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Abstract 

Multimorbidity is a public health concern and an essential component of aging and healthspan but 

understudied because investigative tools are lacking that can be translatable to capture similarities and 

differences of the aging process across species and variability between individuals and individual 

organs. To help address this need, body organ disease number (BODN) borrowed from human studies 

was applied to C57BL/6 (B6) and CB6F1 mouse strains at 8, 16, 24 and 32 months of age, as a measure 

of systems morbidity based on pathology lesions to develop a mouse PathoClock resembling clinically 

based Body Clock in humans, using Bayesian inference. A mouse PhysioClock was also developed based 

on measures of physiological domains including cardiovascular, neuromuscular, and cognitive function 

in the same two mouse strains so that alignment with BODN was predictable. The results revealed 

between- and within-age variabilities in PathoClock and PhysioClock, as well as between-strain 

variabilities. Both PathoClock and PhysioClock correlated with chronological age more strongly in 

CB6F1 than C57BL/6. Prediction models were then developed, designated as PathoAge and PhysioAge, 

using regression models of pathology and physiology measures on chronological age. PathoAge better 

predicted chronological age than PhysioAge as the predicted chronological and observed chronological 

age for PhysioAge were complex rather than linear. In conclusion, PathoClock and PhathoAge can be 

used to capture biological changes that predict BODN, a metric developed in human, and compare 

multimorbidity across species. These mouse clocks are potential translational tools that could be used 

in aging intervention studies.  
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Introduction 

An increase in the population of older adults comes with a rise in age-related health conditions [1]. 

With the increase in lifespan in the population, healthspan has become a focus of research and public 

health policies [2, 3]. Therefore, measurements of healthspan require cross-species translatable tools 

for preclinical and clinical studies [4-6]. For example, with distinct frailty indices in humans, mouse 

models of frailty have been developed [7-9]. Recent studies of age-related pathology using a 

geropathology platform that generates age-related lesion scores [10] have suggested a stronger 

correlation between age-related pathologies and chronological age than frailty indices [5, 10, 11].  

A crucial aspect of healthspan is the burden of multimorbidity, conventionally described as having two 

or more diseases [2]. While comorbidity is commonly used to assess clinical disease burden in people, 

especially with increasing age, it has not been well characterized in animal models in a manner that has 

significant translational relevance.   

Studies of rodent models have extensively focused on lifespan, using either chronological age or 

time to death as outcomes [12-14]. In recent years, healthspan has become an increasingly important 

focus of research with an increase in the older population [11, 15]. Multimorbidity is one of the crucial 

aspects of healthspan[4], but study of multimorbidity in mammalian models has been limited. Most 

studies have used a frailty index (FI) of one kind or another as a translatable tool to report health in 

humans or mice. Previously,  FIs were adapted to apply to C57BL/6 mice [8], and a study of C57BL/6 

showed that FI scores were related to heart hypertrophy[9]. However, the disease status of organs 

with morbidity and the histopathological changes associated with specific organs were not studied.  In 

addition, whether the physiological changes tracked with end-point pathologies was not reported. 

Moreover, human FIs usually incorporate the disability state into the score, skewing the measures 

toward those with disability rather than predicting disability as one possible deteriorating outcome 

prior to mortality [7].  

One approach to better define comorbidity in animal models is to consider the presence of 

pathology at the organ level. While many studies have focused on how aging and age-related diseases 

affect individual organs, each organ's contribution to overall aging has been overlooked. A recent study 

of multimorbidity in the human population has suggested body organ disease number (BODN) as an 

index of multimorbidity [16]. The disease levels of each organ heterogeneously incorporate into BODN 

at the individual level. The integrated burden of disease incorporated into BODN for an individual has 

been shown to outperform chronological age to predict BODN and has been termed Body Clock [16]. 

Therefore, it is speculated that an organ-based pathology system in aging mice, such as the recently 

developed geropathology grading platform [10] could be used to define a measurable phenotype 

designated as PathoClock. By applying the Bayesian inference [9], the mouse-specific PathoClock could 

be a useful tool to simulate the human Body Clock. In addition, physiological and functional 

measurements are routinely determined in aging mouse studies. Therefore, this type of preclinical data 

could be used to predict heterogeneous BODN resulting in a mouse-specific PhysioClock.  

Some studies of aging have used biological measures tied to chronological age as an outcome to 

predict biological age [12]. The current manuscript introduces PathoAge and PhysioAge using Bayesian 

inference and regression models of pathology and physiology measures, respectively, to understand 

how pathology and physiology based on chronological age align with biological age.   
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Material and Methods 

 

Mice and study design.  

CB6F1 and C57BL/6 male mice were obtained from the National Institute on Aging (NIA) aged rodent 

facility (Charles River
@

 Laboratories) and housed in a specific pathogen-free facility at the University of 

Washington (UW) School of Medicine. Standard care procedures were followed including rodent chow, 

reverse osmosis purified automatic watering, 12:12 light cycle and 72±2 degrees F room temperature. 

All animal protocols were approved by the UW Institutional Animal Care and Use Committee. Animals 

were euthanized for pathology studies at age 8, 16, 24, and 32 months, three months after the 

physiological domains were measured. 

