
A Synthetic Data Experiment Setup

We generated synthetic data sets using four mechanisms varying the model (lin-
ear and nonlinear) and the features X (continuous or binary) shown in Table
1. Table 1 and Table 2 show the overall design of these synthetic data exper-
iments. In the models, Σ = CS(ρ) is a compound symmetric matrix, with all
the diagonal elements being one and all the off diagonal entries being ρ. The
errors are distributed as εij ∼ N (0, 1). We use (β1,β2, . . . ,βr) to denote the
coefficients vector. The nonlinear model, g(x) = 2 sin(x), is a single-index non-
linear model which has previously been used for benchmark purposes in feature
selection procedures using knockoffs [Lu et al., 2018, Zhu and Zhao, 2021].

Models Continuous Features Binary Features

Linear

Each row of X ∼ N (0,Σ) Each row of X ∼ N (0,Σ)

Yn×r = Xn×pβ + εn×r
Yn×r = Xn×pβ + εn×r

X∗ = 1(X > 0)
Observe (Yn×r, Xn×p) Observe (Yn×r, X∗

n×p)

Nonlinear

Each row of X ∼ N (0,Σ) Each row of X ∼ N (0,Σ)

Yn×r = 2sin (Xn×pβ) + εn×r
Yn×r = 2sin (Xn×pβ) + εn×r

X∗ = 1(X > 0)
Observe (Yn×r, Xn×p) Observe (Yn×r, X∗

n×p)

Table 1: Synthetic data generation mechanisms from each combination of model
and feature type, where β = (β1,β2, . . . ,βr).

Parameter Levels

Number of responses (r) 1000, 1500, 2000, 2500, 3000
Sample size (n) 300, 400, 500, 600
Correlation (ρ) in X 0.1, 0.3, 0.5, 0.7, 0.9
Sparsity level (t) in β 0.1, 0.3, 0.5, 0.7, 0.9

Table 2: Values of the key parameter values in each experiment setting.

B Implementation Details

The number of nodes in each layer of our neural network is 2r−r−64−32−p from
the input to the output, where r denotes the total number of response variables
and p denotes the number of features. The first layer is a pairwise-competing
layer and the rest layers are fully connected. In the first pairwise-competing
layer, there are r nodes and the jth node connects only response Yj and its

knockoff Ỹj to encourage competition between the two corresponding weights
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ψj and ψ̃j . L1-regularization and L2-regularization are used in all layers and
the tuning parameters are chosen as 0.001 for both. ReLU [Nair and Hinton,
2010] activation are only used for the hidden layers. Adam optimizer [Kingma
and Ba, 2014] is used as the optimization engine to update the neural network.
In this paper, we try to avoid data set specific tuning as much as possible. We
choose commonly used parameters for deep neural networks (DNNs). The batch
size is set as 100 and the learning rate is set as 0.001 with a common decay rate
of 1e-5 for every epoch in a batch setting. The number of epochs is 100. All
numerical experiments are run on a MacBook Pro with a 2.4 GHz Quad-Core
Intel Core i5 processor and 16GB memory. The algorithm is implemented in
Python 3.8.5.

C Real Data Preprocessing

There are five data processing levels in the NIH LINCS L1000 data set; we
focus on the level 4 data which provides a robust Z-scores for each gene nor-
malized with respect to the population of vehicle controls and the entire plate
population. The robust Z-score is the median absolute deviation (MAD) of
a data set and is more robust to single outliers than the mean. The score is
computed as: robust Z-score = (x− µ1/2)/MAD, where MAD is defined as the
median of the absolute deviation from the median of the data points X1 to Xn:
MAD = mediani(| Xi − median(X1, X2, . . . , Xn) |). We took a subset of the
data to focus on small molecule compounds including: vorinostat, trichostatin-a,
wortmannin, geldanamycin, sirolimus, all anthracycline drug perturbagens (RU-
BICIN) including “daunorubicin”, “epirubicin”, “idarubicin”, “doxorubicin”,
and “pirarubicin” giving a total treatment sample size of n = 12, 247. We obtain
the control group by randomly sampling n = 12, 247 samples with Dimethylsul-
foxide (DMSO) perturbations since DMSO is the control for compound treat-
ments considered in L1000.

