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The polygenic risk score (PRS) can help to identify individuals’ genetic susceptibility for various 
diseases by combining patient genetic profiles and identified single-nucleotide polymorphisms 
(SNPs) from genome-wide association studies. Although multiple diseases will usually afflict 
patients at once or in succession, conventional PRSs fail to consider genetic relationships across 
multiple diseases. Even multi-trait PRSs, which take into account genetic effects for more than one 
disease at a time, fail to consider a sufficient number of phenotypes to accurately reflect the state of 
disease comorbidity in a patient, or are biased in terms of the traits that are selected. Thus, we 
developed novel network-based comorbidity risk scores to quantify associations among multiple 
phenotypes from phenome-wide association studies (PheWAS). We first constructed a disease-SNP 
heterogeneous multi-layered network (DS-Net), which consists of a disease network (disease-layer) 
and SNP network (SNP-layer). The disease-layer describes the population-level interactome from 
PheWAS data. The SNP-layer was constructed according to linkage disequilibrium. Both layers were 
attached to transform the information from a population-level interactome to individual-level 
inferences. Then, graph-based semi-supervised learning was applied to predict possible comorbidity 
scores on disease-layer for each subject. The SNP-layer serves as receiving individual genotyping 
data in the scoring process, and the disease-layer serves as the propagated output for an individual’s 
multiple disease comorbidity scores. The possible comorbidity scores were combined by logistic 
regression, and it is denoted as netCRS. The DS-Net was constructed from UK Biobank PheWAS 
data, and the individual genetic profiles were collected from the Penn Medicine Biobank. As a proof-
of-concept study, myocardial infarction (MI) was selected to compare netCRS with the PRS with 
pruning and thresholding (PRS-PT). The combined model (netCRS + PRS-PT + covariates) achieved 
an AUC improvement of 6.26% compared to the (PRS-PT + covariates) model. In terms of risk 
stratification, the combined model was able to capture the risk of MI up to approximately eight-fold 
higher than that of the low-risk group. The netCRS and PRS-PT complement each other in predicting 
high-risk groups of patients with MI. We expect that using these risk prediction models will allow 
for the development of prevention strategies and reduction of MI morbidity and mortality. 

Keywords: Comorbidity, polygenic risk scores, graph-based semi-supervised learning, multi-layered 
network. 
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1.  Introduction 

The prediction of an individual’s disease risk is an essential part of precision medicine and will be 
required to improve public healthcare and understand risk of developing a disease across different 
populations. One of the most popular methods of disease risk prediction is the polygenic risk score 
(PRS), which estimates a patient’s genetic risk for a chosen trait or disease by combining individual 
genetic profiles with many single-nucleotide polymorphisms (SNPs) identified through genome-
wide association studies (GWAS).1,2 Many studies have calculated PRSs for various common 
diseases, including cardiovascular disease, hypertension, and neurological disorders, and they 
suggest that the PRS might be a helpful tool for identifying and categorizing high-genetic risk 
individuals for those diseases.3-6 Nevertheless, a major weakness of the conventional PRS is its focus 
on a single trait for the estimation of genetic risk scores – when predicting the risk scores of an index 
disease of interest, PRS is calculated according solely to the relevant phenotype. In most cases, 
however, multiple diseases will usually afflict a patient at once or in succession. These disease 
complications and comorbidities, referring to the presence of one or more additional medical 
conditions given a primary disease, suggest that effective disease prediction will require us to 
consider multiple phenotypes concurrently.7 In order to estimate the disease risk considering the 
associations among multiple diseases, several studies had attempted to perform the association 
analysis for PRSs with multiple diseases through subsequent analysis8,9 or to combine PRSs for 
multiple traits.10 In these previous studies, a key step involves the determination of which diseases 
related to the index disease are selected for estimation of the combined risk score. However, these 
methods are limited as selection bias is introduced when knowledge reveled in clinical practice is 
used to identify diseases highly related to the target phenotype. Even multi-trait PRSs, which take 
into account genetic effects for more than one disease at a time, fail to consider a sufficient number 
of phenotypes to accurately reflect the state of disease comorbidity in a patient, or are biased in 
terms of the traits that are selected. 
 

One effective way to comprehensively explore the genetic associations among multiple diseases 
is to consider a network representation, such as the disease-disease network (DDN). Given a set of 
diseases, the DDN represents diseases as nodes, and disease-disease associations as edges. DDNs 
can explore potential comorbidity relationships among phenotypes based on shared genetic 
components. Different genetic components will yield different types of networks, such as gene11, 
protein12, pathway13, and SNP-based DDN.14 In this study, the SNP-based DDN is used to 
incorporate the conventional PRS approach, where edges represent the number of shared SNPs 
between diseases according to results from a phenome-wide association study (PheWAS). The SNP-
based DDN using PheWAS results is depicted in the center panel of Figure 1. Considering D2 as an 
index disease of interest (marked in red), we can see that it is directly connected with four diseases 
(D1, D3, D4, and D6). Three diseases (D5, D7, and D8) share no edges with D2. Directly connected 
diseases share at least one common SNP with D2. Indirectly connected diseases share no genetic 
associations with D2, but they are connected through the other nodes – for instance, D2 and D7 are 
connected in through the sequence of diseases with D2~D6~D7. Overall population-level 
relationships between diseases can be observed through the underlying structure of the DDN, 
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regardless of whether or not a pair of diseases share genetic components. In developing risk 
prediction models which consider the relationships across a multitude of diseases, a DDN can 
provide intuitive, unbiased evidence about the selection of related diseases as well as the strength 
of associations between diseases. However, although the population-level interactome between 
phenotypes can be observed through a DDN, it is not easy to apply these disease-disease associations 
in a patient-specific manner. Indeed, it is difficult to obtain information pertinent to the individual 
because the nodes and edges in DDN are aggregated and summarized from PheWAS data. 
 

