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Supplementary notes 1: Kinetic description of double exponential OS dwell time distributions 

In this section, we discuss how we evaluated which kinetic model best describes the open state (OS) dwell 

time distribution, or in other words, the OS disassembly time. First note that the unbinding distribution for 

a kinetic model can in general be obtained by evaluating the first passage time distributions of all the paths 

that result in unbinding. If we assume the specific transition from 𝑥 to 𝑦 occurs with rate 𝑘!→#, when the 

total rate of all transitions starting from state 𝑥 is 𝑘$%$,', we can write the first passage time distribution for 

the transition as 

𝑝!→#(𝑡) = 𝑝!→#𝑘$%$,'𝑒()!"!,$* = 𝑘!→#𝑒()!"!,$* . 

Here we have used that the (splitting) probability for making the transition to 𝑥 before any of the other 

transitions is 

𝑝!→# =
𝑘!→#
𝑘$%$,'

. 

The first passage time distribution of a path through multiple states can be found as the convolution of the 

first passage time distributions between the successive states. To enable to combine successive transitions 

by simply multiplying probability densities (rather than performing convolutions), we move to Laplace 

space, and write the general probability distribution as  

𝜙!(𝑠) = - 𝑒(+*𝑝!(𝑡)d𝑡
,

-

=
𝑘!

𝑠 + 𝑘$%$
 

Model 1: open complex starts from RPI and dissociates from RPC 

We first evaluate the most straight-forward model for OS dissociation, i.e. the holo enters the OS from RPI 

to reach RPO, and walks back the kinetic pathway to dissociate from RPC, such as 

R + P
)%&
23 RP.

𝑘/
⇌
𝑘(/

RP0
𝑘1
⇌
𝑘(1

RP2 
(S1) 

The system converts from the RPI to RPC or RPO with rate 𝑘(/ or 𝑘1 respectively, and can get repeatedly 

reabsorbed back into RPI with rate 𝑘/ or 𝑘(1 before the holo dissociates from RPC with rate 𝑘(3. Of note, 

this model can be interpreted as an extension of Model 2, Assumption 3, where 𝑘4 is subdivided into 𝑘/, 

𝑘(/ and 𝑘(3. 

Using this kinetic model, we have the following transition-time distributions 
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𝜙(3 =
)%&

)%&5)'5+
 ,  𝜙/ =

)'
)%&5)'5+

,   𝜙(/ =
)%'

)(5)%'5+
  

 𝜙1 =
)(

)(5)%'5+
,  𝜙(1 =

)%(
)%(5+

 

By summing transition-time distributions of escape paths, enumerated by the number 𝑛 of absorptions into 

RPO before escaping, we can write down the full escape-time distribution. Starting from RPI, the escape-

time distribution is 

Ψ67)→657(𝑠) = 𝜙(3𝜙(/77
(𝑚3 +𝑚/)!
𝑚3!𝑚/!

(𝜙/𝜙(/)8&

,

8'

,

8&

(𝜙1𝜙(1)8'  

Defining 𝑚 = 𝑚3 +𝑚/, we have 

Ψ67)→657(𝑠) = 𝜙(3𝜙(/77
𝑚!

𝑚3! (𝑚 −𝑚3)!
(𝜙/𝜙(/)8

8

8&

,

8

(𝜙1𝜙(1)8(8& 

Using the binomial theorem, we can write 

Ψ67)→657(𝑠) = 𝜙(3𝜙(/7(𝜙/𝜙(/ + 𝜙1𝜙(1)8
,

8

=
𝜙(3𝜙(/

1 − 𝜙/𝜙(/ − 𝜙1𝜙(1

=
𝑘3𝑘(/(𝑘(1 + 𝑠)

(𝑘(3 + 𝑘/ + 𝑠)(𝑘1 + 𝑘(/ + 𝑠)(𝑘(1 + 𝑠) − 𝑘/𝑘(/(𝑘(1 + 𝑠) − 𝑘1𝑘(1(𝑘(3 + 𝑘/ + 𝑠)

=
𝑘(3𝑘(/(𝑘(1 + 𝑠)

(𝑠 + 𝑠3)(𝑠 + 𝑠/)(𝑠 + 𝑠1)
 

