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With the emergence of large-scale sequencing data, methods for improving power in rare 
variant analyses (RVAT) are needed. Here, we show that adjusting for common variant 
polygenic scores improves the yield in gene-based RVAT across 65 quantitative traits in the 
UK Biobank (up to 20% increase at α=2.6x10-6), without a marked increase in false-positive 
rates or genomic inflation. Our results illustrate how adjusting for common variant effects 
can aid in rare variant association discovery. 
 
In recent years, large-scale biorepositories have seen an explosion in available high-depth 
sequencing data1,2, and investigators have increasingly leveraged gene-based tests to identify rare 
variants contributing to human phenotypic variability3-5. An important direction in the genetics field is 
to identify methods for improved power in rare variant association analyses (RVAT). Many 
quantitative traits have considerable heritability from common variants6. We therefore hypothesized 
that accounting for the effects attributable to common variants would improve power in RVAT. We 
leveraged the UK Biobank dataset, which contains imputed data on nearly 500,000 individuals7 as 
well as exome sequencing for over 200,000 individuals2. We show that adjusting for common 
variant effects, summarized in polygenic scores (PRS), improves the yield in gene-based RVAT 
across 65 quantitative traits.  
 

We first performed genome-wide association analyses (GWAS) for common variants (MAF≥1%) 

across 65 quantitative traits (Supplementary Table 1). We performed three types of GWAS, 
namely an out-of-sample GWAS within European samples who were not included in the exome 
sequencing subset (N=230k), an in-sample GWAS within European samples who were also exome 
sequenced (N=190k), and a ‘total’ GWAS within all European UK Biobank participants (N=460k) 
(Supplementary Figure 1). All traits had multiple independent genome-wide significant (P<5x10-8) 
common variant hits (Supplementary Figure 2A, Supplementary Table 2).  
 
Using the GWAS summary statistics, we then constructed PRS based on two methods, namely 
‘lead-SNP’ PRS (P<5x10-8 and r2<0.001), and genome-wide PRS using PRScs-auto8 (Methods). 
Thus, we analyzed six PRS per trait: PRSlead-SNP (out-sample), PRSCS (out-sample), PRSlead-SNP (in-sample), 
PRSCS (in-sample), PRSlead-SNP (total) and PRSCS (total). All types of PRS explained variance for their 
respective traits (Supplementary Figure 2B, Supplementary Table 2).  
 
We then performed exome-wide gene-based collapsing RVAT within the exome sequenced 
samples, focusing on ultra-rare loss-of-function (LOF) and missense variants with MAC<40 
(Methods). We ran RVAT models with no PRS included, as well as RVAT models adjusting for 
each type of PRS.  
 
All six PRS-adjusted models showed higher numbers of RVAT gene-phenotype associations at 
various significance cutoffs, compared to the model without a PRS (Figure 1A, Supplementary 
Figure 3, Supplementary Tables 3-4). PRSCS (out-sample) generally yielded more total associations 
than PRSlead-SNP (out-sample). The PRSCS (out-sample) model yielded 13.3% and 19.7% more significant 
associations at Bonferroni-corrected significance (α=7.2x10-8; 170 vs 150 associations), and 
conventional exome-wide significance (α=2.6x10-6; 261 vs 218 associations), respectively.  
PRSlead-SNP (in-sample) performed similarly to PRSlead-SNP (out-sample), while PRSCS (in-sample) generally 
performed the least well (Figure 1A).  
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At various significance thresholds, PRS-adjusted models significantly improved the P-values for top 
gene-phenotype associations, as compared to the model without PRS (Supplementary Figure 4 
and Supplementary Table 5). For example, the PRSCS (out-sample) adjusted model was associated 
with significantly higher -log10(P) values, for associations reaching conventional exome-wide 
significance (P=6x10-35, paired Wilcoxon signed-rank test) (Figure 1B; Supplementary Table 5).  
 
Many of the gene-phenotype associations that became significant after PRS-adjustment were 
biologically-plausible findings (Supplementary Note, Supplementary Table 6). As an example, for 
the phenotype height such associations included NPR3, LTBP2, P4HA1, FLNB, SEC24D and TTN 
(Figure 1C, Supplementary Note, Supplementary Figure 5). 
 