To circumvent this challenge, we propose a novel framework of network-based individual 
comorbidity risk scores (netCRS) to predict individual-level disease comorbidity risk through 
population-level interactome networks. The goals of netCRS are as follows: (a) To improve the 
prediction ability of PRS, we present a novel risk score that estimates multiple disease comorbidities 
according to their shared genetic components. The netCRS estimates the combined comorbidity 
scores for multiple phenotypes in the SNP-based DDN when provided with an individual genetic 
profile. In PRS, marginal effect size estimates of SNPs obtained from a GWAS are used as weights 
for weighted sum scores of risk alleles carried by an individual for a single trait. On the other hand, 
in netCRS, disease-specific effect size estimates of SNPs from PheWAS are used as edge weights 
of the network for multiple traits. (b) To obtain individual-level inference from population-level 
interactome, we construct a novel disease-SNP heterogeneous multi-layered network using EHR-
linked biobank-scale PheWAS summary statistics. Using this multi-layered network, we introduce 
a scoring method to infer individual information from population-level networks through layer-wise 
label propagation. 
 

Figure 1 describes the overall conceptual framework of netCRS. The center panel depicts a 
disease-SNP heterogeneous multi-layered network (denoted as DS-Net). The DS-Net is a multi-
layered graph, consisting of a SNP-SNP correlation network (SNP-layer), disease-disease network 
(disease-layer) and SNP-disease associations (coupling graphs). Briefly, the SNP-layer (colored 
solid circles/lines) is constructed according to a linkage disequilibrium matrix, and the disease-layer 
(colorless solid circles/lines) is constructed according to the shared genetic components between 
phenotypes. The coupling graphs for inter-layers (colored dashed lines) between the SNP- and 
disease-layer are derived using disease-SNP associations obtained from PheWAS summary 
statistics. Given the DS-Net and index disease of interest, we first predict individual comorbidity 
scores using graph-based semi-supervised learning (SSL). Graph-based SSL predicts scores on the 
disease-layer by propagating label information when the individual genetic profile is labeled on the 
SNP layer. In the left panel of Figure 1, individual genotype data is used to provide query or seed 
label information to the SNP-layer for the scoring algorithm. Each patient’s genetic data are initially 
labeled on the SNP-layer, and then the label information is propagated through the multi-layered 
network. Predicted risk scores are obtained for each disease node (blue bar). Each bar depicts a 
possible comorbidity score for each disease that an individual patient can have. The predicted 
comorbidity scores are subsequently aggregated into combined comorbidity scores using a meta-
classifier (the right panel of Figure 1). Here, we use logistic regression for our meta-learner, and the 
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combined comorbidity score is denoted as netCRS( ), where the parentheses specify the index 
disease of interest. More details of the proposed methods are explained in the following sections. 

 

Figure 1. Overall framework of network-based comorbidity risk scoring algorithms (netCRS): Left) individual 
genotype data collected from Penn Medicine BioBank. Middle) schematic description of disease-SNP heterogeneous 
multi-layered network (DS-Net). SNP-layer constructed by linkage-disequilibrium and disease-layer constructed using 
UK biobank PheWAS summary data. Right) Upper right represents possible comorbidity scores of each disease for 
individual. The possible comorbidity scores are combined by logistic regression, and the combined scores, netCRS, are 
generated by each patient 
  

2.  netCRS: Network-based individual Comorbidity Risk Scoring 

2.1.  Disease-SNP Heterogeneous Network using UK Biobank summary statistics 

We constructed the reference network using UK BioBank (UKBB) PheWAS summary statistics. 
The DS-Net is a multi-layered weighted graph, 𝑮 = (𝑽,𝑾, 𝑺), where 𝑽 represents the set of nodes, 
𝑾 represents the set of edges, and S represents the set of layers. The multi-layered network 𝑮 is 
decomposed into two distinct single graphs with corresponding layers 𝑆 = {𝑆!"#$%#$, 𝑆&'(}. The 
similarity matrix 𝑾 for multi-layered network can be expressed in block-wise matrix as follows: 

𝑾 = ,
𝑾)*+,-+, 𝑪
𝑪. 𝑾/01

.                                                        (1) 

The block diagonal matrix (𝑾!"#$%#$ and 𝑾&'() represents a similarity matrix for each single 
network of the disease-layer and SNP-layer respectively, and the block-off diagonal matrix 𝑪 
represents the coupling graphs for the connections between inter-layers. 
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2.1.1.  Disease-Layer (Disease-Disease network) 

The disease-layer 𝑮!"#$%#$ = (𝑽!"#$%#$,𝑾!"#$%#$) is a sub-network of the DS-Net 𝑮, where the 
nodes 𝑽!"#$%#$  denotes the set of diseases, and 𝑾!"#$%#$  denotes the similarity between the 
sequences of SNPs that pairs of diseases commonly share. The disease-layer is constructed 
according to shared genetic components, with the hypothesis that two different phenotypes are 
associated if they share significant SNPs from the PheWAS summary results. Given 𝑚 diseases and 
𝑘  SNPs, we first generate 𝑚  disease-SNP association vectors from each PheWAS result. Each 
disease vector 𝒗 is represented as a 𝑘-dimensional SNP vector with binary attributes, each of which 
stands for statistically significant (‘1’) or not (‘0’) for the association with a specific SNP that has 
passed the 𝑝-value thresholds in the PheWAS results.14 Then, similarity between pairs of diseases 
is measured by cosine similarity 𝑤*2 for two diseases 𝑣* and 𝑣2. 

