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Abstract

Electrophysiological power spectra typically consist of two components: An aperiodic part

usually following an 1/f power law and periodic components appearing as spectral𝑃∝1/𝑓β

peaks. While the investigation of the periodic parts, commonly referred to as neural
oscillations, has received considerable attention, the study of the aperiodic part has only
recently gained more interest. The periodic part is usually quantified by center frequencies,
powers, and bandwidths, while the aperiodic part is parameterized by the y-intercept and the
1/f exponent . For investigation of either part, however, it is essential to separate the twoβ
components.

In this article, we scrutinize two frequently used methods, FOOOF (Fitting Oscillations &
One-Over-F) and IRASA (Irregular Resampling Auto-Spectral Analysis), that are commonly
used to separate the periodic from the aperiodic component. We evaluate these methods
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using diverse spectra obtained with electroencephalography (EEG),
magnetoencephalography (MEG), and local field potential (LFP) recordings relating to three
independent research datasets. Each method and each dataset poses distinct challenges for
the extraction of both spectral parts. The specific spectral features hindering the periodic and
aperiodic separation are highlighted by simulations of power spectra emphasizing these
features. Through comparison with the simulation parameters defined a priori, the
parameterization error of each method is quantified. Based on the real and simulated power
spectra, we evaluate the advantages of both methods, discuss common challenges, note
which spectral features impede the separation, assess the computational costs, and propose
recommendations on how to use them.

Keywords

1/f exponent, FOOOF, IRASA, neuronal oscillations, spectra, EEG/MEG

Introduction
Analysis of macroscopic electromagnetic brain activity (e.g., by EEG and MEG) has long
been focusing on the investigation of ‘rhythmic’ neural oscillations. In the frequency domain,
neural oscillations appear as distinct spectral peaks, also referred to as the periodic part of
the spectrum (Buzsáki & Draguhn, 2004; Engel et al., 2001; Schnitzler & Gross, 2005). The
full spectrum, however, also consists of a continuous component whose analysis has, so far,
seen less attention. This aperiodic or ‘arrhythmic’ part of the spectrum (Freeman & Zhai,
2009; Miller et al., 2009) has been related to the integration of underlying synaptic currents
(Buzsáki et al., 2012). Since the time series of the aperiodic part is typically self-similar
across many temporal scales, it is also referred to as “fractal” or “scale-free” activity. The

power spectral density (PSD) of the aperiodic component follows a power law (Miller𝑃∝1/𝑓β

et al., 2009) and is sometimes called 1/f activity for that reason. In this text, we will refer to
the scaling exponent in this equation as 1/f exponent.β

The investigation of neural oscillations has received much attention in electrophysiological
studies (Buzsáki & Draguhn, 2004; Singer, 1999; Ward, 2003). However, the standard
analysis of assessing periodic power through bandpass filtering is problematic because the
pass-band comprises both periodic and aperiodic activity. If the power of aperiodic activity
changes between two conditions, analyzing neural oscillations in bandpass filtered signals
would hence be confounded by these changes in the aperiodic part of the spectra. For that
reason, estimating the 1/f component before determining the power of periodic activity has
recently been suggested (Donoghue et al., 2021; Wen & Liu, 2016).

Besides investigating neural oscillations, the investigation of the aperiodic component has
recently gained considerable interest (He, 2014; Kello et al., 2010). For example, the 1/f
exponent was shown to change with task (Waschke et al., 2021), age (He et al., 2019;
Schaworonkow & Voytek, 2021; Voytek et al., 2015), and disease (Molina et al., 2020;
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Robertson et al., 2019) and it decreases with cortical depth (Halgren et al., 2021).
Furthermore, using computational modeling, (Gao et al., 2017) suggested the 1/f exponent β
as an estimator of excitation–inhibition (E–I) balance. Many studies comparing conscious
states—associated with increased excitation—to unconscious states, such as NREM sleep
(Lendner et al., 2020; Miskovic et al., 2019) and anesthesia (Colombo et al., 2019; Waschke
et al., 2021)—typically associated with pronounced inhibitory processes—seem to support
this concept.

But how to best estimate the 1/f exponent? This will be the main question discussed in this
study. One option is to simply fit a straight line using (robust) linear regression. (Gao et al.,
2017) used this method in the frequency ranges apart from pronounced oscillatory peaks in
electrocorticography (ECoG) data and identified distinct 1/f exponents during wakefulness
and anesthesia. However, in the presence of periodic components, this method is
error-prone because larger periodic peaks will bias the linear regression fit.

Irregular-resampling autospectral analysis (IRASA) (Wen & Liu, 2016) aims to separate
periodic components from the aperiodic part of the spectrum. Due to their fractal nature,
aperiodic time series remain robust against resampling, whereas periodic components are
strongly affected by this procedure. IRASA takes advantage of this dichotomy and ‘removes’
the periodic parts from a spectrum. The—ideally—pure aperiodic part of the spectrum
obtained with this method can then be used for fitting the 1/f exponent.

Another method, ‘fitting oscillations & one over f’ (FOOOF) (Donoghue et al., 2020), aims at
modeling the periodic components: It iteratively applies Gaussian fits to all periodic
components and hereby obtains a model of the periodic part. This model of periodic activity
is subtracted from the spectrum to obtain an—ideally—pure aperiodic component which can
be used for fitting . In addition, the periodic model allows for analyzing the periodicβ
components (e.g., regarding center frequencies, bandwidths, and power) without the bias
from aperiodic activity.

This article highlights and discusses the general challenges of estimating 1/f exponents. In
addition, we also discuss method-specific challenges of FOOOF and IRASA, the most
commonly used algorithms for that purpose.

In the Methods section, we will introduce our simulations, our datasets, and both algorithms
FOOOF and IRASA. We will analyze challenges by the example of FOOOF in section
FOOOF and by the example of IRASA in the section IRASA. To aim for broad applicability of
our assessment, we will apply these methods to simulations with known ground truth in
addition to various electrophysiological signals obtained from empirical EEG, gradiometer
MEG, magnetometer MEG, source-reconstructed voxel activity from MEG, and subthalamic
nucleus-(STN-)LFP data acquired by three independent research groups. We will discuss
these challenges in the section Discussion, and we will provide some guidance on how to
use these methods in the Conclusion section.
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Methods:

Simulations
We simulate aperiodic 1/f activity by constructing a Fourier power spectrum following a

preset power-law. The corresponding phases of the Fourier spectrum are distributed1/𝑓β

uniformly randomly. To add oscillations, we add Gaussian-shaped peaks to the Fourier
power spectrum with amplitudes and a spectral extent given by center frequencies𝐴 𝑓

𝑐𝑒𝑛𝑡𝑒𝑟

and variances . The corresponding time series, consisting of both ‘neural’ oscillations andσ
𝑓

2

aperiodic activity, is then obtained by applying the inverse fast Fourier transform. The
simulated time series either have a duration of 180 s at a sampling rate of Hz𝑓

𝑠𝑎𝑚𝑝𝑙𝑒
= 2400

or are matched to the empirical data to which a simulation might be compared. If noted in the
text, Gaussian white noise may be added to the time series afterward. Since most algorithms
to generate 1/f activity lead to identical power spectra, the specific choice of the algorithm
has no impact on the present analysis.

Empirical data
We compare the results from our simulations to three empirical datasets.

Dataset 1
Dataset 1 was re-analyzed from (Litvak et al., 2010, 2011) and contains MEG and LFP data
of 14 Parkinsonian patients after bilateral implantation of subthalamic nucleus (STN)
stimulation electrodes (Medtronic, Minneapolis, MN, USA with four platinum-iridium
cylindrical surfaces of diameter 1.27 mm, length 1.5 mm, and center-to-center separation 2
mm) for deep brain stimulation (DBS). The joint ethics committee of the National Hospital of
Neurology and Neurosurgery and the University College London Institute of Neurology
approved the study, and all patients gave their written informed consent. The patients were
recorded three days after surgery when the electrode leads were still externalized. The
recordings were obtained during a Parkinsonian state OFF medication (after overnight
withdrawal) and an ON medication state. MEG (275 channels, CTF/VSM MedTech,
Vancouver, Canada) and DBS-LFP were recorded simultaneously during three minutes of
resting-state at a sampling rate of Hz. The LFP recordings were referenced𝑓

𝑠𝑎𝑚𝑝𝑙𝑒
= 2400

to the right mastoid during recording and later re-referenced to a bipolar montage between
adjacent electrode contacts. This results in 3 bipolar LFP channels per hemisphere. All data
were bandpass filtered in hardware between 1–600 Hz. MEG source reconstruction was
performed with varying regularization by Linearly Constrained Minimum Variance
beamformer (Van Veen et al., 1997). Aside from the six LFP channels, the dataset contains
three MEG channels per patient from voxels located in the supplementary motor area
(SMA), left primary motor cortex (M1), and right M1. In this study, we draw examples from
voxel data located in the supplementary motor area (SMA) of patients 5 and 6 and bipolarly
recorded LFPs from the STN of patients 9 and 10. Details regarding the data recording,
processing, and inverse modeling can be obtained from the original publications of this
dataset (Litvak et al., 2010, 2011). In this study, we further process this dataset by applying a
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notch filter at 100, 150, …, 600 Hz power line noise for visualization purposes (multi-taper
estimation of sinusoidal components “spectrum_fit” of MNE python (Gramfort et al., 2013)).
Note, that a notch filter should not be applied to frequency ranges used for FOOOF fitting.
Therefore, we exclude 50 Hz from the notch filter (see SI Fig. 1)).