We found that h2

SNP was significantly associated with the per-trait improvement in number of 
significant associations after PRS-adjustment, particularly for PRSCS models (Supplementary 
Figure 6). Similarly, PRS R2 was a significant positive predictor for the per-trait change in 
association yield (Supplementary Figure 7).  
 
To assess genomic inflation and false-positive rates, we then performed exome-wide RVAT 
analyzing synonymous variants with MAC<40. At liberal α cutoffs, we observed association rates 
that were marginally higher or equivalent to the expectation under the null (Figure 2A, 
Supplementary Figure 3, Supplementary Table 7). At Bonferroni-corrected significance 
(α=4.3x10-8), we observed more hits than expected under the null (Supplementary Tables 8-9). 
We found that all these associations involved IGLL5 and white blood cell traits (Supplementary 
Table 10), possibly reflecting true association9. After removing IGLL5 from the analysis, 
synonymous association rates were well controlled at stringent α values (Supplementary Table 7).   
 
Importantly we did not observe a clear pattern where synonymous association rates were strongly 
increased after PRS adjustment. Using paired Wilcoxon signed-rank tests, we found no significant 
increase in -log10(P) values for the synonymous RVAT at various α levels, across the different 
types of PRS adjusted models (P>0.05 for all tests by paired Wilcoxon rank test; Supplementary 
Figure 4 and Supplementary Table 11). For example, at the α=0.05 level, estimated differences 
between models with PRS vs without PRS centered around 0 (Figure 2C, Supplementary Table 
11).  
 
We then assessed inflation factors, using per-trait λGC values (Supplementary Tables 12-13). In 
synonymous RVAT, per-trait λGC values did not increase after PRS adjustment across PRS types 
(Supplementary Figure 8, Supplementary Table 13). All per-trait synonymous λGC values were 
within acceptable limits at λGC<1.05 (Figure 2B), and test statistics were not inflated visually 
(Supplementary Figure 9).   
 
In conclusion, we find that adjustment for common variant PRS can improve the yield in gene-based 
RVAT, without markedly increasing false-positive rates and genomic inflation. The observed power 
increase likely reflects true biological variance being absorbed by PRS. Indeed, the genome-wide 
PRSCS performed better than PRSlead-SNP for out-of-sample GWAS data. Further, not all traits had 
equal benefit from PRS adjustment (sometimes having decreased yield), with SNP-heritability and 
PRS R2 being strong positive predictors of yield improvement. We note that for in-sample GWAS, 
PRSCS did not perform as well as other PRS, likely owing to overfitting of this genome-wide model. 
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We therefore recommend using large out-of-sample GWAS data when available, or using simple 
PRS models when independent GWAS data is not available. 
 
Our analysis was focused on burden testing of ultra-rare variants for quantitative traits. While our 
approach may not be optimal for low-frequency variants, it is useful for ultra-rare variants, which are 
of particular interest in contemporary sequencing studies. Furthermore, additional studies will be 
needed to evaluate PRS-adjustments for kernel-based RVAT methods and for binary traits. 
 
In sum, we show how adjusting for common variant effects can aid in rare variant association 
discovery. Our approach can be applied to enhance discovery yield in future rare variant analyses. 
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Data Availability 
Summary statistics from the common variant association analyses, summary statistics from the rare 
variant association analyses, and summary data for polygenic score construction will be made 
available for download through the Cardiovascular Disease Knowledge Portal upon publication 
(https://cvd.hugeamp.org). Summary statistics for the tests of the statistical properties of different 
RVAT models are included in the Supplementary Tables. Access to individual level UK Biobank 
data, both phenotypic and genetic, is available to bona fide researchers through application on the 
UK Biobank website (https://www.ukbiobank.ac.uk).   
 