𝑤*2!"#$%#$ =
𝒗𝒊⋅𝒗𝒋

‖𝒗𝒊‖⋅6𝒗𝒋6
                                                              (2) 

2.1.2.  SNP-layers (SNP-SNP correlation network) 

SNP-layer 𝑮&'( = (𝑽&'(,𝑾/01) is a sub-network of the disease-SNP heterogeneous network G 
when 𝑺 = {S&'(}. The node 𝑽&'( denotes the representative SNPs after genetic pre-processing, and 
𝑾&'( denotes the pairwise genetic correlations between distinct SNPs. We generate the pairwise 
linkage-disequilibrium (LD) matrices of genotype correlation between nearby SNPs using quality-
controlled genotyped data of UKBB samples. The 𝑟7  between pairs of SNPs is obtained using 
PLINK 1.90 with LD calculation (--r2, --ld-window 10 SNPs, --ld-window-kb 1000kb, and --ld-
window-r2 0.0). The similarity matrix 𝑾&'( is composed of correlation values ranging from 0 to 1. 
 

2.1.3.  Coupling graphs (SNP-Disease associations) 

The coupling graphs 𝑪 = {𝑐*8|	𝑖 ∈ 𝑽)*+,-+, , 𝑘 ∈ 𝑽/01} imply connections between diseases and 
SNPs across different layers of the network. Coupling edges are derived from the disease-SNP 
association vectors (described in section 2.1.1). Edge weights take value of z-scores, equivalent to 
the beta-coefficients (𝛽*8) divided by standard errors (SE*8) from the significant association between 
phenotype 𝑖 and SNP	𝑘 from PheWAS results. These weights are rescaled to lie within a range of 0 
to 1.  
 

Combining the disease-layer, SNP-layer, and coupling graphs yields the proposed DS-Net. The 
constructed network can provide insights into the population-level interactome between diseases 
and SNPs. 
 

2.2.  Individual comorbidity risk scoring algorithms 

Given an index disease of interest, we can predict individuals’ disease comorbidity risk scores using 
the DS-Net. Since the network describes a biobank-scale population-level interactome, we take 
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individual genetic information from another biobank to calculate risk scores for individual patients. 
In this analysis, the summary-level data from UKBB were used for the network construction, and 
the individual-level genetic data were collected from the Penn Medicine BioBank (PMBB). More 
details are explained in the Section 3.  
 
Let us define disease comorbidity risk scoring 𝒇: 𝐕 → ℝ as a function that quantifies the degree of 
commitment of the diseases associated with SNPs on the network. To implement this scoring 
function in a DS-Net, we employ graph-based SSL with transductive learning settings.15 As shown 
in Figure 1, individual genotypes are used for initial label information in the DS-Net. We set the 
genotype CC (homozygous non-reference) as 0, genotype CT (heterozygous) as 0.5, and genotype 
TT (homozygous reference) as 1 for initial labels of label propagation. Once the labels for the SNP-
layer are provided, graph-based SSL propagates the label information through all edges in the 
heterogeneous multi-layered network simultaneously. Since we are interested only in the 
comorbidity risk of multiple diseases, the propagated disease scores 𝒇!"#$%#$ on the disease-layer 
𝑽!"#$%#$ are used as the predicted comorbidity feature vectors. To aggregate these scores, we employ 
logistic regression as the meta-classifier. 
 

The following section describes the formulation of the proposed network-based comorbidity 
scoring algorithm. Assume that we have genotype data for m individuals and that we know the 
diagnosis outcomes of the index disease. Then, 𝑖-th patient’s genotype data 𝒎* has 𝑘-dimensional 
SNP vectors with values of 0, 0.5, and 1 as described above. The outcomes of the index disease for 
all patients 𝒛 is an m-dimensional vector with value ‘1’ if the patient has been diagnosed with the 
index disease or ‘0’ otherwise. To apply the individual data to graph-based SSL, we set the initial 
label set of vector 𝒚 and predicted scores 𝒇. The initialization and learning process is performed 
iteratively patient-by-patient. Let 𝒚 = (𝑦9, … , 𝑦:, 𝑦:;9, … , 𝑦:;8). = (𝒚!"#$%#$, 𝒚&'().  denote the 
set of initial labels and 𝒇 = (𝑓9, … , 𝑓:, 𝑓:;9, … , 𝑓:;8). = (𝒇!"#$%#$, 𝒇&'().  denote the set of 
predicted scores, where n is the total number of diseases and k is the total number of SNPs in the 
network. In the problem setting of disease comorbidity scores, we set the 𝒚!"#$%#$ to the zero vector 
and 𝒚&'( to 𝒎*. The label information is propagated to all connected nodes along with edges in 
𝑾&'(, 𝐂, and 𝐖!"#$%#$ on graph 𝐆. Graph-based SSL provides the real-valued scores 𝒇 with two 
assumptions: (a) smoothness function (predicted scores 𝑓*  and 𝑓2  should not be different if two 
nodes 𝑣* and 𝑣2 are adjacent), (b) loss function (predicted scores 𝑓* should be close to the given label 
of 𝑦*).  We can obtain predicted score 𝒇 by minimizing the following quadratic function: 

min
<
		(𝒇 − 𝒚).(𝒇 − 𝒚) + 𝜇𝒇𝐓𝑳𝒇                                         (3) 

where 𝑳 is the graph Laplacian defined as 𝑳 = 𝑫 −𝑾, 𝑫 = diag(𝑑*) is diagonal degree matrix,  
𝑑* = ∑ 𝑤*22 , and 𝜇 is user-specific parameter that provides a trade-off between the loss function 
(first term of Eq. (3)) and smoothness function (second term of Eq. (3)). The closed form of solution 
𝒇 becomes  

𝒇 = (𝑰 + 𝜇𝑳)>9𝒚	                                                       (4) 
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The predicted scores 𝑓 on Eq. (4) can be re-expressed in a block-wise representation by using Eq. 
(1).12  

Z
𝒚!"#$%#$
𝒚&'( [ = ,

𝑰 + 𝜇(𝑫!"#$%#$−𝑾!"#$%#$) −𝜇𝑪
−𝜇𝑪. 𝑰 + 𝜇(𝑫&'(−𝑾&'()

