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Supplementary notes 1: Kinetic description of double exponential OS dwell time distributions

In this section, we discuss how we evaluated which kinetic model best describes the open state (OS) dwell
time distribution, or in other words, the OS disassembly time. First note that the unbinding distribution for
a kinetic model can in general be obtained by evaluating the first passage time distributions of all the paths
that result in unbinding. If we assume the specific transition from x to y occurs with rate k,_,,,, when the
total rate of all transitions starting from state x is k¢t x, We can write the first passage time distribution for

the transition as
— -k t — -k t
px—»y (t) - px—»yktot,xe totx® = kx—»ye totx®,

Here we have used that the (splitting) probability for making the transition to x before any of the other

transitions 1s

_ kxy

Dx-y =

ktot,x

The first passage time distribution of a path through multiple states can be found as the convolution of the
first passage time distributions between the successive states. To enable to combine successive transitions
by simply multiplying probability densities (rather than performing convolutions), we move to Laplace

space, and write the general probability distribution as
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Model 1: open complex starts from RP; and dissociates from RPc

We first evaluate the most straight-forward model for OS dissociation, i.e. the holo enters the OS from RP;

to reach RPo, and walks back the kinetic pathway to dissociate from RPc, such as

ky k3 (S1)
R+ PR = R = RP
Tk, ks

The system converts from the RP; to RPc or RPo with rate k_, or k3 respectively, and can get repeatedly
reabsorbed back into RP; with rate k, or k_3 before the holo dissociates from RP¢ with rate k_;. Of note,
this model can be interpreted as an extension of Model 2, Assumption 3, where k, is subdivided into k,,

k_,and k_;.

Using this kinetic model, we have the following transition-time distributions



ks

¢_1 - K_q+ky+s’ ¢2 - k_q+ky+s’ ¢—2 = ky+k_,+s
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By summing transition-time distributions of escape paths, enumerated by the number n of absorptions into
RPo before escaping, we can write down the full escape-time distribution. Starting from RPj, the escape-

time distribution is

oo oo

LPRP1—>R+P(S) =¢_1¢0_ 2

my my

(my + m,)!

(P29-2)" (P3p_3)™?

my!m,!

Defining m = my + m,, we have
o m!
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Using the binomial theorem, we can write

¢ 10,
1= 200 — P33
kik_;(k_3 +5)
(kg tky +5) (ks t kg +5) (ks +5) —kok_y(k_s+5) — kak_s(k_y + ky +5)
k_1k_;(k_3+5)
T (5 +s)(s+55)(s +53)

Waporep(5) = 9rb2 ) (hada + b3 s)" =

Where s4, s, and s3 are defined as minus the roots of the denominator. As we have three roots, we can
write Wgp, g4 p as the sum of three Laplace transformed exponentials using partial fraction decomposition,
such as

A A A
1 2, 3
S+s; Ss+s; Ss+53

lPRP,—»R+P(5) =
A5+ 57)(s +53) + Ax(s +51)(s + 53) + A3(s + 5)(s + 55)
- (s +51)(s +s3)(s +s3)

_ S2(Ay + Ay + A3) + s[A (s, +53) + Ay(s; +53) + A3(sy + 55)] + A3 S,+A15,55 + Ay5,83
- (s +s1)(s+52)(s+53)

Comparison of the numerators gives us for the following relations

A1+A2 +A3=0



Ai(s2 +s3) + Az(51 +53) + A3(s1 +52) = k_1k_;
A35152+A15253 + A25153 = k_lk_zk_3

Considering the probability density function must be normalized in the time domain, we can write it in the

form

Prp,or+p(t) = p151e75 + pys,e ™28 + (1 — py — py)sse™ %t

Note that in this notation A; = p;S1, 4, = p,S, and A3 = (1 — p; — p2)S3, so we can rewrite the relations

from the numerator to

P1S1 +P252 + (1 —py —pr)s3 =0 (S2)
P151(S2 +53) + D252(s1 +53) + (1 —p1 —p2)ss(sy +8) =k_1k_,  (S3)
515253 == k_lk_zk_3 (S4)

From Equations S2 and S3, we get

_ SyS3—k 4k, (S5)
P1= (53 = s1)(s52 = 51)
_ s183 —k_1k_; (S6)
P2 =" (53 = 52)(52 = 51)
515, —k_1k_, (S7)

= 1 — —_ =
P3 P P2 (53— 52)(s3 — 51)

We now need to evaluate the signs of the exponential weights to determine the nature of the distribution,

considering that the kinetic rates must be positive.