We analyzed a subset of the data dealing with the following small molecule
perturbations:

vorinostat: a class of drugs in chemotherapy that can treat cutaneous T-cell
lymphoma.

trichostatin-a: an organic compound that serves as an antifungal antibiotic
and has some potential as an anti-cancer drug.

wortmannin: inhibits growth of cancer [Liu et al., 2005], inhibits proliferation,
induces apoptosis [Kim et al., 2012] and promotes cell death [Mizuno et al.,
2003, Jiang et al., 2011].

geldanamycin: an antitumor antibiotic that inhibits the function of Hsp90 by
binding to the unusual ADP/ATP-binding pocket of the protein, where
HSP90 client proteins play important roles in the regulation of the cell
cycle, cell growth, cell survival, apoptosis, angiogenesis and oncogenesis.
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sirolimus: an immunosuppressive drug that can prevent organ rejection after
a kidney transplant.

anthracycline: a class of drugs in cancer chemotherapy.

For cost efficiency, a custom L1000 instrument was developed for the project
to directly measure r = 978 “landmark” genes and to enable measurement
of millions of perturbation samples. Landmark genes were selected to make
imputation of other genes possible. We found that the empirical pairwise cor-
relation between landmark genes is below 0.5 for almost all pairs, indicating
little multicollinearity in the marginal distribution of the responses. We show
the histogram of pairwise correlation between all pairs of 978 landmark genes
in Figure 1.
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Figure 1: Histogram of pairwise correlation between all pairs of 978 landmark
genes.

After preprocessing, a response matrix of dimension n×r is obtained, where
n = 24, 494 and r = 978. The entries of the response matrix contain the robust
Z-scores for a gene (column) after perturbation (row). We divided this response
matrix into six different subsets where each subset only gets exposure to one
of the six drugs. The feature or covariate matrix is a single binary vector in-
dicating whether the perturbation is a control or a treatment with vorinostat,
trichostatin-a, wortmannin, geldanamycin, sirolimus, or anthracycline drugs.
Like other knockoff generation methods, our method is not deterministic, and
the selected response variables depend on the realization of Ỹ in each replica-
tion Sesia et al. [2019]. Thus, we report a ranking of these results over 100
independent replications of the model-Y knockoffs procedure.
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D Real Data Analysis Results

Vorinostat. The negative coefficient of COXA1 indicates that vorinostat has
treatment effect on Hurthle cell neoplasms (Figure 2). It has been reported
that Cytochrome C Oxidase Subunit 6A1 (COXA1 ) is involved in mitochon-
drial metabolism and is significantly overexpressed in tumors in Hurthle cell
neoplasms versus normal tissue [Canberk et al., 2021]. D’Arcy and Linder [2014]
reported that Ubiquitin C-Terminal Hydrolase L1 (UCHL1 ) showed decreased
activity in the tumor tissues, potentially indicating a tumor-suppressive role for
this protein. It has also been reported that loss of UCHL1 expression is a com-
mon occurrence with tumor tissues and silencing via methylation of the UCHL1
promoter has also been observed in biopsies of pancreatic cancer [Pérez-Mancera
et al., 2012] and prostate cancer [Sato et al., 2003, Ummanni et al., 2011]. The
positive coefficient of UCHL1 (Figure 2) in our analysis is concordant with these
previous observations.

Trichostatin-a. Our regression analysis produced a positive coefficient (Fig-
ure 3) for Cyclin D2 (CCND2 ) which indicates that CCND2 expression increases
with treatment with Trichostatin-a. Takai et al. [2004] have shown that Histone
deacetylase inhibitors (HDACIs) [suberoyl anilide bishydroxamine, valproic acid
(VPA), trichostatin A, and sodium butyrate] are able to inhibit endometrial can-
cer cell proliferation and stimulate apoptosis. In the altered gene expressions
related to the malignant phenotype, there is a decrease in Cyclin D1 (CCND1 )
and CCND2. The positive coefficient of CCND2 indicates a potential beneficial
treatment effect of trichostatin A.

Wortmannin. It has been reported that a single nucleotide polymorphism
in Meningioma expressed antigen 5 (MGEA5 ), encoding O-Glcnacase (OGA),
is associated with type 2 diabetes in a Mexican American population [Lehman
et al., 2005]. Wortmannin also has been found to have an effect on reducing
insulin signaling and death in seizure-prone mice [MacKay et al., 2012]. In our
study, we find that the expression of MGEA5 exposed to wortmannin pertur-
bations is increased (Figure 4). This leads to the hypothesis that the genetic
polymorphism leads to decreased protein activity and treatment by Wortman-
nin reverses the effects of this decrease by increasing expression levels of the
protein.