. ,𝒇!"#$%#$𝒇&'(
.												(5)			 

Since the nodes in the SNP-layer are all labeled and nodes in the disease-layer are all unlabeled, Eq. 
(5) is simplified by substituting 𝒇&'(  as 𝒚&'(  and 𝒚!"#$%#$  as 𝟎 . The predicted scores on the 
disease-layer are thus obtained as 

𝒇!"#$%#$ = 𝜇{𝑰 + 𝜇(𝑫!"#$%#$ −𝑾!"#$%#$)}>9𝑪 ⋅ 𝒚&'(                           (6) 

This process is iteratively repeated for each individual patient, and 𝑭∗ = {𝒇!"#$%#$
(9) , … , 𝒇!"#$%#$

(B) } 
represents the 𝑚-dimensional comorbidity score vector. To aggregate these vectors, we employ 
logistic regression as a meta-classifier with 𝐳	~	𝛃.𝒇!"#$%#$ + 𝝐. We can then obtain the combined 
possible comorbidity risk scores as netCRS( ) = 𝜷d.𝑭∗ for the individual. A step-by-step process 
for scoring is summarized with pseudo-code in Supplementary Figure 1. 
 

3.  Results 

In this study, we selected myocardial infarction (PheCode: 411.2) as the index disease of interest. It 
is commonly known as a heart attack and occurs when blood flow reduces or stops to a part of the 
heart. Myocardial infarction (MI) is the main undesirable outcome of coronary artery disease. 
Coronary artery disease, often caused by coronary atherosclerosis, is a common chronic condition 
characterized by a substantial and complex polygenic contribution to disease risk, with a heritability 
between 40% and 60%. We describe a MI-specific DS-Net and present comorbidity scores of MI 
for the individual, netCRS (myocardial infarction, MI). 
 

3.1.  Experimental Setting 

3.1.1.  Data for model development and validation set 

To build the MI-specific DS-Net and calculate netCRS(MI), a total of 1,403 PheCode-based UK 
biobank PheWAS summary statistics were obtained from https://www.leelabsg.org/resources.16 To 
construct the myocardial infarction-specific DS-Net, 135 diseases were selected with the following 
criteria: (a) The diseases were included in the disease-layer if phenotypes had a minimum number 
of cases larger than 1000, and (b) the diseases were included if phenotypes had at least one shared 
SNP with myocardial infarction (directly connected with MI). The selected disease categories and 
disease-layers are described in Figure 2. In the SNP-layer, 39,365 SNPs were selected with genome-
wide significance p-value threshold ≤ 1 × 10>C . Linkage disequilibrium (LD) pruning was 
performed with thresholds (window size: 50, step size: 5, and r2 threshold: 0.5). A list of components 
in the DS-Net is described in Supplementary Table 1. 
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Individual genotype data were collected from the PMBB. The PMBB is an institutional research 
program that recruits patient-participants throughout the University of Pennsylvania Health System 
by enrolling at the time of outpatient visits ore more recently, through electronic consenting. 
Approximately 45,000 of these participants already have genotype data available along with 
electronic health records (EHR). ICD-9 and ICD-10 codes were aggregated to PheCodes by 
referring to the PheCode Map 1.2 version.17-19 4,972 individuals of European ancestry were included 
for this study, all of whom underwent genotyping and had available electronic health record data 
(Table 1). The detailed genotype QC we performed refers to the previous study 20. According to the 
accumulated medical history at the time of participation, individuals were considered cases for MI 
if they had at least 2 instances of the PheCode on unique dates, controls if they had no instance of 
the PheCode, and ‘other/missing’ if they had one instance or a related PheCode. Table 1 describes 
the list of data and sources for model development and validation cohort.  
 
Table 1. Demographics table of the development and validation cohort. 

Development 
Cohort 

(Network construction) 

UK BioBank PheWAS summary data (UKBB) 
Phenotypes  135 (out of 1,403) 
SNPs 39,365 (after genetic pre-processing) 

Validation 
Cohort 

(Genotype data) 

Penn Medicine BioBank (PMBB) 
 Total MI cases Controls p-value 

No. of samples (N = 4972) (N = 763) (N = 4209)  
Sex    <0.001 

Female (%) 1,854 (37.3%) 171 (22.4%) 1683 (40.0%)  
Male (%) 3,118 (62.7%) 592 (77.6%) 2526 (60.0%)  

Age at enrollment 62.0 ± 14.8 68.4 ± 11.2 60.9 ± 15.1 <0.001 
 

Figure 2. Visualization of MI-specific disease-layer: The node size is the sum of the weighted degree of 
the node, indicating the relative size, and the node labels represents their PheCode. The thickness of the line 
represent the edge weights (similarity). Parentheses in disease categories represent the percentages of 
diseases that belong to a category.   
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3.1.2.  Experimental Setting 

To evaluate the prediction performance of netCRS using PMBB genotype data, we compared 
proposed method to PRS with pruning and thresholding (PRS-PT), calculated using PRSice-221. 
Area under the receiver operating characteristic curve (AUC) was used as performance measure. 
The model parameters were searched over the following ranges for the respective models. In 
netCRS(MI), we performed a hyper-parameter search of 𝜇 for Eq. (4) of graph-based SSL over 𝜇 =
{0.01, 0.1, 1, 10, 100}. The PRS-PT was generated from the sum of the risk alleles weighted by their 
effect sizes based on GWAS summary statistics from Coronary Artery Disease Genome-wide 
Replication and Meta-analysis plus the Coronary Artery Disease Genetics (CARDIOGRAMplus 
C4D consortium).22 The parameters were selected from a range of p-value thresholds 
{5 × 10>D, 1 × 10>E, 0.0001, 0.001, 0.01, 0.05}  and LD-based clumping 𝑟7  (0.1 to 0.9) within 
1,000 kb. The generated netCRS(MI) and PRS-PT(MI) were compared between MI cases and 
healthy controls with the logistic regression model, respectively. For both models, the best 
performance was selected by searching over the respective model-parameter space. The best model 
of PRS-PT(MI) was determined based on the optimal threshold with the largest Nagelkerke's R2 
value (in Supplementary Table 1). 

