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ABSTRACT

A broad range of brain pathologies critically relies on the vasculature, and cerebrovascular
disease is a leading cause of death worldwide. However, the cellular and molecular
architecture of the human brain vasculature remains poorly understood. Here, we performed
single-cell RNA sequencing of 599,215 freshly isolated endothelial, perivascular and other
tissue-derived cells from 47 fetuses and adult patients to construct a molecular atlas of the
developing fetal, adult control and diseased human brain vasculature. We uncover extensive
molecular heterogeneity of healthy fetal and adult human brains and across eight vascular-
dependent CNS pathologies including brain tumors and brain vascular malformations. We
identify alteration of arteriovenous differentiation and reactivated fetal as well as conserved
dysregulated pathways in the diseased vasculature. Pathological endothelial cells display a
loss of CNS-specific properties and reveal an upregulation of MHC class Il molecules,
indicating atypical features of CNS endothelial cells. Cell-cell interaction analyses predict
numerous endothelial-to-perivascular cell ligand-receptor crosstalk including immune-related
and angiogenic pathways, thereby unraveling a central role for the endothelium within brain
neurovascular unit signaling networks. Our single-cell brain atlas provides insight into the
molecular architecture and heterogeneity of the developing, adult/control and diseased human

brain vasculature and serves as a powerful reference for future studies.

Keywords: Human brain vasculature, Brain development, CNS pathologies, endothelial and

perivascular cells, neurovascular unit, single-cell RNA sequencing
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INTRODUCTION

The brain vasculature is important for both the proper functioning of the normal brain as well
as for a variety of vascular-dependent CNS pathologies such as brain tumors, brain vascular
malformations, stroke and neurodegenerative diseases!®. A better understanding of the
underlying cellular and molecular mechanisms and architecture of the brain vasculature
during brain development, in the healthy adult brain, as well as in vascular-dependent brain
diseases, has broad implications for both the biological understanding as well as the
therapeutic targeting of the pathological brain vasculature®*. Vascular growth and network
formation, involving endothelial cells (ECs) and other cells of the neurovascular unit (NVU),
are highly dynamic during brain development, almost quiescent in the healthy adult brain, and
reactivated in a variety of angiogenesis-dependent brain pathologies such as brain tumors and
brain vascular malformations?415, thereby activating ECs and perivascular cells (PVCs) of
the NVU and other tissue-derived cells (collectively referred to hereafter as PVCs). However,
which molecular signaling cascades are reactivated and how they regulate brain tumor and
brain vascular malformation vascularization and growth is largely unknown.

The CNS vasculature has unique features such as the blood-brain barrier (BBB) and the
NVU 8 During development, various CNS-specific and general signaling pathways drive
CNS angiogenesis?1%:17:2021 The prain vasculature also displays an arteriovenous endothelial
hierarchy similar to peripheral vascular beds?*-?*. Developmentally regulated signaling axes in
endothelial cells are thought to contribute to the establishment of CNS-specific properties as
well as arteriovenous specification of the endothelium in the healthy adult brain and
potentially to their alteration in disease!?®. Over the past years, single-cell transcriptome
atlases of human peripheral organs?®?%?” as well as of mouse brain and peripheral
vasculature?>?8 were established. Nevertheless, a landscape of the human brain vasculature at
the single-cell level has not been achieved until now. Thus, we created a comprehensive

molecular atlas of the human brain vasculature using single-cell RNA sequencing (SCRNA-
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seq) analysis in the developing, adult/control, and diseased human brain (Figure 1a,b,
Extended Data Figure 1). We discovered extensive heterogeneity among ECs as well as
common hallmarks across multiple important brain pathologies, including altered
arteriovenous specification and CNS-specificity, upregulation of major histocompatibility

complex (MHC) class Il signaling and strong EC-EC/EC-PVC communication networks.

RESULTS

Construction of a molecular single-cell atlas of the human brain vasculature

We constructed a human brain vasculature single-cell atlas using samples from fetal as well as
adult control) and diseased brains. The neocortical resection of temporal lobectomy epilepsy
surgeries served as adult control brain tissue and diseased brain tissue was collected from
various brain vascular malformations and brain tumors (Figure 1a, Extended Data Figure 1,
Supplementary Tables 1,2). We acquired freshly isolated fetal cells from 8 individual fetuses
(5 fetal brains and peripheral tissue from 7 fetuses) and from 41 adult brain specimens
(derived from 39 individual adult patients), covering temporal lobe (TL) controls and
cavernoma (CAV), adjacent to cavernoma (TLadjCAV), brain arteriovenous malformation
(AVM), hemangioblastoma (HEM), low-grade glioma (LGG), high-grade
gliomas/glioblastoma (GBM), lung cancer brain metastasis (MET) and meningioma (MEN)
pathologies (Figure 1a, Extended Data Figure 1, Supplementary Tables 1,2).

Brain tissue samples were dissociated into single-cell suspensions, which were either FACS-
sorted for ECs (CD317/CD45") or processed as unsorted samples to examine the NVU (Figure
1a). Single-cell transcriptomes were collected using the 10x Genomics Chromium system?®
and analyzed using a range of computational methods (Figure 1b). CD31/CD45" ECs showed
consistent expression of classical endothelial markers, such as CD31, VWF and CLDNS5, while
not expressing the pericyte markers PDGFRB (except for some PDGFRB* GBM ECs, as

previously reported®-3?) and NG2, the monocyte markers CD68 and CD45, the astrocyte
6
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marker GFAP, and the platelet marker CD61 (Extended Data Figure 2a-n), thereby
confirming the purity of our EC isolations. In summary, 599,215 single cells, including
296,208 sorted ECs and 303,007 unsorted ECs and PVCs, passed our quality control criteria
considering the number of detected genes, mitochondrial read counts and doublets (Figure 1a,
Supplementary Table 2).

To broadly map the neurovasculature and to address the NVU across different brain entities,
44,116 fetal, 47,305 adult/control and 121,436 pathological unsorted EC and PVC
transcriptomes from 33 patients were pooled, clustered, annotated using known marker genes
and comparison to public datasets?*?®3% and visualized (Figure la, Extended Data Figure
3c,e). We identified 18 major cell types, including all known human brain vascular and
perivascular, and other tissue-derived cell types in the human brain (Extended Data Figures
3e-g,4). The detected cell type distributions differed between the fetal, adult control and
pathological brain sample types and the detected EC frequency was highest in the
hemangioblastoma (Extended Data Figures 3f,4), reflecting its nature as a vascular tumor34,
Individual cell types clustered together across tissue entities more often than different cell
types within entities (Extended Data Figure 3g), indicating conserved cell-specific
transcriptomes for each cell type.

We next compared ECs in the sorted samples between fetal brains, fetal peripheral organs,
adult temporal lobes and vascular pathologies and found that ECs from different entities
exhibited prominent transcriptomic heterogeneity (Figure 1c,d, Supplementary Figure 1).
Differential expression and heatmap visualization of top-ranking marker genes revealed
distinct gene expression signatures of ECs for each of the 11 entities (Figure le-h, Extended
Data Figures 5,6, Supplementary Figures 1-13). To define major EC signatures, we compared
fetal brain vs. fetal periphery ECs, fetal brain vs. adult/control brain ECs, and adult/control vs.
pathological brain ECs. Notably, comparison of fetal brain versus fetal periphery ECs defined

a human fetal CNS signature characterizing CNS and periphery-specific markers of the fetal
7
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vasculature (Figure le, Supplementary Table 3), whereas comparison of the fetal vs. adult
brain ECs defined a human fetal/developmental brain signature revealing properties of the
developing and mature human brain vasculature (Figure 1f, Supplementary Table 4).
Moreover, fetal periphery, fetal brain, adult/control brain (TL), brain vascular malformations
(TLadjCAV, CAV, AVM) and brain tumors (HEM, LGG, GBM, MET, MEN) all revealed
distinct EC markers, with the exception of some overlapping marker genes between AVMs
and CAVs (Figure 1g-i, Supplementary Tables 5,6). Fetal brain and periphery revealed
specific markers (e.g. TTN, IGFBP5). In the adult/control, some EC markers were conserved
across two or more entities (e.g. ADIRF, EGR1, PLPP1, ANGPT2), whereas other top marker
genes showed more specificity for a single disease entity (e.g. CCL2, CCN2, and DNASE1L3
in AVM, LGG and MEN, respectively) (Figure 1h,i, Supplementary Table 6). While most of
these markers were expressed by a substantial fraction of ECs within a particular entity
(Figure 1h,i), the expression of common markers by ECs from various vascular beds indicates
transcriptomic correlations among different entities. Using hierarchical clustering to address
correlations of ECs revealed that ECs from certain tissues (fetal brain and fetal periphery;
TLadjCAV and HEM; CAV and LGG,; intraaxial tumors (GBM) and MET; extraaxial tumor
MEN and AVM) clustered together (Figure 1j), suggesting partially overlapping
transcriptome signatures.

We next assessed differences in ECs between fetal, adult/control and diseased human brains
to investigate how ECs are affected by developmental stage and in pathological conditions
(Figure 1k-m, Extended Data Figures 5,6). We performed differential gene expression
analysis followed by pathway analysis using gene-set enrichment analysis (GSEA) on the
ranked gene lists. DEGs between the fetal and adult stage and between the adult/control and
pathological brain showed developmental and pathology-specific pathway enrichments
(Figure 1k,m, Extended Data Figures 5,6, Supplementary Figures 1-13), providing insight into

functional specialization of the human brain vasculature across development, homeostasis and
8


https://doi.org/10.1101/2021.10.18.464715

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.18.464715; this version posted October 19, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

disease. We identified numerous DEGs across the entities, namely 764 in fetal brain vs. fetal
periphery, 780 in fetal vs. adult/control, 286 in adult/control vs. pathology, 223 in brain
vascular malformations vs. adult/control, 321 in brain tumors vs. adult/control, highlighting
heterogeneity within the EC compartments across developmental stages and pathological
conditions (Extended Data Figures 5,6).

The top regulated pathways in both fetal vs. adult/control as well as in pathological vs.
adult/control brain EC signatures included development and neurovascular link (NVL)?, cell-
cell/extracellular matrix (ECM)-related processes, immune-related processes, angiogenesis
and metabolism (Figure 1k,m, Extended Data Figures 5,6). Notably, of the 612 differentially
regulated pathways in pathology vs. adult/control, more than half (357) also showed
differential regulation in fetal vs. adult/control brain ECs (Figure 11, Extended Data Figure
6d), highlighting the importance of developmental pathways in vascular-dependent brain
pathologies. Together, these data indicate that signaling axes driving vascular growth during
fetal brain development are silenced in the adult control brain and (re)activated in the

vasculature of brain tumors and brain vascular malformations.

Inter-tissue heterogeneity of brain vascular endothelial cells

Next, to further address EC heterogeneity across different brain entities at the single-cell
level, we pooled, batch-corrected®-%8, clustered and visualized all fetal (21,512), adult/control
(47,652) and pathological (166,549) sorted brain EC transcriptomes from 38 patients (Figure
2a-d, Extended Data Figure 7a-e). Brain vascular ECs are organized along the human brain
arteriovenous axis, referred to as zonation?3°#%. To address arteriovenous zonation,
endothelial clusters were biologically annotated using top-ranking marker genes/DEGs in
fetal, adult and pathological ECs, and we identified 44 clusters (Figure 2e,f, Extended Data
Figure 7a-e,h, Supplementary Table 7) that we then grouped into 14 major EC subtypes for

further downstream analysis (Figure 2a-d).
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Known vessel segments were identified by established arterio-venous zonation markers?>#,

with arterial and venous clusters located at opposite ends of the UMAP, separated by major
capillary clusters (Figure 2a-d,f, Extended Data Figures 7a-e,h, Supplementary Tables 7,8).
We also assigned EC clusters outside arteriovenous zonation, notably (proliferating) stem-to-
endothelial cell transdifferentiating (stem-to-EC) clusters, (proliferating) endothelial-to-
mesenchymal transition (EndoMT) clusters (Figure 2f, Extended Data Figure 7h). Multiple
clusters showed substantial multi-tissue contributions from the fetal, adult/control and
pathological entities, whereas other clusters were either mostly/predominantly pathological or
mostly fetal and pathological (i.e. no notable contribution of control/adult brain), namely
multiple angiogenic capillary clusters, (proliferating) stem-to-EC clusters, (proliferating)
EndoMT clusters, and proliferating cells (Extended Data Figure 7f,g).

Heatmap visualization revealed distinct markers of EC clusters along arteriovenous zonation
and confirmed robust differential expression of known marker genes of arteriovenous
specification®*?® (Figure 2e,f, Extended Data Figure 7h, Supplementary Table 7,8). Notably,
several of these top marker genes have not previously been identified as markers for AV-
zonation in the human brain: LTBP4 (large arteries), ADAMTSL1 (arteries), VSIR, AIF1L,
CD320, and others (arterioles), SLC38A5, BSG, SLC16Al1, SLCO1A2 (capillaries), JAM2,
PRCP, PRSS23, RAMP3 (venules), PTGDS, POSTN, DNASE1L3 (veins), CCL2 (large veins)
and PLVAP and CA2 (angiogenic capillaries) (Figure 2e,f, Extended Data Figure 7h,
Supplementary Table 8). We confirmed high PLVAP expression in diseased brain entities
(brain tumors>brain vascular malformations) and a slight elevation in the fetal brain
(Extended Data Figure 8a-m), indicating its role in developmental and pathological vascular
growth*®47 Indeed, PLVAP exhibited RNA and protein expression in human brain vascular
malformation/tumor ECs by RNA scope and immunofluorescence (Extended Data Figure 8n-

ne).