 

Physiological Assessment  

Cardiac function. Echocardiography was used to assess systolic and diastolic function in mice. The 

Siemans Acuson CV-70 system using standard imaging planes: M-mode, conventional, and Tissue 

Doppler imaging, was used to measure cardiac function, including the ratio of the aorta and left atrium 

(AO/LA ratio), ejection time (ET msec), isovolumic contractile time (IVCT msec), isovolumic relaxation 

time (IVRT msec). The E/A ratio as a marker of the left ventricle function indicates the peak velocity 

blood flow from left ventricular relaxation in early diastole (the E wave) to peak velocity flow in late 

diastole caused by atrial contraction (the A wave). Myocardial performance index (MPI) incorporates 

both systolic and diastolic time intervals in expressing a global systolic and diastolic ventricular function 

quantified as MPI=(IVCT+IVRT)/ET [17]. The methods are described elsewhere [18].  

 

Neuromuscular Function. Established tests of muscular activity were used to assess changes in muscle 

strength and coordination with age. Several assessments including coordinated walking ability, grip 

strength, novel environment response, and self-motivated running, were used to address variability 

due to motivation, emotionality, or sensory deficits.  

a. Coordinated walking ability. Coordinated walking ability was assessed using a rotarod apparatus 

(Rotamax 4/8, Columbus Instruments, Inc.) that tested the ability of the mouse to maintain walking 

speeds on a rotating rod. Mice were placed in the lanes of the rotarod with initial rod speed set at 0 

RPM. The speed was progressively increased by 0.1 RPM/sec (0 to 40 RPM over 5 minutes) until all 

mice had been dislodged as determined by an infrared sensor. The time in seconds was recorded. 

Three successive runs were performed per day for three days. Therefore, there is an evaluation of 

motor function and performance learning. The assay was performed by the same person, at the same 

location. Data are reported as the median of 3 trials and standardized by body weight. 

b. Grip strength. Forelimb grip strength was analyzed using a force tension apparatus (San Diego 

Instruments Columbus Instruments, Inc.). Prior to the test, each mouse was weighed to the nearest 0.1 

g. Once mice gripped the stationary bar with their forepaws, they were stretched horizontally while 

held at the base of their tails. Mice were pulled gradually until they let go of the bar. The process was 

repeated 5 times to determine the peak grip force value (gram-force) standardized to body weight[19]. 

c. Novel environment response. Mice were assessed for movement levels in a novel cage 

environment using an open field photobeam apparatus (Photobeam Activity System, Columbus 

Instruments, Inc.). Each mouse was placed for five minutes in a clear, rectangular, plastic container the 

size of a standard mouse cage, which had a rectangular grid of infra-red beams inside, three on the X 

axis and four on the Y axis to measure horizontal movement (lateral activity). Another grid set of 
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beams was positioned above the lower set to measure vertical movement (rearing). Beam breaks were 

counted for activity and rearing, and further classified for either the central or peripheral part of the 

box as a measure of anxiety. Activity was assessed for a five-minute period on three consecutive 

days[20].  

 d. Self-motivated running. Self-motivated running distance was measured by a voluntary wheel 

running apparatus over three days as described by  Goh and Ladiges (2015)[21]. Mice were placed into 

a standard cage with a slanted plastic saucer-shaped wheel (Med Associates, Inc.). Mice were 

acclimated to the cage for 48 hours with the wheel locked, after which the wheels were unlocked and 

the distance each mouse ran was tracked by a computer over 72 hours including both light and dark 

cycles. Total distance in kilometers was recorded. 

 

Cognitive Function. Cognition was assessed using the radial water tread (RWT) maze, an assay used to 

assess memory as previously described [22, 23]. The RWT detects changes in hippocampal function in 

mice. Briefly, mice are introduced into an approximately 30- inch circular galvanized enclosure with 

waste-deep water and peripheral escape holes in the sides at regular intervals, all closed except one 

which leads to a dark “safe box” with a heating pad. The inside walls contain spatial cues for the animal 

to find the escape route with repeated trials. The animals were given three trials per training day, and 

the testing period ran across successive days to test long-term memory acquisition. Performance was 

recorded by direct observation [24].  

Various physiological domains described above were used to predict body organ disease number 

(BODN) and define a mouse-specific PhysioClock independent of chronological age. 

 

Pathological Assessments 

Cataract assessment. The presence and severity of cataracts were assessed by slit-lamp 

ophthalmoscopy on unanesthetized mice after dilation with a 3:1 volume mixture, respectively, of 

tropicanamide and phenyl hydrochloride to achieve full dilation. The degree of lens opacity was rated 

by half steps from 0 (completely clear) to 4 (complete opacity of a mature cataract) as previously 

described[25].  