3.1.3.  Risk predictions of myocardial infarction with netCRS 

Table 2 shows the performance comparison of the best PRS-PT(MI) and netCRS(MI) in terms of 
overall AUC for MI cases and healthy controls. In the results, we included the prediction 
performance of singleton risk model (netCRS and PRS-PT) and models with covariates of sex and 
age. We also included the additive models of (PRS-PT + netCRS) with and without covariates. The 
netCRS with 𝜇 = {0.1} achieved best predictive performance across both singleton and additive 
models. When netCRS was used along with the conventional PRS model, the combined model [6] 
(netCRS + PRS-PT + covariates) achieved an AUC improvement of 28.29%(=
(0.7417 − 0.5827) 0.5827⁄ ) compared to the PRS-PT alone model [1] in MI case prediction.  Also, 
the combined model [6] improved the performance up to 0.7417 of AUC (lifted from 0.6979), 
comparing to the individual PRS-PT model [4] (AUC improvement of 6.26%). Models with 
superscript of asterisk were used in further association analysis to validate netCRS and its 
effectiveness (model [2], [5], and [6]) 
 
Table 2. Performance comparison of netCRS and PRS-PT in terms of AUC 

Models 
Hyper-parameter (𝜇) for netCRS 

0.01 0.1 1 10 100 

[1] PRS-PT 0.5827 (Baseline) 

[2] netCRS* 0.6028 0.6444 0.6395 0.6197 0.6039 

[3] netCRS + PRS-PT 0.6274 0.6609 0.6570 0.6389 0.6255 

[4] PRS-PT + Sex + Age 0.6979 (Baseline) 

[5] netCRS + Sex + Age* 0.7083 0.7287 0.7261 0.7144 0.7051 

[6] netCRS + PRS-PT + Sex + Age* 0.7230 0.7417 0.7396 0.7287 0.7199 
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3.1.4.  Association analysis of netCRS and PRS 

To investigate the effectiveness of the association between both risk scoring models and covariates 
with age and sex, we assessed multiplicative interactions between netCRS and each of the 
stratification variables. We stratified participants based on quartiles of netCRS; low risk (0th-25th), 
intermediate risk (26th-50th), high risk (51st-75th), and very high risk (76th-100th). Compared with 
the low-netCRS risk group, the higher netCRS risk group had higher odds ratios in the validation 
cohort. In stepwise multivariate models (model [5] and [6]), the models with covariates and/or PRS-
PT remained significantly (Table 3). Participants in the very high-netCRS risk group for MI had 
approximately four-fold increased risk of MI occurrence relative to those with the corresponding 
low-genetic risk group (shown in Table 3). In addition, we investigated the benefit of using netCRS 
and PRS together in screening high-risk groups for MI. Table 4 demonstrates that combinations of 
MI-PRS and netCRS were able to capture the risk of MI up to approximately eight-fold higher than 
the low-risk group. Supplementary Table 3 provides demographics of participants according to 
netCRS risk groups. 
 
Table 3. Diagnostic odds ratio and 95% confidential intervals for the MI according to netCRS risk group: We compared 
three different models: (a) model [2]: netCRS alone, (b) model [5]: netCRS + sex + age, and (c) model [6]: netCRS + 
PRS-PT + sex + age. 

Abbreviations: OR, odds ratio; CI, confidence interval; PRS, polygenic risk score. *p-value for netCRS categories. 

 
Table 4. Genetic subgroups based on the combinations of PRS and netCRS  

Odds ratio* 
(No. of MI / No. of Total) 

PRS-PT(MI) 
Low risk 
(0th-25th) 

Intermediate risk 
(26th-50th) 

High risk 
(51st-75th) 

Very high risk 
(76th-100th) 

ne
tC

R
S(

M
I)

 

Low risk (0th-25th) Reference 
(19/334) 

1.18 
(20/299) 

1.35 
(21/273) 

2.46 
(34/243) 

Intermediate risk (26th-50th) 1.46 
(23/276) 

2.36 
(36/268) 

2.77 
(45/286) 

3.07 
(46/263) 

High risk (51st-75th) 2.07 
(33/280) 

4.59 
(71/272) 

3.94 
(52/241) 

4.55 
(60/232) 

Very high risk (76th-100th) 4.04 
(52/226) 

4.66 
(58/219) 

5.60 
(78/245) 

7.88 
(113/252) 

*For calculating odds ratio, we performed multivariate logistic regression analysis for MI classification task (myocardial 
infarction (MI) cases versus Normal control). Logistic model: (MI cases vs. Normal control) ~ 16 combinations (PRS 
and netCRS groups) + sex + age. With the lowest risk group (Low PRS group & Low netCRS group) as a reference, the 
odds ratio of each combination was reported in this table. 

Total (N = 4,972) No. of MI/ 
No. of Total 

Model [2] Model [5] Model [6] 
OR (95% CI) p-value* OR (95% CI) p-value* OR (95% CI) p-value* 

Low risk 
(0th-25th) 94/1243 Reference 

Intermediate risk 
(26th-50th) 150/1243 1.68 (1.28–2.21) <0.001 1.71 (1.30–2.25) <0.001 1.65 (1.25–2.19) <0.001 

High risk 
(51st-75th) 218/1243 2.60 (2.02–3.37) <0.001 2.72 (2.10–3.55) <0.001 2.70 (2.08–3.53) <0.001 

Very high risk 
(76th-100th) 301/1243 3.91 (3.06–5.02) <0.001 4.01 (3.13–5.50) <0.001 3.83 (2.98–4.96) <0.001 
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4.  Conclusion 

In this study, we developed and proposed netCRS, a network-based disease comorbidity risk scoring 
algorithm based upon biobank-scale PheWAS summary statistics. To improve the prediction ability 
of PRS, we introduced a novel combined comorbidity risk scores using a multi-layered network. 
Most current biological networks suggest only associative information between biological 
components according to aggregated population-level data 23. Although these population-level 
networks provide insights regarding the interaction of components, it is not easy to obtain individual 
inference from them.  
 
