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1 Adsorption free energies for the Mie potential

In addition to the Debye-Hückel potential, we also performed calculations with
the Mie 9-3 potential for the interaction between the surface and the phosphates.
The Mie interaction is given by

Usurf(z) = εsurf

[(σ
z

)9
−
(σ
z

)3]
(S1)

where z is the distance between the phosphate bead and the substrate. The in-
teraction range is on the order of σ = 0.1 nm, which is substantially shorter than
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in the Debye-Hückel case, where it is λD = 1 nm. The strength of the attrac-
tion was adjusted by the parameter εsurf, which ranged from 6.22 to 8.89 kBT
in order to observe the adsorbed regime for both noss and wiss scenarios. Addi-
tional details concerning the length and Umbrella Sampling implementation of
the simulations are in the Simulation Parameters section of the Supplementary
Information.

Figure S1: PMF curves for RNA fragments S1-noss (left panel) and S1-wiss
(right panel) for RNA-substrate interaction using the Mie potential.

Figure S2: Minimum of PMF for RNA fragment S1 using the Mie potential for
RNA-substrate interaction.

PMF curves for RNA fragment S1 in both noss and wiss forms are shown
in Figure S1, and the minimum values of the PMF are depicted in Figure S2,
displaying the same trend as in the case of the Debye-Hückel potential, analyzed
in the main text. In Figure S2, we identify the same two adsorption regimes as
in the main text, the first for εsurf < 7.25, where the fragment with a secondary
structure adsorbs more strongly, and the second regime for stronger adsorption
strengths (εsurf >7.25), in which the unstructured molecule shows a more favor-
able adsorption. These results are comparable to those shown in Figure 4 and
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discussed in the main part of the article.

2 Monomer distributions

Figure S3 shows the monomer distribution for RNA fragments S1-wiss and S1-
noss, considering only those conformations where the molecule’s center of mass
is at a distance equal to or less than dm, where dm is the point at which PMF
has half of the value of its minimum. For RNA fragments S2 and S3, histograms
showing their monomer distributions are shown in Figure S4.
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Figure S3: Monomer (phosphate group) distribution for adsorbed structures as
a function of the surface distance of RNA fragments S1-noss (red lines) and
S1-wiss (blue lines), for values of εsurf/kBT of (a) 0.44, (b) 0.67, (c) 0.89, (d)
1.11, (e) 1.33, (f) 1.56, and (g) 1.78.
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Figure S4: Monomer (phosphate group) distribution for adsorbed structures as
a function of the surface distance of RNA fragments S2 (in noss and wiss forms)
and S3-wiss, for values of εsurf/kBT of (a) 0.44, (b) 0.89, (c) 1.33, and (d) 1.78.
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3 Number of contacts for RNA fragments S2
and S3

In Figure S6, we show the number of contacts for RNA fragments S2 and S3.
The blue (S2-noss) and red (S2-wiss) curves indicate a similar behavior of the
number of contacts with adsorption strength as shown in Figure 4B in the main
text for RNA fragment S1. Additionally, the number of contacts for fragment
S3-wiss is expected to be equal to or greater than for S2-wiss.

Figure S5: Number of contacts of RNA fragments S2 and S3 on the adsorbing
surface interacting via the Debye-Hückel potential.

4 Radius of Gyration components

Considering that the number of coarse-grained particles is N and that the at-
tractive surface is perpendicular to the z direction, the definitions of the normal
〈R2

g⊥〉 and parallel 〈R2
g‖〉 contributions to the radius of gyration are given by

〈R2
g⊥〉 =

〈
1

N

∑
i

[
(xi − xCM)2 + (yi − yCM)2

]〉
(S2)

〈R2
g‖〉 =

〈
1

N

∑
i

(zi − zCM)2

〉
, (S3)

where RCM = (xCM, yCM, zCM) is the position of the center of mass. Tables
S1 and S2 list the components of the radius of gyration for RNA fragment
S1 in both its structured and unstructured variant, while Tables S3, S4, and
S5 contain the components of the radius of gyration for S2-noss, S2-wiss, and
S3-wiss RNA fragments, respectively.
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εsurf [kBT] 〈R2
g,‖〉 [nm2] 〈R2

g,⊥〉 [nm2]

0.44 3.23 0.95
0.67 3.58 0.73
0.89 3.79 0.52
1.11 4.05 0.39
1.33 4.30 0.32
1.56 4.43 0.26
1.78 4.59 0.22

Table S1: Radius of gyration components for S1-noss.