Histopathology assessment. Histopathology assessments were performed on Hematoxylin and 

Eosin-stained 4-micron tissue sections from heart, kidney, liver, pancreas, muscle, lung, and brain as 

previously described [10]. Age-related lesion severity levels were determined by a scoring system from 

0 (no lesion present) to a range of 1 to 4 (lesion presence and severity). The absence or presence and 

severity of age-related lesions were then used to determine organ morbidity defined as the presence 

of two level 1 lesions or one lesion with a score of 2 or greater. The body organ disease number 

(BODN) was then calculated as the number of organ systems with morbidity as a proxy of 

multimorbidity and a counterpart of clinically determined BODN in humans. With the premise that 

different pathology entity levels incorporate into BODN heterogeneously, all organ pathologies in a 

model were used to predict BODN for each mouse to quantify PathoClock independent of 

chronological age.   

 

Statistical Analyses 

BODN was considered an ordinal outcome as a number of organ systems with at least two positive 

pathology criteria at level 1 or at least one pathology at level 2 or more. We recorded the levels 

starting from 1 as an ordinal value. Bayesian inference was used for ordinal outcome [26] also 
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ordinal[27], binary, or continuous predictors depending on the type of predictor variables [27-

30]. Bayesian inference approach was used comprising two components: 1) Prior knowledge on the 

estimates (parameters), as the information before observing the data P(L) where L indicates the 

parameters; and 2) the likelihood P(Y|L) of the information contained in the data (Y). Using the Bayes 

formula, the posterior distribution of the parameters P(L|Y) was obtained, which can be updated when 

encountering new data[28]. 

Applying the conditional probability given the known data on BODN, the Bayesian inference 

framework yields the posterior density of beta estimate coefficients and 95% credible interval (CI) that 

each pathology level incorporates into BODN, or each physiological measure predicts BODN.  For each 

coefficient parameter we determined the distributions of their prior parameters using weak priors[28]. 

For the classes of beta coefficients and intercept, the prior estimate with a normal distribution (mean: 

μ = 0, variance σ = 10), and for the class standard deviation (sd) which indicated the variation of levels 

related to varying age, the half-Cauchy (0,10) was used. The uniform prior with a Dirichlet distribution 

was used for ordinal predictors (i.e., (2, 2) for ζ1 and ζ2 [simplex parameters] for a three-level 

pathology predictor). We reported the standard deviation for the model level in multilevel analyses 

(sd), and sigma which is the variance of a continuous outcome in the model with gaussian family[27, 

30]. Posterior predict function was then used in the Bayesian framework [28, 30] to predict individual-

based BODN for each mouse using all organ pathology levels, termed PathoClock. The correlation of 

PathoClock and chronological age was quantified as a rate of pathology-based biological age. 

The model accuracy was assessed with leave-one-out cross-validation (LOO-CV) (k<0.7) which with 

a Pareto-smoothed importance sampling diagnostic k <0.7 indicating the LOO-CV computation is 

reliable and there are no outlier observations. Also, a Bayesian inference approach called “stacking” 

determines model weights for each model to predict an outcome [29, 31]. The Leave-One-Out R 

squared  (LOO_R
2
)  was used to determine the R

2
 of the model to show how a model explains the 

outcome[32] 

All statistical analyses were performed using the Bayesian “brms” software package[30]. A dynamic 

Hamiltonian Markov chain Monte Carlo (MCMC) algorithm [30, 33] was used to obtain posterior draws 

using a minimum of six chains and a minimum of 10,000 iterations. Model averaging was then used in 

the Bayesian framework, called stacking, which provides weight for the best model predicting 

BODN[34]. For pathologies more than two levels we used “monotonic” effect implemented in the 

Bayesian inference framework which defines probability of coefficient estimates with Dirichlet 

distribution[27]. The physiological measures like grip strength or rotarod, which have an inverse 

association with BODN, were transformed so that were multiplied by -1 to develop PhysioClock.  

Commonly, studies statistically have regressed biomarkers or phenotype measurements on 

chronological age to assess how they predict chronological age [12]. In concert with such an approach, 

we developed PhysioAge and PathoAge, regressing the allocated physiological measures and 

pathological level measurements, respectively, on chronological age using gamma distribution. In 

CB6F1, to develop PhysioAge, we included normalized grip strength, rotarod test at day 3, open field 

activity at day3, open field rearing at day 2, distance, AO/LA ratio, ET (ejection time), LVM, MPI, and 

Maze test at day 5. In C57BL/6, for PhysioAge we included nine physiologic measures including AO, LA, 

natural log transformed E/A ratio, LVMI and MPI, Maze test at day 5, open filed activity at day 1, 

rotarod at day2, and normalized grip strength. 
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Results 

 

Physiological performance predicts body organ disease number 

Cardiac function. Echocardiography was used to measure cardiac function. For CB6F1, the ratio of 

aortic valve diameter to left atrium dimension (AO/LA) was inversely associated with increase in BODN 

(beta=-2.3, 95% CI: -4.3 to -0.32), E to A waves ratio (beta=-1.5, 95% CI: -2.9 to -0.15), on natural 

logarithm scales and with relatively high uncertainty (wide credible interval CI) isovolumic contraction 

time (IVCT) [beta=1.48, 95% CI: 0.02-3.0], left ventricular internal diameter end diastolic (LVIDd) 