Where 𝑠3, 𝑠/ and 𝑠1 are defined as minus the roots of the denominator. As we have three roots, we can 

write Ψ67)→657 as the sum of three Laplace transformed exponentials using partial fraction decomposition, 

such as 

Ψ67)→657(𝑠) =
𝐴3

𝑠 + 𝑠3
+

𝐴/
𝑠 + 𝑠/

+
𝐴1

𝑠 + 𝑠1

=
𝐴3(𝑠 + 𝑠/)(𝑠 + 𝑠1) + 𝐴/(𝑠 + 𝑠3)(𝑠 + 𝑠1) + 𝐴1(𝑠 + 𝑠3)(𝑠 + 𝑠/)

(𝑠 + 𝑠3)(𝑠 + 𝑠/)(𝑠 + 𝑠1)

=
𝑠/(𝐴3 + 𝐴/ + 𝐴1) + 𝑠[𝐴3(𝑠/ + 𝑠1) + 𝐴/(𝑠3 + 𝑠1) + 𝐴1(𝑠3 + 𝑠/)] + 𝐴1𝑠3𝑠/+𝐴3𝑠/𝑠1 + 𝐴/𝑠3𝑠1

(𝑠 + 𝑠3)(𝑠 + 𝑠/)(𝑠 + 𝑠1)
 

Comparison of the numerators gives us for the following relations 

𝐴3 + 𝐴/ + 𝐴1 = 0 
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𝐴3(𝑠/ + 𝑠1) + 𝐴/(𝑠3 + 𝑠1) + 𝐴1(𝑠3 + 𝑠/) = 𝑘(3𝑘(/ 

𝐴1𝑠3𝑠/+𝐴3𝑠/𝑠1 + 𝐴/𝑠3𝑠1 = 𝑘(3𝑘(/𝑘(1 

Considering the probability density function must be normalized in the time domain, we can write it in the 

form 

P67)→657(𝑡) = 𝑝3𝑠3𝑒(+&* + 𝑝/𝑠/𝑒(+'* + (1 − 𝑝3 − 𝑝/)𝑠1𝑒(+(* 

Note that in this notation 𝐴3 = 𝑝3𝑠3, 𝐴/ = 𝑝/𝑠/ and 𝐴1 = (1 − 𝑝3 − 𝑝/)𝑠1, so we can rewrite the relations 

from the numerator to 

𝑝3𝑠3 + 𝑝/𝑠/ + (1 − 𝑝3 − 𝑝/)𝑠1 = 0 (S2) 

𝑝3𝑠3(𝑠/ + 𝑠1) + 𝑝/𝑠/(𝑠3 + 𝑠1) + (1 − 𝑝3 − 𝑝/)𝑠1(𝑠3 + 𝑠/) = 𝑘(3𝑘(/ (S3) 

𝑠3𝑠/𝑠1 = 𝑘(3𝑘(/𝑘(1 (S4) 

From Equations S2 and S3, we get 

𝑝3 =
𝑠/𝑠1 − 𝑘(3𝑘(/

(𝑠1 − 𝑠3)(𝑠/ − 𝑠3)
 (S5) 

𝑝/ = −
𝑠3𝑠1 − 𝑘(3𝑘(/

(𝑠1 − 𝑠/)(𝑠/ − 𝑠3)
 (S6) 

𝑝1 = 1 − 𝑝3 − 𝑝/ =
𝑠3𝑠/ − 𝑘(3𝑘(/

(𝑠1 − 𝑠/)(𝑠1 − 𝑠3)
 (S7) 

 

We now need to evaluate the signs of the exponential weights to determine the nature of the distribution, 

considering that the kinetic rates must be positive. 

First note that we only consider distributions with real and positive exponential rates (resulting in 

exponential decay) such that we can choose 𝑠1 > 𝑠/ > 𝑠3 > 0. Starting from Equations S2 and S3, we 

obtain 

𝑘(3𝑘(/ = −𝑝3(𝑠1 − 𝑠3)(𝑠/ − 𝑠3) + 𝑠/𝑠1 

Considering that 𝑘(3, 𝑘(/ > 0 we find the condition 

𝑝3 >
𝑠/𝑠1

(𝑠1 − 𝑠3)(𝑠/ − 𝑠3)
> 0 (S8) 

Of note, we have +'
(+'(+&)

> 1 and +(
(+((+&)

> 1 because 𝑠1 > 𝑠/ > 𝑠3 > 0. We can therefore rewrite Equation 

S8 such as 
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𝑝3 >
+(

+((+&
> 1    and   𝑝3 >

+'
+'(+&

> 1 

The numerator of Equation S6 must verify  

 𝑘(3𝑘(/ − 𝑠3𝑠1 = (𝑠/ − 𝑠3)[−𝑝3(𝑠1 − 𝑠3) + 𝑠1] < 0 and the denominator is positive, therefore 𝑝/ < 0. 