Software and Code Availability 
Quality-control of individual level data was performed using Hail version 0.2 (https://hail.is) as well 
as PLINK version 2.0.a (https://www.cog-genomics.org/plink/2.0/). Variant annotation was 
performed using VEP version 95 (https://github.com/Ensembl/ensembl-vep). Main common variant 
association analyses (GWAS) were performed using REGENIE v2.0.2 
(https://github.com/rgcgithub/regenie). Genome-wide polygenic scores were computed using PRS-
CS (https://github.com/getian107/PRScs; githash: 43128be7fc9ca16ad8b85d8754c538bcfb7ec7b4). 
Main rare variant association analyses were performed using an adaptation of the R package 
GENESIS version 2.18 (https://rdrr.io/bioc/GENESIS/man/GENESIS-package.html), which has 
previously been made available by us through the GitHub repository 
https://github.com/seanjosephjurgens/UKBB_200KWES_CVD. Analyses were run within R version 
4.0 (https://www.r-project.org). 
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Online Methods 
 
Study population 
The UK Biobank is a large population-based prospective cohort study from the United Kingdom with 
rich phenotypic and genetic data on 500,000 individuals aged 40-69 at enrollment10. Available 
genetic data currently includes genome-wide imputed data for almost all participants7, as well as 
whole exome sequencing data on approximately 200,000 individuals2. The UK Biobank resource 
was approved by the UK Biobank Research Ethics Committee and all participants provided written 
informed consent to participate. Use of UK Biobank data was performed under application number 
17488 and was approved by the local Massachusetts General Hospital Institutional Review Board. 
 
Phenotypes 
In the present study, we analyzed 65 quantitative traits, including anthropometric traits, metabolic 
blood markers, blood pressure traits, and a variety of blood count traits. Details and the number of 
samples for each trait per analysis are presented in Supplementary Table 1. All raw phenotypes 
were adjusted for lipid-lowering medication use (Supplementary Note), and were subsequently 
rank-based inverse normalized to ensure normality before analyses. 
 
Genetic datasets 
We utilized both genome-wide imputed data and whole exome sequencing data in the present 
study. Specifically, all common variant analyses were performed using genome-wide imputed data7. 
Briefly, genotyping was performed using Affymetrix UK Biobank Axiom (450,000 samples) and 
Affymetrix UK BiLEVE axiom (50,000 samples) arrays. Subsequently, the genetic data were 
imputed to the Haplotype Reference Consortium panel and UK10K + 1000 Genomes panels. We 
removed any samples that had withdrawn their consent, samples that were outliers for 
heterozygosity or missingness, individuals with putative sex chromosome aneuploidy, and 
individuals with a mismatch between self-reported and genetically inferred sex. We then removed all 
individuals who were determined to not be of homogeneous European ancestry (Supplementary 
Note). To ensure we analyzed only high-quality common imputed variants, we removed imputed 
variants with minor allele frequency (MAF) <1% and INFO <0.3. 
 
For all rare variant analyses, we utilized the whole exome sequencing data, which were available for 
200,642 individuals2. The revised version of the IDT xGen Exome Research Panel v1.0 was used to 
capture exomes with over 20X coverage at 95% of sites. Variants were subsequently called per-
sample using DeepVariant and combined using GLNexus11. We utilized the quality-control 
procedures described previously in Jurgens et al. (under review5). In short, we set low-quality 
genotypes to missing, after which we removed variants based on call rate (<90%), Hardy-Weinberg 
equilibrium test (P < 1x10-15), presence in low-complexity regions, and minor allele count (≥1). 
Sample-level quality-control consisted of removal of samples that had withdrawn their consent, were 
duplicates, had a mismatch between sequencing and genotyping array data, had a mismatch 
between genetically inferred and self-reported sex, had low call rates or were outliers for a number 
of additional metrics (Jurgens et al., under review5). We finally restricted the exome cohort to 
individuals who also had imputed data available and were of European ancestry, leaving 188,062 
samples. 
 