[beta=7.6, 95% CI: 0.13=15.0], left ventricular internal diameter end systolic (LVIDs) (beta=4.7, 95% CI: 

0.47-9.03), (considering both systolic and diastolic measures (MPI) [beta=2.03, 95% CI=0.11- 4.01], 

ejection time (beta = - 6.6, 95% CI: -12.0 to -0.7) predicted BODN (Figure 1A). Chronological age per se 

was strongly associated with BODN (beta=0.34, 95% CI=0.24-0.46) while stacking of the cardiovascular 

models predicting BODN revealed cardiovascular physiologies predict BODN stronger than 

chronological age predicted BODN so that the model weight for chronological age turned to zero. The 

largest model weights were allocated to ejection time (ET: 27.5%), E/A ratio (26%), IVCT (21.5%), MPI 

(17%), AO/LA ratio (8%) that MPI by 46%, LVIDd by 19%, E/A ratio by 28.5%, IVCT (6%) with the rest 

also turned to zero.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Physiologic predictors of Body Organ Disease Number (BODN) in A) CB6F1, B) C57BL/6 mice. Grip: Grip 

strength, GriptoBM: normalized grip strength to body size, RotarodD1: rotarod at day 1, MazeD1: Barnes maze 

at day1, ActivityD1: Open Filed activity at day1, Rear: Open filed activity rearing, AO: aortic valve dimension in 
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millimeter, LA: left ventricular valve, AO/LA: the ratio of AO to LA dimensions, E/A, E wave to A wave ratio, IVCT: 

isovolumic contractile time millisecond (msec), IVRT: isovolumic relaxation time (msec),  LVIDd: left ventricle 

internal diameter end diastole, IVIDs: left ventricle intra diameter end systole, MPI: myocardial performance, ET: 

ejection time., NM: neuromuscular, learn: learning stage, Cog: cognition, Act: Open filed activity, Rear: Open 

filed activity rearing, Run: Voluntary wheel running, CV: Cardiovascular physiology.   

 

For C57BL/6 mice, aortic valve diameter (beta=2.3, 95% CI: 0.6-4.0), LA (beta=1.65, 95% CI: 0.13-

3.28), IVCT (beta=-1.79, 95% CI: -0.35 to -0.14), LVIDs (beta=4.1, 95% CI: 0.69-7.8) were significantly 

predicted BODN. With wide uncertainty (credible interval including zero) both AO/LA ratio and E/A 

ratio were inversely predicted BODN.  

Using model averaging over all physiological measures of the cardiovascular system in C57BL/6 

showed that MPI by 72.6%, LVIDs by 22%, E/A ratio by 0.5%, aortic diameter (mm) by 1 %, and left 

atrial diameter (mm) by 4.5 % predicted BODN and were included in the final model as cardiovascular 

physiology domains to quantify PhysioClock.  

Neuromuscular Function. Rotarod test for CB6F1 indicating disturbed balance state predicted 

increase in BODN measured at day 2 (beta=-1.7, 95% CI: -2.86 to -0.62). Stacking of the models showed 

that the model assessed balance state at day 2 weighed 75.4% to predict BODN compared to day 1 

(17.1%) and day3 (7.5%). Therefore, we included rotarod test day 2 in the PhysioClock model. The 

lower the grip strength, the larger the BODN was (beta=-5.9, 95% CI: -10.5 to -1.6), and it was more 

robust when normalized to body mass (beta=-7.3, 95% CI: -11.4 to -3.8). Comparing models showed 

that the normalized grip strength over body size was a stronger predictor of BODN at 98.3%.  

For C57BL/6 mice, balance states at day 1 and 2 significantly predicted BODN with day-2 model 

weight (53.2%) larger than day 1 (46.8%). Therefore day 2 was included in the Physiology Clock. Like 

CB6F1, the grip strength in C57BL/6 normalized over body mass was a stronger predictor of BODN 

(Figure 1B). In this strain, only grip strength normalized by body mass significantly predicted BODN 

with credible intervals excluding zero. However, wide CI (beta=-3.2, 95% CI=-6.4 to -0.18) showed some 

degree of uncertainty.  

Cognitive Function. For CB6F1 mice, time of learning maze measured at day 1, 2 ,3 and 4 was 

associated with increased in PathoClock (day1: beta=1.13, 95% CI=0.18-2.07; day2: beta=0.87, 95% 

CI=0.21-1.54; day4: beta=0.45, 95%CI=0.11-0.78). The longer the learning process at day 1 the larger 

the PathoClock was. The longer maze test indicated poorer cognition and predicted larger PathoClock 

(day 5: beta=0.49, 95% CI=0.15-0.83; day 12: beta=0.92, 95%CI:0.49-1.38). Likewise, results were 

detected for observed BODN (day2: beta=1.5, 95% CI: 0.22-2.79; day4: beta=0.62, 95%CI: 00.08-1.18) 

and this association was stronger at day 2. Also, cognitive decline was associated with increase in 

BODN so that the maze test results at day 5 (beta=0.94, 95% CI= 0.35-1.53) and 12 were strongly 

predictive of BODN (beta=0.92, 95%CI:0.49-1.38). The model stacking over the  models including 

learning stages showed learning stage at day 1 (weight 62.8%) was a stronger predictor of BODN, and 

the cognition test at day 5 was stronger than day 12 (weight by 98.6%). Stacking over the learning and 

cognition test stage models showed that day 1 and day 5 weighed more than other days (model 

weights for day 1: 19.6%, and day 5: 78.9%). We included these two measures of learning and 

cognition in the PhysioClock model for CB6F1.  

