
A Setting hyperparameters

To identify optimum values for VSS-Hi-C’s hyperparameters, we evaluated many possible combinations of
values using the three evaluation measures including variance-instability, metrics of enrichment for structural
proteins and histone modification in TAD boundaries and also signals variance-explained metric to quantify
the agreement between epigenomic signals/replication timing signals and genome predicted subcompartments
(Figure 3). The optimum set of parameters would minimize the variance-instability metric while maximizing
the two other metrics. Based on all evaluations, we chose β = Inf and b = 100 (Unweighted mean-variance
relationship) as the optimal set of the parameters.
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Figure 3: Relationship between bin size and bandwidth in variance instability analysis, Topological as-
sociating domains enrichment in histone modification/protein structure and signal variance explained in
subcompartmentization analysis from left to right, respectively in a) observed b) observed over expected
(O/E) contact matrix. Among the band width values, the value Inf indicates that we applied no smoothing
on the curve (Unweighted mean-variance curve). Large variance-instability score indicates more unstabilized
signals. Higher values for TAD enrichment and variance-explained in subcompartment analysis indicates
better performance of transformation method.
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B Transformed signals improve subcompartment calling
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Figure 4: Signal variance-explained in subcompartment callers in Repli-seq data for O/E matrix
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Figure 5: Signal variance-explained in subcompartment callers in ChIP-seq data for O/E matrix
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