Furthermore, the numerator of Equation S7 must verify 

𝑠3𝑠/ − 𝑘(3𝑘(/ = (𝑠1 − 𝑠3)[𝑝3(𝑠/ − 𝑠3) − 𝑠/] > 0, the denominator is positive and therefore 𝑝1 > 0. 

In conclusion, we have two exponentials with a positive weight and one with a negative rate. The global 

distribution is therefore the combination of a peaked and an exponential distribution. 

 

Model 2: Dissociation from RPO 

As dissociation from RPC (Model 1) fails at describing the double exponential distribution of the OS dwell 

times, we propose another model, where the holo dissociates from RPO.  

RP0
𝑘1
⇌
𝑘(1

RP2
)*→ 	R + P 

(S9) 

The system converts from the RPI to RPO with rate 𝑘1, and can get temporarily and repeatedly reabsorbed 

back into RPI with rate 𝑘(1, before the holo dissociates from RPO with rate 𝑘4. In the following section, we 

calculate the escape time distribution from the double bound states system for two cases, i.e. the OS starts 

in either RPO or RPI. 

The particular transition-time distributions for Equation S9 are 

ϕ4(𝑠) =
𝑘4

𝑠 + 𝑘4 + 𝑘(1
, ϕ1(𝑠) =

𝑘1
𝑠 + 𝑘1

, ϕ(1(𝑠) =
𝑘(1

𝑠 + 𝑘4 + 𝑘(1
. 

By summing transition-time distributions of escape paths, enumerated by the number 𝑛 of absorptions into 

RPO before escaping, we can write down the full escape-time distribution, which differs depending on the 

starting point of the OS.   

 

Model 2, Case 1: the OS starts in RPO 

Here, the OS starts in RPO, and therefore we have 
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Ψ67+→657(𝑠) = ϕ4(𝑠)7Fϕ1(𝑠)ϕ(1(𝑠)G
;

,

;<-

=
ϕ4(𝑠)

1 − ϕ(1(𝑠)ϕ1(𝑠)
=

𝑘4(𝑠 + 𝑘1)
(𝑠 + 𝑘1)(𝑠 + 𝑘4 + 𝑘(1) − 𝑘(1𝑘1

	 

This escape time distribution is readily converted back from Laplace to real space as 

𝑃67+	→657(𝑡) = 𝑝5𝑘5𝑒(),* + (1 − 𝑝5)𝑘(𝑒()%* . 

With 𝑝>,5 =
?-,,
),

 and 1 − 𝑝5 =
?-,%
)%

. 

We have the two effective rates  

𝑘± =
1
2
(𝑘 ± Δ𝑘), 𝑘 = 𝑘(1 + 𝑘1 + 𝑘4, 𝛥𝑘 = M𝑘/ − 4𝑘1𝑘4 

By definition, we have 𝑘± 

𝑘5 + 𝑘( = 𝑘(1 + 𝑘1 + 𝑘4 

 

If we now find the roots of the denominator to factorize it and use partial-fraction decomposition we find 

that Ψ67+→657(𝑠) can be written in the form of two Laplace transformed exponential. 