10
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We found that arteriolar ECs expressed both arterial and capillary markers whereas venular
ECs showed co-expression of venous and capillary markers (Figure 2f, Extended Data Figure
7h, Supplementary Table 8)%, in line with their topographical location along the AV-vascular
tree. We identified specific molecular markers defining EC clusters outside the arteriovenous
zone. We found proliferating ECs (e.g. TOP2A, MKI67) in the fetal, adult (surprisingly,
0.63%) and pathological brains (Figure 2e,f, Extended Data Figure 7h, Supplementary Tables
7,8). We identified EndoMT clusters expressing both mesenchymal (e.g. APOE, ACTA2,
TAGLN) and endothelial markers (Extended Data Figure 9m-x)*. Notably, we observed two
subsets of EndoMT ECs (proliferating EndoMT and EndoMT) in all entities, but increased in
pathologies. Proliferating EndoMT ECs expressed both EndoMT and proliferation markers
(e.g. ACTA2, MKI67) (Figure 2e,f, Extended Data Figure 7h, Supplementary Tables 7,8).

In GBMs and METSs, we observed stem-to-EC clusters that expressed classical EC markers
(e.g. CD31, CLDN5, CDH5, VWF, to a lower level compared to other EC clusters) as well as
some markers of (tumor) stem cells (Figure 2e,f, Extended Data Figures 7h,10), suggesting
that these ECs undergo stem-to-EC transdifferentiation. In GBM, we identified a stem-to-EC
cluster expressing GBM stemness markers SOX2, PTPRZ1, POUR3F2 and OLIG1%** in
addition to classical EC markers (Extended Data Figures 7h,10a-i)°*2. In METs, we noted a
previously undescribed stem-to-EC population that co-expressed EC markers and stem cell
markers of lung cancers (e.g. SOX2, EPCAM, CD44, SFTPB)>® (Extended Data Figures
7h,10n-v). In GBM and METs, we identified groups of stem-to-ECs that co-expressed
stemness (e.g. SOX2, PTPRZ1, EPCAM1 and SFTPB) and proliferation markers (e.g. MKI67,
BEX1, HMGB2 and UBE2C) (Figure 2e,f, Extended Data Figure 7h).

To validate the stem-to-EC clusters in GBM and MET, we used double immunostaining for
EC and stemness markers. In GBM, we found SOX2*/CD31" and PTPRZ1*/CD31" co-
expressing ECs, whereas in MET, we observed EPCAM*/CD31" and SFTBP*/CD31" co-

expressing ECs (Extended Data Figure 10j-m,w-z). The confirmation of tumor stemness
11
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marker enrichment in a subset of tumor ECs indeed suggests the presence of stem-to-ECs in
GBM and MET vasculature.

We next addressed the distributions of EC clusters between the fetal, adult/control and
pathological brains. Notably, capillaries accounted for ~61.6% of ECs, arterial ECs for
15.23%, and venous ECs for 15.19%, in agreement with?!*. Stem-to-EC clusters accounted
for 1.92%, EndoMT clusters for 2.1% (Figure 2g,k, Extended Data Figure 11). Angiogenic
capillaries were more prominent in the fetal and pathological brains (Figure 2g-k, Extended
Data Figures 11,9a-l), indicating the angiogenic capacity of the human brain vasculature in
development and disease®21654  We further uncovered previously unrecognized EC
heterogeneity across a wide range of human brain tissues (Figure 2i,j, Extended Data Figure
11). Angiogenic capillary proportions were higher in the fetal brain and brain tumors
(GBM>MET~HEM>MEN>LGG) (Figure 2i,j, Extended Data Figure 11). Brain vascular
malformations revealed elevated proportions of venous clusters (AVM~CAYV), indicating the
venous character of these brain vascular malformations®-®,

Because EC clusters reside in close proximity to each other along the arterio-venous tree, we
next inferred cell-cell communication pathways®"*® (Figure 2I-o, Extended Data Figures 12-
17, Supplementary Figures 14-19). Differential analysis revealed increased cellular crosstalk
among EC clusters in pathological ECs, highlighting a key role of angiogenic capillaries
(Figure 2l-o, Extended Data Figures 12-17). Angiogenic capillaries displayed upregulation of
several incoming and outgoing signaling pathways including cell-cell/ECM-related processes
(COLLAGEN, LAMININ in pathological and fetal brains), immune-related processes (IL6
and CCL in pathologies and fetal brains, MHC class Il in pathological but not fetal brains),
development and NVL (SEMAG6A, EPHA/EPHB in pathological and fetal brains),
angiogenesis (VEGF, NOTCH in pathological and fetal brains), and metabolism (ACTIVIN,
VISFATIN in pathological and fetal brains) in both the diseased vs. adult/control brain and

fetal vs. adult/control brain (Figure 2m-o, Extended Data Figures 12-17, Supplementary
12
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Figures 14-17), highlighting the angiogenic capillary EC cluster as a major signaling mediator

within brain EC networks.

Alteration of AV-specification in pathological brain vascular endothelial cells

Failure of proper arteriovenous specification (predominantly of the capillary bed) in brain
vascular malformations as well as formation of dilated and tortuous arteries and veins in brain
tumors has been reported®*®°, but alteration of AV-specification in brain pathologies and
during fetal (brain) development remains poorly understood. We therefore ordered ECs along
a one-dimensional transcriptional gradient using Monocle®! to examine the arteriovenous axis
in the different entities (Figure 3a-c,e-g,i-k, Extended Data Figures 18a-c,e-g,i-k,m-0,19a-c,e-
g,i-k,m-0,0-s,u-w). Whereas arterial and venous markers peaked at opposite ends, capillary
markers showed peaks throughout all entities (Extended Data Figure 20, Figure 3b,f,
Extended Data Figures 18b,f,j,n,19b,fj,n,rv), indicating that in silico computational
pseudospace recapitulates the in vivo anatomical topography of EC clusters in the human
brain vasculature?®?, We observed AV-zonation throughout the fetal, control and
pathological brains, but observed a partial alteration of endothelial cell ordering along the
AV-axis in disease, in both brain tumors (to different degrees e.g.
GBM>MET>HEM>LGG>MEN) and brain vascular malformations (shift towards the venous
compartments observed in both AVM and CAV) (Figure 3b,c,f,g,j,k, Extended Data Figures
18b,c,f,9.,J,k,n,0,19b,c,f,g,j,k,n,0,r,S,v,W).

We defined an AV-signature comprising 1,021 genes revealing significant expression
gradients along the arteriovenous axis. Ordering of ECs according to this AV-signature
resulted in gradually changing gene expression patterns along the AV-tree (Figure 3d,h,l,
Extended Data Figures 18d,h,l,p,19d,h,l,p,t,x). The seamless zonation continuum was
recapitulated in all entities but again showed alteration in pathologies. Whereas AV-markers

revealed clear distinction between the AV-compartments in the fetal and adult/control brain,
13
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notably showing specific markers of large arteries (e.g. VEGFC, FBLNb), arterioles (e.g.
LGALS3, AIF1L), capillaries (e.g. SLC35A5, MFSD2A), angiogenic capillaries (e.g. ESM1,
ANGPT2,), venules (e.g. JAM2, PRCP) and large veins (e.g. SELE, SELP), some zonation
markers showed a less specific/more widespread presence across AV-clusters in pathologies:
JAM2 and PRCP were expressed in both capillaries and venules, LGALS3 and AIF1L showed
expression in both capillaries and arterioles, indicating partial alteration of AV-specification
(Figure 2,3d,h,l, Extended Data Figures 18d,h,l1,p,19d,h,l,p,t,x).

We next explored how fetal and pathological ECs map to temporal lobe ECs®. Whereas
almost all fetal and pathological ECs could be assigned to temporal lobe EC clusters, some
ECs were “unassigned”, indicating alteration of AV-specification in fetal and pathological EC
transcriptomes. Notably, these “unassigned” ECs mainly belonged to small caliber vessels
(Figure 3m-o, Extended Data Figure 21a-j).

We next addressed whether EC markers of AV-clusters were conserved between vascular
beds of fetal, adult and pathological brains or expressed in a more tissue-specific manner?.
Whereas we identified multiple conserved markers for large arteries and large veins,
capillaries were more tissue/entity-specific, indicating a more pronounced transcriptional
heterogeneity of the capillary bed across the different brain tissues (Figure 3p-s)?.
Accordingly, capillaries showed more tissue-specific markers than large caliber vessels
(Figure 3p-r), indicating a higher susceptibility of capillary ECs to the local tissue

microenvironment to respond to tissue-specific requirements.

Alteration of CNS-specificity in pathological brain vascular endothelial cells
We next examined CNS-specific properties distinguishing brain ECs from ECs outside the
CNS?* across brain development, adulthood and in disease. Bulk RNA-sequencing in the

mouse previously revealed a BBB-enriched transcriptome®, but how human brain EC CNS
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properties differ at the single cell level and whether they are heterogeneous across
developmental stages and in disease remains largely unknown.

To address molecular differences of CNS and peripheral ECs at the single-cell level, we
compared transcriptomes between human brain and peripheral ECs from computationally
extracted ECs of adult human tissues®® as well as in our sorted fetal EC dataset (Extended
Data Figure 22, Supplementary Table 9). We defined a human adult and fetal CNS signature
comprising the top 50 genes enriched in brain ECs compared with ECs of peripheral organs
(Figure 1a, Extended Data Figure 23a-f, Supplementary Table 8). These include known BBB
markers MFSD2A® and CLDN5% and known capillary markers CA42%61 and SPOCK2#, as
well as novel, previously unknown genes enriched in the CNS vasculature such as SPOCK3,
BSG, CD320 and others (Extended Data Figure 22b,e, Supplementary Table 9).

Comparison of the CNS-specific properties between fetal, adult and pathological ECs
revealed CNS properties in the fetal and adult brains as well as an alteration of the CNS
signature and an acquisition of the peripheral signature in pathologies (Figure 4a-f, Extended
Data Figures 23-25). When comparing the CNS signature between pathological and
adult/control brain ECs, we found downregulation of SLC2A1 which is known to be
dysregulated in neurodegenerative conditions*, as well as of the lipid transporter MFSD2A,
which is expressed in brain ECs and restricts caveolae-mediated transcytosis at the
BBB®6566 and the BBB marker CLDN5 (Figure 4d-f, Supplementary Table 9), thus
suggesting BBB alteration in pathologies'®. Comparing CNS and peripheral signature
expression across entities revealed that the CNS signature was highest in the TL, followed by
intra-axial primary brain tumors and fetal brain (LGG>fetal brain>GBM), brain vascular
malformations (TLadjCAV>CAV>AVM), intra-axial secondary brain tumor MET, extra-
axial brain tumor MEN and the intra-axial primary brain tumor HEM, whereas the peripheral

signature followed an inversed pattern (Figure 4e,f, Extended Data Figure 25e,f).
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We next addressed CNS-specific properties of ECs along the arteriovenous axis. In the fetal
and adult brain, the CNS signature was mainly expressed by small caliber vessels, while the
peripheral signature was predominantly present in large arteries and large veins (Figure 4g,
Extended Data Figure 22h). We observed a similar pattern in pathological brains with,
however, a notable decrease of cells expressing the CNS signature (most pronounced for
angiogenic capillaries>capillaries), paralleled by an increase of cells expressing the peripheral
signature predominantly for angiogenic capillaries and large caliber vessels (Figure 4g,
Extended Data Figure 22h).

To compare the changes in gene expression in each disease, we determined how the CNS and
peripheral signatures responded along the AV-axis in each pathological entity. The CNS
signature was downregulated in every pathology with a similar pattern as described above
(and reaching highest baseline values of CNS-specificity at the capillary and arteriole levels,
with the capillaries being the cluster mostly affected by pathologies) (Figure 4h, Extended
Data Figure 22h and?®), likely pertaining to the influence of the local microenvironment for
small caliber vessels. The peripheral signature was upregulated in disease, peaking for AVM,
followed by high expression for HEM>MEN>MET>GBM and lower expression for
LGG>TLadjCAV, predominantly affecting large caliber vessels and angiogenic capillaries
(Figure 4h, Extended Data Figures 22h,23-25). These data indicate that CNS ECs acquire
CNS-specific properties during fetal-to-adult transition and take on a peripheral EC signature
in disease conditions.

The CNS signature is tightly linked to a functional BBB in vivo®. We next investigated the
BBB dysfunction module that appears to be upregulated in CNS ECs upon various disease
triggers (stroke, multiple sclerosis, traumatic brain injury and seizure) in the mouse brain and
that shifts CNS ECs into peripheral EC-like states under these conditions®?. We found the
BBB dysfunction module to be upregulated in brain tumors and brain vascular malformations

as well as in the fetal brain (Extended Data Figures 26,28), probably due to pathways related
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to BBB dysfunction (see methods)®?. The BBB dysfunction module was highest in AVM,
followed by GBM>MET>HEM>CAV>MEN and TLadjCAV (Extended Data Figures 26,28).
The expression pattern of these BBB dysfunction module genes along the AV-axis revealed
enrichment in large caliber vessels and angiogenic capillaries mimicking the peripheral
signature expression pattern, therefore indicating that in brain tumors and brain vascular
malformations, CNS ECs take on a "peripheral" endothelial gene expression pattern
(Extended Data Figure 28)%2,

We validated the alteration of transcriptional expression of several CNS signature genes using
immunofluorescence. We confirmed decreased expression of SPOCK3, BSG, CD320,
PPP1R14A and SLC38A5 in all brain tumors and brain vascular malformations (Figure 4i-y,
Extended Data Figures 29-31), thereby highlighting the alteration of CNS properties in the

diseased human cerebrovasculature.

Upregulation of MHC class 11 receptors in pathological brain vascular endothelial cells
During our analysis of the human brain vasculature, we identified EC populations expressing
the MHC class Il genes CD74, HLA-DRB5, HLA-DMA, HLA-DPA1 and HLA-DRA in various
pathological CNS tissues (and to low levels in adult/control brain), including brain tumors and
brain vascular malformations (Extended Data Figures 32-34). This antigen-presenting
signature, indicating a possible immune function of ECs of the human brain, prompted us to
investigate the heterogeneity of MHC class Il transcripts between tissues at the single-cell
level.