Common variant association analyses 
We first performed three genome-wide association analyses (GWAS) for each included trait using 
genome-wide imputed data (Supplementary Figure 1). These included an out-of-sample GWAS 
within European samples who were independent of the exome cohort (not included in the exome 
cohort and unrelated to the exome cohort); an in-sample GWAS within the exome sequenced 
samples; and a total GWAS including all European individuals with imputed data. To perform the 
GWAS, we used linear whole-genome ridge regression models implemented in REGENIE12, 
adjusting for sex, age, age2, genotyping array and ancestral principal components 1 through 20. 
REGENIE produces results similar to linear mixed models in the presence of genetic relatedness12. 
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Polygenic score derivation 
Using each of the GWAS summary results, we constructed polygenic scores (PRS) for each trait 
based on two differing methods13. We first constructed ‘lead SNP’ PRSs based only on independent 
(r2<0.001) genome-wide significant (P<5x10-8) variants. We also used PRS-CS-auto8 to construct 
genome-wide PRSs including millions of genetic variants (restricting to ~1.1 million HapMap 
variants). In brief, PRS-CS-auto applies a Bayesian regression framework to identify posterior 
variant effect sizes based on a continuous shrinkage prior, which is directly learnt from the data8. 
For both methods, the European ancestry subset of the UK Biobank dataset was used as a linkage-
disequilibrium reference panel. In sum, two PRS were constructed for each trait based on out-
sample GWAS data (PRSleadSNP [out-sample] and PRSCS [out-sample]), two PRS were constructed based on 
in-sample GWAS data (PRSleadSNP [in-sample] and PRSCS [in-sample]) and two PRS were constructed based 
on total GWAS data (PRSleadSNP [total] and PRSCS [total]). 
 
Variance explained by PRS 
We calculated the phenotypic variance explained by each PRS  for each trait in the nullmodel. We 
did this by running ordinary linear regression for each trait among the unrelated subset of individuals 
with exome sequencing data, adjusting for the same fixed effects as described above for the rare 
variant analysis. R2 values were extracted from the model without PRS and from models with PRS 
added as a covariate. The variance explained by PRS for a given trait was defined as the 
improvement in R2 in the model with PRS as compared to the model with no PRS.   
 
Rare variant association analyses 
We used the whole exome sequencing data to run gene-based rare variant collapsing tests across 
the exome for each trait. We grouped and analyzed loss-of-function (LOF) and predicted-deleterious 
missense variants per gene (Supplementary Note). To ensure no linkage between common and 
rare variants, we only included variants with minor allele count (MAC) ≤40, which also had 
MAF<0.1% in each continental population in gnomAD version 2 exomes14. We utilized linear mixed 
models implemented in GENESIS15, adjusting for sex, age, age2,  genotyping array, sequencing 
batch, ancestral principal components 1 through 20, and a sparse kinship matrix (Jurgens et al., 
under review5). We subsequently repeated these analyses for each of the PRS, by adding the PRS 
to the model as an additional fixed-effect covariate. In cases where fitting of the mixed model failed, 
we reran models within unrelated individuals (Supplementary Table 1). Sample sizes for the rare 
variant analyses ranged from N=142,709 to N=187,890 (Supplementary Table 1). Only results for 
tests with ≥20 rare variant carriers were kept. 
 
Assessment of rare variant discovery yield 
We then evaluated the rare variant discovery power for models without PRS and those adjusted for 
PRS. We calculated the yield in number of gene associations for each model across all traits at 
various significance thresholds, including Bonferroni-corrected significance at α = 0.05/ (65 traits x 
~10,743 genes) = 7.2x10-8, and at conventional exome-wide significance at α = 2.6x10-6. We then 
tested whether the addition of the PRS improved the significance of gene-phenotype associations. 
We used two-sided paired Wilcoxon signed rank tests to assess the improvement in -log10(P) values 
between two models, including gene-phenotype associations at various significance cutoffs (7.2x10-

8, 2.6x10-6, 1x10-5, 1x10-4, 1x10-3, 0.05). For a given comparison between two models, we included 
any gene-phenotype pair reaching the cutoff in either model. To quantify the difference, d�,  in -
log10(P) values, we repeated this analysis using paired T-tests. For paired T-tests, we removed any 
gene-phenotype pair for which the difference between both models fell outside of 4 standard 
deviations from the mean of differences. The significance threshold was determined at α = 0.05 / (6 
cutoffs x 6 model comparisons) = 0.0014.  
 