For C57BL/6 mice among learning and cognitive stages of the RWT maze test, day 1 and day 5 were 

the more robust predictors of BODN with model weights 61.5% and 99%, respectively. However, 
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overall, the maze test in C57BL/6 was less predictive of BODN compared to CB6F1, but we included the 

day 5 maze test as it carried a larger weight to predict BODN.  

Open field physical activity, rearing, and wheel running distance. For CB6F1 mice, open field 

physical activity indicating physical aptitude at day 3 significantly and inversely predicted BODN (beta=-

1.7, 95% CI: -3.4 to -0.03). The higher rearing in physical activity, the larger the BODN was with a larger 

estimate at day 1 (beta=1.49, 95 CI: 0.44-2.59). However, the model weight favored the rearing activity 

at day 2 in prediction BODN weighed by 77.2% compared to day 1 (22.8%). We included day 2 rearing 

activity in the final model determining PhysioClock. The mice with lower running distance had larger 

system morbidity measured by BODN (beta=-0.6, 95% CI: -0.98 to -0.3).  

For C57BL/6 mice, open field physical activity was not significantly predictive of BODN. Stacking the 

models showed day 1 open field activity model weight was 79.8%. Also, the rearing activity model at 

day 1 with 57.4% weight explained BODN better than day 2 and 3. The total distance for the running 

wheel was inversely associated with BODN yet with a broad uncertainty (beta=-0.11, 95% CI=-0.46 to 

0.23). We only included total distance in the final model to quantify PhysioClock.  

 

Organ Pathology heterogeneously integrates into body organ disease number  

Overall, the BODN was higher for CB6F1 than C57BL/6 at any age. The median and range of BODN 

were 2 (1-4) at 8 months, 4 (2-5) at 16 months, 5 (4-7) at 24 months, 6 (5-7) at 32 months for CB6F1; 

and for C57BL/6 they were 3 (2-4) at 8 months, 5 (4-6) at 16 months, 5 (4-7) at 24 months, 6(4-7) at 32 

months.  

Because the pathologies are ordinally graded based on severity, we used the monotonic effect that 

is applicable when the levels are not equidistant, and we showed that each organ's pathology severity 

scores heterogeneously incorporated into body organ disease number (BODN). The result shows that 

the degree of organ pathology heterogeneously incorporates into BODN in both B6F1and C57BL/6 

mice and some pathologies are more dominant for each strain (Figure 2A-B). 
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Figure 2. Pathology levels of seven organs in A) CB6F1 and B) C57BL/6 male mice incorporating Body Organ 

Disease Number. Abbreviations: Neph: nephropathy, lymph_agg: lymphocyte aggregation, Infarct: infarction, 

Kidney_mineral: mineral deposition in kidney, Acute, tub_degen: acute tubular degeneration, perioport_inf: 

periportal infiltration, Hep_Degen: hepatic degeneration, BD_Hyper: bile duct hyperplasia, Ito_cell: itocell 

hyperplasia, Microgranol:  microgranuloma, Hep_lipidosis: hepatic lipidosis, Alveol acid: alveolar macrophage 

pneumonia, alveol_hist: alveolar histiocytosis, Resp_hyper: respiratory duct hyperplasia, Vas_inflam: 

perivascular inflammation, exoc_atroph: exocrine atrophy, Atheros: atherosclerosis, Myco_fib: myocardial 

fibrosis, Valve_Myxom: valvular myxomatosis, thalamic mineral: mineral deposition in thalamus area, 

Regeneration: skeletal muscle degeneration,   regeneration: skeletal muscle regeneration, malignant: malignant 

cancer.  

 

We included all pathologies that predict BODN with high accuracy using LOO-CV (k<7). The 

estimates of each pathology level incorporating into BODN are depicted in Figure 2A and B.  

The complete model including all organs' pathology to predict BODN explained variability of BODN by 

87% and 88% for C57BL/6 and CB6F1, respectively. We quantified PathoClock from the model, 

including all organ systems to predicted BODN using age as levels. There is inter-mouse variability of 

PathoClock even within the same chronological age. Mean PathoClock was mainly larger in CB6F1 

compared to C57BL/6, especially at age 28 months (6.5±1.10 vs. 6.3±0.64) and 32 months (7.6±1.5 vs. 

7.3±0.65), respectively. The between-strain variability (variance) over the age spectrum was 3.3 

months. In CB6F1, cardiovascular-related pathologies with higher uncertainty (the narrow credible 

intervals excluding 0) were significantly incorporated into BODN (Figure 2A).   