First note that we only consider distributions with real and positive exponential rates (resulting in
exponential decay) such that we can choose s3 > s, > s; > 0. Starting from Equations S2 and S3, we

obtain
k_1k_; = —pi(s3 —s1)(s3 — 51) + 5253

Considering that k_4, k_, > 0 we find the condition

> %253 >0 S8
P1 (s3 —51)(s2 — 51) (58)

S2

> 1 and —=

(s2—s1) (s3—51)

Ofnote, we have > 1because s3 > s, > 51 > 0. We can therefore rewrite Equation

S8 such as
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The numerator of Equation S6 must verify

k_1k_5 — 5183 = (53 — 51)[—p1(53 — 51) + 53] < 0 and the denominator is positive, therefore p, < 0.
Furthermore, the numerator of Equation S7 must verify

5183 —k_1k_5 = (s3 — s1)[p1(s3 — 51) — s3] > 0, the denominator is positive and therefore p; > 0.

In conclusion, we have two exponentials with a positive weight and one with a negative rate. The global

distribution is therefore the combination of a peaked and an exponential distribution.

Model 2: Dissociation from RPo

As dissociation from RPc (Model 1) fails at describing the double exponential distribution of the OS dwell

times, we propose another model, where the holo dissociates from RPo.

- (59)
RP, = RP, > R+ P
k_3

The system converts from the RP; to RPo with rate k3, and can get temporarily and repeatedly reabsorbed
back into RP; with rate k_3, before the holo dissociates from RPo with rate k,. In the following section, we
calculate the escape time distribution from the double bound states system for two cases, i.e. the OS starts

in either RPo or RPy.
The particular transition-time distributions for Equation S9 are

ks
s+ ks

ky
S+ky+k_g’
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;o bs(®) = &
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d3(s) =

By summing transition-time distributions of escape paths, enumerated by the number n of absorptions into
RPo before escaping, we can write down the full escape-time distribution, which differs depending on the

starting point of the OS.

Model 2, Case 1: the OS starts in RPo

Here, the OS starts in RPo, and therefore we have



$4(s) _ ky(s + k3)
—d3(8)P3(s)  (s+k3)(s+ky+k_3)—k_zks

LpRPo—>R+P(S) = $a(s) 2(¢3(5)¢—3(5))n = 1
n=0

This escape time distribution is readily converted back from Laplace to real space as

Prpy—r+p(t) = pikie™™t + (1 —p)k_e -t

With p;, = 2% and 1 - p, = 2=,
+ —_—

We have the two effective rates

1
ki =E(kiAk), k = k_3 +k3 +k4, Ak =ﬂk2 _4k3k4
By definition, we have k.

k++k_=k_3+k3+k4

If we now find the roots of the denominator to factorize it and use partial-fraction decomposition we find

that Wgp,_r+p(s) can be written in the form of two Laplace transformed exponential.

v ) ku(s + k) S(Ags +Ap ) ¥ A k_ + Ay k,
RPoRHPAS) = () (s + kg + kg) — k_sks G+k)G+k)
_ Aou | Ao
s+k, s+k_

The numerator of Wgp,,_z+p must follow

Ao+ +Ap-=ky and Ap k- +Ap_ky = k3k,
Which can also be written as

ky=piky+ (A —pok_ and ki k_ = ksk,

From which can be derived

ka—k_

_ _ ky—ky
Po+ = 1 and Po-=1—po+ ="
+ —

ky—k_

As we have per definition ky > k_ ; k4 = p.k, + (1 — p,)k_ and the kinetic rates should be positive, we

can derive that k, > k, > k_ and therefore the two exponential weights pg ,,_ must be both positive. The



kinetic rates for this model can be found from the double exponential fit parameters with the following

conversion relations.

ko =piky + (1 —pydk_

kpk_

ko =
3 ky

ke, = (k+_k4’)@(;k4_k_)

This model is however inconsistent with the start of the OS in RPj, as described in the literature, and can

therefore be discarded.