Ψ67+→657(𝑠) =
𝑘4(𝑠 + 𝑘1)

(𝑠 + 𝑘1)(𝑠 + 𝑘4 + 𝑘(1) − 𝑘(1𝑘1
	=

𝑠(𝐴A,5 + 𝐴A,() + 𝐴A,5𝑘( + 𝐴A,(𝑘5
(𝑠 + 𝑘5)(𝑠 + 𝑘()

=
𝐴A,5
𝑠 + 𝑘5

+
𝐴A,(
𝑠 + 𝑘(

 

 

The numerator of Ψ67+→657 must follow 

𝐴A,5 + 𝐴A,( = 𝑘4  and  𝐴A,5𝑘( + 𝐴A,(𝑘5 =	𝑘1𝑘4 

Which can also be written as 

𝑘4 = 𝑝5𝑘5 + (1 − 𝑝5)𝑘(  and 𝑘5𝑘( =	𝑘1𝑘4  

From which can be derived 

𝑝2,5 =
)*()%
),()%

   and 𝑝2,( = 1 − 𝑝2,5 =
),()*
),()%

 

As we have per definition 𝑘5 > 𝑘( ; 𝑘4 = 𝑝5𝑘5 + (1 − 𝑝5)𝑘( and the kinetic rates should be positive, we 

can derive that 𝑘5 > 𝑘4 > 𝑘( and therefore the two exponential weights  𝑝2,5/( must be both positive. The 
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kinetic rates for this model can be found from the double exponential fit parameters with the following 

conversion relations. 

𝑘4 = 𝑝5𝑘5 + (1 − 𝑝5)𝑘(  

𝑘1 =
),)%
)*

  

𝑘(1 =
(),()*)()*()%)

)*
  

This model is however inconsistent with the start of the OS in RPI, as described in the literature, and can 

therefore be discarded. 

 

Model 2, Case 2: the OS starts in RPI 

Starting in OS from RPI, we need to add an extra transition from RPI to RPO state  

Ψ67)→657(𝑠) = ϕ1(𝑠)Ψ67+→657(𝑠) =
ϕ1(𝑠)ϕ4(𝑠)

1 − ϕ(1(𝑠)ϕ1(𝑠)
=

𝑘1𝑘4
(𝑠 + 𝑘1)(𝑠 + 𝑘4 + 𝑘(1) − 𝑘(1𝑘1

=
𝑠(𝐴C,5 + 𝐴C,() + 𝐴C,5𝑘( + 𝐴C,(𝑘5

(𝑠 + 𝑘5)(𝑠 + 𝑘()
=

𝐴C,5
𝑠 + 𝑘5

+
𝐴C,(
𝑠 + 𝑘(

. 

Similarly to Case 1, this escape time distributions is readily converted back from Laplace to real space as 

𝑃67)→657(𝑡) = 𝑝5𝑘5𝑒(),* + (1 − 𝑝5)𝑘(𝑒()%* . 

With 𝑝>,5 =
?-,,
),

 and 1 − 𝑝5 =
?-,%
)%

. 

We have the two effective rates  

𝑘± =
1
2
(𝑘 ± Δ𝑘), 𝑘 = 𝑘(1 + 𝑘1 + 𝑘4, 𝛥𝑘 = M𝑘/ − 4𝑘1𝑘4 

Of note, these effective rates are independent from the starting position, i.e. either RPO or RPI. 

From the numerator of Ψ67)→657, we have 

𝑝5𝑘5 + (1 − 𝑝5)𝑘( = 0  and 𝑘5𝑘( =	𝑘1𝑘4 

From which can be derived 

𝑝0,5 = − )%
),()%

< 0,  𝑝0,( = 1 − 𝑝2,5 =
),

),()%
≥ 	0 
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In this case we find that one of the exponential weights is negative, which leads to a peaked distribution 

where a minimum of two successive steps is needed before holo dissociation (1,2). We clearly observe a 

double exponential distribution in Figure 1D, and therefore Model 2, Case 2 cannot describe the data. 

 

Model 3: open complex starts from RPI, dissociation from RPO and RPI considered 

After concluding that Model 1 and 2  are not suitable to describe the OS dwell time distribution, we propose 

a third model, which allows the holo to dissociated from both RPI and RPO, while the OS starts in RPI 

(Table 1). 

R + P
).← RP0

𝑘1
⇌
𝑘(1

RP2
)*→ 	R + P 

(S10) 

Using the formalism described above, the particular transition-time distributions for the new model 

(Equation S10) are 

𝜙D =
).

