

Ebbesen & Froemke Page 1 of 68

 1

 2

 3

 4

 5

Automatic mapping of multiplexed social receptive fields 6

by deep learning and GPU-accelerated 3D videography 7

 8

 9

Christian L. Ebbesen1,2,* & Robert C. Froemke1,2,* 10

 11

 12

 13

1 Skirball Institute of Biomolecular Medicine, Neuroscience Institute, Departments of Otolaryngology, 14

Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA. 15

2 Center for Neural Science, New York University, New York, NY, 10003, USA. 16

* Correspondence to: C.L.E. (christian.ebbesen@nyumc.org) or R.C.F. (robert.froemke@med.nyu.edu) 17

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 2 of 68

Abstract 18

Social interactions powerfully impact the brain and the body, but high-resolution descriptions of these 19

important physical interactions are lacking. Currently, most studies rely on labor-intensive methods such 20

as manual annotation. Scalable and objective tracking methods are required to understand the neural cir-21

cuits underlying social behavior. Here we describe a hardware/software system and analysis pipeline that 22

combines 3D videography, deep learning, physical modeling, and GPU-accelerated robust optimization, 23

with automatic analysis of neuronal receptive fields recorded in interacting mice. Our system is capable 24

of fully automatic multi-animal tracking with minimal errors (including in complete darkness) during 25

complex, spontaneous social encounters, together with simultaneous electrophysiological recordings. We 26

capture posture dynamics of multiple unmarked mice with high spatiotemporal precision (~2 mm, 60 27

frames/s). A generative model revealed the multiplexed ‘social receptive field’ of neurons in barrel cortex. 28

This approach could be broadly useful for neurobehavioral studies of multiple animals interacting in com-29

plex low-light environments. 30

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 3 of 68

Introduction 31

Objective quantification of natural social interactions is difficult. The majority of our knowledge about 32

rodent social behavior comes from hand-annotation of videos, yielding ethograms of discrete social be-33

haviors such as ‘social following’, ‘mounting’, or ‘anogenital sniffing’1. It is widely appreciated that these 34

methods are susceptible to experimenter bias and have limited throughput. There is an additional problem 35

with these approaches, in that manual annotation of behavior yields limited information about movement 36

kinematics and physical body postures. This shortcoming is especially critical for studies relating neural 37

activity patterns or other physiological signals to social behavior. For example, neural activity in many 38

areas of the cerebral cortex are strongly modulated by movement and posture2,3, and activity profiles in 39

somatosensory regions can be difficult to analyze without understanding the physics and high-resolution 40

dynamics of touch. Important aspects of social behavior, from gestures to light touch and momentary 41

glances can be transient and challenging to observe in most settings, but critical to capturing the details 42

and changes to social relationships and networks4,5. 43

 44

The use of deep convolutional networks to recognize objects in images has revolutionized computer vision, 45

and consequently, also led to major advances in behavioral analysis. Drawing upon these methodological 46

advances, several recent publications have developed algorithms for single animal6–13 and multi-animal 47

tracking14–21 . These methods function by detection of key-points in 2D videos, and estimation of 3D 48

postures is not straightforward in interacting animals, where some form of spatiotemporal regularization 49

is needed to ensure that tracking is stable and error-free, even when multiple animals are closely interacting. 50

During mounting or allo-grooming, for example, interacting animals block each other from the camera 51

view and tracking algorithms can fail. Having a large number of cameras film the animals from all sides 52

can solve these problems22,23, but this has required extensive financial resources for equipment, laboratory 53

space and processing power, which renders widespread use infeasible. 54

 55

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 4 of 68

Some recent single24- and multi-animal17–19 tracking methods have bypassed the problem of estimating 56

the 3D posture of closely interacting animals by training a classifier to replicate human labeling discrete 57

behavioral categories, such as attack and mounting. This approach is very powerful for automatically 58

generating ethograms; however, to relating neural data to behavior, lack of detailed information about 59

movement and posture kinematics of interacting animals can be a critical drawback. In essentially every 60