Model 2, Case 2: the OS starts in RP;

Starting in OS from RP;, we need to add an extra transition from RP; to RPo state

G3(s)Pa(s) _ k3k,

— d_3()Ps(s)  (s+k3)(s+ kg +k_3) — k_sks
S(Ape + AL )+ Ak  + Ak, A, A

- (s+ky)(s+k) Cs+k, s+k

llJRP,—>R+P(S) = ¢3(s)lpRP0—>R+P(S) = 1

Similarly to Case 1, this escape time distributions is readily converted back from Laplace to real space as

Pp—r+p(t) = pikie™ ™t + (1 —p)k_e -t

With p;, = 2% and 1 - p, = 2=,
+ —_—

We have the two effective rates

ky =%(kiAk), k=k_s+ks+ky Ak =+k?—4ksk,
Of note, these effective rates are independent from the starting position, i.e. either RPo or RPy.
From the numerator of Wgp, 4 p, we have
piky + (1 —p)k_=0 and ki k_ = ksk,

From which can be derived

k- Ky
= — = —_ = >
Pr+ P <0, pr- =1-po+ k. = 0




In this case we find that one of the exponential weights is negative, which leads to a peaked distribution
where a minimum of two successive steps is needed before holo dissociation (1,2). We clearly observe a

double exponential distribution in Figure 1D, and therefore Model 2, Case 2 cannot describe the data.

Model 3: open complex starts from RPy, dissociation from RPo and RP; considered

After concluding that Model 1 and 2 are not suitable to describe the OS dwell time distribution, we propose
a third model, which allows the holo to dissociated from both RP; and RPo, while the OS starts in RP;
(Table 1).

ks k3 ky (Slo)
R+P<ERP = RPy % R+P
k_s

Using the formalism described above, the particular transition-time distributions for the new model

(Equation S10) are

_ ks _ _ ks __ k-3 _ kg
¢5 - Ketkats’ ¢3 - B ¢—3 - ’ ¢4- -
s+kz+s ks+ks+s kit+k_3+s kyit+k_3+s

In this model we start from RP; and there are escape-routes with we have that the path to unbinding is

s + P3P, _ ks(ky +k_3 +5s) + k3k,
1—psp_3 (kg +k_z+5)ks+ks+5s)—ksk_3

Wrp,or+p(5) = (Ps5 + P364) Z(¢3¢—3)n =
n=0

_ksky + ksk_s + kaky + ks
B (s+k)(s+k)

In the last step, we factorized the denominator with the roots

1
ki=§(kiAk), k=k_3+k3+k4+k5 )

Ak = \[k? — 4[(ks + k3) (ks + k_3) — kak_3] = \[k? — 4[ksky + ksk_3 + ksk,]
Using partial-fraction decomposition, we find that we can write Wgp, g4 p in the form

v _ ekt kkoy +kaky +kss _S(Ay HA) T Ak Ak, Ay A
RPI=R+P — (s+k)(+k) B (s+k)(+k) s+ ky s+k_

Where A, and A_ are a combination of the kinetic rates. Note that if we transform this form of Wgp, g1p

back from Laplace space to real space, we get a double exponentials probability distribution function



Pppopep(t) = Aye ™t + A_e™* -t = p k™™ + (1 —p )k et
To get the coefficients A, and A_, note from the numerator of Wgp,_,g4p that
AL +A_=ks and Ak_+A_k, =ksk, + ksk_3 + k3k, (S11, S12)
From the numerator of Wgp, g4 p we find
kik_ = ksky + ksk_3 + k3k, ky+k_ =k 3+ks+ky+ks (S13, S14)

Therefore, we can write

_ Ay ks—k_

_ ky—ks
P+ =%, Tk
+ + k-

T kp—k_

and p-=1-p,
To extract the values of the kinetic rates in the model from the double exponential fits, we need expressions
for the kinetic rates in terms of the fitting parameters.
First note that

ks =A, +A_=piky + (1 —pi)k- (S15)
Secondly, consider that from Equation S13 and S14 we obtain
(ky + k) (ks + ks) — kyk_ = k3® + 2kzks + ks® + kzk_3

Rewriting this relation gives

—(ks + ks)? + (ky + k) (ks + ks) — kyk_ (S16)
k_s = T
_ Cky — (ks + k) (ks + ks) — k)
k3

andusing k., +k_ =k_3 + ks + k4, + k5 we get

kaks + ks® —kg(ky +k_) + k k_ . (ky —ks)(ks — k_) (S17)
4 = = 5 —
k3 k3

Now we have derived solutions for kg, k_3 and k, in terms of p,, k., k_, k3. We could however not
retrieve a complete set of conversion relations for fit parameters p.., k., k_ to kinetic parameters k3, k_3,
k4, ks without making an assumption. This is simply because a direct mapping of three parameters (p..,

k., k_) to four parameters (k3, k_s3, k4, ks) cannot be made.