Dataset 2
Dataset 2 contains EEG data from a 12-year-old boy with absence epilepsy recorded at the
Department of Epileptology at the University of Bonn (Gerster et al., 2020). The university’s
ethics committee approved the study, and a parent gave written informed consent that the
clinical data might be used and published for research purposes. EEG data were acquired at
a sampling rate of Hz (16-bit A/D conversion) within a bandwidth of 0.3–70 Hz𝑓

𝑠𝑎𝑚𝑝𝑙𝑒
= 256

from 19 electrodes in a bipolar montage. The locations and nomenclature of these
electrodes are standardized by the American Electroencephalographic Society (Sharbrough,
1991). The EEG was recorded over several hours and contains 5 absence seizures. In this
study, we present 40 s of the bipolar EEG channel “F3−C3” during one absence seizure.

Dataset 3
Dataset 3 contains MEG recorded with gradiometers and magnetometers and LFP data from
a Parkinsonian patient recorded at the Universitätsklinikum Düsseldorf. The data were
acquired using a whole-head MEG system with 306 channels (Elekta Vectorview, Elekta
Neuromag, Finland), and segmented “1–3–3–1” electrode DBS-LFP (Abbott St. Jude
Medical model 6172, contact height: 1.5 mm with 0.5 mm vertical spacing) during the ON-
and OFF-medication state (after overnight withdrawal). The patient was recorded 1 day after
surgery when the electrode leads were still externalized. The resting-state was recorded for
10 min at a sample rate of Hz. The LFP recordings were referenced to the𝑓

𝑠𝑎𝑚𝑝𝑙𝑒
= 2400

right mastoid during recording and later re-referenced to a bipolar montage between
adjacent electrodes. The data were offline band-pass filtered between 0.3 Hz and 600 Hz
and notch-filtered at 50, 100, …, 600 Hz power line noise (with a second-order IIR filter of
bandwidth 1 Hz). Note that notch filtering in the fitting range at 50 Hz is unproblematic with
using IRASA. The patient gave written consent to participate in the study, which was
approved by the Ethics committee of the Universitätsklinikum Düsseldorf. In this study, we
analyze data from one gradiometer channel, one magnetometer channel, and one LFP
channel of the subject.

Power spectral densities (PSDs)
We calculate the PSDs from the simulated and recorded time series using the Welch
algorithm. We use a segment length of 1 s which corresponds to a frequency resolution of 1
Hz, and the Hann-windowed segments overlap by 50%. Please note that other segment
lengths can be used depending on the properties of the data. However, for FOOOF, the
PSDs should be sufficiently smooth to avoid fitting noise peaks. IRASA receives time series
as input and calculates the PSDs internally. For IRASA, the PSD resolution should be
sufficiently high. We, therefore, use a segment length of 4 seconds (corresponding to a
resolution of 0.25 Hz), Hann windows, and 50% overlap.
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Irregular-Resampling Auto-Spectral Analysis (IRASA)
Irregular-resampling auto-spectral analysis (IRASA) aims at separating periodic components
from the aperiodic part of the signal (Wen & Liu, 2016). In contrast to FOOOF, the algorithm
requires time series as input (Fig. 1 a) and does not explicitly model the signals’ spectra. The
input time series is upsampled by a set of predefined resampling factors . By default,ℎ

𝑖
∈ ℎ

𝑠𝑒𝑡

ranges from 1.1 to 1.9 with increments of 0.05, yielding 17 resampling factorsℎ
𝑠𝑒𝑡

. In addition, the time series is downsampled by all inverseℎ
𝑠𝑒𝑡

= 1. 1,  1. 15,  ...,  1. 9{ }

resampling factors , with . For each of the 17 pairs of up- und downsampled1/ℎ
𝑖

ℎ
𝑖
∈ ℎ

𝑠𝑒𝑡

spectra (Fig. 1 b), the geometric mean of the PSD is calculated (Fig. 1 c). For illustration
purposes in Fig. 1, we use a very small . Finally, the median is calculatedℎ

𝑠𝑒𝑡
= 1. 3,  1. 6,  2{ }

from all 17 geometric means, yielding the aperiodic component (Fig. 1 d). The compound
oscillatory part of the spectrum is obtained by subtracting the aperiodic component from the
original PSD. After applying IRASA, the slope can be obtained by fitting the aperiodicβ
component in double logarithmic space in the predefined fitting range.

As parameters, IRASA requires the fitting range, the resampling factors , and theℎ
𝑠𝑒𝑡

segment length for the PSD calculation. In this study, we vary the fitting range and the ℎ
𝑠𝑒𝑡

but keep the segment length at 4 s. IRASA’s Python implementation used for this article was
adapted from the YASA toolbox (Vallat, 2019) and is published along with the complete code
for this study on GitHub at https://github.com/moritz-gerster/oscillation_and_1-f_separation.

Fitting-oscillations-&-one-over-f (FOOOF)
FOOOF was introduced to parameterize neural power spectra as a combination of an
aperiodic component and peaks representing oscillatory processes (Donoghue et al., 2020).
The Python-based toolbox works as outlined in Fig. 1. First, the PSD of the time-series of
interest (Fig. 1 a) is calculated and input into the algorithm, Fig. 1 e). Next, FOOOF
calculates an initial robust linear fit of the spectrum in double logarithmic space, Fig. 1 f), and
subtracts the result from the spectrum, Fig. 1 g). In this flattened spectrum, a relative
threshold is calculated based on the standard deviation (SD) of the spectrum, Fig. 1 h). The
relative threshold is set to two times the SD, by default . Optionally, FOOOF𝑡ℎ𝑟𝑒𝑠ℎ

𝑟𝑒𝑙
= 2 𝑆𝐷

also allows setting an additional absolute threshold for the peak heights, but it is set to 0 by
default ( ). A Gaussian function is fitted to the largest peak of the flattened PSD𝑡ℎ𝑟𝑒𝑠ℎ

𝑎𝑏𝑠
= 0

exceeding both thresholds and then subtracted from the spectrum. Note, that this fit is not
applied to negative peaks in the spectrum subceeding both thresholds. Therefore, spectral
dips caused by notch filtering should be avoided. This procedure is iterated for the next
largest peak after subtracting the previous peak until no peaks are exceeding the thresholds.
The oscillatory components are finally obtained by fitting a multivariate Gaussian to all
extracted peaks simultaneously. After the iterations, the initial fit is added back to the
flattened peak-free PSD, which results in the aperiodic component of the PSD, Fig. 1 d).
Afterward, this aperiodic component is fitted again, leading to the final fit with y-intercept and
slope as parameters. The fitted Gaussian functions are parameterized by center frequencyβ

(“CF”), amplitude (“PW”), and bandwidth (“BW”).𝑓
𝑐𝑒𝑛𝑡𝑒𝑟

𝐴
𝑓

2 · σ
𝑓

2
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The algorithm can be used with the following parameters: “peak_width_limits” allows setting
the minimum and maximum peak width limits of the Gaussian fits. The default is set to 0.5
Hz and 12 Hz, respectively. “max_n_peaks'' determines the maximum number of peak fitting
iterations. The default is set to infinity. “min_peak_height” is the absolute threshold and
corresponds to the smallest peaks that will be fitted in the units of the input data. The
absolute threshold is set to 0 by default. “peak_threshold” is the relative threshold in SD
multiples that peaks must exceed to be fitted and defaults to “peak_threshold” = 2 SD. The
peak fitting stops when all remaining peaks are below either of these two thresholds.
“aperiodic mode” allows for two modes of modeling: “fixed” and “knee” which allows
modeling a bend (i.e., a “knee”) in the PSD of the aperiodic component. The default is
“fixed.” Finally, FOOOF accepts a fitting range for which the algorithm performs the given
steps. For a detailed description of this algorithm, we refer the reader to the methods section
of the original publication (Donoghue et al., 2020).

In this study, we keep FOOOF at the default parameters if not stated otherwise and input
PSDs with a spectral resolution of 1Hz.