brain region, neural activity is modulated by motor signals25–28 and vestibular signals2,3,29. Thus, any ob-61

served differences in neural activity between behavioral categories may be related instead to differences 62

in movements and postures made by the animals in those different categories. To reveal how neural circuits 63

process body language, touch and other social cues21 during a social interaction, descriptions of neural 64

coding must be able to account for these important but complex motor- and posture-related activity pat-65

terns or confounds. 66

 67

In parallel with deep-learning based tracking methods, some studies have used depth-cameras for animal 68

tracking, by fitting a physical 3D body-model of the animal to 3D data30–32. These methods are powerful 69

because they can explicitly model the 3D movement and poses of multiple animals, throughout the social 70

interaction. However, due to technical limitations of depth imaging hardware (e.g., frame rate, resolution, 71

motion blur), to date it has been possible only to extract partial posture information about small and fast-72

moving animals, such as lab mice. Consequently, when applied to mice, these methods are prone to track-73

ing mistakes when interacting animals get close to each other and the tracking algorithms require contin-74

uous manual supervision to detect and correct errors. This severely restricts throughput, making tracking 75

across long time scales infeasible. 76

 77

Here we describe a novel system for multi-animal tracking and neuro-behavioral data analysis that com-78

bines ideal features from both approaches. Our method fuses physical modeling of depth data and deep 79

learning-based analysis of synchronized color video to estimate 3D body postures, enabling us to reliably 80

track multiple mice during naturalistic social interactions. Our method is fully automatic (i.e., quantitative, 81

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 5 of 68

scalable, and free of experimenter bias), is based on inexpensive consumer cameras, and is implemented 82

in Python, a simple and widely used computing language. Our method is capable of tracking the animals 83

using only infrared video channels (i.e., in visual darkness for mice, a nocturnal species), is self-aligning 84

and requires only a few hundred labeled frames for training. We combine our tracking method with silicon 85

probe recordings of single-unit activity in barrel cortex to demonstrate the usefulness of a continuous 3D 86

posture estimation and an interpretable body model: We implement a full-automatic neural data analysis 87

pipeline (included along with the tracking code), that yields a population-level map of neural tuning to the 88

features of a social interaction (social touch, movements, postures, spatial location, etc.) directly from raw 89

behavior video and raw spike trains. 90

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 6 of 68

Results 91

Raw data acquisition 92

We built an experimental setup that allowed us to capture synchronized color images and depth images 93

from multiple angles, while simultaneously recording synchronized neural data (Fig. 1a). We used inex-94

pensive, state-of-the-art ‘depth cameras’ for computer vision and robotics. These cameras contain several 95

imaging modules: one color sensor, two infrared sensors and an infrared laser projector (Fig. 1b). Imaging 96

data pipelines, as well as intrinsic and extrinsic sensor calibration parameters can be accessed over USB 97

through a C/C++ SDK with Python bindings. We placed four depth cameras, as well as four synchroniza-98

tion LEDs around a transparent acrylic cylinder which served as our behavioral arena (Fig. 1c). 99

 100

Each depth camera projects a static dot pattern across the imaged scene, adding texture in the infrared 101

spectrum to reflective surfaces (Fig. 1d). By imaging this highly-textured surface simultaneously with two 102

infrared sensors per depth camera, it is possible to estimate the distance of each pixel in the infrared image 103

to the depth camera by stereopsis (by locally estimating the binocular disparity between the textured im-104

ages). Since the dot pattern is static and only serves to add texture, multiple cameras do not interfere with 105

each other and it is possible to image the same scene simultaneously from multiple angles. Simultaneous 106

capture from all angles is one key aspect of our method, not possible with depth imaging systems that rely 107

on actively modulated light (such as the Microsoft Kinect system and earlier versions of the Intel Re-108

alsense cameras, where multi-view capture requires offset capture times). 109

 110

Since mouse movement is fast (on a millisecond time scale33), it is vital to minimize motion blur in the 111

infrared images and thus the final 3D data (‘point-cloud’). To this end, our method relies on two key 112

features. First, we use depth cameras where the infrared sensors have a global shutter (e.g., Intel D435) 113

rather than a rolling shutter (e.g., Intel D415). Using a global shutter reduces motion blur in individual 114

image frames, but also enables synchronized image capture across cameras. Without synchronization be-115

tween cameras, depth images are taken at different times, which adds blur to the composite point-cloud. 116