Recently, genome-wide expression profiling by scRNA-seq has identified endothelial MHC
class 11 expression in a variety of peripheral human and mouse tissues®33, but assessment of
MHC class Il expression in developing and aberrant human brain vascular beds at the single-
cell level is currently lacking. To assess the molecular heterogeneity of MHC class Il gene

expression across development and disease, we defined a human MHC class Il signature
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including all known MHC class Il genes (Figure 5d, Supplementary Table 10). We observed
an upregulated MHC class Il signature in pathologies as compared to TL, while the
transcriptional MHC class Il signature levels in the fetal brain were low (Figure 5a-f,
Extended Data Figure 32), in agreement with the recently reported low MHC class 1l
expression in human fetal organs®. In brain pathologies, we found that the MHC class II
signature was highest in brain vascular malformations (CAV>AVM), the extra-axial brain
tumor MEN, the intra-axial secondary brain tumor MET, followed by the intra-axial primary
brain tumors HEM>LGG>GBM, TL and TLadjCAYV and the fetal brain, grossly following the
peripheral signature expression gradient whereas the CNS signature showed an inverse trend
(Figure 5f, Extended Data Figures 32-34). We examined MHC class Il signature expression
patterns according to arteriovenous zonation. Whereas in the fetal brain, only very few ECs
(large arteries and arterioles) expressed the MHC class Il signature, mainly large caliber
vessel (large arteries and large veins) ECs expressed a signature of genes involved in MHC-
I1-mediated antigen presentation in the adult brain (Figure 5a,b,g,h).

The MHC class Il signature was upregulated in all pathologies according to the pattern
described above showing highest expression levels at the level of large veins, veins>large
arteries and arteries (Figure 5c,g,h, Extended Data Figures 32 and?®). We observed a partial
overlap of the MHC class Il and peripheral signatures and of the BBB dysfunction module
with a common predominance in large caliber vessels, but a more widespread/stronger
expression of the peripheral signature and BBB dysfunction module in angiogenic capillaries
(Extended Data Figures 33,34), in line with the previously-observed links between BBB
dysregulation and innate immune activation**. Together, these data suggest that pathological
CNS ECs upregulate MHC class Il receptors in brain tumors and brain vascular
malformations.

Using immunofluorescence and RNAscope, we validated the upregulation of several MHC

class 11 genes in diseased tissues. We observed enrichment of MHC class Il genes including
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CD74 and others in the pathological human cerebrovasculature (Figure 5i-p, Extended Data
Figure 36).

We next addressed MHC class Il signaling among EC clusters by inferring cell-cell
communication pathways**®’. Network centrality analysis suggested capillaries (in fetal and
control/adult brains) and angiogenic capillaries (in pathological brains) as “senders” and
venous ECs (in fetal, adult/control and pathological brains) as major “recipients” of MHC
class Il signaling and predicted elevated MHC class Il signaling (predominantly in angiogenic
capillaries) in brain pathologies (Figure 5g-t, Extended Data Figure 35). Notably, MHC class
Il signaling seems to be mediated mainly by APP and COPA ligands (and to a lesser extent by
MIF) and the CD74 receptor in AV-clusters across development, adulthood and disease
(Extended Data Figure 35), and APP/COPA/MIF-CD74 have been described as ligand-
receptor pairs between monocyte-derived macrophages and tumor ECs in human lung

adenocarcinoma’® and to be involved in antitumor immune response®?.

A key role for endothelial cells in the human brain neurovascular unit

Single-cell transcriptomics of unsorted ECs and PVCs offers the opportunity to address
cellular crosstalk within the NVU and enables analysis of corresponding ligand-receptor
interactions. To address cell—cell interactions in adult/control and diseased brains, we
constructed ligand—receptor interaction maps®®°’ (Figure 6, Extended Data Figures 37-47,
Supplementary Figures 20-28). In the majority of entities, ECs were at the center of the
network displaying numerous interactions with other ECs and PVCs (Figure 6a-i, Extended
Data Figures 37a-c,f-h,k-m,p-r,38a-c,f-h,k-m,p-r,u-w,z-zii), indicating a crucial role of ECs in
NVU function and EC-PVC crosstalk. In fetal and adult/control brains, ECs showed most
interactions with fibroblasts, pericytes and astrocytes (Figure 6a-f). In brain pathologies, ECs
displayed increased interaction numbers and in brain tumors additionally interacted with

tumor (stem) cells (for LGG, GBM, and MET) as well as increased interactions with immune
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cells (Figure 6h,i, Extended Data Figures 37a-c,f-h,k-m,p-r,38a-c,f-h,k-m,p-r,u-w,z-z;;,40a-f).
Intercellular signaling pathways were substantially increased in fetal and pathological ECs
(and PVCs) (Figure 6j-n, Extended Data Figures 40a-f,42a-h). Cell-cell communication
analysis predicted upregulation of several incoming and outgoing signaling pathways in the
developing vs control brain as well as diseased versus control brain NVU , including similar
pathways to what we observed in EC-EC networks (Figures 2n,0,60,p, Extended Data Figures
409-k, 421-g, Supplementary Figure 21-24). Intercellular crosstalk analysis predicted a key
role for the EC and EndoMT clusters within the fetal, adult/control and diseased brain NVU
signaling networks (Figure 60,p, Extended Data Figures 40d-f,42i-k,43-46, Supplementary
Figures 25-28).

To further address the role of ECs in EC-PVC crosstalk in fetal versus adult/control and
pathological versus adult/control brains, we identified the cell-cell signaling patterns with ECs
on either the “sending” or the “receiving” end (Extended Data Figures 43-46, Supplementary
Figures 25-28). During fetal brain development and in brain pathologies, we observed
upregulation of ligands and receptors on ECs as well as of the corresponding pathways, which
partially overlapped with the ones we found in EC-EC crosstalk (Figure 60,p, Extended Data
Figures 40g-k,41,421-9,439-46), suggesting that these ligand-receptor interactions may
contribute to functional brain EC-PVC signaling and function.

In accordance, we identified large Euclidean distances and substantially changed information
flow (see methods) for signaling pathways belonging to the five main groups mentioned
above (i.e. immune-related processes, development and NVL, cell-celllECM-related
processes, angiogenesis) (Extended Data Figure 47c-f),) in both pathologies vs. adult/control
and fetal vs. adult/control brains (Extended Data Figure 47a,b), suggesting that these
pathways are essential for both EC-EC and EC-PVC crosstalk in fetal and pathological brains

where they might critically contribute to vascular growth.
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Based on our observation of MHC class Il signaling in EC-EC communication, we next
addressed MHC class Il signaling in EC-PVC intercellular communications. Network
centrality analysis corroborated neurons/neural stem cells/ECs (in fetal brains), macrophages
and microglia/neurons/ECs (in  adult/control  brains) and oligodendrocytes/tumor
cellssECs/EndoMT/fibroblasts (in pathological brains) as “senders” and macrophages and
microglia as well as ECs (in fetal, adult/control, and pathological brains) as major “recipients”
of MHC class Il signaling (Figure 6g-v, Extended Data Figure 39) and predicted elevated
MHC class Il signaling (predominantly in microglia and macrophages, ECs/EndoMT, and
tumor cells/oligodendrocytes) in brain pathologies (Figure 6p, Extended Data Figure 39c-m).
Of note, the APP-CD74, COPA-CD74, and MIF-CD74 ligand-receptor pairs that were
predicted to mediate MHC class 1l signaling in EC-EC interactions (Extended Data Figure
35a-c) were also predicted ligand-receptor pairs in the developing, adult and diseased NVU
(Extended Data Figure 39, Supplementary Figure 20), with ECs notably strongly expressing
CD74 (Figure 6rtyv, Extended Data Figures 43-46). These data indicate that the

APP/COPA/MIF-CD74 ligand-receptor pairs may contribute to NVU signaling.

DISCUSSION

Here, we performed a large-scale single-cell molecular atlas of the developing fetal,
adult/control and diseased human brain vasculature, using single-cell RNA sequencing,
composed of 599,215 freshly isolated endothelial, perivascular and other tissue-derived cells
from 47 fetuses and adult patients, covering an unprecedented diversity of human brain tissue.
Based on genome-wide quantitative single-cell transcriptomes, we have provided molecular
definitions of human brain cell types and their differences by brain developmental stage and
pathology, thereby unraveling organizational principles of endothelial, perivascular and other
tissue-derived cells composing the human brain vasculature. Our experimental methodology

relies on transcriptional profiles of human cerebrovascular cells generated from fresh human
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neurosurgical resections and fresh fetal abortions, that reduces the likelihood of
transcriptional alterations associated with post mortem tissue asservation’"’,

Our data suggest a paradigm in which developmentally established characteristics and
activated pathways of the fetal brain vasculature are silenced in the adult control brain and
(re)activated in the vasculature across various brain pathologies, indicating functional
plasticity of the endothelial lineage across developmental and disease states.

We uncover the transcriptional basis of the cellular and molecular heterogeneity in the fetal,
adult/control and pathological human brain thereby enabling us to identify a treasure trove of
novel findings that includes properties conserved across pathologies characterizing a common
“backbone” of the diseased human brain vasculature: we observe specific alterations of
arteriovenous differentiation, as well as dysregulated/aberrant- and reactivated fetal pathways
conserved in the diseased vasculature across multiple pathologies. Pathological ECs display a
loss of CNS-specific properties and reveal an upregulation of MHC class Il molecules,
indicating atypical features of pathological CNS ECs.

CNS-specificity of ECs revealed phenotypic zonation along the arteriovenous axis in the fetus
and adult mainly at the level of small-caliber vessels. Zonal characteristics also arise in
disease states, where CNS ECs take on a peripheral signature at the level of large>small
caliber vessels and angiogenic capillaries. We further identified ECs expressing MHC class 11
genes mainly in diseased large-caliber vessels, suggesting a role for ECs in immune
surveillance®®. Our work also revealed that upregulation of MHC class Il gene expression
partially co-occurs with alteration of CNS-specificity and acquisition of a peripheral
signature, suggesting that these two observations might be linked, as recently suggested for
immune activation and loss of BBB tight junction protein expression in the mouse brain®.
These similar observations made across species and various diseases indicate their broad

applicability. We have thus unveiled a molecular blueprint for zonation and fundamental EC
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properties (CNS-specificity, MHC class Il expression) along the arteriovenous axis at the
single-cell level.

Cell-cell interaction analysis predicted strong endothelial-to-perivascular cell ligand-receptor
crosstalk involving immune-related (including MHC class I1) and angiogenic pathways,
thereby unraveling a central role for the endothelium within developing, adult/control and
diseased brain NVU signaling networks. Our findings suggest a cellular and molecular
environment within the NVU with notable parallels between the fetal and adult brains as well
as brain vascular malformations and brain tumors, in which ECs increase their crosstalk with
other cell types during development and in various brain diseases.

Our human vascular brain atlas provides a basis for understanding the organizing principles
and single-cell heterogeneity of universal, specialized and activated endothelial and
perivascular cells with broad implications for physiology and medicine and serves as a

powerful publicly available reference for the field.
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METHODS

Ethics statement

The collection of human samples and research conducted in this study were approved by the
institutional research ethics review boards of the University Hospital Zurich, the University
Health Network Toronto and the Mount Sinai Hospital Toronto (approval numbers: BASEC
2016-00167, 13-6009, 20-0141-E). Informed consent for fetal tissue collection and research
was obtained from each patient after her decision to legally terminate her pregnancy but
before the abortive procedure was performed. For adult tissue collection, informed consents
for collection and research use of the surgically removed adult brain tissues was obtained
from each patient before the operation. Details on patient information and pathology reports
are provided in Supplementary Table 1. All the protocols used in this study were in strict
compliance with the legal and ethical regulations of the University of Zurich, the University

of Toronto and affiliated hospitals.

Isolation of FACS-sorted human endothelial cells and of unsorted human endothelial
and perivascular cells for single cell RNA-seq

Endothelial cells were isolated from human tissues using tissue digestion and subsequent
FACS sorting whereas human endothelial and perivascular cells were isolated from the
unsorted fraction. Briefly, tissues were quickly minced in a petri dish on ice, using two
surgical blades. For FACS sorting a cell suspension was obtained upon digesting the tissue in
2 mg/ml Dispase Il (D4693, Sigma-Aldrich, Steinheim, Germany), 2 mg/ml Collagenase 1V
(#1710401, Thermo Fisher Scientific, Zurich, Switzerland) and 2 mM CaCl2 PBS solution for
40 min at 37°C with occasional shaking. The suspension was filtered sequentially through
100/70/40 um cell strainers (#431751, Corning, New York, USA) to remove large cell debris.

Cells were then centrifuged 500 RCF for 5 min at 4°C. In case of a visible myelin pellet 5 ml
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25% BSA (ice cold) was overlayed with 5 ml of the sample, centrifuged at 2000 RCF for 20
min (4°C). The supernatant was removed (including the lipid phase) and the pellet was
resuspended in 9 ml PBS, followed by another round of centrifugation at 500 RCF for 5 min
(4°C). Supernatant was subsequently discarded, while the cell pellets were resuspended in 3
ml of ACK hemolytic buffer at room temperature for 3 minutes. To stop the reaction, 30 ml of
ice-cold PBS was added to the mixture and centrifuged at 500 RCF for 5 min at 4°C. The cell
pellets were resuspended in FACS buffer (PBS + 1% Bovine Serum Albumin), a volume is
taken for unsorted scRNAseq analysis. For FACS sorting the cells were stained with anti-
CD31 PE conjugated antibody in a concentration of 1:20 (#566125, clone MBC78.2, BD
Pharmingen) and anti-CD45 APC conjugated antibody in a concentration of 1:20 (#17-0459-
42, clone HI30, eBiosciences) for 30 min at 4° C, protected from light. Thereafter the cells
were washed with 1ml of FACS buffer, centrifuged in a tabletop centrifuge at 500 RCF at 4°C
for 5 min. Finally, the cell pellets were resuspended in appropriate volumes of FACS buffer
(PBS + 1% Bovine Serum Albumin) and the suspension was passed through a 35 um cell
strainer of a FACS sorting tube (#352235, Corning). Immediately before sorting, SYTOX™
blue was added in 1:1000 (Thermo Fisher Scientific, #S34857) to exclude dead cells from
further analysis. Viable (SYTOX™ blue negative) endothelial cells were FACS-sorted by
endothelial marker CD31 positivity and negative selection for the brain microglia and
macrophages marker CDA45, whereas unsorted endothelial and perivascular cells were
obtained from the SYTOX™ blue  fraction Cells were sorted by a FACS Aria Il (BD
Bioscience) sorter using the four-way purity sorting mode directly in EGM2 medium (#CC-

3162, Lonza, Basel, Switzerland).