Fig. 1 Algorithms for 1/f estimation. IRASA: a) Simulated time series. b) PSDs of resampled time
series on the y-axis and frequencies on the x-axis. In this figure, the time series is upsampled by the
resampling factors of the and downsampled by . c) The geometric mean ofℎ

𝑖
ℎ

𝑠𝑒𝑡
= 1. 3,  1. 6,  2{ } 1/ℎ

𝑖

all resampling pairs ( , ) is calculated. d) The aperiodic component (orange) is the median of theℎ
𝑖

1/ℎ
𝑖

geometric means. A final fit (dashed-blue) estimates the y-intercept and the 1/f exponent . FOOOF:β
e) A PSD is calculated from the time series. f) FOOOF applies an initial linear fit (dashed-blue) to the
PSD in log-log space and g) subtracts the obtained linear trend from the spectrum. h) A Gaussian
model (dotted-green) is fitted to the largest peak exceeding the thresholds (dashed-grey) and
removes it. The relative threshold is recalculated from the peak-removed flattened spectrum (pink).
The procedure is repeated until no peak exceeds the relative threshold. d) Subtraction of all Gaussian
models from the original PSD yields the aperiodic component, which is then finally re-fit
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FOOOF

Challenge 1: The spectral plateau disrupts the 1/f power law
The 1/f power law is sometimes called “scale-free” because log-transformed power is
typically approaching a linear function across an extended range of log-transformed
frequencies. For electrophysiological PSDs, however, this concept should be exercised
carefully. For example, (He et al., 2010) measured different values for the slope β for
frequency ranges 0.01–0.1 Hz and 1–100 Hz and found a small plateau in the range from
0.1 Hz to 1 Hz. In many studies, these low-frequency ranges <0.1 Hz are eliminated by a
hardware high-pass filter. However, this finding underlines the importance of selecting a
representative frequency range to fit the 1/f slope.

In addition to the aforementioned low-frequency plateau, one regularly encounters a
high-frequency spectral plateau (or flattening) in spectra of electrophysiological data. Such
plateaus might be due to the presence of Gaussian noise which appears as a horizontal line
with a slope in double-logarithmic space and disrupts the 1/f power law. The origin ofβ = 0
such white noise is often due to EMG artifacts and electronic noise of the recording system
(Waterstraat et al., 2015). It has been shown in EEG (Scheer et al., 2006; Waterstraat,
Burghoff, et al., 2015) and MEG (Waterstraat et al., 2021) that extremely low-noise recording
devices can shift this high-frequency plateau into the kHz range—leaving a wider unaffected
frequency range for fitting the spectra. In conventional data, however, spectral plateaus are
regularly present and will be discussed in this section because this can pose a severe
challenge for estimating the aperiodic exponent: it shrinks the frequency range at which the
1/f exponent may be examined.

In Fig. 2 a), a simulation of an aperiodic PSD with an exponent of is shown. By addingβ = 2
white noise, a plateau can be observed starting at 100 Hz in the high-frequency range. Here,
we define the onset of the plateau as the lowest frequency of a 50 Hz frequency interval with
a vanishing exponent (i.e., flattening of the spectrum). Specifically, we apply FOOOF without
periodic peak fitting to measure the slope from 1–50 Hz. We then gradually shift this interval
by 1 Hz towards higher frequencies and fit the slope again. We repeat this procedure until
the estimated slope reaches a value below .β

𝑡ℎ𝑟𝑒𝑠ℎ
= 0. 05
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Fig. 2 The spectral plateau disrupts the 1/f power law. The x-axis and the y-axis indicate frequency
and PSD, respectively. a) Simulation of an aperiodic PSD (black) with a plateau starting at Hz100
(grey). The spectrum starts to deviate from the ground truth (dashed line) after around Hz.10
Applying FOOOF yields smaller 1/f exponent estimates with larger upper fitting range borders. b) A
Parkinsonian LFP spectrum from the subthalamic nucleus shows large oscillations that hinder the
plateau onset’s precise detection. c) Adding oscillations of various powers and widths on top of
different aperiodic ground truths yields the same 1/f estimation of in FOOOF. The groundβ ≈ 0. 77
truths are (blue), (green), and (orange)β = 1 β = 1. 5 β = 2

We apply FOOOF in the frequency intervals Hz, Hz, Hz, and Hz1–10 1–50 1–100 1–200
which yields estimated 1/f exponents of , , , and ,β = 1. 97 β = 1. 64 β = 1. 17 β = 0. 70
respectively. The spectral plateau gradually biases the estimated 1/f exponents towards
smaller values starting already at Hz. This challenge might be to some extent alleviated if10
the analysis aims to study differences between groups or experimental conditions such that
relative changes of the exponent are most important. However, when the precise onset of
the spectral plateau varies across conditions, the upper fitting range border should be
chosen as low as possible to minimize this unequal bias. Even if the plateaus seem to be
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similar across conditions, a lower upper fitting range border will increase the signal-to-noise
ratio of the exponent estimates if we define the 1/f ground truth as signal and the impact of
the plateau as (possibly Gaussian) noise. We, therefore, recommend choosing low upper
fitting range borders and determining the precise onset of the plateau across conditions in
order to estimate the exponents under equivalent conditions.

Yet, measuring the onset of the plateau can be difficult in practice if oscillatory peaks mask it.
For example, the spectrum in Fig. 2 b) appears to have a spectral plateau onset at 120 Hz.
The presence of the high-frequency oscillation peaking at 360 Hz, however, produces a
positive slope between 160 Hz and 320 Hz, potentially masking a continued 1/f trend of the
spectrum. Accordingly, one cannot exclude the possibility that the actual onset of the plateau
is at a higher frequency value (e.g., 200 Hz). On the other hand, the large oscillation ranging
from 6 Hz to 100 Hz, peaking in the beta range at 25 Hz, counteracts this effect: In theory,
one also cannot exclude that the actual flattening occurs already at 20 Hz.

To demonstrate this effect, for Fig. 2 c) we simulate three power spectra with three different
1/f exponent ground truths of (blue), (green), and (orange). Next, we β = 1  β = 1. 5  β = 2
add eight oscillations at Hz, Hz, Hz, Hz, Hz, Hz, Hz, and Hz and3 5 10. 5 16 23 42 50 360
tune the oscillation amplitude and width parameters in all three examples to match the
recording of Fig. 2 b) (purple). Finally, using FOOOF, we estimate the 1/f exponent in the
frequency range from Hz in the three simulated and the real PSD. Despite strongly1–95
diverging 1/f exponent ground truths, FOOOF estimates an 1/f exponent of about β ≈ 0. 77
in all four cases. The diverging ground truths are apparent in Fig. 2 c) because the true
aperiodic component (which is shown in light grey and is invisible to FOOOF) has a plateau
onset at high frequencies in the blue curve, at intermediate frequencies in the green, and at
low frequencies in the orange curve. However, neither for FOOOF nor for the experimental
observer, it is possible to know which of these three scenarios best reflects the real spectrum
in Fig. 2 b). Therefore it is difficult to determine at which frequency scale an 1/f estimate
might be valid.

Note that this challenge applies not only to cases where the goal is to estimate the 1/f
exponent but also when such an estimate is used in order to remove the aperiodic
component from the spectrum. While fitting a “shoulder” allows for modeling such a plateau,
the strongly varying “shoulder” onsets in Fig. 2 c) cannot be captured, given that the three
power spectra share the same appearance. Specifically, the oscillation power estimates
based on FOOOF would be almost identical in all three spectra. However, in the simulation,
the oscillation power increases considerably from the blue to the green to the orange curve.

Recommendations:

Scenario A: The power spectra have a plateau onset at higher frequencies, and oscillations
do not mask it:

Challenge 1 does not apply.

Scenario B: The power spectra have a plateau onset at lower frequencies, and the onset is
easily discernible (because no or just small oscillations are present).
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Determine the precise plateau onsets across conditions. Choose the upper fitting range
border as low as possible to increase SNR.

Scenario C: The power spectra potentially have a plateau onset at lower frequencies, but
oscillations mask the exact onset.

The upper fitting range border must be lower than the onset of the masking oscillation. If the
remaining frequency range is too small (as in Fig. 2 b)), aperiodic fitting should be avoided.

Challenge 2: Avoiding oscillations crossing fitting range borders
When choosing the fitting range to model the aperiodic component, oscillations crossing the
fitting range borders must be avoided for all investigated power spectra. FOOOF assumes
all oscillation peaks lying within the fitting range because it does not fit partial Gaussian
peaks. Consequently, the estimated 1/f exponent error becomes large if the lower or upper
fitting range border overlaps with a spectral peak.

In the upper panel of Fig. 3 a), we simulate a PSD with a slope of and oscillationβ = 2
peaks at Hz, Hz, and Hz (black graph). We fix the upper fitting range border at5 15 35 100
Hz and measure the 1/f exponent for all lower fitting ranges from 1–100 Hz up to 80–100 Hz.
The lower panel in Fig. 3 a) indicates the absolute error of the estimated slope as a function
of the lower fitting range border (red). The error is the absolute deviation from the ground
truth . Note that the error function resembles the oscillatory peaks, with theβ

𝑡𝑟𝑢𝑡ℎ
− β

𝐹𝑂𝑂𝑂𝐹| |
greatest errors occurring approximately at the peak center frequencies. The FOOOF
parameters are kept at the default setting.