Model 3, Assumption 1: RP; and RPo in rapid equilibrium
If we assume that the rates between states RP; and RPo (k3 and k_3) are much higher than the rates to
unbind from either of the two states (k, and k5), we can assume that the transitions between the states are

equilibrated and the detailed balance holds between the two states
Pre, K3 = Prpok-3, Prp, T PrP, = 1,

where pgp, and pgp,, are the equilibrated fractions in the RP; and RPo state respectively. In this case, we

have a double exponential unbinding distribution with p, = pgp, and 1 — p, = pgp,. Thus, we have

k_3 = ;;Ri ks = % k5. Substitution of this relation in the general expression for k_; (Equation S16)
RPo P+
gives
DL o = —(ks + k)2 + kes(ky + k) + ky(ky + k) — ki k_
1-ps ’ k3
2 P+ 2
0=Fk;"(1+ 1—p + ky(+2ks —ky —k_) + kyk_ —ks(ky +k_) + ks
- U+
And1+4+-2 =1 , thus
1-py 1-py4

4(ky — ks) (k- —ks)
1-ps

1 1
ks = E(k+ +k_—2ks)(1—py) i§(1 —p+)\/(k+ +k_ —2ks)* —

And we already derived relations for k5 (Equation S15) and k, (Equation S17) in terms of p,, k,, k_ k3,

so this equation gives us a complete set of conversion relations.

ks =piky + (1 —py k-

4(ky—ks)(k_—ks)

ks = 30y + - = 2Kks) (1= py) +3 (1 =p) (ke + e — 2ks)2 — ekl

ky—ks)(ks—k_
k4_ — k5 _( + 5)( 5 )
ks
To ensure k3, k_3, k4, ks = 0 for this assumption, we need to take the expression for k3 with the plus-sign
before the second term and the expression under the square root should be positive or zero. For this second
condition, we must have k. = ks = k_ and p, = 0, which boils down to p, = 0 and k, > k_ and these

conditions are per definition true for a double exponential fit.

10



Additionally, to ensure k4 > 0 we have the boundary

ky = ks — (ki —ks)(ks—k-) >0 thus ky > (ky—ks)(ks—k_)
ks ks
Filling in this boundary in the expression for k3 and using the expression for k5 (Equation S15) we can

get the upper boundary on p,

k,k, Jkiks

+<k5(k++k_—k5)_k+—k_

p

By evaluating this boundary for the double exponential fit parameters obtained, we could directly argue

whether this model assumption would mathematically work or not.
Model 3, Assumption 2: No reverse reaction from RPo to RP;

For the assumption k_; = 0, we find from the general expression for k_3 (Equation S16) that k, = k3 +
ks or k_ = k3 + ks. Considering k3 + ks > k, as we expect unbinding to be faster from RP; then from
RPo, we take k, = k3 + k5 and obtain

(ks + ks) — ks)(ks — k) _

ky = ks — ks

k_

Taking into account the expression for k5 (Equation S15), we have a complete set of conversion relations.

ks =piky + (1 —pk-

For k3 = 0 we need to have k, > ks, which boils down to p, = 0 and k, > k_ and these conditions are

per definition true for a double exponential fit.

Model 3, Assumption 3: dissociation from only RP;

Alternatively, we can assume there is no dissociation from RPo, thus k, = 0. Under this assumption we

_ (ky—ks)(ks—

get kg = ) from Equation S17 and k k_ = ksk_3 from Equation S13, thus we have

ks =piky + (1 —py )k

11



ks = (k+—ksi(k5—k—)
5

_ kyke
k_;= e

In this case, we must have k, > ks = k_ to ensure k3, k_3, k4, ks = 0, whichmeans p, > 0and k, > k_
and these conditions are per definition true for a double exponential fit. The evaluation of the kinetic rates
calculated from the two exponential fits for the different assumptions to Model 3 demonstrated that

Assumption 3 was the best proposed model for the OS disassembly times (Results, Table 1).

Supplementary Notes 2: Kinetic description of single exponential OS dwell time distributions

Using Model 3, Assumption 3 to describe the OS dwell times (Table 1), the OS dwell times distributions
described by a single exponential probability distribution function report on the direct dissociation from

RP; with a rate ks, i.e. the holo did not transition to RPo.