).5)(5+
 ,  𝜙1 =

)(
).5)(5+

,   𝜙(1 =
)%(

)*5)%(5+
 ,  𝜙4 =

)*
)*5)%(5+

 

In this model we start from RPI and there are escape-routes with we have that the path to unbinding is 

Ψ67)→657(𝑠) = (𝜙D + 𝜙1𝜙4)7(𝜙1𝜙(1);
,

;<-

=
𝜙D + 𝜙1𝜙4
1 − 𝜙1𝜙(1

=
𝑘D(𝑘4 + 𝑘(1 + 𝑠) + 𝑘1𝑘4

(𝑘4 + 𝑘(1 + 𝑠)(𝑘D + 𝑘1 + 𝑠) − 𝑘1𝑘(1

=
𝑘D𝑘4 + 𝑘D𝑘(1 + 𝑘1𝑘4 + 𝑘D𝑠

(𝑠 + 𝑘5)(𝑠 + 𝑘()
 

In the last step, we factorized the denominator with the roots 

𝑘± =
1
2
(𝑘 ± Δ𝑘), 𝑘 = 𝑘(1 + 𝑘1 + 𝑘4 + 𝑘D			,	 

𝛥𝑘 = M𝑘/ − 4[(𝑘D + 𝑘1)(𝑘4 + 𝑘(1) − 𝑘1𝑘(1] = M𝑘/ − 4[𝑘D𝑘4 + 𝑘D𝑘(1 + 𝑘1𝑘4] 

Using partial-fraction decomposition, we find that we can write Ψ67)→657 in the form  

Ψ67)→657 =
𝑘D𝑘4 + 𝑘D𝑘(1 + 𝑘1𝑘4 + 𝑘D𝑠

(𝑠 + 𝑘5)(𝑠 + 𝑘()
=
𝑠(𝐴5 + 𝐴() + 𝐴5𝑘( + 𝐴(𝑘5

(𝑠 + 𝑘5)(𝑠 + 𝑘()
=

𝐴5
𝑠 + 𝑘5

+
𝐴(

𝑠 + 𝑘(
 

Where 𝐴5 and 𝐴( are a combination of the kinetic rates. Note that if we transform this form of Ψ67)→657 

back from Laplace space to real space, we get a double exponentials probability distribution function  
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𝑃67)→657(𝑡) = 𝐴5𝑒(),* + 𝐴(𝑒()%* = 𝑝5𝑘5𝑒(),* + (1 − 𝑝5)𝑘(𝑒()%* 

To get the coefficients 𝐴5 and 𝐴(, note from the numerator of Ψ67)→657 that 

𝐴5 + 𝐴( = 𝑘D and           𝐴5𝑘( + 𝐴(𝑘5 = 𝑘D𝑘4 + 𝑘D𝑘(1 + 𝑘1𝑘4 (S11, S12) 

From the numerator of Ψ67)→657 we find 

𝑘5𝑘( = 𝑘D𝑘4 + 𝑘D𝑘(1 + 𝑘1𝑘4 𝑘5 + 𝑘( = 𝑘(1 + 𝑘1 + 𝑘4 + 𝑘D (S13, S14) 

 Therefore, we can write 

𝑝5 =
?,
),
= ).()%

),()%
  and   𝑝( = 1 − 𝑝5 =

),().
),()%

 

To extract the values of the kinetic rates in the model from the double exponential fits, we need expressions 

for the kinetic rates in terms of the fitting parameters.  

First note that  

𝑘D = 𝐴5 + 𝐴( = 𝑝5𝑘5 + (1 − 𝑝5)𝑘( (S15) 

Secondly, consider that from Equation S13 and S14 we obtain 

(𝑘5 + 𝑘()(𝑘1 + 𝑘D) − 𝑘5𝑘( = 𝑘1
/ + 2𝑘1𝑘D + 𝑘D

/ + 𝑘1𝑘(1 

Rewriting this relation gives 

𝑘(1 =
−(𝑘1 + 𝑘D)/ + (𝑘5 + 𝑘()(𝑘1 + 𝑘D) − 𝑘5𝑘(

𝑘1

=
(𝑘5 − (𝑘1 + 𝑘D))((𝑘1 + 𝑘D) − 𝑘()

𝑘1
 

(S16) 

and using 𝑘5 + 𝑘( = 𝑘(1 + 𝑘1 + 𝑘4 + 𝑘D we get 

𝑘4 =
𝑘1𝑘D + 𝑘D

/ − 𝑘D(𝑘5 + 𝑘() + 𝑘5𝑘(
𝑘1

= 𝑘D −
(𝑘5 − 𝑘D)(𝑘D − 𝑘()