10

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.15.464483doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.15.464483
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 3 Oscillations must not cross fitting range borders. a) Upper panel: PSD of a simulated spectrum
with β=2 and oscillations at 5 Hz, 15 Hz, and 35 Hz (black). The x-axis and the y-axis indicate
frequency and PSD, respectively. Lower panel: The exponent is measured using FOOOF for all 80β
frequency ranges from 1–100 Hz to 80–100 Hz (red). The x-axis indicates the lower fitting range
border, while the y-axis shows the absolute deviation from the ground truth. b) Various frequency
ranges commonly used for E–I estimation are applied to an STN-LFP PSD of a Parkinsonian patient
(purple). Since many of the chosen ranges overlap with spectral peaks, the estimated exponents β
are strongly differing. FOOOF parameters: max_n_peaks=0 (for 30–45 Hz); max_n_peaks=1 (for
40–60 Hz); peak_width_limits=(1, 100) (for 1–45 Hz and 1–95 Hz). c) The simulated PSD in the
middle panel (green) was tuned to match the empirical PSD in b) (purple). FOOOF estimates a similar
aperiodic exponent for the simulated and the real spectrum (β=0.61). When decreasing the power of
the 2 Hz delta oscillation (blue), the estimated aperiodic exponent decreases (β=0.50) despite a
constant exponent for the simulated spectrum. When increasing the power of the delta oscillation
(orange), the estimated aperiodic exponent increases (β=0.72)

If the peaks do not completely lie within the fitting range, very error-prone fits are obtained,
as shown in another exemplary STN-LFP recording from a Parkinsonian patient (purple) in
Fig. 3 b). The fit from 30–45 Hz (turquoise), a frequency range commonly used for
estimation of E–I balance, measures the slope of the beta-to-gamma peak, not of the
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aperiodic component. For this fit, we set the FOOOF parameter for the maximum number of
allowed peaks (max_n_peaks) to 0 since this frequency range is usually chosen to avoid
oscillations altogether. Therefore, FOOOF just fits a straight line without peak modeling. The
40–60 Hz range (green) lies on top of the beta-to-gamma peak, too. Here, we set
(max_n_peaks) to 1 to account for the power line noise. Further, the 1–45 Hz range (orange)
is inappropriate because its upper fitting range border at 45 Hz lies in the middle of the
gamma peak. While these are obvious examples of ill-chosen fitting ranges, in practice more
subtle (but similar) errors might occur. Therefore the presence of oscillations at fitting range
borders must be carefully checked for every single PSD of interest.

The 1–95 Hz range (purple dotted) seems to be the only acceptable range for this spectrum:
The upper fitting range border extends beyond the beta-to-gamma peak but ends before the
onset of the spectral plateau. The estimated exponent has a value of . Forβ

𝐹𝑂𝑂𝑂𝐹
= 0. 61

these two frequency ranges (1–45 Hz and 1–95 Hz), we increased the peak width limits from
0.5–12 Hz (default) to 1–100 Hz to account for the chosen spectral resolution (1 Hz) and
enable modeling of the very broad (>12 Hz) beta-to-gamma peak. The corresponding
FOOOF fits of Fig. 3 b) are shown in SI Fig. 2.

While the 1–95 Hz range seems best, it appears almost impossible to avoid low-frequency
oscillations crossing the lower fitting range border. If some delta oscillations are present,
they lead to a steepening of the spectrum which impacts the estimation of the 1/f exponent.
We visualize this effect by reproducing the empirical LFP spectrum in three simulations in
Fig. 3 c). We set the oscillation frequencies to 2 Hz, 12 Hz, 18 Hz, 27 Hz, 50 Hz (gamma),
50Hz (power line), and 360 Hz. In the panels in Fig. 3 c) from left to right, we only vary the
delta power at 2 Hz while keeping the aperiodic component and all other oscillations’
amplitudes and widths fixed. Since the delta oscillation has a bandwidth crossing the lower
fitting range border of 1 Hz, FOOOF-estimates of the 1/f exponent diverge strongly between
the three scenarios (same FOOOF parameters as for the 1–95 Hz range in Fig. 3 b)). While
the aperiodic (white noise-free) ground truth remains unchanged at for all threeβ = 1. 5
simulations, FOOOF estimates an lower 1/f exponent (blue, ) if the delta18% β = 0. 50
oscillation from the middle panel (green, ) is removed. On the other hand, itβ = 0. 61
estimates an larger 1/f exponent (orange, ) if we double the power of the delta18% β = 0. 72
oscillations. The power of the true delta oscillations in the purple curve is, of course,
unknown.

Overall, fitting and removing delta oscillation peaks seems unfeasible since they rarely occur
as a single distinguishable peak in the double logarithmic representation. Furthermore,
FOOOF requires smooth input spectra to reduce the impact of noise which at the same time
hinders fitting sharp peaks. Therefore, we recommend 1/f estimation for a higher
lower-border of the fitting range to avoid the impact of these low-frequency oscillations. For
high lower borders of the fitting range, oscillations can be better avoided, and if they are
present, they likely have less impact on the estimation.

Estimating the power of low-frequency oscillations by removing the aperiodic part of the
spectrum poses a special challenge in this regard. Many studies (Donoghue et al., 2020; El
Boustani et al., 2009; Fransson et al., 2013; Freeman & Zhai, 2009; Miller et al., 2009; Wen
& Liu, 2016) have conceptualized the aperiodic part of the spectrum as self-similar, or fractal,
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across a wide range of frequencies, such that the estimation of the 1/f exponent should be
independent of the chosen fitting range. If this assumption does not hold, however, the
aperiodic component must be fitted in the given frequency range of interest. If this frequency
range of interest coincides with low-frequency oscillations, this challenge cannot be avoided.

The impact of (sub-)delta oscillations should therefore be kept in mind as a limitation. If one
finds a difference of the 1/f exponent between groups of investigation, one should check
whether the delta power of the FOOOF-fits varies across conditions. If delta power is similar
across conditions but the slope varies, it seems likely that indeed the aperiodic component
causes these differences in the estimated slopes and not a distortion by delta oscillations. If
delta power does change across conditions (without a global offset of the PSD across all
frequencies), the change of slopes could either be caused by a change of oscillatory delta
activity (as shown in SI Fig. 1) or by a change in the aperiodic component itself, and these
two possibilities cannot be differentiated with full certainty.

Recommendation:

Scenario A: The 1/f exponent needs to be estimated:

Use a fitting range at higher frequencies (for example 40–60 Hz) to avoid distortion by
low-frequency oscillations.

Scenario B: The aperiodic component needs to be removed from the PSD:

If the assumption of self-similarity across a wide range of frequencies holds for the aperiodic
part of the spectrum, both slope and intercept of its linear fit could theoretically be obtained
from any frequency range. In reality, different exponents could be present in different
frequency ranges. In that case, the exponent should be estimated in the broadband range
starting at very low frequencies. For this lower fitting range border (starting often at around 1
Hz), the challenge cannot be avoided and should be kept in mind as a potential limitation of
the results.

Challenge 3: FOOOF cannot characterize oscillation peaks that
are not clearly distinguishable
As illustrated in Fig. 1, FOOOF models oscillations as Gaussian functions fitted to peaks in
the flattened PSD. While this does not impose a severe challenge for clearly isolated peaks,
the modeling becomes complicated when peaks overlap partially. If many different peaks
overlap, the resulting PSD can be caused by various combinations of oscillations with
different frequencies and powers that are impossible to disentangle on a single spectrum.
Furthermore, whereas spectral leakage from oscillations at neighboring frequencies but
same Fourier phase can add up in different combinations to yield similar power spectra,
oscillations at different phases can also subtract power from other peaks.

In the right panel of Fig. 4 a), we present a real PSD that might exemplify a spectrum
containing many strongly overlapping oscillation peaks. The underlying time series was
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recorded from a subject with epilepsy during an absence seizure using a bipolar montage of
EEG electrodes F3-C3. Pre-seizure activity is highlighted in turquoise, seizure activity in red,
and post-seizure activity in yellow. Absence seizures are proposed to be related to
cortico-thalamic E–I dysbalance (Onat et al., 2013) caused by reduced cortical inhibition
(Tan et al., 2007), hyperexcitable somatosensory neurons (Karpova et al., 2005), GABAB

receptor dysfunctions (Inaba et al., 2009; Merlo et al., 2007), changes in NMDA
(D’Arcangelo et al., 2002; Pumain et al., 1992), or mGLU2/3 receptors (Ngomba et al.,
2005). It would be interesting to complement these molecular rodent studies by non-invasive
human electrophysiological recordings. Specifically, using the 1/f exponent as a biomarker of
E–I balance before, during, and after the seizure might help to gain new insights into
absence seizures. However, the non-sinusoidal 3 Hz spike-wave discharges might create
many harmonic peaks throughout the spectrum. Applying FOOOF (default parameters) in a
frequency range of 1–100 Hz yields estimated 1/f exponents of , ,β

𝑝𝑟𝑒
= 1. 52 β

𝑠𝑒𝑖𝑧
= 2. 31

and . One could interpret this finding as an increase of the aperiodic 1/fβ
𝑝𝑜𝑠𝑡

= 1. 52

exponent during the seizure, indicating (quite counterintuitively) stronger neural inhibition.
However, even though FOOOF subtracts a substantial part of the harmonic peaks by
modeling them as four broad peaks with center frequencies at 11 Hz, 22 Hz, 37 Hz, and 50
Hz (see SI Fig. 3), it is not clear whether it can correctly estimate the peak heights. A peak
height is the power of an oscillation on top of the aperiodic component. However, there is no
reference point for the aperiodic component from which the height could be measured in the
scenario of many overlapping oscillations. Hence, it might be that the aperiodic exponent
does not change during the absence seizure—instead, the inaccurately removed 3
Hz-harmonics likely caused the increased 1/f exponent value.