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 7 of 68

We set custom firmware configurations in our recording program, such that all infrared sensors on all four 117

cameras are hardware-synchronized to each other by TTL-pulses via custom-built, buffered synchroniza-118

tion cables (Fig. 1b). 119

 120

We wrote a custom multithreaded Python program with online compression, that allowed us to capture the 121

following types of raw data from all four cameras simultaneously: 8-bit RGB images (320 x 210 pixels, 122

60 frames/s), 16-bit depth images (320 x 240 pixels, 60 frames/s) and the 8-bit intensity trace of a blinking 123

LED (60 samples/s, automatically extracted in real-time from the infrared images). Our program also 124

captures camera meta-data, such as hardware time-stamps and frame numbers of each image, which allows 125

us to identify and correct for possible dropped frames. On a standard desktop PC, the recording system 126

had very few dropped frames and the video recording frame rate and the imaging and USB image transfer 127

pipeline was stable (Fig. 1e,f). 128

 129

Temporal stability and temporal alignment 130

In order to relate tracked behavioral data to neural recordings, we need precise temporal synchronization. 131

Digital hardware clocks are generally stable but their internal speed can vary, introducing drift between 132

clocks. Thus, even though all depth cameras provide hardware timestamps for each acquired image, for 133

long-term recordings, across behavioral time scales (hours to days), a secondary synchronization method 134

is required. 135

 136

For synchronization to neural data, our recording program uses a USB-controlled Arduino microprocessor 137

to output a train of randomly-spaced voltage pulses during recording. These voltage pulses serve as TTL 138

triggers for our neural acquisition system (sampled at 30 kHz) and drive LEDs, which are filmed by the 139

depth cameras (Fig. 1a). The cameras sample an automatically detected ROI to sample the LED state at 140

60 frames/s, integrating across a full infrared frame exposure (Fig. 1g). We use a combination of cross-141

correlation and robust regression to automatically estimate and correct for shift and drift between the depth 142

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 8 of 68

camera hardware clocks and the neural data. Since we use random pulse trains for synchronization, align-143

ment is unambiguous and we can achieve super-frame-rate-precision. In a typical experiment, we esti-144

mated that the depth camera time stamps drifted with ~49 µs/min. For each recording, we automatically 145

estimate and correct for this drift to yield stable residuals between TTL flips and depth frame exposures 146

(Fig. 1h). Note that the neural acquisition system is not required for synchronization and for a purely 147

behavioral study, we can run the same LED-based protocol to correct for potential shift and drift between 148

cameras by choosing one camera as a reference. 149

 150

Detection of body key-points by deep learning 151

We preprocessed the raw image data to extract two types of information for the tracking algorithm: the 152

location in 3D in space of body key-points and the 3D point-cloud corresponding to the body surface of 153

the animals. We used a deep convolutional neural network to detect key-points in the RGB images, and 154

extracted the 3D point-cloud from the depth images (Fig. 2a). For key-point detection (nose, ears, base of 155

tail, and neural implant for implanted animals), we used a ‘stacked hourglass network’34. This type of 156

encoder-decoder network architecture combines residuals across successive upsampling and downsam-157

pling steps to generate its output, and has been successfully applied to human pose estimation34 and limb 158

tracking in immobilized flies35 (Fig. 2b, details of network architecture in Supplementary Fig. 1). 159

 160

We used back-propagation to train the network to output four ‘target maps’, each indicating the pseudo-161

posterior probability of each type of key-point, given the input image. The target maps were generated by 162

manually labeling the key-points in training frames, followed by down-sampling and convolution with 163