𝑘1
 

(S17) 

Now we have derived solutions for 𝑘D, 𝑘(1 and 𝑘4  in terms of 𝑝5, 𝑘5, 𝑘(, 𝑘1. We could however not 

retrieve a complete set of conversion relations for fit parameters 𝑝5, 𝑘5, 𝑘( to kinetic parameters	𝑘1, 𝑘(1, 

𝑘4, 𝑘D without making an assumption. This is simply because a direct mapping of three parameters (𝑝5, 

𝑘5, 𝑘() to four parameters (𝑘1, 𝑘(1, 𝑘4, 𝑘D) cannot be made. 
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Model 3, Assumption 1: RPI and RPO in rapid equilibrium 

If we assume that the rates between states RPI and RPO (𝑘1 and 𝑘(1) are much higher than the rates to 

unbind from either of the two states (𝑘4 and 𝑘D), we can assume that the transitions between the states are 

equilibrated and the detailed balance holds between the two states 

𝑝67)𝑘1 = 𝑝67+𝑘(1,  𝑝67) + 𝑝67+ = 1, 

where 𝑝67) and 𝑝67+ are the equilibrated fractions in the RPI and RPO state respectively. In this case, we 

have a double exponential unbinding distribution with 𝑝5 = 𝑝67) and 1 − 𝑝5 = 𝑝67+. Thus, we have 

𝑘(1 =
E/0)
E/0+

𝑘1 =
E,

3(E,
𝑘1. Substitution of this relation in the general expression for 𝑘(1 (Equation S16) 

gives 

𝑝5
1 − 𝑝5

𝑘1 =
−(𝑘1 + 𝑘D)/ + 𝑘D(𝑘5 + 𝑘() + 𝑘1(𝑘5 + 𝑘() − 𝑘5𝑘(

𝑘1
 

 

0 = 𝑘1
/ Q1 +

𝑝5
1 − 𝑝5

R + 𝑘1(+2𝑘D − 𝑘5 − 𝑘() + 𝑘5𝑘( − 𝑘D(𝑘5 + 𝑘() + 𝑘D
/ 

And 1 + E,
3(E,

= 3
3(E,

, thus 

𝑘1 =
1
2
(𝑘5 + 𝑘( − 2𝑘D)(1 − 𝑝5) ±

1
2
(1 − 𝑝5)S(𝑘5 + 𝑘( − 2𝑘D)/ −

4(𝑘5 − 𝑘D)(𝑘( − 𝑘D)
1 − 𝑝5

 

And we already derived relations for 𝑘D (Equation S15) and 𝑘4 (Equation S17) in terms of 𝑝5, 𝑘5, 𝑘(,𝑘1, 

so this equation gives us a complete set of conversion relations. 

𝑘D = 𝑝5𝑘5 + (1 − 𝑝5)𝑘(  

𝑘1 =
3
/
(𝑘5 + 𝑘( − 2𝑘D)(1 − 𝑝5) +

3
/
(1 − 𝑝5)T(𝑘5 + 𝑘( − 2𝑘D)/ −

4(),().)()%().)
3(E,

  

𝑘4 = 𝑘D −
(),().)().()%)

)(
  

To ensure 𝑘1, 𝑘(1, 𝑘4, 𝑘D ≥ 0 for this assumption, we need to take the expression for 𝑘1 with the plus-sign 

before the second term and the expression under the square root should be positive or zero. For this second 

condition, we must have 𝑘5 ≥ 𝑘D ≥ 𝑘( and 𝑝5 ≥ 0, which boils down to 𝑝5 ≥ 0 and 𝑘5 ≥ 𝑘( and these 

conditions are per definition true for a double exponential fit. 
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Additionally, to ensure  𝑘4 > 0 we have the boundary  

𝑘4 = 𝑘D −
(),().)().()%)

)(
> 0   thus 𝑘1 >

(),().)().()%)
).