To solve this problem, we proposed a novel method for the prediction of individual-level risk scores 
from population-level interactome. We first constructed a DDN (disease-layer) which elaborates on 
the genetic associations among multiple phenotypes in UKBB PheWAS data. In order to use the 
disease-layer at the individual-level, we attached a SNP-layer to the disease-layer. The final 
developed network is a disease-SNP heterogeneous multi-layered network denoted as DS-Net. We 
employed graph-based SSL on the network to devise a network-based scoring algorithm. The SNP-
layer is a single network that serves as initial labeling to receive individual genotyping data, and the 
disease-layer is an output network. The disease-layer serves as the predicted possible comorbidity 
risk scores in which the individual's genotype is propagated. To obtain layer-wise predicted scores, 
a layer-wise positive-unlabeled learning setting was employed, where the all nodes on the disease-
layer are unlabeled and all the SNPs on the SNP-layer are labeled. Graph-based SSL can operate in 
this problem setting to propagate label information according to the topology of the network. The 
resulting netCRS is an estimated comorbidity score that integrates pre-defined genetic association 
between phenotypes using the underlying structure of the DS-Net. This score includes not only 
genetic information about a specific target disease, but also multiple associations of diseases. We 
validated the proposed netCRS by considering MI as index disease of interest. The netCRS model 
outperformed the conventional PRS-PT model in predicting MI patients and healthy controls. From 
experimental results of the association analysis, it is noteworthy that netCRS and PRS-PT work 
complementary to one another in identifying the very high-risk group of patients with myocardial 
infarction.  
 

The current proposed method still has room for improvement. First, when constructing a disease-
specific heterogeneous multi-layered network, it is expected that better comorbidity scores will be 
obtained if more precise criteria are applied to node selection. Second, our network was constructed 
using only common variants from PheWAS summary data. If we expand the network to include rare 
variants and other clinical information, we expect that using these risk prediction models will allow 
for the development of prevention strategies and reduction of MI morbidity and mortality. Also, the 
current disease-layer was constructed according to shared common SNPs between diseases. We can 
also try to build the DDN using different forms of genetic correlations such as LD regression scores. 
For future work, we will test netCRS in various diseases and compare netCRS with more recent 
PRS approaches in order to prove its generalized prediction performance. 
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Supplementary Figure 1. Pseudo-code for netCRS of section 2.2 

INPUT: 
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1. Similarity matrix for DS-Net 
Disease-layer (W!"#$%#$), SNP-layer (W&'(), Disease-SNP association (C) 

2. Initialization 
𝒚&'(: Set of initial label vector for SNP-layer, 𝒇!"#$%#$: Set of resulting candidate comorbidity scores 
N: The number of participants,  𝒛: outcome vector for index disease of interest (case: 1 / control: 0) 

3. Hyper-parameter 
𝜇: Hyper-parameter for graph-based SSL  

PROCEDURE: 
Calculating graph Laplacian matrix for disease-layer 

𝐋!"#$%#$ = 𝑫!"#$%#$ −𝑾!"#$%#$ , where 𝐃 is diagonal degree matrix of 𝐖 
 

For i = 1:N, 

Initializing labels for SNP-layer: 𝒚&'( = (𝑦), … , 𝑦*)𝐓, where 𝑦, = 7
0 if	genotype	CC
0.5 if	genotype	CT
1 if	genotype	TT

 

Applying closed form solution of SSL in Eq. (6): 𝒇!"#$%#$ = 𝜇(𝑰 + 𝜇𝑳!"#$%#$)-)𝑪 ⋅ 𝒚./0 
 
End for 

 
Aggregating predicted scores for netCRS( ) – Logistic model: 𝒛 (MI case vs. Normal control) ~ 𝒇!"#$%#$ 

OUTPUT:  
Individual comorbidity risk scores: netCRS(	) = 𝜷M𝒇!"#$%#$ 

 
 