Gaussian kernels (Fig. 2c, ‘targets’). We selected the training frames using image clustering to avoid re-164

dundant training on very similar frames8. The manual key-point labeling can be done with any labeling 165

software. We customized a version of the lightweight, open source labeling GUI from the ‘DeepPoseKit’ 166

package8 for the four types of key-points, which we provide as supplementary software (Supplementary 167

Fig. 2). 168

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 9 of 68

 169

In order to improve key-point detection, we used two additional strategies. First, we also trained the net-170

work to predict ‘affinity fields’36, which have been shown to improve human36 and animal8,15 body key-171

point tracking. We used ‘1D’ affinity fields8, generated by convolving the path between labeled body key-172

points that are anatomically connected in the animal. With our four key-points, we added seven affinity 173

fields (e.g., ‘nose-to-ears’, ‘nose-to-tail’), that together form a skeletal representation of each body (Fig. 174

2c, ‘affinity fields’). Thus, from three input channels (RGB pixels), the network predicts eleven output 175

channels (Fig. 2d). As the stacked hourglass architecture involves intermediate prediction, which feeds 176

back into subsequent hourglass blocks (repeated encoding and decoding, Fig 2b), prediction of affinity 177

fields feeds into downstream predictions of body key-points. This leads to improvement of downstream 178

key-point predictions, because the affinity fields give the network access to holistic information about the 179

body. The intuitive probabilistic interpretation is that instead of simply asking questions about the key-180

points (e.g., ‘do these pixels look like an ear?’), we can increase predictive accuracy by considering the 181

body context (e.g., ‘these pixels sort of look like an ear, and those pixels sort of look like a nose – but does 182

this path between the pixels also look like the path from an ear to a nose?’). 183

 184

The second optimization approach was image data augmentation during training37. Instead of only training 185

the network on manually-labeled images, we also trained the network on morphed and distorted versions 186

of the labeled images (Supplementary Fig. 3). Training the network on morphed images (e.g., rotated or 187

enlarged), gives a similar effect to training on a much larger dataset of labeled images, because the network 188

then learns to predict many artificially generated, slightly different views of the animals. Training the 189

network on distorted images is thought to reduce overfitting on single pixels and reduce the effect of 190

motion blur37. 191

 192

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 10 of 68

Using a training set of 526 images, and by automatically adjusting learning rate during training, the net-193

work was well-trained (plateaued) within one hour of training on a standard desktop computer (Fig. 2e), 194

yielding good predictions of both body key-points and affinity fields (Fig. 2f). 195

 196

All-infrared tracking 197

As mice are nocturnal, we also developed a version of the tracking software that only relies on the infrared 198

video stream (i.e., in visual darkness for the mice). This facilitates the study of naturalistic social interac-199

tions in darkness. For ‘all-infrared’ experiments, the arena was lit with infrared LED lamps, and the soft-200

ware was changed to save only the infrared images (16-bit, 640 x 448, 60 frames/s). Detection of body 201

key-points by deep learning from in these images are made difficult by the prominent infrared laser dot 202

pattern (Fig. 2g). We trained the deep neural network to ignore the dot pattern by using a data augmenta-203

tion strategy. We recorded and labeled body parts in a training data set (720 images), where the infrared 204

laser was turned off, and trained the network on labeled images augmented with a probabilistically gener-205

ated noise pattern of white dots with a similar size and density to the ‘real’ laser pattern (Fig. 2h). A 206

network trained on these data allowed us to successfully detect body key-points in real images with the 207

infrared laser turned on (Fig. 2i). 208

 209

To optimize the network architecture and estimate pseudo-posterior probability cutoffs in the network 210

output maps with a good tradeoff between missed body key-points, false positives and network training/in-211

ference time, we profiled the network across the number of hourglass stacks (Supplementary Figs. 4, 5), 212

with and without various types of training data augmentation (Supplementary Fig. 6), and with and with-213

out part affinity fields (Supplementary Fig. 7). Based on the hand-labeled validation data, we found that 214