Single cell RNA-seq and data analysis
FACS sorted endothelial cells and unsorted endothelial and perivascular cells were

resuspended in PBS supplemented with BSA (400 pg/ml, Thermo Fisher Scientific#37525),
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targeting the required a 1,000 cells/ul concentration. Single-cell RNA-seq libraries were
obtained following the 10x Genomics recommended protocol, using the reagents included in
the Chromium Single Cell v3 Reagent Kit. Libraries were sequenced on the NextSeq 500
(Mumina) instrument, aiming at 50k reads per cell. The 10x Genomics sScRNA-seq data was
processed using cellranger-5.0.0 with the Homo sapiens Gencode GRChm38.p13 genome
Ensembl release. Based on filtered gene-cell count matrix by CellRanger’s default cell calling
algorithm, we performed the standard Seurat clustering (version 4.0.0) workflow; raw
expression values were normalized and log transformed. In order to exclude low quality cells
and doublets, cells with less than 500 or more than 3000 detected genes were filtered out.
scDbIFinder (v3.13) was used to validate that doublets cells were minimal. We also filtered
cells with > 25% mitochondrial counts. For integration of the unsorted and endothelial cell
datasets, Seurat based canonical correlation analysis (CCA) and reciprocal PCA (RPCA) were
used for unsorted (endothelial and perivascular cells) and sorted (endothelial cells) datasets
batch correction respectively.

To predict the cell identity of the pathological brain endothelial cell clusters of the adult and
fetal datasets as compared to the adult/control brain endothelial cells, the cell identity
classification and label transfer was done using the standard Seurat workflow using the
temporal lobe endothelial cells. as the reference dataset. Illustration of the results was
generated using Seurat (v.4.0.0), Sankey plots were done using networkD3 (v.0.4). DESeq2
package (v1.30.1) was used to perform pseudobulk differential expression analysis, volcano
plots were done using EnhancedVolcano (v1.8.0) package and heatmaps were plotted using
pheatmap (v1.0.12).

Differential expression was computed using the wilcoxauc function implemented in the github
package presto. FDR values were calculated using the Benjamini—-Hochberg method. Pathway
analysis was performed using the Gene Set Enrichment Analysis (GSEA) software from the

Broad Institute (software.broadinstitute.org/GSEA) (version 4.0.1)"8°. A permutation-based
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P-value is computed and corrected for multiple testing to produce a permutation based
Benjamini — Hochberg correction false-discovery rate g-value that ranges from 1 (not
significant) to 0 (highly significant). The resulting pathways were ranked using NES and FDR
g-value, P-values were reported in the GSEA output reports.

Human_GOBP_AllIPathways no_ GO iea March_01 2021 symbol.gmt from
[http://baderlab.org/GeneSets] was used to identify enriched pathways in GSEA analysis.
Highly related pathways were grouped into a themes, labeled by AutoAnnotate (version 1.3)
and plotted using Cytoscape (Version 3.7.0) and EnrichmentMap (version 3.3)%. Data will be
deposited on GEO and an accession number will be provided and code will be provided in

github.

Definition of endothelial fetal/adult, AV, CNS, peripheral and MHC class 11 signatures
Fetal/adult brain EC signature: we defined a human fetal/developmental and adult brain EC
signature - revealing properties of the developing and mature human brain vasculature -
comprising the top 50 the genes that passed the threshold of at least 1og2>0.25 and P<0.05
enriched in fetal brain ECs compared with adult brain ECs and vice versa.

Arteriovenous signature: we defined an AV-signature comprising 1,021 genes revealing
significant expression gradients along the arteriovenous axis in the adult/control brains, only
genes that passed the threshold of at least 1og2>0.25 and P<0.05 were used to construct the
signature. CNS and peripheral signatures: we defined a human adult and fetal — endothelial
CNS and peripheral signatures comprising the top 50 the genes and at least twofold
(log2>1.000) and P<0.05 enriched in brain ECs compared with ECs of peripheral organs
(heart, kidney, muscle and colon in our fetal dataset) and vice versa. For the mouse derived

endothelial CNS and peripheral signature we used the genes described in%2.
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MHC class Il signature: comprised of the following list of genes: CD74, HLA-DRB5, HLA-
DRB1, HLA-DQB1, HLA-DQB2, HLA-DPB1, HLA-DOB, HLA-DBM, HLA-DRA, HLA-
DQA1, HLA-DQA2, HLA-DPA1, HLA-DOA and HLA-DMA.

The blood-brain barrier (BBB) dysfunction module: comprised the top 50 genes that are
upregulated in CNS ECs upon various disease triggers (e.g. stroke, multiple sclerosis,
traumatic brain injury and seizure) in the mouse brain and that shifts CNS ECs into peripheral
endothelial cell-like states under these conditions®?. Genes comprising this signature are
implicated in such as cell division, blood vessel development, inflammatory response, wound

healing, leukocyte migration and focal adhesion®?.

Pseudotime trajectory analysis

Pseudotime analysis was performed using Monocle 3! in fetal, adult/control and pathological
brain endothelial cells. Endothelial cells were clustered using the standard Seurat (version
4.0.0) clustering procedure and cluster markers were used to AV annotate those clusters,
which were used as an input into Monocle to infer trajectory/lineage/arteriovenous
relationships within endothelial cells. SeuratWrappers (v.0.3.0) was used to convert the Seurat
objects to cell data set objects, while retaining the Seurat generated UMAP embeddings and
cell clustering and then trajectory graph learning and pseudo-time measurement with

Monocle3.

Cell-cell communication and ligand-receptor interaction analysis

Cell-cell (ligand receptor) interaction analysis between vascular cell types as well as
endothelial and perivascular cells was performed using two published packages:
CellPhoneDB®® and Cellchat®’. First, using CellphoneDB ligand-receptor pairing matrix was
constructed as follows; only ligands and receptors expressed in at least 10% of the cells in a

particular cluster were considered, cluster labels were then permuted randomly 1,000 times to
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calculate the mean expression values of ligands and receptors, followed by pairwise
comparisons between all cell types. The cut-off of expression was set to more that 0.1 and P-
value to less than 0.05. The number of paired cell-cell interactions was based on the sum of
the number of ligand-receptor interactions in each of the cell-cell pairs. Finally, Cytoscape
was used to visualize the interaction network as a degree sorted circle layout®.

Second, using CellChat (v.1.1.0) we followed the developers' suggested workflow, briefly
applied the pre-processing functions identifyOverExpressedGenes,
identifyOverExpressedinteractions, and projectData with standard parameters set. The
CellChatDB including the Secreted Signaling pathways, ECM-receptor as well as Cell-Cell
contact were analysed, in addition MHC class-1I interactions reported in the CellphoneDB.
Moreover, the gene expression data was projected onto experimentally validated protein-
protein interaction. the standard package functions as computeCommunProb,
computeCommunProbPathway and aggregateNet were used with default parameters. Finally,
to determine the ligand-receptor contributions and senders/receivers’ roles in the network the
functions netAnalysis_contribution and netAnalysis_signalingRole was applied on the netP
data slot respectively.

We further compared cell-cell communication patterns by computing the Euclidean distance
between ligand-receptor pairs of the shared signaling pathways (a measure of the difference
between the signaling networks of datasets, see methods e.g. larger Euclidean distance
implying larger difference of the communication networks between two datasets in terms of
either functional or structure similarity, termed network architecture)®’. We compared the
information flow for each signaling pathway between, which is defined by the sum of
communication probability among all pairs of cell groups for a given signaling pathway in the

inferred network®’.

Human tissue preparation for immunofluorescence and RNAscope
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Freshly resected tissue samples of brain pathologies or the neocortical part of temporal lobes
of pharmacoresistant epilepsy patients were obtained from the Division of Neurosurgery,
Toronto Western Hospital, University Health Network, University of Toronto and the
Department of Neurosurgery, Zurich University Hospital, University of Zurich, whereas fetal
tissue was obtained from the Research Centre for Women's and Infants' Health (RCWIH)
BioBank. Sample age (gestational age for fetal tissues), gender and pathology were
documented in Supplementary Table 1. Tissues were fixed at 4°C in 4% paraformaldehyde
(PFA) for 12 hours and placed into 30% sucrose in PBS solution overnight. The tissues were
then embedded in Optimum Cutting Temperature compound (Tissue-Tek O.C.T. Compound,

#4583) and stored in a -80°C freezer.

Immunofluorescence staining

Fixed, Cryo-embedded, human adult control brains, brain tumors, and brain vascular
malformations slices were cut in 40-um thick sections, using a cryotome (Leica Cryostat 1720
Digital Cryotome), and submitted for single and double staining with the antibodies provided
in Supplementary Table 12. Briefly, the sections were: 1) permeabilized with 0.3% Triton X-
100 in PBS for 30 min at room temperature (RT); 2) incubated overnight at 4°C with primary
Abs, incubated with the appropriate secondary Abs, donkey anti-mouse Alexa Fluor 488
(2:1000, Thermo Fisher Scientific, #A-21202), donkey anti-Guinea pig Alexa Fluor 488
(2:1000, Jackson Immunoresearch Labs, #706-545-148), donkey anti-rabbit Alexa Fluor 555
(1:1000, Thermo Fisher Scientific, #A-31572), donkey anti-goat Alexa Fluor 488 (1:1000,
Thermo Fisher Scientific, #A-11055) for 90 min at RT; to quench the autofluorescence signal,
tissue sections were treated with 0.1% Sudan Black B (Thermo Fisher Scientific, Cat: J62268)
in 70% ethanol for 15 minutes at room temperature. 4) counterstained with the 4, 6-
diamidino-2-phenylindole (DAPI) (diluted 1:20,000; BiolLegend, #422801). Finally, the

sections on glass slides (Fisherbrand, Superfrost Plus Microscope Slides, Fisher Scientific)
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were coverslipped with VWR micro cover glass (VWR International). Negative controls were
prepared by omitting the primary antibodies and mismatching the secondary antibodies.
Sections were examined under Zeiss laser scanning confocal microscope (LSM 880). Laser
scanning confocal images were taken through the z-axis of the section, with 20x and 40x
lenses. Z-stacks of optical planes (maximum intensity projections) and single optical planes

were recorded and analyzed by Zeiss Zen software.

RNAscope

Fixed, cryo-embedded, brain tumor, brain vascular malformations and temporal lobe tissue
obtain from adult patients were cut into 40-um thick sections and subjected to RNAscope in-
situ hybridization using the RNAscope HiPlex kit (324100-UM, ACD, Newark, CA)
according to the manufacturer’s instructions (pretreatment and RNAscope Multiplex
Fluorescent v2 Assay were performed according to protocol 323100-USM). Briefly, after
deparaffinization, the slides were incubated with hydrogen peroxide for 10 min at RT. Target
retrieval was performed using 1X target retrieval buffer (Ref 322000; ACD, Newark, CA) and
distilled water were heated to above 99°C. Slides were dipped in water for 10 seconds before
placing into the 1X target retrieval buffer for 5 minutes. Then, slides were quickly washed in
distilled water for 15 seconds. An additional Sudan Black step was added for tissues with high
auto-immunofluorescence (AVM, LGG, TL, MEN). Slides were submerged in 0.1% Sudan
Black in 70% ethanol for 30 minutes at RT, covered with foil. Then, slides were washed three
times with distilled water, once in 100% ethanol and dried at 60°C for 5 minutes.
Hydrophobic barrier was drawn around the sections and left to dry overnight. On day two,
RNAscope Protease 111 (Ref 322340; ACD, Newark, CA) was added to cover each section
and incubated at 40°C for 15 minutes inside the RNAscope HybEZ 11 oven. For hybridization,
1X probe mixture was added to each section and incubated at 40°C for 2 hours in the

RNAscope HybEZ Il Oven. For HiPlex Amp 1-3 hybridization, 1X Amp 1 solution was
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added to each section and incubated at 40°C for 30 minutes in the RNAscope HybEZ 11 Oven.
Amp hybridization steps were sequentially repeated with Amp 2 and Amp 3 solutions. For
HiPlex fluorophore hybridization, corresponding fluorophores (1X HiPlex T1-T4 solution)
was added to each section and incubated at 40°C for 15 minutes in the RNAscope HybEZ 11
Oven. Wash steps with the appropriate buffers were done in between each step as indicated in
the user manual. HiPlex Amp and fluorophore solutions were included in the RNAscope
HiPlex8 Detection (Ref 324110; ACD, Newark, CA) and HiPlex12 Ancillary Kits (Ref
324120; ACD, Newark, CA). After fluorophore hybridization, DAPI (Ref 320858; ACD,
Newark, CA) was added for 30 seconds at RT before being replaced with ProLong Gold
Antifade Mountant (Ref P36930; Invitrogen, Waltham, MA). We used the following
RNAscope probes: Hs-CD31 (Ref 548451-T3), Hs-ESM1 (Ref 586041-T7), Hs-ACTA2 (Ref
311811-T10), Hs-PLVAP (Ref 437461-T1), Hs-HLA-DPA1 (Ref 821641-T6), Hs-CD74 (Ref
477521-T11). Images were acquired using an Olympus FluoView Laser Scanning Confocal
Microscope Olympus 1X81 inverted stand; 40X objective lens Plan Apo 40x/1.35 NA oil
immersion. Laser wavelengths were 405nm, 473nm, 559nm and 635nm. After the first round
of imaging, slides were soaked in 4X SSC buffer (#BP1325-1; Fisher Scientific, Waltham,
MA) until the cover slip could be removed easily. Fluorophores were cleaved with 10%
cleavage solution (Ref 324130; ACD, Newark, CA) at RT for 15 minutes, followed by two
washes with PBST (0.5% Tween 20) (repeated cleavage twice). Procedures for round 2 and 3
fluorophore hybridization were the same as the round 1. After three rounds of imaging, image
alignment, merging and processing were performed using the RNAscope HiPlex Image
Registration Software following the Image Registration Software User Manual (300065-UM)
(ACD, Newark, CA).