Fig. 4 b) shows a time series of simulated 1/f noise with an exponent of . Duringβ
𝑠𝑖𝑚

= 1. 8

the same time interval in which the absence seizure in Fig. 4 a) occurs, we add a saw-tooth
oscillation of 3 Hz to the signal. As in the example of the real seizure in Fig. 4 b), FOOOF
estimates a strongly increased 1/f exponent even though the ground truth exponent remains
constant. The corresponding model (default parameters) is shown in SI Fig. 3.

Note that it is possible to enable FOOOF fitting of the many harmonious peaks by reducing
the maximum peak width limits to 1 Hz. While it is not feasible to tune the parameters across
conditions (there is an alpha peak with a peak width larger than 1 Hz in the pre-and
post-condition), even with the specifically tuned parameters, FOOOF returns increased 1/f
exponents and for real and simulated data, respectively (SI Fig.β = 2. 28 β

𝑠𝑖𝑚 (𝑡𝑢𝑛𝑒𝑑)
= 1. 91

3).
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Fig. 4 FOOOF cannot characterize oscillation peaks that are not clearly distinguishable. a) Left: Time
series of an absence seizure measured using EEG. Turquoise: Pre-seizure, red: seizure, yellow:
post-seizure activity. Right: Corresponding PSDs and aperiodic FOOOF fits. Note the increase of the
1/f exponent during the seizure. b) Left: Simulated 1/f noise and temporarily (red) added 3 Hz
saw-tooth signal. Right: Aperiodic FOOOF fits. Note the increase of the 1/f exponent despite constant
ground truth of β

𝑡𝑟𝑢𝑡ℎ
= 1. 8

Recommendation:

Scenario A: The PSD appears as a straight line with well-distinguishable peaks on top of this
line:

Challenge 3 does not apply.

Scenario B: The PSD might contain overlapping peaks:

The more peaks overlap, the less accurate the model results will be. The lower and upper
fitting range borders must vastly extend the overlapping oscillation peaks (challenge 2) to
enable peak removal. Estimating the power of overlapping peaks will be difficult.

Scenario C: Almost the full PSD seems to consist of overlapping peaks (as in Fig 4):

Avoid fitting the aperiodic component.
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IRASA

Challenge 1: The evaluated frequency range is larger than the
fitting range
While FOOOF tries to iteratively fit all oscillatory peaks to obtain a periodic model, IRASA
takes the median of spectra after up- and down-sampling to eliminate the peaks, as shown
in Fig. 1. As a result, it aims to obtain the pure aperiodic component that is assumed to be
invariant to resampling. As an advantage over FOOOF, IRASA can overcome challenge 2:
Even if a peak crosses the fitting range border (at the original sampling rate), it can be
removed successfully due to the resampling procedure.

In Fig. 5 a), we replot the spectrum of Fig. 3 a) and estimate the 1/f exponent for all
frequency ranges between 1–100 Hz and 80–100 Hz. In contrast to FOOOF, IRASA has
minimal errors for all frequency ranges. The reason is that the fitting range of FOOOF has
well-defined borders: If the lower border is set to 5 Hz (the center frequency of the first
peak), it cannot identify and model the 5 Hz peak correctly. On the other hand, for IRASA,
the fitting range is blurry: By up- and down-sampling the spectrum, the peaks are shifted
towards lower and higher frequencies. Therefore, the evaluated frequency range of IRASA is
much more extensive than the actual fitting range.
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Fig. 5 IRASA’s evaluated frequency range is larger than the fitting range. a) Upper panel: Same
simulation as in Fig. 3 a). Lower panel: The lower fitting range border is shown on the x-axis, the
absolute deviation from the ground truth on the y-axis. IRASA correctly estimates the 1/f exponent for
all used fitting ranges. b) Simulated aperiodic PSD with a ground truth of . A 1 Hz highpass filterβ = 2
disrupts the 1/f power law. IRASA’s fitting range for the maximum resampling factor ℎ

𝑚𝑎𝑥
∈ {2,  8,  15}

is indicated as bright-colored lines upon the fitted aperiodic components, with the evaluated frequency
ranges after up- and down-sampling indicated in corresponding transparent colors. IRASA’s error of
the 1/f estimation increases with larger resampling rates (and lower resampling rates 1/ ,ℎ

𝑚𝑎𝑥
ℎ

𝑚𝑎𝑥

respectively). c) Same as b) with a spectral plateau disrupting the 1/f power law. d) FOOOF 1/f
estimate within 1–30 Hz for a spectrum obtained from voxel data after MEG source reconstruction. e)
IRASA 1/f estimates for an evaluated frequency range of 1–30 Hz (green) and an evaluated frequency
range of 0.3–90 Hz (green-dashed, corresponding to a fitting range of 1-30 Hz at ). f)ℎ

𝑚𝑎𝑥
= 3

FOOOF (blue) and IRASA (green) estimates of the 1/f exponent for the same fitting range of 1–30 Hz

For example, if we chose only two resampling factors , the spectrum would beℎ
𝑠𝑒𝑡

= {2,  3}

up-sampled by and and down-sampled by and .ℎ
𝑢𝑝1

= 2 ℎ
𝑢𝑝2

= 3 ℎ
𝑑𝑜𝑤𝑛1

= 1/2 ℎ
𝑑𝑜𝑤𝑛2

= 1/3

As a result, a fitting range of 10–100 Hz would correspond to four evaluated frequency
ranges of 20–200 Hz, 30–300 Hz, 5–50 Hz, and 3.3–33 Hz. Of these four resampled
spectra, IRASA takes the median. The lower border of the evaluated frequency range

can be calculated from the minimum fitting range border divided by the𝑓
𝑒𝑣𝑎𝑙. 𝑚𝑖𝑛

𝑓
𝑓𝑖𝑡 𝑚𝑖𝑛

maximum resampling factor according to equation 1. The upper evaluated frequencyℎ
𝑚𝑎𝑥

border corresponds to the upper fitting range border multiplied by𝑓
𝑒𝑣𝑎𝑙. 𝑚𝑎𝑥

𝑓
𝑓𝑖𝑡 𝑚𝑎𝑥

ℎ
𝑚𝑎𝑥

according to equation 2.

𝑓
𝑒𝑣𝑎𝑙. 𝑚𝑖𝑛

 =  𝑓
𝑓𝑖𝑡 𝑚𝑖𝑛

/ℎ
𝑚𝑎𝑥

Eq. 1

 𝑓
𝑒𝑣𝑎𝑙. 𝑚𝑎𝑥

 =  𝑓
𝑓𝑖𝑡 𝑚𝑎𝑥

· ℎ
𝑚𝑎𝑥

Eq. 2

While evaluating a larger frequency range than the actual fitting range can be advantageous,
as shown in Fig. 5 a), it can also lead to severe challenges, as shown in Fig. 5 b). Here, we
simulate an aperiodic PSD with , which is highpass filtered at 1 Hz. We then applyβ = 2
IRASA in a fitting range of 2–30 Hz for three different h-sets with maximum resampling
factors , , and , respectively. The fitting ranges, indicated inℎ

𝑚𝑎𝑥
= 2 ℎ

𝑚𝑎𝑥
= 8 ℎ

𝑚𝑎𝑥
= 15

green, orange, and red, are the same, but the evaluated frequency ranges, shown in the
corresponding transparent colors, increase with increasing .ℎ

𝑚𝑎𝑥

Note that the highpass filter disrupts the 1/f power law for low frequencies and violates
IRASA’s assumption of a resampling-invariant aperiodic component. With increasing ,ℎ

𝑚𝑎𝑥

IRASA evaluates substantially larger parts of the low-frequency stopband which increasingly
biases its 1/f estimates towards smaller values. A good agreement with the ground truth of

is only obtained for which corresponds to an evaluated frequency range ofβ = 2 ℎ
𝑚𝑎𝑥

= 2,  

1–60 Hz, avoiding the stopband of the highpass-filtered spectrum.

Apart from low-frequency fitting artifacts due to highpass filtering, care must also be taken to
avoid fitting artifacts at high frequencies. For example, in Fig. 5 c), the high-frequency
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spectral plateau disrupts the 1/f power law. Even though the upper fitting range border of
IRASA is set well below the plateau onset to Hz, IRASA does nevertheless𝑓

𝑓𝑖𝑡 𝑚𝑎𝑥
= 30

evaluate the plateau due to the upsampling step. Therefore, with growing , IRASAℎ
𝑚𝑎𝑥

biases the 1/f estimates towards smaller values again.