Supplementary Table 1. A list of phenotypes in disease-layer 

No. PheCode Phenotype description Phenotype category 
1 172 Skin cancer neoplasms 
2 172.2 Other non-epithelial cancer of skin neoplasms 
3 174 Breast cancer neoplasms 
4 198 Secondary malignant neoplasm neoplasms 
5 198.1 Secondary malignancy of lymph nodes neoplasms 
6 208 Benign neoplasm of colon neoplasms 
7 214 Lipoma neoplasms 
8 214.1 Lipoma of skin and subcutaneous tissue neoplasms 
9 242 Thyrotoxicosis with or without goiter endocrine/metabolic 
10 244 Hypothyroidism endocrine/metabolic 
11 244.1 Secondary hypothyroidism endocrine/metabolic 
12 244.4 Hypothyroidism NOS endocrine/metabolic 
13 250.1 Type 1 diabetes endocrine/metabolic 
14 250.2 Type 2 diabetes endocrine/metabolic 
15 250.23 Type 2 diabetes with ophthalmic manifestations endocrine/metabolic 
16 250.7 Diabetic retinopathy endocrine/metabolic 
17 272 Disorders of lipoid metabolism endocrine/metabolic 
18 272.1 Hyperlipidemia endocrine/metabolic 
19 272.11 Hypercholesterolemia endocrine/metabolic 
20 275 Disorders of mineral metabolism endocrine/metabolic 
21 278 Overweight, obesity and other hyperalimentation endocrine/metabolic 
22 281 Other deficiency anemia hematopoietic 
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23 281.1 Megaloblastic anemia hematopoietic 
24 287 Purpura and other hemorrhagic conditions hematopoietic 
25 287.3 Thrombocytopenia hematopoietic 
26 290 Delirium dementia and amnestic and other cognitive disorders mental disorders 
27 292 Neurological disorders mental disorders 
28 292.4 Altered mental status mental disorders 
29 296 Mood disorders mental disorders 
30 296.2 Depression mental disorders 
31 306 Other mental disorder mental disorders 
32 318 Tobacco use disorder mental disorders 
33 331 Other cerebral degenerations neurological 
34 332 Parkinson's disease neurological 
35 335 Multiple sclerosis neurological 
36 365 Glaucoma sense organs 
37 365.1 Open-angle glaucoma sense organs 
38 365.11 Primary open angle glaucoma sense organs 
39 366 Cataract sense organs 
40 366.2 Senile cataract sense organs 
41 386.9 Dizziness and giddiness (Light-headedness and vertigo) sense organs 
42 394.3 Aortic valve disease circulatory system 
43 395.6 Heart valve replaced circulatory system 
44 401.1 Essential hypertension circulatory system 
45 411.1 Unstable angina (intermediate coronary syndrome) circulatory system 
46 411.2 Myocardial infarction circulatory system 
47 411.3 Angina pectoris circulatory system 
48 411.4 Coronary atherosclerosis circulatory system 
49 411.8 Other chronic ischemic heart disease, unspecified circulatory system 
50 411.9 Other acute and subacute forms of ischemic heart disease circulatory system 
51 415 Pulmonary heart disease circulatory system 
52 418 Nonspecific chest pain circulatory system 
53 418.1 Precordial pain circulatory system 
54 426 Cardiac conduction disorders circulatory system 
55 426.3 Bundle branch block circulatory system 
56 426.9 Cardiac pacemaker__device in situ circulatory system 
57 426.91 Cardiac pacemaker in situ circulatory system 
58 427 Cardiac dysrhythmias circulatory system 
59 427.2 Atrial fibrillation and flutter circulatory system 
60 428 Congestive heart failure; nonhypertensive circulatory system 
61 428.2 Heart failure NOS circulatory system 
62 433 Cerebrovascular disease circulatory system 
63 433.1 Occlusion and stenosis of precerebral arteries circulatory system 
64 433.21 Cerebral artery occlusion, with cerebral infarction circulatory system 
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65 433.3 Cerebral ischemia circulatory system 
66 440 Atherosclerosis circulatory system 
67 442 Other aneurysm circulatory system 
68 442.1 Aortic aneurysm circulatory system 
69 443 Peripheral vascular disease circulatory system 
70 443.9 Peripheral vascular disease, unspecified circulatory system 
71 447 Other disorders of arteries and arterioles circulatory system 
72 451 Phlebitis and thrombophlebitis circulatory system 
73 451.2 Phlebitis and thrombophlebitis of lower extremities circulatory system 
74 454 Varicose veins circulatory system 
75 454.1 Varicose veins of lower extremity circulatory system 
76 455 Hemorrhoids circulatory system 
77 459 Other disorders of circulatory system circulatory system 
78 459.9 Circulatory disease NEC circulatory system 
79 475 Chronic sinusitis respiratory 
80 480.11 Pneumococcal pneumonia respiratory 
81 495 Asthma respiratory 
82 496 Chronic airway obstruction respiratory 
83 496.1 Emphysema respiratory 
84 496.2 Chronic bronchitis respiratory 
85 506 Empyema and pneumothorax respiratory 
86 507 Pleurisy; pleural effusion respiratory 
87 509.2 Respiratory insufficiency respiratory 
88 530 Diseases of esophagus digestive 
89 530.1 Esophagitis, GERD and related diseases digestive 
90 535 Gastritis and duodenitis digestive 
91 535.6 Duodenitis digestive 
92 550.2 Diaphragmatic hernia digestive 
93 557 Intestinal malabsorption (non-celiac) digestive 
94 557.1 Celiac disease digestive 
95 562 Diverticulosis and diverticulitis digestive 
96 562.1 Diverticulosis digestive 
97 564 Functional digestive disorders digestive 
98 564.9 Personal history of diseases of digestive system digestive 
99 565 Anal and rectal conditions digestive 
100 565.1 Anal and rectal polyp digestive 
101 569 Other disorders of intestine digestive 
102 571 Chronic liver disease and cirrhosis digestive 
103 571.5 Other chronic nonalcoholic liver disease digestive 
104 574 Cholelithiasis and cholecystitis digestive 
105 574.1 Cholelithiasis digestive 
106 574.11 Cholelithiasis with acute cholecystitis digestive 
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107 574.12 Cholelithiasis with other cholecystitis digestive 
108 574.2 Calculus of bile duct digestive 
109 574.3 Cholecystitis without cholelithiasis digestive 
110 575 Other biliary tract disease digestive 
111 575.7 Other disorders of gallbladder digestive 
112 579 Other symptoms involving abdomen and pelvis digestive 
113 586 Other disorders of the kidney and ureters genitourinary 
114 593 Hematuria genitourinary 
115 594 Urinary calculus genitourinary 
116 596 Other disorders of bladder genitourinary 
117 599 Other symptoms__disorders or the urinary system genitourinary 
118 686.1 Carbuncle and furuncle dermatologic 
119 696 Psoriasis and related disorders dermatologic 
120 696.4 Psoriasis dermatologic 
121 696.41 Psoriasis vulgaris dermatologic 
122 704 Diseases of hair and hair follicles dermatologic 
123 706 Diseases of sebaceous glands dermatologic 
124 706.2 Sebaceous cyst dermatologic 
125 714 Rheumatoid arthritis and other inflammatory polyarthropathies musculoskeletal 
126 714.1 Rheumatoid arthritis musculoskeletal 
127 716 Other arthropathies musculoskeletal 
128 716.9 Arthropathy NOS musculoskeletal 
129 728.71 Contracture of palmar fascia [Dupuytren's disease] musculoskeletal 
130 735.2 Acquired toe deformities musculoskeletal 
131 742 Derangement of joint, non-traumatic musculoskeletal 
132 743 Osteoporosis, osteopenia and pathological fracture musculoskeletal 
133 747 Cardiac and circulatory congenital anomalies congenital anomalies 
134 747.1 Cardiac congenital anomalies congenital anomalies 
135 747.13 Congenital anomalies of great vessels congenital anomalies 
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Supplementary Table 2. Nagelkerke’s R2 values of PRS in the classification of myocardial 
infarction cases and controls at the linkage disequilibrium clumping and p-value thresholds 

