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Abstract: 22 
Enzymes are represented across a vast space of protein sequences and structural forms and have activities that 23 
far exceed the best chemical catalysts; however, engineering them to have novel or enhanced activity is limited 24 
by technologies for sensing product formation. Here, we describe a general and scalable approach for 25 
characterizing enzyme activity that uses the metabolism of the host cell as a biosensor by which to infer product 26 
formation. Since different products consume different molecules in their synthesis, they perturb host 27 
metabolism in unique ways that can be measured by mass spectrometry. This provides a general way by which 28 
to sense product formation, to discover unexpected products and map the effects of mutagenesis.  29 
 30 
Main: 31 
Introduction 32 
Enzyme engineering uses an iterative cycle in which libraries of gene variants are designed, synthesized into 33 
proteins, and tested for the activity of interest1. The success of these engineering campaigns, however, is 34 
dependent on technologies for conducting these steps. Moreover, while there have been significant advances in 35 
design and build, test remains a bottleneck2. For example, the dominant strategy is well plate screening, because 36 
it is simple and flexible, and allows a variety of measurement techniques to directly quantify the product of the 37 
enzyme2,3. Well plate screening, however, is severely limited in scalability, testing just hundreds of variants per 38 
cycle3; this is a major issue because the likelihood of identifying superior variants scales with the number 39 
screened. Thus, alternative approaches based on selections, flow cytometry, and droplet microfluidics are 40 
valuable because they afford much higher throughput, screening >107 variants per cycle2,4. However, a major 41 
constraint of these approaches is that they do not 42 
directly detect product formation, requiring a 43 
secondary assay to tether it to a detectable readout4. 44 
Identifying such assays can be challenging and, 45 
often, is not possible for enzymes of interest2. To 46 
enhance our ability to engineer enzymes through 47 
screening, a new method is needed that combines the 48 
generality of well plates with the scalability of 49 
microfluidics.  50 

In this paper, we describe a screening 51 
approach that combines the scalability of 52 
microfluidics with the generalizability of mass 53 
spectrometry (MS) (Figure 1). Our approach 54 
leverages the background metabolism of the host as 55 
a biosensor with which to assess the activity of an 56 
enzyme embedded in it, and a novel microscale mass 57 
spectrometry technology to characterize 58 
metabolomic changes. Since the enzyme catalyzes 59 
molecules of central metabolism, its activity perturbs 60 
the host’s metabolite profile1,5, generating a 61 
signature that can be detected even if the enzyme 62 
product is not directly observed. Our approach thus 63 
provides a general way to map the catalysis of a 64 
mutated enzyme, to characterize the range of 65 
products it generates, and recover the sequences of 66 
variants with desired activities.  67 

 68 
Results 69 

 
Fig. 1 | Metabolomic biosensing with microscale mass 
spectrometry provides a general strategy for screening enzymes. 
Enzyme variants are designed and transformed into yeast (design), 
then synthesized in the yeast where they consume molecules of 
central metabolism to generate product (build). Using printed 
droplet microfluidics, they are dispensed to a picoliter well array 
and subjected to MALDI-MS imaging to quantify cell metabolites 
(test). UMAP clusters cells according to metabolomic profile, 
where each cluster indicates a different enzyme phenotype. Desired 
mutants are extracted from the plate, sequenced, and confirmed in 
bulk cultures.  
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Matrix-assisted laser desorption ionization (MALDI) MS has been used for single cell metabo70 
and to identify enzyme products from microbial colonies7. Here, we combine this approach with printed 71 
microfluidics (PDM) to prepare, print, and screen all mutants from a semi-rationally varied 4-position lib72 
the Gerbera hybrida G2PS1 type-3 polyketide synthase (t3PKS)8, comprising 1960 codon shuffled m73 
(Figure 2A) (methods). This enzyme is responsible for biosynthesis of triacetic acid lactone (TAL) t74 
condensation of a starter acetyl-CoA unit with two malonyl-CoA molecules and subsequent cyclization75 
triketide chain 8,9. TAL has been used as a platform precursor for synthesis of high value chemicals com76 
derived from fossil fuels. Mutations in the active site of these enzymes can alter the kinetics and spect77 
polyketide products formed8,10, potentially accessing novel products (Figure 2B, Figure S1). We syn78 
and transform our library into Yarrowia lipolytica, encapsulating and culturing single cells in 300 pL dro79 
generate isogenic colonies (Figure S2). Culture expansion produces additional material compared to a80 
cell, boosting MS signal and providing accurate metabolomic data.  81 