3 hourglass stacks and a pseudo-posterior probability cutoff of 0.5 led to good performance (Supplemen-215

tary Figs. 4-7). 216

 217

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 11 of 68

Pre-processing of 3D video 218

By aligning the color images to the depth images, and aligning the depth images in 3D space, we could 219

assign three dimensional coordinates to the detected key-points. We pre-processed the depth data to ac-220

complish two goals. First, we wanted to align the cameras to each other in space, so we could fuse their 221

individual depth images to one single 3D point-cloud. Second, we wanted to extract only points corre-222

sponding to the animals’ body surfaces from this composite point-cloud. 223

 224

To align the cameras in space, we filmed the trajectory of a sphere that we moved around the behavioral 225

arena. We then used a combination of motion filtering, color filtering, smoothing, and thresholding to 226

detect the location of the sphere in the color frame, extracted the partial 3D surface from the aligned depth 227

data, and used a robust regression method to estimate the center coordinate (Fig. 3a). This procedure 228

yielded a 3D trajectory in the reference frame of each camera (Fig. 3b) that we could use to robustly 229

estimate the transformation matrices needed to bring all trajectories into the same frame of reference (Fig. 230

3c). This robust alignment is a key aspect of our method, as errors can easily be introduced by moving the 231

sphere too close to a depth camera or out of the field of view during recording (Fig. 3b,c, arrow). After 232

alignment, the median camera-to-camera difference in the estimate of the center coordinate of the 40-mm-233

diameter sphere was only 2.6 mm across the entire behavioral arena (Fig. 3d,e). 234

 235

We used a similar robust regression method to automatically detect the base of the behavioral arena. We 236

detected planes in composite point-cloud (Fig. 3f) and used the location and normal vector, estimated 237

across 60 random frames (Fig. 3g), to transform the point-cloud such that the base of the behavioral arena 238

laid in the xy-plane (Fig. 3h). To remove imaging artifacts stemming from light reflection and refraction 239

due to the curved acrylic walls, we automatically detected the location and radius of the acrylic cylinder 240

(Fig. 3i). With the location of both the arena base and the acrylic walls, we used simple logic filtering to 241

remove all points associated with the base and walls, leaving only points inside the behavioral arena (Fig. 242

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 12 of 68

3j). Note that if there is no constraint on laboratory space, an elevated platform can be used as a behavioral 243

arena, eliminating imaging artifacts associated with the acrylic cylinder. 244

 245

Loss function design 246

The pre-processing pipeline described above takes color and depth images as inputs, and outputs two types 247

of data: a point-cloud, corresponding to the surface of the two animals, and the 3D coordinates of detected 248

body key-points (Fig. 4a, Supplementary Video 1). To track the body postures of interacting animals 249

across space and time, we developed an algorithm that incorporates information from both data types. The 250

basic idea of the tracking algorithm is that for every frame, we fit the mouse bodies by minimizing a loss 251

function of both the point-cloud and key-points, subject to a set of spatiotemporal regularizations. 252

 253

For the loss function, we made a simple parametric model of the skeleton and body surface of a mouse. 254

The body model consists of two prolate spheroids (the ‘hip ellipsoid’ and ‘head ellipsoid’), with dimen-255

sions based on an average adult mouse (Fig. 4b). The head ellipsoid is rigid, but the hip ellipsoid has a 256

free parameter (s) modifying the major and minor axes to allow the hip ellipsoids to be longer and narrower 257

(e.g., during stretching, running, or rearing) or shorter and wider (e.g., when still or self-grooming). The 258

two ellipsoids are connected by a joint that allows the head ellipsoid to turn left/right and up/down within 259

a cone corresponding to the physical movement limits of the neck. 260

 261

Keeping the number of degrees of freedom low is vital to make loss function minimization computation-262

ally feasible38. Due to the rotational symmetry of the ellipsoids, we could choose a parametrization with 263

8 degrees of freedom per mouse body: the central coordinate of the hip ellipsoid (x, y, z), the rotation of 264

the major axis of the hip ellipsoid around the y- and z-axis (β, γ), the left/right and up/down rotation of the 265

head ellipsoid (θ, φ), and the stretch of the hip ellipsoids (s). For the implanted animal, we added an 266

additional sphere to the body model, approximating the surface of the head-mounted neural implant (Fig. 267