Associations between trait heritability and PRS variance explained with yield improvement 
We then assessed whether the improvement in RVAT associations after PRS-adjustment was 
associated with trait heritability or the variance explained by PRS. We used Linkage-Disequilibrium 
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Score Regression16 to estimate SNP-heritability (h2
SNP) for each of the 65 traits, using the total 

sample GWAS results and using the baselineLD_2.2 file from the LDSC software as the linkage-
disequilibrium reference. We then used ordinary linear regression to regress the change in number 
of trait RVAT associations on the estimated h2

SNP. Similary, we used linear regression to regress the 
change in number of trait RVAT associations on the R2 of the PRS for its respective traits.  
 
Assessment of false-positive rate using rare synonymous variation 
To assess the false-positive error rate of our approach, we analyzed rare synonymous variation. 
Synonymous variants are generally not expected to affect the amino acid sequence encoded by 
genes, and therefore are strongly depleted of true genetic effects17. We grouped rare synonymous 
variants (MAC≤40 and MAF<0.1% in each continental population in gnomAD exomes) and ran 
exome-wide gene-based collapsing tests using GENESIS. Only results for tests with ≥20 rare 
variant carriers were kept. The significant association rate for synonymous variants was determined 
at various significance cutoffs for each model: α = 4.3x10-8 (Bonferroni-corrected), 2.6x10-6, 1x10-5, 
1x10-4, 1x10-3, and 0.05. As described for the deleterious variants above, we further utilized paired 
Wilcoxon rank tests and paired T-tests to evaluate the changes in -log10(P) values at different 
significance levels. 
 
Assessment of exome-wide inflation 
Exome-wide test statistics were plotted in quantile-quantile (QQ) plots to visually assess inflation 
per trait, per model, per variant mask. Exome-wide inflation was further quantified using λ-values, 
defined as the empirical χ2 statistic at the median divided by the expected χ2 statistic at the median 
under the null. To assess whether λ-values differed between models without PRS and those 
adjusted for various PRS across the 65 traits, we utilized two-sided paired Wilcoxon rank tests and 
paired T-tests. 
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Figures and figure legends 
 

 
 
Figure 1: PRS adjustment improves discovery yield in analysis of rare deleterious variants  
Panel A: Bar charts for the improvement in deleterious RVAT yield after PRS-adjustment at 
different alpha levels, expressed in percentage relative to the no PRS model. Panel B: Violin plots 
for the difference (δ) in significance of tests from deleterious RVAT, comparing models with PRS vs 
models without PRS. Here, the δ in P-values (on the -log10 scale) are displayed for tests reaching 
P<2.6x10-6 (Methods). The d values plotted above the violins are derived from two-sided paired T-
tests (after removing outliers), while the P-values are derived from two-sided paired Wilcoxon 
signed rank tests. The left plot shows all results, while the right plot is capped at y=10 for clarity. 
Boxplots: center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile 
range; points, outliers. Panel C: Quantile-quantile plots for PRS-adjusted RVAT of the phenotype 
height. The left plot shows expected vs observed P-values for the model with no PRS-adjustment, 
while the second and third plots show results for PRSleadSNP (out-sample) and PRSCS (out-sample), 
respectively. Exome-wide significant genes are annotated with gene names; genes highlighted in 
bold were only identified after PRS-adjustment.   
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Figure 2: PRS adjustment does not increase false-positive rates or genomic inflation in the 
analysis of rare synonymous variants. 
Panel A: Boxplots for per-trait association rate from synonymous RVAT at different alpha levels 
across the 65 traits. Per trait, a median of 18,060 genes were analyzed. Panel B: Violin plots for 
genomic inflation factors for exome-wide RVAT of synonymous variants across the 65 traits. Panel 
C: Violin plots for difference (δ) in significance of tests from synonymous variant RVAT, comparing 
models with PRS vs models without PRS. Here, the δ in P-values (on the -log10 scale) are 
displayed for tests reaching P<0.05 (Methods). The d values plotted above the violins is derived 
from two-sided paired T-tests (after removing outliers) while the P-values are derived from two-
sided paired Wilcoxon signed-rank tests. Boxplots: center line, median; box limits, upper and lower 
quartiles; whiskers, 1.5x interquartile range; points, outliers. 
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