While specific pathologies of each organ variably incorporate into BODN of the renal system, only 

kidney mineral disposition had a wide uncertainty in CB6F1. In the C57BL/6 mice, in addition to mineral 

disposition, amyloid accumulation and acute tubular damage had wide credible intervals and large 

uncertainty predicting BODN (Figure 2B). In C57BL/6, the majority of liver-related pathologies were 

incorporated into BODN yet heterogeneously. Of note, incorporation of the regeneration state in 

BODN in C57BL/6 mice was larger than of the degeneration state. Interestingly, lymphoid aggregates in 

almost all organs significantly incorporated into BODN.  

 

Correlation of PathoClock, PhysioClock, and chronological age is strain dependent 

To understand how well the two final models, the one including all pathology levels to develop 

PathoClock and the one including physiology measures to quantify PhysioClock, explained BODN, we 

used the Leave-One-Out R-squared (LOO_R
2
) method.  The model including all pathologies to predict 

BODN for C57BL/6 (PathoClock), explained about 87% of BODN (LOO_ R
2
=0.87), while the model used 

to develop PhysioClock explained BODN by 64% (LOO_R
2
=0.64).  For CB6F1 mice the models to develop 

PathoClock explained BODN by 94% (LOO_R
2
=0.94), and the model used to develop PhysioClock 

explained BODN by 67% (LOO_R
2
=0.67). In both strains the models from which PathoClock was 

extracted explained BODN better than PhysioClock; however, in CB6F1 the overall model performance 

was better than in C57BL/6.  

The distributions of PathoClock and PhysioClock are depicted in interactive Figure 3. The correlation 

of PathoClock and chronological age was r=0.75 in C57BL/6, but in CB6F1 the correlation was larger 
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(r=0.80) (Table 1). In some individual mice, PathoClock was smaller than BODN, while in some mice, it 

was larger. These results suggest variability in incorporating pathology levels in the same age group 

and across ages. Also, a larger impact for pathology levels can be manifested as a larger PathoClock in 

mice within the same age group or in an older group. In contrast, a smaller PathoClock at an older age 

may suggest minor impact of pathology levels on BODN despite an older age. This result opens a 

roadmap to study resilience and body system reactions in relation to pathology (Figure 3A-B). 

Correlation between PhysioClock and age at euthanasia in CB6F1 mice was r=0.71 with variability 

across age groups by 3.72 months (sd=3.7), and the correlation of PhysioClock with age at euthanasia 

was r=0.68 for C57BL/6 with 6.5 months variability in age (sd=6.5; Table 1). Some mice with higher 

BODN had lower PhysioClock (at middle age), suggesting physiological resilience to the development of 

pathology. However, it could also be due to an insufficient adaptation response. Despite the high 

correlation, the patterns of both PathoClock and PhysioClock in relation to chrononlogical age were not 

linear, and exponential patterns were detected (Figure 3 C-D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The distribution of PathoClock and PhysioClock by age. To see the 3D figures, click on the included 

links. PathoClock is determined by how each pathology level incorporates into Body Organ Disease Number 

(BODN). A. PathoClock in CB6F1 mice and age at euthanasia. B. PathoClock in C57BL/6 mice and age at 

euthanasia.  PhysioClock was determined by how each physiological measures predicted BODN.  C. CB6F1 

PhysioClock and age at euthanasia.  D. C57BL/6 PhysioClock and age at euthanasia.  
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Table 1. Leave-One-Out (LOO) R squared of models for developing PathoClock, PhysioClock, PathoAge and 

PhysioAge and the correlation with chronological age. Sd: standard deviation for model levels in multilevel 

analyses, sigma is the variance of gaussian family for continuous outcome.  

 

PhyisoAge and PathoAge align with chronological age in a strain dependent manner 

The common approach to measuring the rate of aging with chronological age has been to regress 

phenotype measurements over chronological age. Likewise, we developed PhysioAge and PathoAge by 

regressing the physiological and pathological measurements on chronological age and determining the 

R
2
 of the model using the Leave-One-Out approach (LOO_R

2
) and then assessing the correlation 

between predicted age and chronological age for PathoAge and PhysioAge. In C57BL/6 mice, PathoAge, 

having a larger LOO_R
2
 and stronger correlation with chronological age, explained chronological age 

better than PhsyioAge.  PathoAge variability across age was 2.5 months while variability of PhysioAge 

was 3.9 months (Table 1). In CB6F1, both PathoAge and PhysioAge strongly explained chronological 

age, with PathoAge (LOO_R
2
=0.93) explaining chronological age better than PhysioAge (Loo_R

2
=0.7). In 

C57BL/6 mice, there was a slow slope of correlation between PhysioAge and ChAge so that the 

PhysioAge at younger ages had similarity with middle age groups (Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Developing developed PathoAge pathologies 

were included in a model to predict ChAge in both A. CB6F1 and B. C57BL/6. Developing PhysioAgek, the same 

(Sd or sigma) 

C57BL/6 

with ChAge 

(C57BL/6) 

(Sd or sigma) 

CB6F1 

with ChAge 

(CB6F1) 

Model for 

PathoClock 

0.87,  

(sd=5.7 months) 

0.76 0.94, 

(sd=7.4 months) 

0.80 

Model For 

PhysioClock 

0.64,  

(sd=6.7 months) 

0.68 0.67,  

(sd=3.7 months) 

0.73 

Model for 

PathoAge 

0.86,  

(sigma=2.5 months) 

0.98  0.93, 

(sigma=2.4 months) 

0.98 

Model for 

PhysioAge 

0.75, 

(Sigma=3.9 months) 

0.83 0.70, 

(Sigma=4.0 months) 

0.93 
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physiological measures as the ones used in Physioclock, were regressed over ChAge in both C. CB6F1 and D. 