 

Filling in this boundary in the expression for 𝑘1 and using the expression for 𝑘D (Equation S15) we can 

get the upper boundary on 𝑝5 

𝑝5 <
𝑘5𝑘5

𝑘D(𝑘5 + 𝑘( − 𝑘D)
=
M𝑘5𝑘5
𝑘5 − 𝑘(

 

By evaluating this boundary for the double exponential fit parameters obtained, we could directly argue 

whether this model assumption would mathematically work or not. 

Model 3, Assumption 2: No reverse reaction from RPO to RPI  

For the assumption 𝑘(1 = 0, we find from the general expression for 𝑘(1 (Equation S16) that 𝑘5 = 𝑘1 +

𝑘D or 𝑘( = 𝑘1 + 𝑘D. Considering 𝑘1 + 𝑘D > 𝑘4 as we expect unbinding to be faster from RPI then from 

RPO, we take 𝑘5 = 𝑘1 + 𝑘D and obtain 

𝑘4 = 𝑘D −
((𝑘1 + 𝑘D) − 𝑘D)(𝑘D − 𝑘()

𝑘1
= 𝑘( 

Taking into account the expression for 𝑘D (Equation S15), we have a complete set of conversion relations. 

𝑘D = 𝑝5𝑘5 + (1 − 𝑝5)𝑘(  

𝑘4 = 𝑘(  

𝑘1 = 𝑘5 − 𝑘D  

For 𝑘1 ≥ 0 we need to have 𝑘5 ≥ 𝑘D, which boils down to 𝑝5 ≥ 0 and 𝑘5 ≥ 𝑘( and these conditions are 

per definition true for a double exponential fit. 

 

Model 3, Assumption 3: dissociation from only RPI 

Alternatively, we can assume there is no dissociation from RPO, thus 𝑘4 = 0. Under this assumption we 

get 𝑘D =
(),().)().()%)

)(
  from Equation S17 and 𝑘5𝑘( = 𝑘D𝑘(1 from Equation S13, thus we have 

𝑘D = 𝑝5𝑘5 + (1 − 𝑝5)𝑘(  
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𝑘1 =
(),().)().()%)

).
  

𝑘(1 =
),)%
).

  

In this case, we must have 𝑘5 ≥ 𝑘D ≥ 𝑘( to ensure 𝑘1, 𝑘(1, 𝑘4, 𝑘D ≥ 0, which means 𝑝5 ≥ 0 and 𝑘5 ≥ 𝑘( 

and these conditions are per definition true for a double exponential fit. The evaluation of the kinetic rates 

calculated from the two exponential fits for the different assumptions to Model 3 demonstrated that 

Assumption 3 was the best proposed model for the OS disassembly times (Results, Table 1). 

 

Supplementary Notes 2: Kinetic description of single exponential OS dwell time distributions 

Using Model 3, Assumption 3 to describe the OS dwell times (Table 1), the OS dwell times distributions 

described by a single exponential probability distribution function report on the direct dissociation from 

RPI with a rate 𝑘D, i.e. the holo did not transition to RPO. 
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Supplementary Figure 1. Field of view, DNA sequence and effects of torque on open complex 

dynamics. (A) Typical field of view from a high throughput magnetic tweezers experiment, where 1 µm 

diameter MyOne magnetic beads (dark circles) are tethered to the glass surface by a ~1.4 kbp coilable DNA 

construct (Material and Methods). The polystyrene reference beads (1.1 µm diameter) are surrounded by 

a red square. (B) lacCONS+2 promoter sequence that is inserted in the dsDNA construct used in the MT 

experiment. The -10 element and -35 element are indicated in red, and the transcription start site and the 

holo transcription direction are indicated by an arrow. (C) The rotation extension of a tethered magnetic 
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bead that is centered at zero turn and the measurement position (+3 turns) are beyond the plectonemic 

transition, i.e. in the constant torque regime. (D) Open complex dynamics for the tether calibrated in (C) 

with 150 mM KCl and 10 nM holo. (E) The rotation extension of a tethered magnetic bead performed in 

the same experiment as in (C), where the measurement position (+3 turns) precedes the plectonemic 

transition, i.e. at a lower torque than in (C). (F) Open complex dynamics for the tether calibrated in (E). 

The dashed red vertical lines indicate the detected transitions in (D) and (F) from the change-point analysis 

(Materials and Methods). 
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Supplementary Figure 2. CS and OS dwell times distribution as a function of holo concentration. 