Even in the absence of a spectral plateau, care must be taken to avoid the resampled
Nyquist frequency. For example, for a sampling rate of Hz and , the𝑓

𝑠𝑎𝑚𝑝𝑙𝑒
= 2400 ℎ

𝑚𝑎𝑥
= 10

resampled Nyquist frequency reduces from Hz to Hz.𝑓
𝑁𝑦𝑞𝑢𝑖𝑠𝑡

= 1200 𝑓
𝑁𝑦𝑞𝑢𝑖𝑠𝑡 𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑑

= 120

Accordingly, the upper fitting range border must not exceed this value. The same holds true
for a potentially applied lowpass filter. In general, to avoid accidentally fitting spectra above
Nyquist frequency or in the stopbands of lowpass or highpass filters, it is advisable to
choose as small as possible. Furthermore, the evaluated frequency range shouldℎ

𝑚𝑎𝑥

always be checked by calculation from the fitting range and .ℎ
𝑚𝑎𝑥

Given that IRASA evaluates a more extensive frequency range than the fitting range, the
meaning of the fitting range becomes imprecise. For example, if we are interested in fitting
the 1/f exponent from 1–30 Hz and use , we should choose 2–15 Hz as a fittingℎ

𝑚𝑎𝑥
= 2

range for the IRASA algorithm. However, since only the minimum and maximum resampled
spectra contain the 1 Hz and 30 Hz borders of interest, IRASA emphasizes the estimation of
the 1/f exponent from intermediate frequency values above 1 Hz and below 30 Hz.
Therefore, 1/f exponents estimated by IRASA cannot be directly compared to 1/f exponents
estimated by FOOOF.

We visualize this effect for a spectrum of voxel data obtained by MEG source reconstruction
in the lower panels d)–f) of Fig. 5. In d), FOOOF estimates an 1/f exponent of β

𝐹𝑂𝑂𝑂𝐹
= 1. 41

in the fitting range of 1–30 Hz. Due to the highpass filter, IRASA obtains a lower value of
for the same fitting range which, however, actually corresponds to anβ

𝐼𝑅𝐴𝑆𝐴
= 1. 09

evaluated frequency range of 0.33–90 Hz at (Fig. 5 e). Hence, setting theℎ
𝑚𝑎𝑥

= 3

evaluated frequency range to 1–30 Hz (by setting the fitting range to 3–10 Hz) yields
which is similar to the FOOOF estimate.β

𝐼𝑅𝐴𝑆𝐴
= 1. 38

Matching the evaluated frequency range of IRASA to the fitting range of FOOOF is not
always possible, though. Consider, for example, the fitting range of 30–45 Hz shown in Fig. 5
e). At , the evaluated frequency range of IRASA is 10–135 Hz. Due to the spectralℎ

𝑚𝑎𝑥 
= 3

plateau, IRASA estimates a much smaller exponent of compared toβ
𝐼𝑅𝐴𝑆𝐴

= 1. 22

. This time, we cannot shrink IRASA’s fitting range to match its evaluatedβ
𝐹𝑂𝑂𝑂𝐹

= 2. 11

frequency range with FOOOF’s fitting range. At , the lower fitting range border ofℎ
𝑚𝑎𝑥

= 3

IRASA must be Hz Hz to match the lower fitting range border of FOOOF at 303 · 30 = 90
Hz. However, the upper fitting range border needs to be Hz Hz to match the45 / 3 = 15
upper fitting range border of FOOOF. This would lead to an inverse fitting range of 90–15 Hz.
Here, it cannot be avoided that IRASA evaluates a much more extensive frequency range
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than 30–45 Hz. As a result, FOOOF and IRASA cannot yield comparable 1/f estimates for
this frequency range.

Recommendations:
Always calculate the evaluated frequency range from the fitting range and according toℎ

𝑚𝑎𝑥

equations 1 and 2. Choose the maximum resampling factor as small as possible inℎ
𝑚𝑎𝑥

order to 1) avoid fitting artifacts, 2) to improve comparability with other methods, and 3) to
improve the interpretability of the investigated frequency range.

Set the evaluated frequency range—and not the fitting range—to the frequency range of
interest.

Challenge 2: Broad peak widths require large resampling
factors
In challenge 1, we recommend choosing the maximum resampling factor as small asℎ

𝑚𝑎𝑥

possible. However, for IRASA to work correctly, the resampling factors must be sufficiently
large. This is because IRASA shifts the peaks in the frequency scale up and down through
up- and downsampling. Therefore, a single peak appears multiple times on the frequency
scale (Fig. 1 b). For a range of sufficiently large (and small) resampling factors, the
resampled peaks are completely separated and, by taking the median of their geometric
mean, subsequently eliminated. However, if the range of resampling factors is too small or
the peaks too broad, the resampled peaks overlap. In that case, peak removal by taking the
median will not be successful.

In Fig. 6 a), we replot Fig. 5 a). However, by increasing the peak widths from the left to the
right panels, the 1/f estimation error of IRASA increases strongly. This is because the peaks
cannot be fully separated. As a result, IRASA’s calculated aperiodic component, shown in
grey, still contains the up and downsampled peaks after taking the median. Note that not the
peak width itself must be sufficiently small to get separated, but instead, , as it∆𝑓 ∆𝑓

𝑙𝑜𝑔

appears in the logarithmic frequency scale, the logarithmic peak width needs to be
sufficiently small. For this reason, a peak width of 4 Hz at a center frequency of 5 Hz has a
similar effect as a peak width of 12 Hz at a center frequency of 35 Hz.
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Fig. 6 Broad peak widths require large resampling factors. a) Upper panel: Similar as in Fig. 5 a) but
with increasing peak widths from left to right. Note that removal of peaks from the aperiodic
component (grey) worsens with broader peak widths. Lower panel: The lower fitting range border is
on the x-axis, the absolute deviation from the ground truth on the y-axis. The 1/f exponent estimation
error increases with larger peak widths. b) Simulation of a 30 Hz and 300 Hz peak with increasing
peak widths from left to right. Larger peak widths require larger resampling factors. Note that not the
absolute peak width but rather the logarithmic peak width determines the minimum resampling∆𝑓

𝑙𝑜𝑔

factors

We visualize this effect in panel Fig. 6 b) by simulating a PSD with two oscillations at
Hz and Hz. The peak width of the second peak is 70 Hz and therefore 10𝑓

1
= 30 𝑓

2
= 300

times as large as the peak width of the first peak. However, on the logarithmic frequency
axis, they appear with the same width. A maximum resampling factor of is sufficientℎ

𝑚𝑎𝑥
= 2

to remove the peaks correctly. Thus, they are fully eliminated from the aperiodic component
shown in turquoise. However, when the peak widths are increased to a logarithmic value of
0.2 log(Hz), is not sufficient anymore: The up- and down-sampled peaks remainℎ

𝑚𝑎𝑥
= 2

visible in the estimate of the aperiodic component. If we increase to a value of 8,ℎ
𝑚𝑎𝑥

however, peak removal works well. For a further increase of the logarithmic peak width to 0.3
log(Hz), however, is necessary. We visualize this challenge on empirical data ofℎ

𝑚𝑎𝑥
= 35 

MEG and LFP data of dataset 3 in SI Fig. 4.
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We calculated the logarithmic peak width as Eq. 1 where∆𝑓
𝑙𝑜𝑔

= 𝑙𝑜𝑔
10

(𝑓
2
/𝑓

1
) 𝑓

1

corresponds to the lower bound of the peak and to the upper bound of the peak. The𝑓
2

bounds were found by calculating the first bin of the PSD, which deviates above a threshold
of 0.001 from the aperiodic ground truth. Note that there is no exact equation/heuristic to
calculate the minimum as a function of peak width because always many resamplingℎ

𝑚𝑎𝑥

factors h are calculated, which will lead to a gradual peak removal depending on the degree
of peak separation.

Recommendations:
Choose as small as possible (challenge 1) while keeping it large enough to obtainℎ

𝑚𝑎𝑥

peak-free estimates of the aperiodic component (challenge 2). If the peaks are very broad
and cannot be chosen sufficiently large without avoiding challenge 2, IRASA cannot beℎ

𝑚𝑎𝑥

applied.

Challenge 3: IRASA cannot characterize oscillation peaks that
are not clearly distinguishable
Similar to FOOOF, IRASA cannot separate strongly overlapping peaks. However, as shown
in Fig. 7 b), IRASA performs quite well for dataset 2 because the harmonic peaks do not
strongly overlap above 10 Hz. Instead, many local power minima in between the harmonic
peaks are very close to the power of the aperiodic ground truth. As a consequence, adding
the 3 Hz sawtooth signal only slightly increases the estimated 1/f exponent from

to . In the middle panel of SI Fig. 5 b), the extracted oscillatoryβ
𝑝𝑟𝑒/𝑝𝑜𝑠𝑡

= 2. 24 β
𝑠𝑒𝑖𝑧

= 2. 46

component of IRASA is shown in orange, indicating a good extraction of harmonic peaks at
multiple integers of 3 Hz.