To perform microscale MS (µMS), we use a high-density plate comprising a glass slide etche82 
10,000 wells, having 80 µm diameters and rounded bottoms (Figure. 3A); this shape concentrates the m83 
to the center (Figure S3), enabling accurate µMS quantitation. Higher capacity slides with the dimensio84 
MALDI plate can accommodate 100,000 wells (Figure S4). To maximize throughput, all wells must be85 
with one colony, which we accomplish with printed droplet microfluidics (PDM)11 in ~30 min (Figu86 
During printing, we scan the colonies, dispensing only ones falling within a narrow cell density87 
(methods)11. 88 

Using this system, we print 9,000 library members and 1,000 reference strains to designated po89 
Once loaded, the plate is dried, spray-coated with matrix, and subjected to MALDI-MS imaging (me90 
providing data on all detectable metabolites from m/z 30 to 630. The results are reported as an ‘image’ in91 
each pixel comprises a 600-dimensional vector of signal amplitude for each mass-to-charge ratio (m/z) 92 
S6-S8, Table S1). Thus, the data can be thought of as representing a 600 ‘color’ image, in which eac93 
reports the amplitude of the metabolite corresponding to the respective m/z. Importantly, MALDI94 
ionization preserves DNA12, allowing PCR recovery of enzyme genes after MS analysis (Figure S9). 95 

Fig. 2 | Overview of the type 3 PKS variant library. A, Crystal structure of Gerbera hybrida G2PS1 (PDB ID: 1EE0) show
location of the four residues selected for mutagenesis and identity of the residue mutants. All residues except T199 directly f
active site cavity. B, The smallest condensation/cyclization products expected from type III polyketide synthase activity: T
Acid Lactone (TAL, the native product of G2PS1) from one acetyl-CoA and two Malonyl-CoA and 6-Acetonyl-4-Hydroxy-2
(AHP) from one acetyl-CoA and three Malonyl-CoA. Higher order polyketides, not shown, are possible from ad
condensations of Malonyl-CoA. 
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A unique and valuable property of µMS is that it provides information on many molecules in the host 96 
cells, enabling discovery of unexpected enzyme activities. A general way to identify activities is to plot 97 
alterations in the cell metabolome as a uniform manifold approximation and projection (UMAP), a 98 
dimensionality reduction technique used in single cell sequencing13,14 and MS imaging15 that projects high 99 
dimensional data onto a plane while preserving cluster information. To obtain the clearest UMAP clustering, we 100 
apply an algorithm to select the best m/z peaks for inclusion, comprising ~60% of the total m/z intensity 101 
(Figure 3B, Figure S9,  S10, Movie S1, S2) (methods). From this, we observe four clusters (Figure 3C) 102 
which, visually, resemble UMAP clusters of single cell RNAseq profiles, except they correspond to metabolite 103 
profiles7,16. The compact blue cluster is the 1000 control reference strains, which we confirm by substrate 104 
location (Figure 3C, inset). The gray island corresponds to wells with few cells that were mis-printed (Figure 105 
S11). This leaves two large clusters (red and green) which, presumably, correspond to cells with distinct 106 
metabolomic profiles. Since only the embedded enzyme varies between these cells, this implies the codon 107 
shuffled library exhibits two major activities that perturb cell metabolism in distinct ways. Mapping the m/z 127 108 
data onto the clusters shows that the upper red island represents productive TAL mutants (Figure 3D, left 109 
UMAP). In addition to the desired product, some mutants generate another product dominantly produced in the 110 
lower green cluster. Upon careful inspection of the MS data, we determine that a molecule with the m/z value of 111 
169 has differential abundance between these clusters (Figure S12, Table S1, S2). Using HPLC with tandem 112 
MS (HPLC-MS/MS), we confirm that the mass corresponds to the reported alternative product of this enzyme, 113 