Visualization was done using the FV10-ASW 4.2 Viewer and ImageJ®2. Pseudocolors were

used for better visualization.
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FIGURE LEGENDS

Figure 1. Construction of a molecular single-cell atlas of the human brain vasculature
a,b, Scheme of the experimental workflow (a) and computational analysis summary (b). c,
UMAP plots of 296,208 sorted and in silico-quality checked (ECs, colored by tissue of origin.
d, Piechart showing relative abundance and percentage of ECs from each tissue collected. e-h,
Expression heatmap of the top 25 (e,f), the top 18 (g), and the top 5 ranking marker genes in
the indicated tissues. Color scale: red, high expression; white, intermediate expression; blue,
low expression. i, Violin plots of the expression of the top marker genes of each tissue type
(percentage of cells expressing the marker gene is indicated on the right; in case of marker
gene enrichment in multiple tissues, the violin plot with the highest expression is indicated by
an asterisk). j, Endothelial cells transcriptome correlation heatmap and hierarchical clustering
of all tissues. k,m, Over-representation (enrichment) analysis shown as dotplots representing
the top 30 pathways enriched in fetal brain ECs as compared to adult/control brains (k) and in
pathological brain ECs over adult/control brain ECs (m). Pathway analysis was performed
using gene-set enrichment analysis (GSEA). Pathways are color-coded for the biological
processes indicated. I, Venn diagram showing the overlap between the 1511 significant
pathways enriched in fetal brain ECs as compared to adult/control brain ECs and the 612
significant gene sets enriched in pathological brain ECs as compared to adult/control brain

ECs.
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Figure 2. Inter-tissue heterogeneity of brain vascular endothelial cells

a, UMAP plot of the 296,208 batch corrected ECs, color-coded by ECs arteriovenous (AV)
specification. b-d, UMAP plot shown in (a) split by tissue of origin: fetal brain (b),
adult/control brain (c) and brain pathologies (d). e, Heatmap of the top 5 ranking marker gene
expression levels in different EC subtypes. Color scale: red, high expression; white,
intermediate expression; blue, low expression. f, UMAPs plots, color-coded for expression of
indicated marker genes (red arrowheads). g-j, Relative abundance of EC subtypes (AV
specification cluster) from the indicated tissue of origin. Color-code corresponds to (a). k,
Piechart showing the relative abundance of each EC subtype according to AV specification. |,
Circle plot showing the number of statistically significant ligand-receptor interactions
between ECs subtypes in adult/control brain (left panel) and pathological brain ECs (middle
panel). Differential analysis of the intercellular signaling interactions (right panel, pathology
over control), red indicating upregulation, while blue indicating downregulation. m, Scatter
plot showing the differential incoming and outgoing interaction strength of pathways in
angiogenic capillaries - identifying signaling changes in those cells in pathological as
compared to control conditions. n,0, Heatmap showing overall signaling patterns of different

EC subtypes in adult/control (n) and pathological (0) brains.
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Figure 3. Alteration of AV-specification in brain vascular endothelial cells

a,b,e,f,i,j, UMAP plots of human brain ECs isolated from fetal brains (a,b), adult/control
brains (e,f) and pathological brains (i,j), colored by AV specification (a,e,i) and by
pseudotime (b,f,j). ¢,0,k, Pseudotime order of ECs color-coded according to AV specification
from fetal brains (c), control adult/control brains (g), and pathological brains (k). d,h,l,
Heatmap of adult/control brain ECs AV specification signature gene expression in human
brain ECs isolated from fetal brains (d), adult/control brains (h), and pathological brains (1).
m,n,0, Sankey plot showing the relative abundance of EC phenotypes in TL (m), predicted
annotation of fetal ECs (n) and brain pathologies ECs (0) ECs as mapped to TL ECs. p,q,r,
Dotplots of common and tissue-specific markers in ECs from large arteries (p), capillaries (q)
and large veins (r) in different tissue types (fetal brain, adult control brain, brain vascular
malformations and brain tumors). Red boxes highlight conserved markers between ECs from
different tissues; blue boxes highlight tissue-specific markers dots are colored as in the
legend. s, Three-dimensional PCA visualization of pairwise Jaccard similarity coefficients

between indicated ECs from the different tissues.
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Figure 4. Alteration of CNS-specificity in pathological brain vascular endothelial cells

a-c, UMAP plots of the ECs from fetal brains (a), adult/control brains (b), and pathological
brains (c). Plots are color-coded for CNS signature (green, left panel), peripheral signature
(yellow, middle panel) and a blend of both signatures (right panel). d, Dotplot heatmaps of
CNS signature genes expression in fetal brain, adult/control brains (temporal lobes) and
pathological brain ECs. e,f, Dotplot heatmaps of the CNS and peripheral signature expression
in fetal brain, adult/control brain, and pathological brain ECs (e) and in each individual entity
(H. g,h, Dotplot heatmaps of CNS signature at the level of AV specification for the indicated
entities. Color scale: red, high expression; blue, low expression, whereas the dot size
represents the percentage expression within the indicated entity. i-x, Immunofluorescence (IF)
images for the protein expression of SPOCK3 and CD320, in temporal lobe (i,j and g,r), in
arteriovenous malformations (k,lI and s,t), in glioblastoma (m,n and u,v) and in metastasis
(o,p and w,x). Arrowheads identify blood vessels in the different tissues. Scale bars = 50um.
y, Violin plots showing the expression of representative CNS specific marker genes for

adult/control brain vs. pathological brain ECs.
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Figure 5. Upregulation of MHC class Il receptors in pathological brain vascular
endothelial cells

a-c, UMAP plots of ECs from fetal brains (a), adult/control brains (b), and pathological brains
(c). Plots are color-coded for MHC class Il signature (violet, left panel), CNS signature
(green, middle panel), and blend of both signatures (right panel). d, Dotplot heatmaps of
MHC class Il signature genes expression in fetal brain, adult/control brains (temporal lobes)
and pathological brain ECs. e,f, Dotplot heatmaps of the MHC class I, CNS and peripheral
signatures expression in fetal brain, adult/control brain, and pathological brain ECs (e) and
MHC class Il signature expression in each individual entity (f). g,h, Dotplot heatmaps of
MHC class 11 signature at the level of AV specification for the indicated entities. Color scale:
red, high expression; blue, low expression, whereas the dot size represents the percentage
expression within the indicated entity. i-p, Immunofluorescence (IF) images for the protein
expression of CD74 in temporal lobe (i,j), in arteriovenous malformations (k,l), in
glioblastoma (m,n) and in metastasis (0,p). Arrowheads identify blood vessels in the indicated
tissues. Scale bars = 50 microns.q,r, Circle plot showing the strength of MHC class Il
signaling interactions between the different EC subtypes of the TL (adult/control brain) (q)
and pathological brain (r) ECs at the AV specification level (color-coded by ECs AV
specification). s,t, Visualization of the differential analysis of MHC class Il ligand-receptor
pairs. Chord/circos plots showing upregulated MHC class Il signaling in angiogenic
capillaries as source and all other cell clusters as targets (s, top panel), capillaries as source
and all other cell clusters as targets (s, bottom panel), large veins (t, top panel) and veins as
receivers (t, bottom panel). Edge thickness represents its weights. Edge color indicates the

“sender” cell type.
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Figure 6. Ligand-receptor interactions of endothelial and perivascular cells in the
human brain neurovascular unit

a,d,g, UMAP plots of endothelial and perivascular cells derived from fetal brains (a),
adult/control brains (d) and pathological brains (g). b,e,h, Ligand and receptor analysis of
fetal brain (b), adult control brain (e), and brain pathology (h) cells using CellphoneDB. Line
thickness indicates the number of interactions between cell types. Tables summarize the
number of interactions for each cell type. c,f,i, Heatmap showing the number of ligand-
receptor interactions between the different cells of fetal brains (c), adult/control brains (f), and
pathological brains (i). j-l, Circle plot showing the strength of statistically significant
interactions between cells of adult/control brains (j), and pathological brains (k). I, Circle plot
of the differential analysis of the strength of interactions showed in j and k (pathology over
control), red indicating upregulation, while blue indicating downregulation. m,n, Barplots
showing the number (m) and strength of interactions (n) in adult/control brains (TL) and
pathological brains (PATH). o,p, Heatmap showing overall signaling patterns of different cell
types in adult control (o) and pathological (p) brains. g,s,u, Circle plots showing the strength
of MHC class Il signaling interactions between the different cell types of fetal brain (q),
adult/control brain (s), and pathological brain (u). r,tv, Visualization of MHC class II
connectomic analysis. Cord/circos plots of MHC class Il ligand-receptor interactions with EC
as “senders” (upper panel) and as “receivers” (lower panel) in fetal brains (r), adult/control
brains (t) and pathological brains (v). Edge thickness represents its weights. Edge color
indicates the “sender” cell type. In both Circos plots ligands occupy the lower semicircle and
corresponding receptors the upper semicircle, and ligands and receptors are colored by the

expressing cell type.
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EXTENDED DATA FIGURE LEGENDS
Extended Data Figure 1
a,b, Scheme of the different tissue types present in the study with respective sample/patient

numbers of fetal (a) and adult (b) origins.
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Extended Data Figure 2
a-n, Violin plots showing the expression of endothelial (a-h) and perivascular (i-n) markers in

the isolated endothelial cells from fetal, adult/control and pathological brains.
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Extended Data Figure 3

a, UMAP plot of 90,150 human fetal periphery endothelial and perivascular cells, colored by
tissue of origin. ¢, UMAP plot of 212,857 human brain endothelial and perivascularcells,
colored by tissue of origin (c) and by cell type (e). b,d, Piechart showing relative abundance
and percentage of cells from each tissue collected. f, Relative abundance of cell types from
the indicated tissue of origin. Color-code corresponds to (e). g, Endothelial and perivascular

cells transcriptome correlation heatmap and hierarchical clustering.
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Extended Data Figure 4

a-s, UMAP plots of ECs and PVCsfor each tissue of origin indicated, color-coded by cell

type. Bar plots showing the number and proportion of cells of each cell type are shown below

each corresponding UMAP.
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Extended Data Figure 5

a,d,g, Volcano plot showing the differential expression analysis comparing endothelial cells
from fetal brain (left) and fetal periphery (right) (a), fetal (left) and adult/control brains (right)
(b), adult/control (left) and pathological brains (right) (c) (Benjamini Hochberg correction; P-
value<0.05 and log2FC>0.25 colored significant in red). b, Heatmap and hierarchical
clustering of all significant genes comparing fetal and adult/control brain endothelial cells.
b,f,i, Venn diagram showing the number of differentially expressed genes between the
indicated enities. c,e,h Enrichment map visualizing the significantly enriched pathways from
the GSEA analysis performed on the ranked list of differentially expressed genes between
fetal and adult/control brain endothelial cells. Results include enriched genesets belonging to
development and NVL, angiogenesis, cell-cell/extracellular matrix interaction, metabolism,

and immune related processes.
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Extended Data Figure 6

a-c, Venn diagram showing the number of differentially expressed genes between the
indicated tissue types. d, Enrichment map visualizing the 357 commonly enriched pathways
from the GSEA pathway analysis, commonly enriched to fetal and pathological brain
endothelial cells as compared to adult/control brain endothelial cells. Results include enriched
genesets belonging to development and NVL, angiogenesis, cell-cell/extracellular matrix

interaction, metabolism, and immune related processes.
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Extended Data Figure 7

a,e, UMAP plot of the 296,208 batch corrected ECs, color-coded by seurat clusters (a), cluster
annotation in indicated in the legend and by tissue of origin (e). b-d, UMAP showed in (a)
split by tissue of origin: fetal brain (b), adult/control brain (c) and brain pathologies (d). f,g,
Relative abundance (f) and absolute number of (g) endothelial cells in the different seurat
clusters, color-code corresponds to tissue of origin: fetal brain (green), adult/control brain
(cyan) and brain pathologies (red). h, UMAPs plots, color-coded for expression of indicated

marker genes (red arrowheads).
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Extended Data Figure 8

a-l, Volcano plot showing the differential expression analysis comparing endothelial cells
from adult/control brains (left) and the indicated entity (right) (Benjamini Hochberg
correction; P-value<0.05 and log2FC>0.25 colored significant in red, PLVAP is colored
blue). m, Expression heatmap of the top 25 differentially expressed genes in adult/control vs.
pathological brain ECs. n-n’, Immunofluorescence (IF) and RNAscope imaging of tissue
sections from the indicated entities, stained for PLVAP (red; a‘-n¢, RNAscope; o-z, IF) and
CD31 (green). Nuclei are stained with DAPI (blue). Boxed area is magnified on the right;
arrowheads (IF) and dotted lines (RNAscope) indicate vascular structures in the different
tissues. Scale bars: 200um in overviews (IF), 50um in overviews (RNAscope); 50um in

zooms (IF) and 12.5um in zooms (RNAscope).
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Extended Data Figure 9

a-Xx, RNAscope imaging of tissue sections from the indicated entities, stained for ESM1 (red;
a-1), ACTAZ2 (red; m-x) and CD31 (green). Nuclei are stained with DAPI (blue). Boxed area
is magnified on the right; dotted lines (RNAscope) indicate vascular structures in the different

tissues. Scale bars: 50um in overviews and 12.5um in zooms.
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Extended Data Figure 10

a,b, UMAP plot of GBMs and METSs endothelial cells, colored by AV specification. b-i, 0-v,
Violin plots showing the expression of the indicated endothelial and stem cell specific
markers in the different EC subtypes. j-m, Immunofluorescence staining showing co-
localization of SOX2 (j,k), PTPRZ1 (I,m), EPCAM (w,x), SFTPB (y,z) and CD31. Scale bars:
200 pum in overviews (left) and 50 um in zooms (right), in blood vessels of human GBMs and