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 13 of 68

4b). The sphere is rigidly attached to the head ellipsoid and has one degree of freedom; a rotational angle 268

(ψ) that allows the sphere to rotate around the head ellipsoid, capturing head tilt of the implanted animal. 269

Thus, in total, the joint pose (the body poses of both mice) was parametrized by only 17 variables. 270

 271

To fit the body model, we adjusted these parameters to minimize a weighted sum of two loss terms: (i) 272

The shortest distance from every point in the point-cloud to body model surface. (ii) The distance from 273

detected key-points to their corresponding location on the body model surface (e.g., nose key-points near 274

the tip of one of the head ellipsoids, tail key-points near the posterior end of a hip ellipsoid). 275

 276

We then used several different approaches for optimizing the tracking. First, for each of the thousands of 277

point in the point-cloud, we needed to calculate the shortest distance to the body model ellipsoids. Calcu-278

lating these distances exactly is not computationally feasible, as this requires solving a six-degree polyno-279

mial for every point39. As an approximation, we instead used the shortest distance to the surface, along a 280

path that passes through the centroid (Supplementary Fig. 8a,b). Calculating this distance could be im-281

plemented as pure tensor algebra40, which could be executed efficiently on a GPU in parallel for all points 282

simultaneously. Second, to reduce the effect of imaging artifacts in the color and depth imaging (which 283

can affect both the point-cloud or the 3D coordinates of the key-points), we clipped distance losses at 3 284

cm, such that distant ‘outliers’ do contribute and not skew the fit (Supplementary Fig. 8c). Third, because 285

pixel density in the depth images depends on the distance from the depth camera, we weighed the contri-286

bution of each point in the point-cloud by the squared distance to the depth camera (Supplementary Fig. 287

8d). Fourth, to ensure that the minimization does not converge to unphysical joint postures (e.g., where 288

the mouse bodies are overlapping), we added a penalty term to the loss function if the body models overlap. 289

Calculating overlap between two ellipsoids is computationally expensive41, so we computed overlaps be-290

tween implant sphere and spheres centered on the body ellipsoids with a radius equal to the minor axis 291

(Supplementary Fig. 8f). Fifth, to ensure spatiotemporal continuity of body model estimates, we also 292

added a penalty term to the loss function, penalizing overlap between the mouse body in the current frame, 293

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 14 of 68

and other mouse bodies in the previous frame. This ensures that the bodies do not switch place, something 294

that could otherwise happen if the mice are in joint poses with certain mirror symmetries (Supplementary 295

Fig. 8g,h). 296

 297

GPU-accelerated robust optimization 298

Minimizing the loss function requires solving three major challenges. The first challenge is computational 299

speed. The number of key-points and body parts is relatively low (~tens), but the number of points in the 300

point-cloud is large (~thousands), which makes the loss function computationally expensive. For minimi-301

zation, we need to evaluate the loss function multiple times per frame (at 60 frames/s). If loss function 302

evaluation is not fast, tracking becomes unusably slow. The second challenge is that the minimizer has to 303

properly explore the loss landscape within each frame and avoid local minima. In early stages of develop-304

ing this algorithm, we were only tracking interacting mice with no head implant. In that case, for the small 305

frame-to-frame changes in body posture, the loss function landscape was nonlinear, but approximately 306

convex, so we could use a fast, derivative-based minimizer to track changes in body posture (geodesic 307

Levenberg-Marquardt steps38). For use in neuroscience experiments, however, one or more mice might 308

carry a neural implant for recording or stimulation. The implant is generally at a right angle and offset 309

from the ‘hinge’ between the two hip and head ellipsoids, which makes the loss function highly non-310

convex42. The final challenge is robustness against local minima in state space. Even though a body pos-311

ture minimizes the loss in a single frame, it might not be an optimal fit, given the context of other frames 312