If, however, we now add two strongly overlapping oscillations at 10 Hz and 25 Hz, IRASA is
no longer capable of successfully removing the peaks. As a result, it now estimates an
exponent of —much larger than the ground truth at .β

𝑠𝑒𝑖𝑧
= 3. 05 β

𝑡𝑟𝑢𝑡ℎ
= 1. 8
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Fig. 7 IRASA cannot characterize oscillation peaks that are not clearly distinguishable. a) and b) left
panel: Same as Fig. 4. a) and b) Right panel: Same as Fig. 4 but showing the 1/f fits by IRASA. c)
IRASA’s performance on the simulation drops significantly if two strongly overlapping peaks in the
alpha (10 Hz) and beta range (25 Hz) are added. Ground truth: β

𝑡𝑟𝑢𝑡ℎ
= 1. 8

Discussion
Both periodic and aperiodic components of power spectra are frequent targets of
investigation in electrophysiological studies. The separation of both components before
analysis helps to disentangle their relative contribution to the spectrum. FOOOF and IRASA
are commonly used for this purpose. It should be highlighted, though, that the methods
follow different concepts: Whereas FOOOF models periodic components and a single
aperiodic component and outputs the corresponding parameters, IRASA only separates
them, allowing further independent processing. Other methods to separate periodic and
aperiodic PSD components exist too, for example, eBOSC (Kosciessa et al., 2020).
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However, they cannot overcome the method-unspecific challenges in electrophysiological
PSDs such as 1) spectral plateau onsets at relevant frequencies, 2) hidden low-frequency
oscillations, and 3) overlapping peaks.

Here, we evaluated common challenges of the separation procedure based on two popular
methods and summarized both general and method-specific challenges. These challenges
apply to EEG, MEG, and LFP data obtained by independent research groups, indicating the
general applicability of the results.

Neurophysiological interpretation

Spectral Plateau
The spectral plateau can hinder a correct separation of the PSD components. If the fitting
range of FOOOF or the evaluated frequency range of IRASA includes a spectral plateau, the
1/f exponent will be estimated too low. In the presence of periodic components at the
spectral flattening, a faulty aperiodic power estimation will lead to a faulty periodic power
estimation. In addition, large periodic components could hide the onset of the spectral
plateau. This hinders a proper decision on the choice of the upper fitting range border. If the
1/f exponent is estimated too low due to the spectral flattening, this could be misinterpreted
as an increased E–I ratio since typically flatter spectra are associated with more pronounced
excitability (Gao et al., 2017).

E–I balance estimation is usually applied to estimate relative 1/f differences between
conditions. If the spectral plateau onset were to occur at exactly the same frequency for all
spectra, a relative 1/f comparison would still be viable. A random fluctuation of the onset
would introduce noise to the estimates, and a systematic difference of the plateau onset
between conditions would lead to type 1 errors.

The origin of the spectral plateau at high frequency is likely rooted in Gaussian properties of
amplifier noise and impedance noise (Scheer et al., 2006; Waterstraat et al., 2015).
(Waterstraat et al., 2021) showed that the onset of the plateau starts at higher frequencies if
recordings are done with a low-noise MEG system. In addition to system noise, biological
high-frequency noise caused by electromyography (EMG) from the head muscles can
contribute to spectral flattening, although EMG does not necessarily have a flat spectrum
(Muthukumaraswamy, 2013). However, even when recording LFPs from the subthalamic
nucleus using a low-noise amplifier, which can be considered as hardly affected by EMG
activity, a spectral plateau could be observed one order of magnitude above the system's
noise level (unpublished data). Neuronal population spiking activity probably contributes to
this spectral plateau (Belluscio et al., 2012; Buzsáki et al., 2012; Zanos et al., 2011). Better
understanding the origins of the spectral plateau is of major interest and requires further
research. If it is caused by noise such as systems noise or EMG, an identification of the
origin could help to clean the data from this high-frequency plateau. If it has a
neurophysiological origin, a thorough analysis of the plateau might yield novel
neurophysiological insights.
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Fitting ranges
The choice of the fitting range depends on the goal of the study and the properties of the
data. In the literature, the 1/f exponent was investigated for different frequency ranges such
as 0.01–0.1 Hz (He et al., 2010), 0.5–35 Hz (Miskovic et al., 2019), 1–10 Hz (Schaworonkow
& Voytek, 2021), 1–20 Hz (Bédard et al., 2006), 1–30 Hz (Wen & Liu, 2016), 1–40 Hz
(Colombo et al., 2019), 1–20 and 20–40 Hz (Colombo et al., 2019), 1–100 Hz (He et al.,
2010), 2–24 Hz (Voytek et al., 2015), 3–30 Hz (Pereda et al., 1998), 3–55 Hz (Waschke et
al., 2021), 10–100 Hz (Freeman & Zhai, 2009), 20–65 Hz (Bédard et al., 2006), 30–50 Hz
(Gao et al., 2017; Lendner et al., 2020; Stolk et al., 2019) and 40–60 Hz (Gao et al., 2017)).

If a study using FOOOF aims to generally estimate an 1/f exponent and is free to choose
any fitting range for that purpose, we generally recommend avoiding low lower fitting range
borders. It is unknown how hidden low-frequency oscillations at the lower fitting range border
might impact the 1/f estimate. For example, if the 1/f exponent is compared between two
conditions and in one condition there are larger delta oscillations, a fitting range starting from
1 Hz could have a larger y-intercept due to the presence of low-frequency oscillations. This
could lead to a larger 1/f exponent and could be misinterpreted as stronger neural inhibition.
The same holds for any other lower fitting range border. Therefore, the lower border should
be chosen to best avoid known oscillation frequencies, depending on the study.

The same problem applies to IRASA but less severely since this method is not based on a
single frequency range but rather, due to up- and downsampling, to a set of different
frequency ranges. This comes at the cost of only vaguely defined upper and lower fitting
range borders, hindering an easy comparison with fitting ranges used in other studies.

In general, there is no one-range-fits-all fitting range applicable to all kinds of PSDs.
Therefore, we recommend examining the PSDs of interest carefully and choosing the fitting
range that best avoids the challenges discussed so far in addition to further possible
data-specific or goal-specific challenges.

Finally, if the purpose of the 1/f estimation is not to obtain the 1/f exponent but rather the
removal of the aperiodic component for better periodic power assessment, a broadband
range (such as 1–100 Hz) should be chosen.

Overlapping peaks
The stronger periodic components overlap, the more difficult estimating their power
becomes. In the shown exemplary data, overlapping peaks occurred mainly in STN data and
in dataset 2. MEG and EEG cortical data of healthy participants typically have peaks in the
ranges 8–13 Hz and 18–25 Hz which does not impose considerable challenges for the
estimation of the aperiodic part of the spectrum. Assessing the 1/f exponent is still feasible if
the overlapping periodic components make up only a minor part of the fitting range. On the
other hand, if the overlapping peaks make up a majority of the frequency range to
investigate, as in Figs. 4, 7, and 8 b), a separation of the periodic and aperiodic components
is not recommended and will likely lead to imprecise results. In the case of the absence
seizure shown in Figs. 4 and 7, neural inhibition during the seizure is likely overestimated
due to overlapping peaks leading to a false 1/f estimation.
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Broad peak widths
In contrast to FOOOF, IRASA cannot handle very broad peaks well. This limitation is
especially severe for the analysis of LFPs of Parkinsonian patients (datasets 1 and 3). In the
original article (Wen & Liu, 2016), IRASA was only evaluated on pure sine oscillations, for
which the method works very well. We, therefore, do not recommend using IRASA if the
peaks seem to have broad logarithmic peak widths . It is not possible to give a∆𝑓

𝑙𝑜𝑔

threshold value for a maximum logarithmic peak width as IRASA is, in theory, able to fit any
peaks if the h-values are chosen sufficiently large. However, in practice, the h-values must
not exceed a certain range to avoid too low (highpass, Fig. 5 b)) or too high (spectral
plateau, Fig. 5 c)) fitting ranges, calculated using Eq. 1 and 2.

Estimating E–I balance
(Gao et al., 2017) proposed to use the 1/f exponent as an indicator of E–I balance.
Subsequent studies indicated the usefulness of this idea also for non-invasive EEG/MEG
data (Colombo et al., 2019; Gao et al., 2017; Lendner et al., 2020; Miskovic et al., 2019;
Waschke et al., 2021). While we outlined that 1/f exponent estimation is affected by many
possible error sources, we do not argue that it should be avoided altogether. While proper 1/f
estimation seems to be beyond reach for some PSDs (for example, the one shown in Fig. 8
b)), it seems to be a promising measure for others (Fig. 8 a)). Thus we suggest that existing
methods could be enhanced by more elaborate data cleaning, such as spatio-spectral
decomposition (SSD) (Nikulin et al., 2011), independent component analysis (ICA), or
inverse modeling. Moreover, it might be possible to develop new methods that measure the
1/f exponent more reliably than the ones discussed in the present study. For example, if the
periodic and aperiodic components are assumed to vary over time independently, it could be
possible to disentangle them using machine learning algorithms such as non-negative matrix
factorization (Lee & Seung, 1999). And it might become possible to measure E–I balance
through other electrophysiological measures thus further validating the 1/f exponent of the
PSD. We elaborate on this below.