METs.
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Extended Data Figure 11

a-s, UMAP plots of ECs for each tissue of origin indicated, color-coded by ECs arteriovenous
(AV) specification. Barplots showing the number and proportion of each EC subtype are

shown below each corresponding UMAP.
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Extended Data Figure 12

a-c, Circle plot showing the strength of statistically significant signaling interactions between
EC subtypes of adult/control brain (a), pathological brain (b) and the differential analysis of
the number of interactions (pathology over control) (c), red indicating upregulation, while
blue indicating downregulation. d, Heatmap showing the differential analysis of the number
(left) and strength (right) of ligand-receptor interactions for different EC subtypes (pathology
over control). e,f, Barplots showing the number (e) and strength (n) of interactions in
adult/control brains (TL) and pathological brains (PATH) endothelial cells. g,h, Scatter plot
showing the strength of outgoing (x-axis) and incoming (y-axis) signaling pathways of
different EC subtypes from temporal lobe and pathological brains. i-m, Circle plot showing
the strength of VEGF (i), NOTCH (j), ANGPT (k), ANGPTL (I) and APELIN (m) signaling
interactions between temporal lobe and pathological brain endothelial cells (color-coded by

AV specification).
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Extended Data Figure 13

a-c, Circle plot showing the strength of statistically significant signaling interactions between
EC subtypes of adult/control brain (a), fetal brain (b) and the differential analysis of the
number of interactions (pathology over control) (c), red indicating upregulation, while blue
indicating downregulation. d,e, Heatmap showing overall signaling patterns of different EC

subtypes in adult/control (d) and fetal (e) brains.
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Extended Data Figure 14

a,b, Circle plot showing the differential analysis of the number (a) and strength (b) of
statistically significant ligand-receptor interactions between EC subtypes in adult/control and
fetal brains. ¢, Heatmap showing the differential analysis of the number (left) and strength
(right) of ligand-receptor interactions for different EC subtypes (fetal over adult/control). d,e,
Barplots showing the number (d) and strength (e) of interactions in fetal brain (FETAL) and
adult/control brain (TL) endothelial cells. f,g, Scatter plot showing the strength of outgoing
(x-axis) and incoming (y-axis) signaling pathways of different EC subtypes from fetal and
adult/control brains. h-m, Circle plot showing the strength of VEGF (h), NOTCH (i), ANGPT
(1), ANGPTL (k), APELIN (I) and MHC class 1l signaling interactions between fetal brain and

adult/control brain endothelial cells (color-coded by AV specification).
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Extended Data Figure 15

a,b, Chord plots showing the ligand-receptor signaling interactions between ECs subtypes
upregulated in pathological as compared to adult/control brains; signaling pathways sending
from (a) and receiving by angiogenic capillaries (b). Edge thickness represents edge weights

and edge color indicates the sender cell type.
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Extended Data Figure 16

a,b, Chord plots showing the ligand-receptor signaling interactions between ECs subtypes
upregulated in fetal as compared to adult/control brains; signaling pathways sending from (a)
and receiving by angiogenic capillaries (b). Edge thickness represents edge weights and edge

color indicates the sender cell type.
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Extended Data Figure 17

a,b, Barplot showing pathway distance; the overlapping signaling pathways between fetal and
adult/control brain (a), pathological and adult/control brain (b) endothelial cells were ranked
based on their pairwise Euclidean distance in the shared two-dimensional manifold. c-f,
Barplot showing the relative (left panel) and absolute (right panel) information flow of all
significant signaling pathways within the inferred networks between fetal and adult/control
brain endothelial cells (c,d), and between pathological and adult/control brain endothelial
cells (e,f). g,h, Jointly projecting and clustering signaling pathways from fetal, adult/control
and pathological brain endothelial cells onto shared two-dimensional manifold according to
their functional similarity of the inferred networks (g) and magnified view in (h). Circles,
squares and triangle symbols represent the signaling networks from fetal, adult/control and
pathological brains. Each circle/square/triangle represents the communication network of one
signaling pathway. Symbol size is proportional to the total communication probability of that

signaling network. Different colors represent different groups of signaling pathways.
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Extended Data Figure 18

a,b,f,i,jm,n, UMAP plots of human brain ECs isolated from all the brain vascular
malformations (a,b), temporal lobes adjacent to cavernoma (e,f), cavernoma (i,j) and
arteriovenous malformations (m,n) colored by AV specification (a,e,i,m) and by pseudotime
(b,f,j,n). c,g,k,0, Pseudotime order of ECs color-coded according to AV specification from all
the brain vascular malformations (c), temporal lobes adjacent to cavernoma (g), cavernoma
(k) and arteriovenous malformations (0). d,h,l,p, Heatmap of adult/control brain ECs AV
specification signature gene expression in human brain ECs isolated from all the brain
vascular malformations (d), temporal lobes adjacent to cavernoma (h), cavernoma (I) and

arteriovenous malformations (p).
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Extended Data Figure 19

a,b,e,f,i,jm,n,q,r,uv, UMAP plots of human brain ECs isolated from all the brain tumors
(a,b), hemangioblastoma (e,f), low-grade glioma (i,j) glioblastoma (m,n), metastasis (q,r) and
meningioma (u,v) colored by AV specification (a,e,i,m,q,u) and by pseudotime (b,f,j,n,r,v).
¢,0,k,0,s,w, Pseudotime order of ECs color-coded according to AV specification from all the
brain tumors (c), hemangioblastoma (g), low-grade glioma (k) glioblastoma (0), metastasis (s)
and meningioma (w). d,h,l,p,t,x, Heatmap of adult/control brain ECs AV specification
signature gene expression in human brain ECs isolated from all the brain tumors (d),

hemangioblastoma (h), low-grade glioma (I) glioblastoma (p), metastasis (t) and meningioma

(x).
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Extended Data Figure 20
a-j, Gene expression of the indicated AV specification markers along the pseudotime
trajectory in fetal brain (a-e), adult/control brain (f-g), and pathological brain (k-o0) ECs.

Spline (orange) and density of black lines (counts) correspond with average expression levels.
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Extended Data Figure 21
a-j, Sankey plot showing the predicted annotation of the ECs of the indicated entities as
mapped to adult/control brain (TL) ECs. k, Sankey plot showing the predicted annotation of

pathological ECs as mapped to fetal brain ECs. Unassigned cells are indicated in grey.
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Extended Data Figure 22

a,d, UMAP plot of adult ECs from Han et al., Nature 2020%° (a) and fetal ECs (d) colored by
CNS and peripheral identity. b,c, Dotplot heatmap of the adult endothelial CNS signature (b)
and peripheral signature (c) genes enriched in the respective EC populations. e,f, Dotplot
heatmap of the fetal endothelial CNS signature (e). g, Dotplot heatmap of the adult peripheral
EC signature genes in fetal, adult/control (temporal lobes) and pathological brain ECs. h,
Dotplot heatmaps of CNS signature at the level of AV specification for the indicated entities.
Color scale: red, high expression; blue, low expression, whereas the dot size represents the
percentage expression within the indicated entity. i, Venn diagram showing the overlap
between the top 50 CNS signature genes obtained from human adult, human fetal and mouse
ECs. j, Enrichment analysis of human adult CNS endothelial signature showing the top 10
enriched gene ontology biological process (GOBP) genesets. i, Enrichment analysis of human

adult peripheral endothelial signature. The top 10 enriched GOBP genesets.
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Extended Data Figure 23

a-l, UMAP plots of ECs from fetal brains (a), adult/control brains (b), brain vascular
malformations (c), brain tumors (d), temporal lobe adjacent to cavernoma (e), cavernoma (f),
arteriovenous malformations (g), hemangioblastoma (h), low-grade glioma (i), glioblastoma
(J), metastasis (k) and meningioma (I). Plots are color-coded for adult EC CNS signature
(green, left panel), adult EC peripheral signature (yellow, middle panel), and blend of both

signatures (right panel).
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Extended Data Figure 24

a-l, UMAP plots of ECs from fetal brains (a), adult/control brains (b), brain vascular
malformations (c), brain tumors (d), temporal lobe adjacent to cavernoma (e), cavernoma (f),
arteriovenous malformations (g), hemangioblastoma (h), low-grade glioma (i), glioblastoma
(J), metastasis (k) and meningioma (I). Plots are color-coded for fetal EC CNS signature
(green, left panel), fetal EC peripheral signature (yellow, middle panel), and blend of both

signatures (right panel).
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Extended Data Figure 25

a-c, UMAP plots of the ECs from fetal brains (a), adult/control brains (b), and pathological
brains (c). Plots are color-coded for fetal ECs CNS signature (green, left panel), fetal ECs
peripheral signature (yellow, middle panel) and a blend of both signatures (right panel). d,
Dotplot heatmaps of fetal CNS signature genes expression in fetal brain, adult/control brains
(temporal lobes) and pathological brain ECs. e,f, Dotplot heatmaps of the fetal CNS and
peripheral signature expression in fetal brain, adult/control brain, and pathological brain ECs
(e) and in each individual entity (f). Color scale: red, high expression; blue, low expression,

whereas the dot size represents the percentage expression within the indicated entity.
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Extended Data Figure 26

a-l, UMAP plots of ECs from fetal brains (a), adult/control brains (b), brain vascular
malformations (c), brain tumors (d), temporal lobe adjacent to cavernoma (e), cavernoma (f),
arteriovenous malformations (g), hemangioblastoma (h), low-grade glioma (i), glioblastoma
(J), metastasis (k) and meningioma (I). Plots are color-coded for adult EC CNS signature
(green, left panel), BBB dysfunction module signature (brown, middle panel), and blend of

both signatures (right panel).
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Extended Data Figure 27

a-l, UMAP plots of ECs from fetal brains (a), adult/control brains (b), brain vascular
malformations (c), brain tumors (d), temporal lobe adjacent to cavernoma (e), cavernoma (f),
arteriovenous malformations (g), hemangioblastoma (h), low-grade glioma (i), glioblastoma
(J), metastasis (k) and meningioma (l). Plots are color-coded for mouse EC CNS signature
(green, left panel), mouse EC peripheral signature (yellow, middle panel), and blend of both

signatures (right panel).
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Extended Data Figure 28

a-l, UMAP plots of ECs from fetal brains (a), adult/control brains (b), brain vascular
malformations (c), brain tumors (d), temporal lobe adjacent to cavernoma (e), cavernoma (f),
arteriovenous malformations (g), hemangioblastoma (h), low-grade glioma (i), glioblastoma
(1), metastasis (k) and meningioma (I). Plots are color-coded for adult human peripheral EC
signature (yellow, left panel), BBB dysfunction module signature (brown, middle panel), and

blend of both signatures (right panel).

69


https://doi.org/10.1101/2021.10.18.464715

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.18.464715; this version posted October 19, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Extended Data Figure 29

a-dii, Immunofluorescence (IF) imaging of tissue sections from the indicated entities, stained
for SPOCKS (red; a-n¢), BSG (red; o-bi¢), CD320 (red; ci-pi¢), GPCPD1 (red; gi-dii*) and
CD31 (green). Nuclei are stained with DAPI (blue). Boxed area is magnified on the right;
arrowheads indicate vascular structures in the different tissues. Scale bars: 200um in

overviews, 50um in zooms.
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Extended Data Figure 30

a-bi¢, Immunofluorescence (IF) imaging of tissue sections from the indicated entities, stained
for PPP1R141 (red; a-n¢), SLC38A5 (red; o-bi¢) and CD31 (green). Nuclei are stained with
DAPI (blue). Boxed area is magnified on the right; arrowheads indicate vascular structures in

the different tissues. Scale bars: 200um in overviews, 50um in zooms.
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Extended Data Figure 31

a-ni¢, Immunofluorescence (IF) imaging of tissue sections from the indicated entities, stained
for OCLN (red; a-1¢), ZO1 (red; 0-z¢), GLUT1 (red; ci-ni¢) and CD31 (green). Nuclei are
stained with DAPI (blue). Boxed area is magnified on the right; arrowheads indicate vascular

structures in the different tissues. Scale bars: 200um in overviews, 50um in zooms.
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Extended Data Figure 32

a-l, UMAP plots of ECs from fetal brains (a), adult/control brains (b), brain vascular
malformations (c), brain tumors (d), temporal lobe adjacent to cavernoma (e), cavernoma (f),
arteriovenous malformations (g), hemangioblastoma (h), low-grade glioma (i), glioblastoma
(J), metastasis (k) and meningioma (l). Plots are color-coded for MHC class Il signature
(violet, left panel), CNS signature (green, middle panel), and blend of both signatures (right

panel).
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Extended Data Figure 33

a-l, UMAP plots of ECs from fetal brains (a), adult/control brains (b), brain vascular
malformations (c), brain tumors (d), temporal lobe adjacent to cavernoma (e), cavernoma (f),
arteriovenous malformations (g), hemangioblastoma (h), low-grade glioma (i), glioblastoma
(J), metastasis (k) and meningioma (l). Plots are color-coded for MHC class Il signature
(violet, left panel), peripheral signature (yellow, middle panel), and blend of both signatures