C57BL/6. While PathoAge are almost linearly predict ChAge with some subtle degree of uncertainty, PhysioAge 

in both strains endures more uncertainty to predict ChAge.  The size and color indicate the increase in number 

of body organ disease number (BODN) 

 

Discussion 

In this study, physiology performance and pathology data were generated from C57BL/6 and CB6F1 

male mice ranging from 4 to 28 months of age.  As a result of these data, pathology-based 

multimorbidity as an outcome was developed and is reported for the first time, with the pathological 

and physiological determinants designated as PathoClock, and PhysioClock, respectively. Using 

histopathology lesion scores in each organ as a proxy for diseases, the morbidity of each organ system 

was defined as at least two low pathology grades (=1) or one higher pathology grade (>1). The sum of 

the organ systems’ morbidities determined the Body Organ Disease Number (BODN) as a new outcome 

representing a global index of health at body organ system level, resembling what was recently 

developed and validated in a multimorbidity study of human aging [16]. The degree to which each 

organ-specific pathology level incorporates into BODN was assessed. The mouse strain-specific 

predicting BODN using pathology levels was termed PathoClock, a counterpart of Body Clock in 

humans [16]. Because physiological responses can vary by age and disease level, BODN was used as an 

outcome for determining physiological predictors developing PhysioClock which association with 

chronological age was assessed. The results showed that various levels of pathology of various organs 

heterogeneously incorporate into BODN. CB6F1 mice had a larger BODN and PathoClock compared to 

C57BL/6 mice in the same age group. 

Interestingly, the two strains had distinct pathological and physiological components that predicted 

BODN. While aortic valve (AO) and left atrium (LA) dimensions significantly predicted BODN in C57BL/6 

mice, in CB6F1 mice only the AO to LA ratio was a significant predictor of BODN. There was an inverse 

association of the E/A ratio with BODN in CB6F1. A decreased E/A ratio which is usually an indicator of 

diastolic heart failure suggests fibrosis so that the left ventricle cannot be filled with blood during the 

diastolic period between two contractions. Similarly, heart failure in humans is one of the age-related 

changes incorporated into BODN[16] and a health burden underlying hospitalization of older 

adults[35]. Moreover, in older adults decrease in E/A ratio incorporates into low exercise intolerance. 

The results in CB6F1 mice showed both an inverse association of voluntary exercise (running distance) 

and E/A ratio with BODN. 

In both strains, while the Left ventricle dimension in end-systole (LVIDs) significantly predicted 

BODN, the left ventricle dimension in end-diastole (LVIDd) predicted BODN but with larger uncertainty. 

Shortening ejection time (ET), which has been suggested as a single indicator of human heart 

failure[36-38] , significantly predicted BODN in CB6F1. Human study of echocardiographic measures 

has shown that a combination of both systolic and diastolic impairments is a better predictor of heart 

failure [37], as such  a measure like the myocardial performance index (MPI) was a significant predictor 

of BODN in CB6F1, and it also predicted BODN in C57BL/6, albeit with some uncertainty. Left 

ventricular hypertrophy index normalized by tibial length (LVMI), an age-related change, significantly 

predicted BODN in both strains. Cardiac physiology markers were associated with BODN more strongly 

in CB6F1 mice than C57BL/6. Having more uncertainties in cardiac physiology measures, C57BL/6 mice 

might manifest cardiac physiology changes late in life or have physiological adaptation to 

histopathological changes later. Although PhysioClocks for both strains were associated with 
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chronological age at euthanasia, the correlation was stronger in CB6F1, and there was larger variability 

in PhysioClock in C57BL/6 than in CB6F1. Replicative studies and response to interventions are required 

to replicate cardiac physiology changes in response to pathology. 

There was variability in both organ physiology and pathology across strains and age groups. The 

ability to maintain neuromuscular and cognitive performance is an important component of 

healthspan in aging. Impaired physical activity and function are both cause and consequence of disease 

in human[39]. Albeit heterogeneous, older C57BL/6 mice had uncertainties in physical activity capacity 

in relation to BODN, while CB6F1 showed decreased balance, physical activity, lower running distance, 

and lower grip strength, all of which predicted increased BODN. All of these measures had a larger 

uncertainty in C57BL/6 to predict BODN. One possible explanation for wider uncertainty of physiologic 

measures in prediction of BODN in C57BL/6 is that some male C57Bl/6 mice at age 4 months might 

have already commenced physiological changes in response to pathology so that they are already 

similar to middle-aged mice. However, the C57BL/6 PhysioClock at older ages showed a relatively slow 

slope over the age spectrum which suggests resilience in physical function due to regenerative capacity 

in skeletal muscle in this strain as shown in their histopathology and association with BODN.   

