. The impact of changes in habitually consumed nutrients on Bray-Curtis and 834 

Weighted and Unwheighted Unifrac distances of salivary and fecal samples. Sq stands for 835 

quadratic effect of the nutrient on beta diversity distances.  836 

Supplement Table 7: Predicted metabolic potential of bacterial community varies between 837 

obesity groups. Pairwise comparisons of predicted bacterial enzymes, Kegg orthologs, and 838 

MetaCyc abundances between obesity groups in A) salivary samples and B) fecal samples. ECs, 839 

KOs, and MetaCyc pathways that were not significantly different (p >0.05) between obesity 840 

groups were excluded from the table. 841 

Supplement table 8: Some of the predicted bacterial metabolic pathways are uniquely 842 

enriched in obesity groups. Pairwise comparisons of uniquely enriched bacterial metabolic 843 

pathways identified from salivary and fecal samples between obesity groups. 844 

Supplement table 9: Predicted bacterial metabolic potential influences plasma and stool 845 

metabolites concentrations. The effect of A) ECs identified from salivary samples on plasma 846 
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metabolites concentrations, B) ECs identified from salivary samples on stool metabolites 847 

concentrations, C) ECs identified from fecal samples on plasma metabolites concentrations, D) 848 

ECs identified from fecal samples on stool metabolites concentrations, E) KOs identified from 849 

salivary samples on plasma metabolites concentrations, F) KOs identified from salivary samples 850 

on stool metabolites concentrations, G) KOs identified from fecal samples on plasma metabolites 851 

concentrations, H) KOs identified from fecal samples on stool metabolites concentrations, I) 852 

MetaCyc pathways identified from salivary samples on plasma metabolites concentrations, J) 853 

MetaCyc pathways identified from salivary samples on stool metabolites concentrations, K) 854 

MetaCyc pathways identified from fecal samples on plasma metabolites concentrations, L) 855 

MetaCyc pathways identified from fecal samples on stool metabolites concentrations. 856 

 857 
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