(right panel).
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Extended Data Figure 34

a-l, UMAP plots of ECs from fetal brains (a), adult/control brains (b), brain vascular
malformations (c), brain tumors (d), temporal lobe adjacent to cavernoma (e), cavernoma (f),
arteriovenous malformations (g), hemangioblastoma (h), low-grade glioma (i), glioblastoma
(J), metastasis (k) and meningioma (l). Plots are color-coded for MHC class Il signature
(violet, left panel), BBB dysfunction module signature (brown, middle panel), and blend of

both signatures (right panel).
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Extended Data Figure 35

a-c, Bar plots showing the relative contribution of each ligand-receptor pair to the overall
communication network of MHC class Il signaling pathway and heatmaps showing the
relative importance of each cell type based on the computed network centrality in the fetal (a),
adult/control (b) and pathological (c) brain ECs. d, Violin plot showing the expression of the
main ligand and receptors participating in MHC class Il signaling interactions in EC subtypes
of fetal, adult control and pathological brains. e-zii, Visualization of the differential analysis -
pathological brain ECs over adult/control brain ECs - of MHC class Il signaling ligand-
receptor pairs in the indicated EC subtypes (left panel as sender, and right panel as receiver).
e,g,i, Chord/circos plots showing the upregulated MHC class Il signaling in arteries as source
and all EC clusters as targets (e, large arteries; g, arteries; i, arterioles). f,h,j, Chord/circos
plots showing the upregulated MHC class Il signaling in arteries as target and all EC clusters
as source (f, large arteries for which there was no upregulation; h, arteries for which there was
no upregulation; j, arterioles). k,m, Chord/circos plots showing the upregulated MHC class 11
signaling in capillaries as source and all EC clusters as targets (k, angiogenic capillaries; m,
capillaries). 1,n, Chord/circos plots showing the upregulated MHC class Il signaling in
capillaries as target and all EC clusters as source (I, angiogenic capillaries; n, capillaries).
0,9,s, Chord/circos plots showing the upregulated MHC class Il signaling in veins as source
and all EC clusters as targets (o, large veins; q, veins; t, venules). p,r,t, Chord/circos plots
showing the upregulated MHC class Il signaling in veins as target and all EC clusters as
source (p, large veins; r, veins; t, venules). u, Chord/circos plots showing the upregulated
MHC class Il signaling in mitochondrial EC subtype as source and all EC clusters as targets.
v, Chord/circos plots showing the upregulated MHC class Il signaling in mitochondrial EC
subtype as target and all EC clusters as source. w, Chord/circos plots showing the upregulated
MHC class Il signaling in EndoMT as source and all EC clusters as targets. x, Chord/circos

plots showing the upregulated MHC class Il signaling in EndoMT as target and all EC
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clusters as source. y, Chord/circos plots showing the upregulated MHC class Il signaling in
proliferating ECs as source and all EC clusters as targets. z, There was no upregulated MHC
class Il signaling in proliferating ECs as target and all EC clusters as source. zi, Chord/circos
plots showing the upregulated MHC class Il signaling in stem-to-EC as source and all EC
clusters as targets. x, Chord/circos plots showing the upregulated MHC class Il signaling in

stem-to-EC as target and all EC clusters as source.
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Extended Data Figure 36

a-lii¢, Immunofluorescence (IF) and RNAscope imaging of tissue sections from the indicated
entities, stained for HLA-DPA1 (red; a-I¢, IF; m-r¢, RNAscope), HLA-DRA (red; s-di¢, IF),
CD74 (red; ei-ri¢, IF; si-xi¢, RNAscope), HLA-DRB5 (red; yi-lii¢, IF) and CD31 (green).
Nuclei are stained with DAPI (blue). Boxed area is magnified on the right; arrowheads (IF)
and dotted lines (RNAscope) indicate vascular structures in the different tissues. Scale bars:
200um in overviews (IF), 50um in overviews (RNAscope); 50um in zooms (IF) and 12.5um

in zooms (RNAscope).
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Extended Data Figure 37

a,f.k,p, UMAP plots of endothelial and perivascular cells derived from all brains vascular
malformations (a), temporal lobes adjacent to cavernomas (f), cavernomas (k) and
arteriovenous malformations (p). b,g,l,q, Ligand and receptor analysis of all brains vascular
malformations (b), temporal lobes adjacent to cavernomas (g), cavernomas (I) and
arteriovenous malformations (q) cells using CellphoneDB. Line thickness indicates the
number of interactions between cell types. Tables summarize the number of interactions for
each cell type. c,h,m,r, Heatmaps showing the number of ligand-receptor interactions
between the different cells of all brains vascular malformations (c), temporal lobes adjacent to
cavernomas (h), cavernomas (m) and arteriovenous malformations (r). d,i,n,s, Circle plots
showing the strength of MHC class Il signaling interactions between the different cell types of
all brain vascular malformations (d), temporal lobes adjacent to cavernomas (i), cavernomas
(n) and arteriovenous malformations (s) cells. e,j,0,t, Visualization of MHC class Il
connectomic analysis. Cord/circos plots of MHC class Il ligand-receptor interactions with EC
as “senders” (upper panel) and as “receivers” (lower panel) in all brain vascular
malformations (e), temporal lobes adjacent to cavernomas (j), cavernomas (o) and
arteriovenous malformations (t) cells. Edge thickness represents its weights, whereas edge

color indicates the “sender” cell type.
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Extended Data Figure 38

a,f,k,p,u,z, UMAP plots of endothelial and perivascular cells derived from all brains tumors
(a), hemangioblastoma (f), low-grade glioma (k), glioblastoma (p), metastasis (u), and
meningioma (z). b,g,l,q,v,zi, Ligand and receptor analysis of all brains tumors (b),
hemangioblastoma (g), low-grade glioma (I), glioblastoma (qg), metastasis (u) and
meningioma (zi) cells using CellphoneDB. Line thickness indicates the number of interactions
between cell types. Tables summarize the number of interactions for each cell type.
c¢,h,m,r,w,zii, Heatmaps showing the number of ligand-receptor interactions between the
different cells of all brains tumors (c), hemangioblastoma (h), low-grade glioma (m),
glioblastoma (r), metastasis (w) and meningioma (zii). d,i,n,s,x,ziii, Circle plots showing the
strength of MHC class Il signaling interactions between the different cell types of all brain
tumors (d), hemangioblastoma (i), low-grade glioma (n), glioblastoma (s), metastasis (x) and
meningioma (ziii) cells. e,j,0,t,y,ziv, Visualization of MHC class Il connectome analysis.
Cord/circos plots of MHC class Il ligand-receptor interactions with EC as “senders” (upper
panel) and as “receivers” (lower panel) in all brain tumors (e), hemangioblastoma (j), low-
grade glioma (0), and glioblastoma (t), metastasis (y) and meningioma (ziv) cells. Edge

thickness represents its weights, whereas edge color indicates the “sender” cell type.
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Extended Data Figure 39

a-m, Bar plots showing the relative contribution of each ligand-receptor pair to the overall
communication network of MHC class Il signaling pathway, and heatmaps showing the
relative importance of each cell type based on the computed network centrality in the

indicated tissues.
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Extended Data Figure 40

a-c, Circle plot showing the number of statistically significant signaling interactions between
cells of adult/control brain (a), pathological brain (b) and the differential analysis of the
number of interactions (pathology over control) (c), red indicating upregulation, while blue
indicating downregulation. d, Heatmap showing the differential analysis of the number (left)
and strength (right) of ligand-receptor interactions for different cell types (pathology over
control). e,f, Scatter plot showing the strength of outgoing (x-axis) and incoming (y-axis)
signaling pathways of different cell types from temporal lobe and pathological brains. g-k,
Circle plot showing the strength of VEGF (g), NOTCH (h), ANGPT (i), ANGPTL (j) and
APELIN (k) signaling interactions between temporal lobe and pathological brain cells (color-

coded by cell type).
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Extended Data Figure 41
a, Heatmap showing overall signaling patters of different cell types in adult/control brains

(TL, left panel) and fetal brains (right panel).
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Extended Data Figure 42

a-c, Circle plot showing the number of statistically significant signaling interactions between
cells of fetal brains (a), adult/control brain (b) and the differential analysis of the number of
interactions (fetal over adult/control brains), red indicating upregulation, while blue indicating
downregulation (c). e-g, Circle plot showing the strength of signaling interactions between
cells of fetal brains (e), adult/control brain (f) and the differential analysis of the strength of
interactions (fetal over adult/control brains), red indicating upregulation, while blue indicating
downregulation (g). d,h, Bar plots showing the number (d) and strength of interactions (h) in
fetal and adult/control brain (TL) cells. i, Heatmap showing the differential analysis of the
number (left) and strength (right) of ligand-receptor interactions between different cell types
(fetal over adult/control brains). j,k, Scatter plot showing the strength of of outgoing (x-axis)
and incoming (y-axis) signaling pathways of different cell types from fetal and adult/control
brains (TL). I-q, Circle plot showing the strength of VEGF (I) , NOTCH (m), ANGPT (n),
ANGPTL (0), APELIN (p) and MHC 11 (q) signaling interactions between fetal and temporal

lobe cells (color-coded by cell type).
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Extended Data Figure 43
a,b, Chord plots showing the ligand-receptor signaling interactions between perivascular cells
and ECs in adult/control brains; signaling pathways sending from (a) and receiving by

endothelial cells (b). Edge thickness represents edge weights and edge color indicates the

sender cell type.
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Extended Data Figure 44
a,b, Chord plots showing the ligand-receptor signaling interactions between perivascular cells
and ECs in pathological brains; signaling pathways sending from (a) and receiving by

endothelial cells (b). Edge thickness represents edge weights and edge color indicates the

sender cell type.
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Extended Data Figure 45

a,b, Chord plots showing the ligand-receptor signaling interactions between perivascular cells
and ECs upregulated in pathological as compared to adult/control brains; signaling pathways
sending from (a) and receiving by endothelial cells (b). Edge thickness represents edge

weights and edge color indicates the sender cell type.
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Extended Data Figure 46

a,b, Chord plots showing the ligand-receptor signaling interactions between perivascular cells
and ECs upregulated in fetal as compared to adult/control brains; signaling pathways sending
from (a) and receiving by endothelial cells (b). Edge thickness represents edge weights and

edge color indicates the sender cell type.
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Extended Data Figure 47

a,b, Barplot showing pathway distance; the overlapping signaling pathways between fetal and
adult/control brains (a), pathological and adult/control brains (b) were ranked based on their
pairwise Euclidean distance in the shared two-dimensional manifold. c-f, Barplot showing the
relative (left panel) and absolute (right panel) information flow of all significant signaling
pathways within the inferred networks between fetal and adult/control brain cells (c,d), and
between pathological and adult/control brain cells (e,f). g, Jointly projecting and clustering
signaling pathways from fetal, adult/control and pathological brains onto shared two-
dimensional manifold according to their functional similarity of the inferred networks.
Circles, squares and triangle symbols represent the signaling networks from fetal,
adult/control and pathological brains. Each circle/square/triangle represents the
communication network of one signaling pathway. Symbol size is proportional to the total
communication probability of that signaling network. Different colors represent different

groups of signaling pathways.
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Supplementary Figure 1
a,b,c, Heatmap and hierarchical clustering of all significant genes comparing fetal brain and
fetal periphery ECs (a), fetal and adult/control brain ECs (b), adult/control and pathological

brain ECs (c).
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Supplementary Figure 2

a, Volcano plot showing the differential expression analysis comparing endothelial cells
adult/control brain (left) and brain vascular malformations (right), (Benjamini Hochberg
correction; p-value < 0.05 and log2FC>0.25 colored significant in red). b, Heatmap and
hierarchical clustering of all significant genes comparing adult/control brain and brain
vascular malformations endothelial cells. ¢, Enrichment map visualizing the significantly
enriched pathways from the GSEA analysis performed on the ranked list of differentially
expressed genes between brain vascular malformation and adult/control brain endothelial
cells. Results include enriched genesets belonging to development and NVL, angiogenesis,
cell-cell/extracellular matrix interaction, metabolism, and immune related processes.

d, Expression heatmap of the top 25 ranking marker genes in the indicated tissues. Color
scale: red, high expression; white, intermediate expression; blue, low expression.
e, Over-representation (enrichment) analysis shown as dotplots representing the top 50

pathways enriched in brain vascular malformations as compared to adult/control brain ECs.
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Supplementary Figure 3

a, Volcano plot showing the differential expression analysis comparing endothelial cells from
adult/control brains (left) and brain tumor (right), (Benjamini Hochberg correction; p-value <
0.05 and 10g2FC>0.25 colored significant in red). b, Heatmap and hierarchical clustering of
all significant genes comparing adult/control brain and brain tumor endothelial cells. c,
Enrichment map visualizing the significantly enriched pathways from the GSEA analysis
performed on the ranked list of differentially expressed genes between brain tumor and
adult/control brain endothelial cells. Results include enriched genesets belonging to
development and NVL, angiogenesis, cell-cell/extracellular matrix interaction, metabolism,
and immune related processes. d, Expression heatmap of the top 25 ranking marker genes in
the indicated tissues. Color scale: red, high expression; white, intermediate expression; blue,
low expression. e, Over-representation (enrichment) analysis shown as dotplots representing

the top 50 pathways enriched in brain tumor as compared to adult/control brain ECs.
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Supplementary Figure 4

a, Volcano plot showing the differential expression analysis comparing endothelial cells from
extra-axial tumors (left) and intra-axial tumor (right), (Benjamini Hochberg correction; p-
value < 0.05 and log2FC>0.25 colored significant in red). b, Heatmap and hierarchical
clustering of all significant genes comparing extra-axial tumors (left) and intra-axial tumor
(right) endothelial cells. ¢, Expression heatmap of the top 25 ranking marker genes in the
indicated tissues. Color scale: red, high expression; white, intermediate expression; blue, low
expression. d, Over-representation (enrichment) analysis shown as dotplots representing the

top 50 pathways enriched in intra-axial tumors as compared to extra-axial tumors' ECs.
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Supplementary Figure 5