CB6F1 mice showed a more significant cognitive decline, attenuated volitional physical activity, 

disturbed balance, and diminished motor function in predicting BODN, while such functional measures 

did not significantly predict BODN in C57BL/6. The results suggest that C57BL/6 are also more resilient 

to functional decline than CB6F1 and/or might develop functional decline variability. While these two 

strains are commonly used in the study of normal aging, our results suggest strain-specific variability in 

pathological and physiological domains. However, mechanisms of functional resilience and whether 

there is more variability in functional impairment in C57BL/6, despite developing pathologies, can be 

explored comparing PathoClock and PhysioClock in both strains and measuring in-depth mechanistic 

markers in response to anti-aging interventions.   

Recent reports in both CB6F1 and C57BL/6 mice show different organ aging, suggesting higher 

pathology scores in the cardiovascular system in CB6F1 and early onset of liver and kidney aging in 

C57BL/6  and organ-specific response to anti-aging interventions [40]. Because the aging kidney and 

liver show early and dominant age-related characteristics in C57BL/6, the inclusion of physiological 

markers of such organs to predict BODN may improve PhysioClock for both strains. Moreover, adding 

more organs to pathological studies, and obtaining more information by applying artificial intelligence 

to the images to extract high throughput information on echocardiography, pathology and other 

imaging can be incorporated into BODN and can update PathoClock and PhysioClock whenever this 

information is available.  

In both strains, PathoClock was more strongly correlated with chronological age, with the CB6F1 

PathoClock having a larger correlation, and we found variability in components of pathology and 

physiology across age groups.  Recently, a new study applying the frailty component on chronological 

age FRAIL (Frailty Inferred Geriatric Health Timeline) and measuring lifespan with AFRAID (Analysis 

of Frailty and Death) in C57BL/6 mice predicted age with r
2
=0.64 in the test data [12].  Our models 

based on pathology or physiology more significantly predicted the animals chronological age with 

PathoAge in both strains and PhysioAge mainly in CB6F1. In addition, PathoClock based on BODN 

showed a stronger coorelation with chronological age (in CB6F1, r=0.8; in C57BL/6, r=0.76), and 

likewise, PhysioClock had larger correlation with chronological age (CB6F1: r=0.73;  C57Bl/6: r=0.68). In 

both strains, the models from which PathoClock was extracted explained BODN better than 

PhysioClock, with model performances better for CB6F1 than C57BL/6. Similarly, PathoAge better 
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predicted chronological age than PhysioAge with a larger correlation between observed and predicted 

chronological age.   One possible explanation for the different correlations is the wider variability and 

uncertainty in physiological measures in predicting BODN and chronological age. Also, the data showed 

an exponential associations between physiological-based predicted age and chronological rather than 

linear. Another possibility is that we had smaller sample sizes for physiological measurements (30 mice 

in C57BL/6 and 35 in CB6F1). To better delineate pattern recognition, replication of these analyses 

including larger sample size would be helpful.  

The two clocks developed, PathoClock and PhysioClock, are strong healthspan tools. In human 

aging, metrics that are statistically trained on phenotypes also predict health state [16]. One caveat of 

basing the data on chronological age is that there is arbitrarily consideration of chronological age as a 

variable outcome, while chronological age is a fixed number in an equation. Moreover, biomarker-

based measures can fluctuate irregularly across age spectrums due to a variety of reasons such as 

adaptation, resilience, or severe organ damage. However, prediction of health outcomes like BODN can 

capture biological and pathophysiological changes independent of chronological age, as well as 

variability of biological age. While BODN and PathoClock can be used at the end point for healthspan, 

the PhysioClock can be used as a repeated measure in longitudinal studies to predict healthspan over 

time. The results of previously measured pathologies can be applied in the Bayesian models we 

developed, along with physiological measures, to predict BODN in aging studies using mice and can be 

used dynamically to further delineate mechanisms of aging [41]. Including components of pathology 

and or physiology into the models provides the ability to predict chronological age and integration into 

global health status measured as BODN. Our study revealed between- and within-age variabilities in 

PathoClock and PhysioClock, as well as between-strain variabilities.   

Considering organ-specific aging in mouse strains and heterogeneity in organ aging in humans, it is 

of paramount importance to disentangle individual-specific and organ-specific aging and how each 

disease state and adaptation state incorporates into the whole-body system as a function of 

BODN. The PathoClock and PhysioClock can be employed as translatable tools, recapitulating human 

Body Clock. These clocks can be used across various species and in both males and females to 

determine common and distinguished pathologies and physiological assessments applied to age-

related healthspan. Quantifying individual Clock levels can be used to more precisely understand 

mechanisms of aging [41-43] and assess the rate of aging using cross-species translational tools to 

disentangle age-related similarities and differences and assess organ-, strain- and sex-specific effects of 

aging intervention studies. Using Bayesian inference allows us to predict such Clocks in established as 

well as new models and updates can be made when new information at physiological or pathological 

data become available. 
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