εsurf [kBT] 〈R2
g,‖〉 [nm2] 〈R2

g,⊥〉 [nm2]

0.44 1.46 0.51
0.67 1.51 0.47
0.89 1.53 0.44
1.11 1.57 0.41
1.33 1.6 0.38
1.56 1.62 0.36
1.78 1.65 0.35

Table S2: Radius of gyration components for S1-wiss.

εsurf [kBT] 〈R2
g,‖〉 [nm2] 〈R2

g,⊥〉 [nm2]

0.44 7.67 1.55
0.89 9.12 0.6
1.33 10.73 0.3
1.78 11.47 0.21

Table S3: Radius of gyration components for S2-noss.

εsurf [kBT] 〈R2
g,‖〉 [nm2] 〈R2

g,⊥〉 [nm2]

0.44 3.69 0.58
0.89 4 0.42
1.33 4.19 0.34
1.78 4.35 0.31

Table S4: Radius of gyration components for S2-wiss.

5 Potential of Mean Force of RNA fragments S2
and S3

The Collective Variable (CV) restraint consisted on a harmonic potential whose
minimum was situated at a distance d0, which ranged between 0.5 nm and
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εsurf [kBT] 〈R2
g,‖〉 [nm2] 〈R2

g,⊥〉 [nm2]

0.44 4.34 0.79
0.89 4.82 0.45
1.33 5.02 0.35
1.78 5.08 0.32

Table S5: Radius of gyration components for S3-wiss.

5.5 nm for S1-wiss and between 0.5 nm and 6.5 nm for S1-noss, with a spacing
of 0.5 nm. The values of εsurf/kBT were first determined in SPQR reduced
units and further converted (as shown in the Simulation Parameters section).
For systems S2 and S3, the CV restraints were located between 0.5 nm and
8 nm, with a spacing of 0.5 nm, and the surface strength was determined for
four values as in the case of fragment S1. For each Umbrella Sampling simulation
restraint, 24 independent simulations were performed.

The PMFs were shifted to zero at the positions where their centered deriva-
tives were consistent with zero within the error bar, which is between 4.5 and
5 nm for S1-wiss and between 5.5 and 6 nm for S1-noss. For fragments S2 and S3,
this domain was set between 7 and 8 nm. For the rest of the averages, the same
weights were used on a sampled subspace of conformations. The average radius
of gyration was calculated on a subset of structures with a phosphate group at
a distance from the surface below 0.37 nm, approximately one phosphate radius
away from the surface potential minimum, as defined within the model. In this
analysis, the calculation of the number of contacts considered only snapshots
whose value of d was below dm, the distance at which the PMF reaches half of
its minimum value. Figure S6 show the PMF of the RNA fragments S2 and S3
.

6 Free energy per monomer for an ideal adsorbed
chain

We briefly describe the basics of the formalism that we have used to estimate
the free energy per monomer of an adsorbed ideal polymer chain composed of
N monomers and with a bond length l. In our case, bond length is taken as the
average distance between two phosphate groups of an independent simulation
of RNA fragment S1-noss in the absence of a surface, resulting in l = 0.61 nm.
If the probability of finding the first monomer at position r0 is P (r0; 0), the
probability of finding its N -th unit at a position r can be expressed as

P (r;N) =

∫
dr0G0(r, r0;N)P (r0; 0). (S4)
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Figure S6: PMF of fragments (A) S2-noss, (B) S2-wiss, and (C) S3-wiss.
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Here, G0(r, r0;N) is the polymer’s Green function, which for an ideal chain
satisfies the Edwards equation [4]

− ∂

∂N
G(r, r0;N) =

[
− l

2

6
∇2 + βu(r)

]
G(r, r0;N), (S5)

where u(r) is an external potential exerted on the monomers.
The Edwards equation can be solved by writing an Ansatz of the form [4]

G(r, r0;N) =

∞∑
n=0

e−Nεnψn(r)ψn(r′), (S6)

considering that G(r, r0; 0) = δ(r−r0). The values of εn introduced on the right-

hand side are the eigenvalues of the linear differential operator LE = − l
2

6∇
2 +

βu(r). In addition, the functions ψn(r) form a complete and orthonormal basis
for the space of solutions given by the properties of LE . For large N , the
expression of G can be approximated by

G(r, r0;N) ≈ e−Nε0ψn(r)ψn(r′) (S7)

where ε0 is the smallest eigenvalue.
Several important quantities can be obtained from the solution of the previ-

ous equation in terms of its eigenfunctions and eigenvalues. The most relevant
for our purposes is the partition function ZN , written as

ZN ∝
∫
dr0

∫
drG(r0, r;N). (S8)

up to a multiplicative constant, from which the free energy can be obtained
under the present assumptions as