12



sequence with JlacCONS+2 promoter

5/ CAGTGAGCGCAACGCAATAAATGTGATCTAGATCACATTTTAGGCACCCCAGGCTTGACACTTTATGCTTCGGCTCGTATAATGTGTGGAATTGTGAGAGCGGATAACAATTTC' 3
3’ GTCACTCGCGTTGCGTTATTTACACTAGATCTAGTGTAARATCCGTGGGGTCCGAACTGTGAAATACGAAGCCGAGCATATTACTCACCTTAACACTCTCGCCTATTGTTARAG' 5

Turns
C D
-5 0 53 150 mM KCI

150 mM KCI

Position (um)
Position (um)

100 200
Time (s)

Supplementary Figure 1. Field of view, DNA sequence and effects of torque on open complex
dynamics. (A) Typical field of view from a high throughput magnetic tweezers experiment, where 1 pm
diameter MyOne magnetic beads (dark circles) are tethered to the glass surface by a ~1.4 kbp coilable DNA
construct (Material and Methods). The polystyrene reference beads (1.1 pm diameter) are surrounded by
a red square. (B) lacCONS+2 promoter sequence that is inserted in the dsDNA construct used in the MT
experiment. The -10 element and -35 element are indicated in red, and the transcription start site and the

holo transcription direction are indicated by an arrow. (C) The rotation extension of a tethered magnetic

13



bead that is centered at zero turn and the measurement position (+3 turns) are beyond the plectonemic
transition, i.e. in the constant torque regime. (D) Open complex dynamics for the tether calibrated in (C)
with 150 mM KCI and 10 nM holo. (E) The rotation extension of a tethered magnetic bead performed in
the same experiment as in (C), where the measurement position (+3 turns) precedes the plectonemic
transition, i.e. at a lower torque than in (C). (F) Open complex dynamics for the tether calibrated in (E).
The dashed red vertical lines indicate the detected transitions in (D) and (F) from the change-point analysis

(Materials and Methods).
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Supplementary Figure 2. CS and OS dwell times distribution as a function of holo concentration.
Dwell time distributions of the open and closed states, i.e. OS and CS respectively, in 150 mM KAc at the
holo concentration indicated in the panels. The dashed red line is either mono-exponential or bi-exponential

MLE fit. Error bars are two standard deviations extracted from 1000 bootstraps.
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Supplementary Figure 3. The transition from open to closed state releases free the bound holo from
the DNA. (A) Two representative traces showing the open complex dynamics for 0.5 nM holo and 150 mM
of KGlu. The flow chamber is rinsed with 0.4 ml of reaction buffer at ~1800 s, and nothing is added
afterwards. (B) Same experiment as in (A), and 0.2 ml of ~10 nM competing lacCONS+2 DNA promoter
is then flushed after the flow chamber is rinsed with 0.2 ml of reaction buffer. (C) Same experiments as in
(A), but 0.2 ml of 100 pg/ml heparin is added instead of competing DNA promoter after the flow chamber

1s rinsed with 0.2 ml of reaction buffer.
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Model 2, Case 1
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Supplementary Figure 4. Comparison of microscopic rates determined using the different models

described in Table 1. Plots of the microscopic rates for Model 2 and Model 3. The error bars are one

standard deviation extracted from error propagation as described in Materials and Methods.
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Supplementary Figure S. CS and OS dwell times distribution as a function of monovalent salt types.

Dwell time distributions of the open (OS) and closed (CS) states for different monovalent salts at the same

concentration. 10 nM holo was used for KCl and NaCl, while 1 nM holo was used in the other conditions.

The dashed red line is the either mono-exponential or bi-exponential MLE fit. Error bars are two standard

deviations extracted from 1000 bootstraps.
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Supplementary Figure 6. The cation nature affects the DNA helical twist. (A) Extension as a function
of DNA rotation (extension-rotation) for different monovalent salts at 150 mM concentration, either in TE
buffer (left) or holo reaction buffer (right). The reference extension-rotation in NaCl is in black and the one
measured in the indicated monovalent salt is in blue. The dashed lines are their respective Gaussian fit. (B)
Change in DNA helical twist (Atwist) per degree of rotation and per kilo base pair in comparison of the

reference measurement performed with 150 mM NacCl in either TE buffer (left) or reaction buffer (right).