Dwell time distributions of the open and closed states, i.e. OS and CS respectively, in 150 mM KAc at the 

holo concentration indicated in the panels. The dashed red line is either mono-exponential or bi-exponential 

MLE fit. Error bars are two standard deviations extracted from 1000 bootstraps. 
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Supplementary Figure 3. The transition from open to closed state releases free the bound holo from 

the DNA. (A) Two representative traces showing the open complex dynamics for 0.5 nM holo and 150 mM 

of KGlu. The flow chamber is rinsed with 0.4 ml of reaction buffer at ~1800 s, and nothing is added 

afterwards. (B) Same experiment as in (A), and 0.2 ml of ~10 nM competing lacCONS+2 DNA promoter 

is then flushed after the flow chamber is rinsed with 0.2 ml of reaction buffer. (C) Same experiments as in 

(A), but 0.2 ml of 100 µg/ml heparin is added instead of competing DNA promoter after the flow chamber 

is rinsed with 0.2 ml of reaction buffer. 
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Supplementary Figure 4. Comparison of microscopic rates determined using the different models 

described in Table 1. Plots of the microscopic rates for Model 2 and Model 3. The error bars are one 

standard deviation extracted from error propagation as described in Materials and Methods. 
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Supplementary Figure 5. CS and OS dwell times distribution as a function of monovalent salt types. 

Dwell time distributions of the open (OS) and closed (CS) states for different monovalent salts at the same 

concentration. 10 nM holo was used for KCl and NaCl, while 1 nM holo was used in the other conditions. 

The dashed red line is the either mono-exponential or bi-exponential MLE fit. Error bars are two standard 

deviations extracted from 1000 bootstraps. 

 

  



 19 

 

Supplementary Figure 6. The cation nature affects the DNA helical twist. (A) Extension as a function 

of DNA rotation (extension-rotation) for different monovalent salts at 150 mM concentration, either in TE 

buffer (left) or holo reaction buffer (right). The reference extension-rotation in NaCl is in black and the one 

measured in the indicated monovalent salt is in blue. The dashed lines are their respective Gaussian fit. (B) 

Change in DNA helical twist (Δtwist) per degree of rotation and per kilo base pair in comparison of the 

reference measurement performed with 150 mM NaCl in either TE buffer (left) or reaction buffer (right). 
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Supplementary Figure 7. CS and OS dwell times distribution as a function of anions concentration. 

Dwell time distributions of the open and closed states, i.e. OS and CS respectively, for (A) KCl, (B) KAc 

and (C) KGlu at the concentration indicated in the panels. 10 nM holo was used for KCl and 1 nM holo 

was used for other anions. The dashed red line is the either mono-exponential or bi-exponential MLE fit. 

Error bars are two standard deviations extracted from 1000 bootstraps. 
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Supplementary Figure 8. CS and OS dwell times distribution as a function of holo concentration. 

Dwell time distributions of the open and closed states, i.e. OS and CS respectively, in (A) 100 mM KCl 

and (B) 150 mM KGlu at the holo concentration indicated in the panels. The dashed red line is either mono-

exponential or bi-exponential MLE fit. Error bars are two standard deviations extracted from 1000 

bootstraps. 
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Supplementary Figure 9. Effect of temperature on the open complex dynamics. Dwell time 

distributions of the OS and CS at the indicated temperature, performed with in 150 mM KAc and 5 nM 

holo. The dashed red line is either a single exponential (CS) or a double exponential (OS) MLE fit. Error 

bars are two standard deviations extracted from 1000 bootstraps. 
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Table S1: Experimental conditions and their related parameters extracted from MLE procedures. The rate 

constants 𝑘1, 𝑘(1 and 𝑘D were extracted according to Model 3, Assumption 3. 
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Table S2: Experimental conditions and their parameters directly obtained from MLE fits 
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Table S3: Equilibrium constants determined from holo concentration dependent experiment fitting the data 

with Equation 1. 

Salt K1 (µM-1) k2 (s-1) 

100 mM KCl 0.95 ± 4.96 3.0 ± 15.7 

150 mM KAc 60.1 ± 4.8 0.17 ± 0.01 

150 mM KGlu 6.5 ± 6.4 2.4 ± 2.3 
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