F (N) = −kBT logZN ≈ NkBTε0 (S9)

plus an additive constant independent of N . In addition, the monomer concen-
tration at r is given by

c(r) ≈ Nψ0(r)2. (S10)

Considering an infinite surface, the potential depends only on the direction x,
yielding an external potential u(x), and we have to solve the equation in one
dimension. The eigenvalue ε0, according to Equation S9 , is the free energy per
monomer divided by kBT , which has a negative value in the adsorbed regime.
The Edwards equation adopts the form[

− l
2

6

∂2

∂x2
+ βu(x)

]
ψ0(x) = ε0ψ0(x) (S11)

with the boundary condition ψ0(0) = ψ0(x → ∞) = 0. The free energy per
monomer is

F

N
=

∫ ∞
0

dxu(x)ψ0(x)2 − l2kBT

6

∫ ∞
0

dxψ0(x)
d2

dx2
ψ0(x), (S12)
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where the first and second terms of the right-hand side can be interpreted as the
surface energy and the entropy loss due to the adsorption process, respectively.
It is worth pointing out that the surface energy term resembles the number of
contacts as defined in the main text.

To compare this result with our simulations, we assume u(x) = −uw exp(−x/λ).
The repulsive part is taken into account via a boundary condition and is not
explicitly included in the above expression. Therefore, for comparison, we inter-
pret uw as the minimum value of the surface potential used in the simulations.
The most general solution of the one-dimensional Edwards equation which is
consistent with the boundary conditions is

ψ0(x) = CJα

(
2σ

l

√
6βuwe

−x/2λ
)
, (S13)

where Jα is the Bessel function of the first kind and order α, C is a constant
which can be obtained by normalizing the monomer concentration, and α =
2σ
√

6|ε0|/l. Additionally, the boundary conditions require that the order of the
Bessel function has to be greater than zero, while the eigenvalue ε0 must be
determined numerically.

The free energy per monomer, together with its energy and entropy contri-
butions, are shown in Figure S7 for a range of uw and β = 1. The entropy
contribution −TS/N is positive and increases with uw, since stronger attrac-
tion increases the polymer confinement and reduces the absolute value of S.
On the other hand, the energy term, proportional to the number of contacts,
decays monotonically—almost linearly in the shown regime. Interestingly, in
this model, the entropy has a larger contribution to the free energy than in the
simulated systems. Clearly, this is an overestimation compared to our simula-
tions, where the excluded volume interactions restrict the conformation space
of the RNA chain.

7 Definition of secondary structure restraints

Structural restraints minimize the ERMSD metric [1] between a stem and a
template stem constructed with standard parameters of an A-form RNA. This
metric is defined in terms of the set of vectors { rij} and { rrij} obtained from the
simulated and template structures, respectively, calculated from the position of
nucleobase i with respect to a reference frame situated at the origin of nucleobase
j with its orientation. The set of rescaled vectors r̃ = (rx/a, ry/b, rz/c), with
a = b = 0.5 nm and c = 0.3 nm, is used to define the vectors G(r̃ij) =
(sin(γr̃x/r̃), sin(γr̃y/r̃), sin(γr̃z/r̃), 1 + cos(γr̃)) Θ(r̃c − r̃)/γ, where γ = π/r̃c, Θ
is the Heaviside function and r̃c is a cutoff parameter. For a particular fragment
(or stem) denoted by s and composed of Ns nucleotides, the ERMSD can be
written

Es =

√
1

Ns

∑
j,k

∣∣∣G(r̃jk,s)−G(r̃rjk,s)
∣∣∣2 (S14)
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Figure S7: Free energy per monomer for an ideal chain, separately showing also
the energy E/N and entropy −TS/N contributions.

which allows us to define the restraining potential as

Uss =
Kss

2

∑
s

E2
s (S15)

where Kss is the corresponding harmonic spring constant [1]. In this manner,
the relative positions and orientations of the nucleobases belonging to each stem
are enforced to have the values of a reference A-form stem. This procedure has
also been used for enforcing other motifs and backmapping RNA structures pre-
dicted by SPQR into an all-atom representation by means of Steered-Molecular
Dynamics [2].

8 Simulation Parameters

We choose the temperature to be T = 9ucg for all the simulations listed here,
where ucg is the SPQR energy unit, in order to obtain a better resemblance
of the distribution functions sampled by the backbone potentials, originally
obtained from an X-ray structure set [3]. This choice is a technicality that
does not affect the results in practice because all the bonded interactions are
essentially unaffected by this parameter, and all non-bonded interactions (apart
from the excluded volume) are incorporated through the secondary structure
restraint. Thus, the simulated scenarios are below the melting temperature of
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the structured fragments, where unstructured chains of the same length can
coexist.