 
Fig. 3 | Mapping g2ps1 mutant catalysis through metabolic biosensing. a, Overview of slide (75 mm x 25 mm) for single variant
µMS comprising 10,000 wells grouped in 100 blocks of 100 wells (magnified blue box, scale bar 1 mm. Each circular well is paired 
with electrodes for printed droplet trapping (red box) and has a rounded profile that concentrates desiccated metabolites to the center 
(green). b, µMS generates a spatial image of the substrate in which each pixel contains a full m/z spectrum. Well spectra are extracted 
and clustered into four groups using UMAP, c. Mutants of interest are recovered, sequenced, and overlaid on the clusters as black 
dots. Inset shows the reference strain based on known print locations. d, Heat maps for m/z 127 and 189 indicate heigh production of 
TAL in the upper and reference clusters, and high production of AHP in the lower cluster.  
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tetraketide 6-acetonyl-4-hydroxy-2-pyrone (AHP)10,17. When we overlay the AHP amplitude (m/z 169) on the 114 
UMAP, it is predominantly found in the green cluster (Figure 3D, right UMAP).  115 

To characterize how these disparate activities relate to enzyme sequence, we select and sequence ~50 116 
mutants from each cluster (Table S3, S4). Plotting the mutants versus normalized TAL and AHP shows 117 
colonies with extreme activity and, generally, that mutants efficient at producing one product are inefficient at 118 
producing the other (Figure 4A). To validate these results, we re-transform and test several mutants in bulk, 119 
finding good agreement (Figures 4B, Figure S13, Table S3). Interestingly, the TLLL mutant based on 120 
consensus design18 of TAL enriched members from the UMAP also shows high TAL production, though it 121 

retains higher AHP side-activity than the TLLN mutant 122 
(Figure S14). These results demonstrate that generation 123 
of these products can be inferred from clustering the host 124 
cells’ metabolomic profiles, even though the peaks 125 
associated with these molecules (m/z 127 and 169) are 126 
not included in the clustering. In this way, the host cell’s 127 
metabolite profile affords a biosensor by which to infer 128 
changes in the embedded enzyme’s activity. 129 
 130 
Discussion 131 

Metabolomic biosensing allows inference of 132 
product formation even without direct product detection 133 
because the enzyme’s activity perturbs the host cell’s 134 
metabolite profile. Provided such perturbations are 135 
distinct for each activity, all activities generated by a 136 
mutant library can be detected, similar to the “compressed 137 
sensing” of smell sensation19. Such indirect sensing has 138 
beneficial features for enzyme engineering. In addition to 139 
providing a universal readout of product formation, the 140 
metabolites used to generate the UMAP can be selected to 141 
achieve the best cluster differentiation, even if the direct 142 
enzyme products are not included because they are 143 
difficult to detect due to their chemical or ionization 144 
properties. Furthermore, it should allow detection of all 145 
possible products, since each activity should perturb the 146 
host metabolite profile in unique ways and, thus, generate 147 
distinct clusters in the UMAP. By subsampling the 148 
clusters, unexpected products can be discovered. While 149 
we have utilized this analysis approach with yeast cells 150 
and MALDI-MS, it should apply to other bioproduction 151 
systems, including cell-free extracts, bacteria, and 152 
mammalian cells. Other readout modalities that provide 153 
sensitive, multiplexed detection of metabolites should be 154 
applicable, including other forms of mass spectrometry20 155 

and multiparametric spectroscopy21. Lastly, while we have focused on an enzyme library for its simplicity, the 156 
approach should apply to any engineering that perturbs host cell metabolism, including genetic circuits and 157 
biosynthetic pathways.  158 
 159 
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Fig. 4 | µMS screen of g2ps1 mutant library for increased 
production of TAL or AHP. a, Normalized m/z intensity for 
m/z 127 (TAL) versus 169 (AHP). Data points are colored 
based on clusters identified from UMAP analysis in Figure 2. 
Inset shows reference strain samples. The highest producers 
for TAL and AHP were isolated, sequenced, and confirmed in 
bulk analysis (black circles). b, TAL and AHP for selected 
bulk cultures as fold change over wild type (TLML). 
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