a, Volcano plot showing the differential expression analysis comparing endothelial cells from
secondary brain tumors (left) and primary brain tumors(right), (Benjamini Hochberg
correction; p-value < 0.05 and log2FC>0.25 colored significant in red). b, Heatmap and
hierarchical clustering of all significant genes comparing primary and secondary brain tumor
endothelial cells. ¢, Enrichment map visualizing the significantly enriched pathways from the
GSEA analysis performed on the ranked list of differentially expressed genes between
primary and secondary brain tumor endothelial cells. Results include enriched genesets
belonging to development and NVL, angiogenesis, cell-cell/extracellular matrix interaction,
metabolism, and immune related processes. d, Expression heatmap of the top 25 ranking
marker genes in the indicated tissues. Color scale: red, high expression; white, intermediate
expression; blue, low expression. e, Over-representation (enrichment) analysis shown as
dotplots representing the top 50 pathways enriched in primary as compared to secondary brain

tumor ECs.
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Supplementary Figure 6

a, Volcano plot showing the differential expression analysis comparing endothelial cells from
low grade glioma (left) and glioblastoma (right), (Benjamini Hochberg correction; p-value <
0.05 and 10g2FC>0.25 colored significant in red). b, Heatmap and hierarchical clustering of
all significant genes comparing low grade glioma and glioblastoma endothelial cells.
¢, Enrichment map visualizing the significantly enriched pathways from the GSEA analysis
performed on the ranked list of differentially expressed genes between glioblastoma and low
grade glioma endothelial cells. Results include enriched genesets belonging to development
and NVL, angiogenesis, cell-cell/extracellular matrix interaction, metabolism, and immune
related processes. d, Expression heatmap of the top 25 ranking marker genes in the indicated
tissues. Color scale: red, high expression; white, intermediate expression; blue, low
expression. e, Over-representation (enrichment) analysis shown as dotplots representing the

top 50 pathways enriched in glioblastoma as compared to low grade glioma ECs.
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Supplementary Figure 7

a, Volcano plot showing the differential expression analysis comparing endothelial cells from
adult/control brain (left) and cavernoma (right), (Benjamini Hochberg correction; p-value <
0.05 and log2FC>0.25 colored significant in red). b, Enrichment map visualizing the
significantly enriched pathways from the GSEA analysis performed on the ranked list of
differentially expressed genes between cavernoma and adult/control brain endothelial cells.
Results include enriched genesets belonging to development and NVL, angiogenesis, cell-

cell/extracellular matrix interaction, metabolism, and immune related processes.
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Supplementary Figure 8

a, Volcano plot showing the differential expression analysis comparing endothelial cells from
adult/control brain (left) and arteriovenous malformation (right), (Benjamini Hochberg
correction; p-value < 0.05 and log2FC>0.25 colored significant in red). b, Heatmap and
hierarchical clustering of all significant genes comparing adult/control brain and arteriovenous
malformation endothelial cells. ¢, Enrichment map visualizing the significantly enriched
pathways from the GSEA analysis performed on the ranked list of differentially expressed
genes between arteriovenous malformation and adult/control brain endothelial cells. Results
include enriched genesets belonging to development and NVL, angiogenesis, cell-

cell/extracellular matrix interaction, metabolism, and immune related processes.
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Supplementary Figure 9

a, Volcano plot showing the differential expression analysis comparing endothelial cells from
adult/control brain (left) and hemangioblastoma (right), (Benjamini Hochberg correction; p-
value < 0.05 and log2FC>0.25 colored significant in red). b, Enrichment map visualizing the
significantly enriched pathways from the GSEA analysis performed on the ranked list of
differentially expressed genes between hemangioblastoma and adult/control brain endothelial
cells. Results include enriched genesets belonging to development and NVL, angiogenesis,

cell-cell/extracellular matrix interaction, metabolism, and immune related processes.
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Supplementary Figure 10

a, Volcano plot showing the differential expression analysis comparing endothelial cells from
adult/control brain (left) and low-grade glioma (right), (Benjamini Hochberg correction; p-
value < 0.05 and log2FC>0.25 colored significant in red). b, Heatmap and hierarchical
clustering of all significant genes comparing adult/control brain and low-grade glioma
endothelial cells.c, Enrichment map visualizing the significantly enriched pathways from the
GSEA analysis performed on the ranked list of differentially expressed genes between low-
grade glioma and adult/control brain endothelial cells. Results include enriched genesets
belonging to development and NVL, angiogenesis, cell-cell/extracellular matrix interaction,

metabolism, and immune related processes.

99


https://doi.org/10.1101/2021.10.18.464715

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.18.464715; this version posted October 19, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Supplementary Figure 11

a, Volcano plot showing the differential expression analysis comparing endothelial cells from
adult/control brain (left) and glioblastoma (right), (Benjamini Hochberg correction; p-value <
0.05 and 10g2FC>0.25 colored significant in red). b, Heatmap and hierarchical clustering of

all significant genes comparing adult/control brain and glioblastoma endothelial cells.
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Supplementary Figure 12

a, Volcano plot showing the differential expression analysis comparing endothelial cells from
adult/control brain (left) and brain metastasis (right), (Benjamini Hochberg correction; p-value
< 0.05 and log2FC>0.25 colored significant in red). b, Heatmap and hierarchical clustering of

all significant genes comparing adult/control brain and brain metastasis endothelial cells.
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Supplementary Figure 13

a, Volcano plot showing the differential expression analysis comparing endothelial cells from
adult/control brain (left) and meningioma (right), (Benjamini Hochberg correction; p-value <
0.05 and 10g2FC>0.25 colored significant in red). b, Heatmap and hierarchical clustering of
all significant genes comparing adult/control brain and meningioma endothelial cells.
¢, Enrichment map visualizing the significantly enriched pathways from the GSEA analysis
performed on the ranked list of differentially expressed genes between meningioma and
adult/control brain endothelial cells. Results include enriched genesets belonging to
development and NVL, angiogenesis, cell-cell/extracellular matrix interaction, metabolism,

and immune related processes.
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Supplementary Figure 14
a,b, Heatmap showing outgoing signalling patterns of different EC subtypes in adult/control
(a) and pathological (b) brains. c,d, Heatmap showing incoming signalling patterns of

different EC subtypes in adult/control (c) and pathological (d) brains.
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Supplementary Figure 15

a,b, Comparison of the significant ligand-receptor pairs between pathological and
adult/control brains, which contribute to the signalling sending from angiogenic capillaries to
all other EC subtypes (a) and to signalling received (b) by angiogenic capillaries from other
EC subtypes. Left panel are pathways upregulated in pathological brain as compared to
adult/control brain endothelial cells, while right panel are signalling pathways downregulated
in pathological brain as compared to adult/control brain endothelial cells. Dot colour reflects
communication probabilities and dot size represents computed p-values. Empty space means
the communication probability is zero. p-values are computed from one-sided permutation

test.
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Supplementary Figure 16
a,b, Heatmap showing outgoing signalling patterns of different EC subtypes in adult/control
(a) and fetal (b) brains. c,d, Heatmap showing incoming signalling patterns of different EC

subtypes in adult/control (c) and fetal (d) brains.

105


https://doi.org/10.1101/2021.10.18.464715

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.18.464715; this version posted October 19, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Supplementary Figure 17

a,b, Dotplot heatmap showing the comparison of the significant ligand-receptor pairs between
fetal and adult/control brains, which contribute to the signalling sending from angiogenic
capillaries to all other EC subtypes (a) and to signalling received (b) by angiogenic capillaries
from other EC subtypes. Left panel are pathways upregulated in fetal as compared to
adult/control brain endothelial cells, while right panel are signalling pathways downregulated
in pathological brain as compared to adult/control brain endothelial cells. Dot colour reflects
communication probabilities and dot size represents computed p-values. Empty space means
the communication probability is zero. p-values are computed from one-sided permutation

test.
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Supplementary Figure 18
a-n, Scatter plot showing the differential incoming and outgoing interaction strength of
pathways in the different EC subtypes - identifying signalling changes in those cells in

pathological as compared to adult/control brains.
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Supplementary Figure 19
a-n, Scatter plot showing the differential incoming and outgoing interaction strength of
pathways in the different EC subtypes - identifying signalling changes in those cells in fetal as

compared to adult/control brains.
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Supplementary Figure 20

a-i, Dotplot heatmap of MHC class | and Il ligand-receptor interactions in the indicated
entities analysed used cellphoneDB package; p-values are indicated by circle size, scale on
right. The means of the average expression level of interacting ligands and receptors in the
endothelial cells and the respective NVU cells are indicated by colour scale on the right (red,

high; yellow, medium-high; blue, medium-low; black, low).
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Supplementary Figure 21
a-r, Scatter plot showing the differential incoming and outgoing interaction strength of
pathways in the cell types in adult/control and pathological brains - identifying signalling

changes in those cells in pathological as compared to control conditions.
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Supplementary Figure 22
a-k, Scatter plot showing the differential incoming and outgoing interaction strength of
pathways in the cell types in fetal and adult/control brains - identifying signalling changes in

those cells in developmental as compared to adult/control states.
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Supplementary Figure 23
a,b, Heatmap showing outgoing signalling patterns of different cell types in adult/control (a)
and pathological (b) brains. c,d, Heatmap showing incoming signalling patterns of different

cell types in adult/control (c) and pathological (d) brains.
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Supplementary Figure 24
a,b, Heatmap showing outgoing signalling patterns of different cell types in adult/control (a)
and fetal (b) brains. c,d, Heatmap showing incoming signalling patterns of different cell types

in adult/control (c) and fetal (d) brains.
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Supplementary Figure 25

a,b, Dotplot heatmap showing the significantly upregulated ligand-receptor interactions in
pathological as compared to adult/control brains, which contribute to the signalling sending
from endothelial cells to all other cell types (a) and to signalling received (b) by endothelial
cells from other cell types. Dot colour reflects communication probabilities and dot size
represents computed p-values. Empty space means the communication probability is zero. p-

values are computed from one-sided permutation test.
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Supplementary Figure 26

a,b, Dotplot heatmap showing the comparison of a selection of significant ligand-receptor
pairs between adult/control and pathological brains, which contribute to the signalling sending
from endothelial cells to all other cell types (a) and to signalling received (b) by endothelial
cells from other cell types. Dot colour reflects communication probabilities and dot size
represents computed p-values. Empty space means the communication probability is zero. p-

values are computed from one-sided permutation test.
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Supplementary Figure 27

a,b, Dotplot heatmap showing the comparison of significant ligand-receptor pairs between
fetal and adult/control brains, which contribute to the signalling sending from endothelial cells
to all other cell types. Left panel are pathways upregulated in fetal brain as compared to
adult/control brain cells (a), while right panel are signalling pathways downregulated in fetal
brain as compared to adult/control brain cells (b). Dot colour reflects communication
probabilities and dot size represents computed p-values. Empty space means the

communication probability is zero. p-values are computed from one-sided permutation test.
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Supplementary Figure 28

a,b, Dotplot heatmap showing the comparison of significant ligand-receptor pairs between
fetal and adult/control brains, which contribute to the signalling received by endothelial cells
from all other cell types. Left panel are pathways upregulated in fetal brain as compared to
adult/control brain cells (a), while right panel are signalling pathways downregulated in fetal
brain as compared to adult/control brain cells (b). Dot colour reflects communication
probabilities and dot size represents computed p-values. Empty space means the

communication probability is zero. p-values are computed from one-sided permutation test.
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Extended Data Figure 2
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Extended Data Figure 3
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Extended Data Figure 5
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Extended Data Figure 6
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Extended Data Figure 7
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Extended Data Figure 9
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Extended Data Figure 10

Glioblastoma endothelial cells
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Extended Data Figure 12

Strength of interactions

Strength of interactions
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Extended Data Figure 13

a Adult/Control brain endothelial cells | [b Fetal brain endothelial cells e Differential analysis - PATH vs TL
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Extended Data Figure 14

_ Differential analysis - Fetal brain vs TL (Adult/Control brain)
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Extended Data Figure 15
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\Upregulated signaling pathways - angiogenic capillaries as recievers - FETAL vs TL ‘ ’Upregulated signaling pathways - angiogenic capillaries as senders - FETAL vs TL‘

Extended Data Figure 16
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Extended Data Figure 17

Fetal vs TL(Adult/Control brain) endothelial cells

Pathological vs TL(Adult/Control brain) endothelial cells
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Extended Data Figure 19
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Extended Data Figure 21
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Extended Data Figure 22
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Extended Data Figure 23
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Extended Data Figure 24
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Extended Data Figure 25
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Extended Data Figure 26
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Extended Data Figure 27
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Extended Data Figure 28
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Extended Data Figure 29
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Extended Data Figure 30
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Extended Data Figure 31
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Extended Data Figure 32
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Extended Data Figure 33
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Extended Data Figure 34
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Extended Data Figure 35
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Extended Data Figure 36
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Extended Data Figure 37
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Extended Data Figure 38 S
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Extended Data Figure 38 —
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Extended Data Figure 39
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Extended Data Figure 40
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Extended Data Figure 41
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Extended Data Figure 42
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Extended Data Figure 43

Signalling pathways sending from endothelial cells - TL

’ ‘
/ \ Smooth muscle cells
J / Oligodendrocytes
T cells
Microglia and Macrophages

/ Neutrophils
NK cells
Fibroblasts
Endothelial cells
B cells
Pericytes
Astrocytes
Stem cells

* Neurons
Neuron progenitor
Tumor cells

§ Erythroid cells

Mast cells
EndoMT

-..--—"" <

<

mEE z 3 %z

==Q A
F3

i}

o

Signalling pathways received by endothelial cells - TL

:’ LI
m |

\
it

i\

‘
fl

M



https://doi.org/10.1101/2021.10.18.464715

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.18.464715; this version posted October 19, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Extended Data Figure 44
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Extended Data Figure 45
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Upregulated signalling pathways - Endothelial cells as senders - FETAL vs TL

Upregulated signalling pathways - Endothelial cells as recievers - FETAL vs TL

Extended Data Figure 46
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Extended Data Figure 47

a Fetal vs TL(Adult/Control brain) cells | b | Pathological vs TL(Adult/Control brain) cells
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