19



A C

Ccs os Ccs 0os
¢ T T T T T T T T T T T T
- SR, 50 mM KCl 50 mM KCI 100 mM KGlu 100 mM KGlu
107 S 1 F 4 F 4k 4
\ pelRg
A N"c rOH*me T
¥ 25 N -
107 F 4 F =4 b o 4 L -
— \ \“ <
‘:U” 1 1 1 1 1 1 1 1 1 1 1 1
,é' T T T T T T T T T T T T
g 2| & 100 mM KCI Sloge, 100 MM KCI B @ o 150 mM KGlu 150 mM KGlu
10 LS 1 r X 1 r R 1 Lpeeg 7]
ﬁ \\\ ‘\\,\ \\ \\\\ 7
= 107'F b 1 F R - F k -4 F '~‘\\ _
‘B \
el & oo}
g 1 1 1 1 1 1 1 1 1 1 1 1
o
o T T T - T T T T T T T T
-2 ~ 150 mM KClI ‘\\ 150mMKCl | | pgp. 200mMKGIlu| | o, 200 mMKGIy
10 -——-_.,,~‘ T - \‘ T £ ,s\s
s ~ \~
A\ ¥ » (3
107 \\‘ 4 L 1 4 k z 4 L N
| X,
Y q
! 1 L ! 1 ] 1 L 1 | ] 1
10 1000 10 1000
T T T T T T
B B 300 MM KGIu| | % 300 mM KGlu|
T T T T T T r@ede \\'\
Py 50 mM KAc 50 mM KAc "\\ N
10 " 4 4 F 1 F |
——————— - it TON q
” “® - 1 1 1 1 1 ]
10 F ol T © A 10 1000 10 1000
1 1 1 1 1 1 Time (S)
T T T T T T
—_ " 100 mM KAc 100 mM KAc
= 10 " R Do 1 r “ 8 7]
& "\\ ‘\,\
3‘ -4 \\ ;*\
w 10 T v 1T o
[ 1
-g 1 1 L 1 1 1
.‘? T T T T T T
3 I ‘ 150 mM KAc s 150 mM KAc
© 10 [ DR, 1 r N —
8 R "¢
- 4 ‘\ 28
o 10 4 F N, .
1 1 1 1 1 1
T T T T T T
- 200 mM KAc PR, 200 mM KAc
10 4 F e 4
PN o \‘\
S N
-
-4 . ) ]
10 ~
1 1 1 1 1 1
10 1000 10 1000

Time (s)

Supplementary Figure 7. CS and OS dwell times distribution as a function of anions concentration.
Dwell time distributions of the open and closed states, i.e. OS and CS respectively, for (A) KCI, (B) KAc
and (C) KGlu at the concentration indicated in the panels. 10 nM holo was used for KCI and 1 nM holo
was used for other anions. The dashed red line is the either mono-exponential or bi-exponential MLE fit.

Error bars are two standard deviations extracted from 1000 bootstraps.
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Supplementary Figure 8. CS and OS dwell times distribution as a function of holo concentration.

Dwell time distributions of the open and closed states, i.e. OS and CS respectively, in (A) 100 mM KCI

and (B) 150 mM KGlu at the holo concentration indicated in the panels. The dashed red line is either mono-

exponential or bi-exponential MLE fit. Error bars are two standard deviations extracted from 1000

bootstraps.
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Supplementary Figure 9. Effect of temperature on the open complex dynamics. Dwell time
distributions of the OS and CS at the indicated temperature, performed with in 150 mM KAc and 5 nM
holo. The dashed red line is either a single exponential (CS) or a double exponential (OS) MLE fit. Error

bars are two standard deviations extracted from 1000 bootstraps.
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constants k3, k_5 and ks were extracted according to Model 3, Assumption 3.

Table S1
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Table S3: Equilibrium constants determined from holo concentration dependent experiment fitting the data

with Equation 1.

Salt K, (uM'l) ko (s'l)
100 mM KCl 0.95+4.96 3.0+£15.7
150 mM KAc 60.1 £4.8 0.17+0.01
150 mM KGlu 6.5+64 24+23
1. Floyd, D.L., Harrison, S.C. and van Qijen, A.M. (2010) Analysis of kinetic intermediates in single-
particle dwell-time distributions. Biophysical journal, 99, 360-366.
2. Xie, S.N. (2001) Single-molecule approach to enzymology. Single Mol, 2, 229-236.
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