(Bruining et al., 2020), for example, proposed to measure E–I balance based on the alpha
band amplitude envelope and its detrended fluctuation analysis (DFA) exponent (Peng et al.,
1995). (Stephani et al., 2020) related the N20 of somatosensory evoked potentials to cortical
excitability. Other researchers related spontaneous fluctuations of alpha-band power to E–I
balance (Romei et al., 2008) and (Iemi et al., 2019) found alpha- and beta-band power to
predict suppression of ERP-components, which was interpreted as increased inhibition. This
relationship held true even after controlling for fluctuations in the 1/f exponent. It might be
possible to estimate E–I balance by measuring transcranial magnetic stimulation (TMS)
evoked potentials using EEG. By combining these two methods, (Massimini et al., 2005)
showed a breakdown of effective cortical connectivity during non-rapid eye movement
(REM) sleep. Effective connectivity was also related to the 1/f exponent by (El Boustani et
al., 2009). The perturbational complexity index (Casali et al., 2013) follows these lines to
separate unconscious states of low excitability (non-REM sleep, anesthesia) from conscious
states of high excitability (wakefulness, REM sleep). Indeed, (Colombo et al., 2019) could
link this index to the 1/f exponent during wakefulness and anesthesia yielding similar results
with both methods. However, it should be noted that REM sleep (a conscious state of mind)
is associated with a larger 1/f exponent compared to NREM sleep (unconscious) while
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NREM sleep is associated with a larger 1/f exponent compared to wakefulness (conscious)
(Lendner et al., 2020). These findings agree with in vivo calcium imaging measurements of
E–I balance in mice during wakefulness, NREM sleep, and REM sleep (Niethard et al.,
2016).

In the best scenario, different methods used for E–I estimation will lead to similar results and
might be used in conjunction. So far, the relationship between 1/f exponent and E–I balance
remains a hypothesis to be further validated.

Computational cost and parameter tuning
From a computational perspective, FOOOF is much faster than IRASA. When applied to 9
time series of dataset 1 (ca. 180 s at Hz corresponding to𝑓

𝑠𝑎𝑚𝑝𝑙𝑒
= 2400 ≈ 9 × 440, 000

data points), parameterization with FOOOF was about 50 times faster than separation with
IRASA when the PSD calculation time was included. FOOOF was 100 times faster if the
PSDs were precalculated. For the comparison, we used 7 runs and fitted a frequency range
from 1–30 Hz. For FOOOF, the default parameters were chosen, and for IRASA a window
length of 4 s and a set of 17 resampling factors was used. FOOOFℎ

𝑠𝑒𝑡
= 1. 1,  1. 15,  ...,  1. 9{ }

computation slows down when the PSDs have a very high resolution leading to many
iterations of fitting noise peaks. IRASA computation slows down when the number of
resampling factors is increased and when their values are increased.

Increasing IRASA’s resampling values can help with very broad peak widths (challenge 2)
but simultaneously enlarges the evaluated frequency range (challenge 1). Increasing the
number of resampling factors beyond 17 or changing the window length does not help with
the challenges presented in this article. FOOOF requires extensive parameter tuning for
optimum results, but the posed challenges cannot be resolved by parameter selection. In
general, the fitting range of FOOOF and the evaluated frequency range of IRASA are the
most critical parameters for each method.

Conclusion
To study either periodic or aperiodic PSD components, it is useful to disentangle both
components. As there are theoretically infinite solutions to this inverse problem, it is probably
neither possible to perfectly separate them nor to evaluate and verify a performed separation
since the ground truth remains unknown. Some PSDs seem to be particularly easy to
separate because they avoid most of the discussed challenges. For those PSDs, we
generally recommend performing a separation to study the periodic or aperiodic components
in a more isolated manner. We give an example of such an “easy” PSD in Fig. 8 a).
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Fig. 8 “Easy” and “hard” PSDs. a) Left: Voxel MEG PSD of a Parkinsonian patient on a
semilogarithmic scale. Right: Same PSD on a double logarithmic scale. FOOOF, IRASA, and simply
connecting the PSD value at 1 Hz to the PSD value at 95 Hz as a straight line (“straight”) yield similar
1/f exponents. We regard such a PSD as “easy” because it avoids all the discussed challenges. b)
LFP data of a Parkinsonian patient on a semilogarithmic scale. Right: Same PSD on a double
logarithmic scale. FOOOF, IRASA, and “straight” yield different 1/f exponents. We regard such a
spectrum as “hard” because it contains many challenges

These “easy” PSDs appear as an almost straight line in double logarithmic space with some
well-distinguishable, narrow periodic peaks on top of it. There is no spectral plateau
disrupting the 1/f power law and the y-axis of the PSD extends over 4 orders of magnitude.
When applying FOOOF and IRASA from 1–95 Hz or simply connecting values at 1 Hz and
95 Hz to a straight line in double logarithmic space, similar values ( ,β

𝐹𝑂𝑂𝑂𝐹
= 1. 65

, ) are obtained for the 1/f exponent.β
𝐼𝑅𝐴𝑆𝐴

= 1. 71 β
𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡

= 1. 53

Other PSDs seem to be very difficult to separate. For such, we recommend avoiding the
separation since the results will be arbitrary and might lead to ill-informed interpretations. An
example of such a “hard” PSD is shown in Fig. 8 b). These spectra do not appear as a
straight line. They have very broad and overlapping peaks and a spectral plateau onset at
lower frequencies. As a result of this plateau, the y-axis spans only one order of magnitude.
When applying FOOOF, IRASA, or a straight-line connection between 1 Hz and 95 Hz,
strongly diverging 1/f exponent values ( , , ) areβ

𝐹𝑂𝑂𝑂𝐹
= 0. 82 β

𝐼𝑅𝐴𝑆𝐴
= 1. 10 β

𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡
= 0. 62

obtained.
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Checking PSDs for the challenges discussed in this work will help to decide whether a
technique to separate neuronal oscillations from aperiodic 1/f activity should be applied,
which algorithm to use, and which parameters to choose.
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Supplementary Information

SI Fig. 1 Oscillations crossing fitting range borders. FOOOF fits for the frequency ranges shown in
Fig. 2 b). FOOOF parameters: a) max_n_peaks=0, 30–45 Hz, b) max_n_peaks=1, 40–60 Hz,
peak_width_limits=(1, 100), 1–45 Hz, c) peak_width_limits=(1, 100), 1–95 Hz. Note that fooof fits the
power line noise peak in a) and c) well. Supplementary to Fig. 3 b)
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SI Fig. 2 Periodic parameters impact aperiodic fits obtained with FOOOF. The y-intercepts of the
FOOOF fits correlate with delta power. The blue, green, and orange data points correspond to the
blue, green, and orange graphs of Fig. 3 c), the black data points indicate additional simulations.

42

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.15.464483doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.15.464483
http://creativecommons.org/licenses/by-nc-nd/4.0/


SI Fig. 3 Overlapping peaks. a) FOOOF models the 3 Hz harmonics in the absence seizure recording
as four peaks with center frequencies as 11 Hz, 22 Hz, 37 Hz, and 50 Hz. b) In the simulated seizure,
three harmonic peaks are modeled as oscillations, whereas the rest is modeled as aperiodic
component, leading to a large exponent of β=2.65 (ground truth β=1.8). c) and d) Even when the
FOOOF parameters are tuned to allow maximum peak width limits of 1Hz (peak_width_limits=(0.5,
1)), FOOOF better models the harmonic peaks, but it still overestimates the 1/f exponent in the
simulation. Supplementary to Fig. 4
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SI Fig. 4 Large peak widths need large resampling factors. Dataset 3. a) MEG gradiometer PSD. A
maximum resampling factor of 2 is sufficient to remove the alpha peak. b) MEG magnetometer PSD.
For this peak width, a maximum resampling factor of 2 is not sufficient for removal. A maximum
resampling factor of is sufficient but leads to a large evaluated frequency range. To avoidℎ

𝑚𝑎𝑥
= 25

the high-pass and spectral plateau range, only a minor part of the aperiodic component (dark green)
can be used for aperiodic fitting, whereas a major part is affected by the high-pass and spectral
plateau (light green dashed). c) The same holds for the large beta peak in LFP data. Note that the
logarithmic peak width is essential for setting the resampling factors, not the absolute peak width. All
PSDs from dataset 3. Supplementary to Fig. 6
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SI Fig. 5 Overlapping peaks. Aperiodic (blue) and periodic (orange) extraction of IRASA and the
corresponding 1/f fit (green) for the a) real and the b) and c) simulated time series in Fig. 7. For the
simulation in b), IRASA can extract the harmonic 3Hz peaks well. However, the performance drops if
two additional overlapping peaks are added. Supplementary to Fig. 7
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