Geldanamycin. Hung et al. [2018] reported that CCND2 is a common biomarker
in lung and breast cancer. They suggested that increased CCND2 expression
can help inhibit cancer cell growth and migration ability in Taiwanese breast
cancer patients. In our study, the positive coefficient (Figure 5) estimate of
CCND2 indicates that the exposure of geldanamycin can help increase expres-
sion of CCND2 and geldanamycin can be a potential drug for breast cancer and
lung cancer and is consistent with preliminary reports of its potential [Ochel
et al., 2001].
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(a) Heatmap of true robust Z-scores for
selected important genes at FDR=0.1
across 100 replications.

(b) Heatmap of knockoff robust Z-
scores for selected important genes at
FDR=0.1 across 100 replications.
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(c) Robust Z-score of top 12 selected
genes at FDR=0.1 across 100 replica-
tions.
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(d) Mean and standard error of co-
efficients of top 12 selected genes at
FDR=0.1 across 100 replications.

Figure 2: Heatmap of true robust Z-scores for selected genes for vorinostat (a)
compared with knockoff responses (b). Density (c) and bar plots (d) with error
bars for top selected genes.

Sirolimus. Glycoprotein Nmb (GPNMB) is a melanoma-associated glycopro-
tein that is targeted by the CR011-vcMMAE antibody-drug conjugate (ADC)
and it has been shown that CR011-vcMMAE induces the apoptosis of GPNMB-
expressing tumor cells in vitro and tumor regression in xenograft models [Qian
et al., 2008]. That report also suggested the possibility of increasing the an-
ticancer activity of CR011-vcMMAE through pharmacological enhancement of
GPNMB expression for potential therapeutic benefit. The positive coefficient (
Figure 6) of GPNMB indicates that sirolimus indeed may have potential ther-
apeutic benefit in combination with other anticancer drugs.
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(a) Heatmap of true robust Z-scores for
selected important genes at FDR=0.1
across 100 replications.

(b) Heatmap of knockoff robust Z-
scores for selected important genes at
FDR=0.1 across 100 replications.
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(c) Robust Z-score of top 12 selected
genes at FDR=0.1 across 100 replica-
tions.
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(d) Mean and standard error of co-
efficients of top 12 selected genes at
FDR=0.1 across 100 replications.

Figure 3: Heatmap of true robust Z-scores for selected genes for trichostatin-a
(a) compared with knockoff responses (b). Density (c) and bar plots (d) with
error bars for top selected genes.
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(a) Heatmap of true robust Z-score for
selected important genes at FDR=0.1
across 100 replications.

(b) Heatmap of knockoff robust Z-
score for selected important genes at
FDR=0.1 across 100 replications.
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(c) Robust Z-score of top 12 selected
genes at FDR=0.1 across 100 replica-
tions.
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(d) Mean and standard error of co-
efficients of top 12 selected genes at
FDR=0.1 across 100 replications.

Figure 4: Heatmap of true robust Z-scores for selected genes for wortmannin
(a) compared with knockoff responses (b). Density (c) and bar plots (d) with
error bars for top selected genes.
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(a) Heatmap of true robust Z-score for
selected important genes at FDR=0.1
across 100 replications.

(b) Heatmap of knockoff robust Z-
score for selected important genes at
FDR=0.1 across 100 replications.
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(c) Robust Z-score of top 12 selected
genes at FDR=0.1 across 100 replica-
tions.
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(d) Mean and standard error of co-
efficients of top 12 selected genes at
FDR=0.1 across 100 replications.

Figure 5: Heatmap of true robust Z-scores for selected genes for geldanamycin
(a) compared with knockoff responses (b). Density (c) and bar plots (d) with
error bars for top selected genes.
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(a) Heatmap of true robust Z-score for
selected important genes at FDR=0.1
across 100 replications.

(b) Heatmap of knockoff robust Z-
score for selected important genes at
FDR=0.1 across 100 replications.
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(c) Robust Z-score of top 12 selected
genes at FDR=0.1 across 100 replica-
tions.
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(d) Mean and standard error of co-
efficients of top 12 selected genes at
FDR=0.1 across 100 replications.

Figure 6: Heatmap of true robust Z-scores for selected genes for sirolimus (a)
compared with knockoff responses (b). Density (c) and bar plots (d) with error
bars for top selected genes.
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