LD-clump r2 

threshold 
p-value 

threshold Nagelkerke’s R2 p-value Beta Standard 
error 

Number of 
used SNPs 

>0.1 

5.00E-08 0.0093 8.00E-14 0.5414 0.0725 32 
1.00E-06 0.0085 8.53E-13 0.4108 0.0574 63 
0.0001 0.0111 3.52E-16 0.2882 0.0353 307 
0.001 0.0111 4.30E-16 0.1609 0.0198 1483 
0.01 0.0099 1.52E-14 0.0708 0.0092 9685 
0.05 0.0085 9.78E-13 0.0366 0.0051 37482 

>0.2 

5.00E-08 0.0071 6.30E-11 0.3831 0.0586 39 
1.00E-06 0.0070 9.55E-11 0.3143 0.0485 73 
0.0001 0.0095 5.07E-14 0.2287 0.0304 348 
0.001 0.0110 5.66E-16 0.1418 0.0175 1638 
0.01 0.0116 9.44E-17 0.0678 0.0082 10863 
0.05 0.0103 4.74E-15 0.0348 0.0044 44067 

>0.3 

5.00E-08 0.0070 9.82E-11 0.3126 0.0483 45 
1.00E-06 0.0075 2.31E-11 0.2684 0.0401 85 
0.0001 0.0103 4.42E-15 0.2024 0.0258 388 
0.001 0.0117 7.15E-17 0.1274 0.0153 1805 
0.01 0.0130 1.58E-18 0.0640 0.0073 11911 
0.05 0.0111 4.27E-16 0.0316 0.0039 49675 

>0.4 

5.00E-08 0.0063 7.37E-10 0.2552 0.0414 50 
1.00E-06 0.0065 4.72E-10 0.2072 0.0333 99 
0.0001 0.0093 1.03E-13 0.1647 0.0221 438 
0.001 0.0115 1.15E-16 0.1123 0.0136 1962 
0.01 0.0144 2.51E-20 0.0603 0.0065 12985 
0.05 0.0121 2.38E-17 0.0292 0.0034 55003 

>0.5 

5.00E-08 0.0061 1.84E-09 0.2139 0.0356 56 
1.00E-06 0.0063 7.36E-10 0.1746 0.0283 113 
0.0001 0.0088 4.52E-13 0.1361 0.0188 492 
0.001 0.0118 5.29E-17 0.1006 0.0120 2133 
0.01 0.0153 1.42E-21 0.0557 0.0058 14160 
0.05 0.0128 2.60E-18 0.0267 0.0031 60663 

>0.6 

5.00E-08 0.0057 6.01E-09 0.1700 0.0292 67 
1.00E-06 0.0064 6.34E-10 0.1549 0.0251 124 
0.0001 0.0092 1.23E-13 0.1202 0.0162 561 
0.001 0.0121 1.99E-17 0.0888 0.0105 2353 
0.01 0.0162 1.05E-22 0.0506 0.0052 15489 
0.05 0.0134 4.72E-19 0.0240 0.0027 66890 

>0.7 

5.00E-08 0.0059 3.34E-09 0.1499 0.0253 76 
1.00E-06 0.0062 1.30E-09 0.1265 0.0208 146 
0.0001 0.0089 3.51E-13 0.0990 0.0136 631 
0.001 0.0118 5.97E-17 0.0733 0.0088 2650 
0.01 0.0170 9.14E-24 0.0447 0.0044 17122 
0.05 0.0148 6.25E-21 0.0219 0.0023 74227 

>0.8 

5.00E-08 0.0049 7.42E-08 0.0839 0.0156 100 
1.00E-06 0.0055 8.75E-09 0.0791 0.0138 188 
0.0001 0.0084 1.37E-12 0.0702 0.0099 757 
0.001 0.0124 8.29E-18 0.0592 0.0069 3042 
0.01 0.0170 8.31E-24 0.0377 0.0057 19321 
0.05 0.0160 2.19E-22 0.0191 0.0020 84126 

>0.9 

5.00E-08 0.0036 3.72E-06 0.0454 0.0098 135 
1.00E-06 0.0046 1.50E-07 0.0472 0.0090 247 
0.0001 0.0071 6.79E-11 0.0448 0.0069 969 
0.001 0.0112 3.59E-16 0.0406 0.0050 3747 
0.01 0.0171 7.40E-24 0.0282 0.0028 23106 
0.05 0.0166 3.65E-23 0.0152 0.0015 100493 
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Supplementary Table 3. Demographics of participants according to netCRS risk groups 
 

netCRS Low Intermediate High Very high P-value 

Number of samples (n=1243) (n=1243) (n=1243) (n=1243)  

Age 61.7 ± 15.2 61.8 ± 15.2 62.0 ± 14.7 62.6 ± 14.3 0.116 

Sex Female (%) 778 (62.6%) 771 (62.0%) 769 (61.9%) 800 (64.4%) 0.539 

Myocardial 
infarction Cases (%) 94 (7.6%) 150 (12.1%) 218 (17.5%) 301 (24.20%) <0.001 

 Controls (%) 1149 (92.4%) 1093 (87.9%) 1025 (82.5%) 942 (75.80%)  
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