In addition, both the glycosidic bond angle state and the sugar pucker were
kept fixed to their anti and C3′endo conformations during the calculations to
avoid the introduction of additional parameters. In these units, the chosen val-
ues of εsurf described in the main text have values of 4ucg, 6ucg, 8ucg, 10ucg,
12ucg, 14ucg, and 16ucg. This range of values of εsurf allows us to clearly distin-
guish the two adsorption regimes described in the main text. Secondary struc-
ture was fixed with a harmonic restraint on the ERMSD, with an dimensionless
cutoff r̃ = 100 and a harmonic spring of Kss = 50εcg.

The RNA fragments S1, S2, and S3 with secondary structure were con-
structed imposing the secondary structure conditions until the contacts were
formed, relaxed with different random seeds and integrated for 106 Monte Carlo
(MC) sweeps for the fragment S1 and 108 MC sweeps for the fragments S2
and S3. Each MC sweep consists of N MC steps, where N is the number of
nucleotides. From here, the unstructured fragments were generated for each
initial condition, running a simulation at constant temperature for 106 MC
sweeps. It was noticed that starting from a helical conformation, as a single
strand extracted from a template stem in the A-form, gave a consistent end-
to-end distance after the relaxation procedure. For systems S2 and S3, the
procedure was the same, although the equilibration simulations for decorrelat-
ing the structured fragments and generating the unstructured initial conditions
consisted of 108 MC sweeps. After this, the surface was positioned perpendicu-
lar to the z direction, 0.1 nm from the closest nucleotide. The simulations were
performed for 1.5× 108 MC sweeps, and configurations were saved every 50000
steps, while the first 750 saved configurations were discarded. For fragments S2
and S3, the runs consisted of 3×108 MC sweeps, and configurations were saved
every 10000 steps while the first 750 saved configurations were again discarded.

The strength of the harmonic spring used to fix the RNA center-of-mass to a
chosen value of d0 at each Umbrella Sampling simulation was ku = 5.56 kBT/nm2.
In order to improve the convergence and statistics, a value of 11.12 kBT/nm2

was used in some cases, which are specified in Table S6 together with any sim-
ulations added for improving the convergence or removed in case they did not
contribute to the statistics. The unweighted distributions are plotted in Figures
S8 and S9 for S1-noss and S1-wiss, respectively.
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Simulation (εsurf/kBT ) Removed Added
d0/nm, kunm2/kBT d0/nm, kunm2/kBT

S1-wiss (1.56) 0.5, 11.12 -
S1-wiss (1.78) 0.5, 11.12 -
S1-wiss (1.78) 1, 11.12 -
S2-noss, (1.78) 3, 5.56 2, 11.12

2.5, 11.12
3, 11.12

S2-wiss, (1.78) 3.5, 5.56 2, 11.12
2.5, 11.12
3, 11.12

S3-wiss, (1.56) 3, 5.56 2, 11.12
2.5, 11.12
3, 11.12

S3-wiss, (1.56) 3.5, 5.56 2, 11.12
2.5, 11.12
3, 11.12

Table S6: Umbrella Sampling simulation details for all fragments under the
effect of the Debye-Hückel potential.
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Figure S8: Unweighted distributions for fragment S1-noss.
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Figure S9: Unweighted distributions for fragment S1-noss.
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For the simulations with the Mie potential, the harmonic restraints of the
Umbrella simulations were situated at d0 = 0.3 nm and from 0.5 to 4 nm, with
steps of 0.5 nm and ku = 5.56 nm2/kBT . As in the previous system, in some
cases, additional simulations using different Umbrella restraints were performed
or omitted because of their long autocorrelation times, which are described in
Table S7. For each setup, 24 independent runs were analyzed, consisting of
150 × 106 MC sweeps, and configurations were saved every 50000 sweeps. The
first 750 saved configurations were discarded.

Simulation( εsurf/kBT ) Removed Added
d0/nm, kunm2/kBT d0/nm, kunm2/kBT

S1-wiss (6.22) 2, 11.12 2, 5.56
S1-wiss (6.89) 2, 5.56 2, 11.12

0.3, 5.56
S1-wiss (7.56) 2, 5.56 2, 11.12

2.5, 5.56 2.5, 11.12
S1-wiss (8.89) 2.5, 5.56 2.5, 11.12

0.3, 5.56

Table S7: Details of Umbrella Sampling simulations for fragments S1-wiss and
S1-noss interacting with the Mie potential.

Scripts and analysis files can be found at https://zenodo.org/record/4646934.
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