(e.g., spatiotemporal continuity, no unphysical movement of the bodies). 313

 314

To solve these three challenges – speed, state space exploration, and spatiotemporal robustness – we de-315

signed a custom GPU-accelerated minimization algorithm, which incorporates ideas from annealed parti-316

cle filters43 and online Bayesian filtering (Fig. 4c). To maximize computational speed, the algorithm was 317

implemented as pure tensor algebra in Pytorch, a high-performance GPU computing library44. Annealed 318

particle filters are suited to explore highly non-convex loss surfaces43, which allowed us to avoid local 319

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 15 of 68

minima within each frame. Between frames, we used online filtering, to avoid being trapped in low-prob-320

ability solutions given the context of the preceding tracking. For every frame, we first proposed the state 321

of the 17-parameters using a recursive least-squares (‘RLS’) filter bank trained on preceding frames. After 322

particle filter-based loss function minimization within a single frame, we updated the RLS filter bank, and 323

proposed a particle filter starting point for the next frame (Fig. 4d-e). 324

 325

The ‘two-layer’ tracking strategy (particle filter within frames and RLS filter between frames) has three 326

major advantages. First, by proposing a solution from the RLS bank, we often already start the loss func-327

tion minimization close to the new minimum. Second, if the RLS filter deems that the fit for a single frame 328

is unlikely (an outlier), based on the preceding frames, this fit will only weakly update the filter bank, and 329

thus only weakly perturb the upcoming tracking. This gives us a convenient way to balance the information 330

provided by the fit of a single frame, and the ‘context’ provided by previous frames. Third, the RLS filter-331

based approach is only dependent on previously tracked frames, not future frames. This is in contrast to 332

other approaches to incorporating context that rely on versions of backwards belief propagation5,16,35. Note 333

that since our algorithm only relies on past data for tracking, it is possible – in future work – to optimize 334

our algorithm for real-time use in closed-loop experiments. 335

 336

For each recording, we first automatically initiated the tracking algorithm: We automatically scanned for-337

ward in the video to find a frame, where the mice were well separated (assessed by k-means clustering of 338

the 3D positions of the body key-points into two clusters, and by requiring that the ‘cross-mouse’ cluster 339

distance is at least 5 cm (Supplementary Fig. 9). From this starting point, we explored the loss surface 340

with 200 particles (Fig. 4d). We generated the particles by perturbing the proposed minimum by quasi-341

random, low-discrepancy sampling45 (Supplementary Fig. 10). We exploited the fact that the loss func-342

tion structure allowed us to execute several key steps in parallel, across multiple independent dimensions, 343

and implemented these calculations as vectorizes tensor operations. This allowed us to leverage the power 344

of CUDA kernels for fast tensor algebra on the GPU44. Specifically, to efficiently calculate the point-cloud 345

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 16 of 68

loss (shortest distance from a point in the point-cloud to the surface of a body model), we calculated the 346

distance to all five body model spheroids for all points in the point-cloud and for all 200 particles, in 347

parallel (Fig. 4c). We then applied fast minimization kernels across the two body models, to generate a 348

smallest distance to either mouse, for all points in the point cloud. Because the mouse body models are 349

independent, we only had to apply a minimization kernel to calculate the smallest distance, for every point, 350

to 40,000 (200 x 200) joint poses if the two mice. These parallel computation steps are a key aspect of our 351

method, which allows our tracking algorithm to avoid the ‘curse of dimensionality’, by not exploring a 352

17-dimensional space, but rather explore the intersection of two independent 8-dim and 9-dim subspaces 353

in parallel. We found that our GPU-accelerated implementation of the filter increased the processing time 354

of a single frame by more than an order of magnitude compared to a fast CPU (e.g. ~16-fold speed increase 355

for 200 particles, Fig. 4f). 356

 357

Tracking algorithm performance 358

To ensure that the tracking algorithm did not get stuck in suboptimal solutions, we forced the particle filter 359

to explore a large search space within every frame (Supplementary Fig. 11a-c). In successive iterations, 360

we gradually made perturbations to the particles smaller and smaller by annealing the filter43), to approach 361

the minimum. At the end of each iteration, we ‘resampled’ the particles by picking the 200 joint poses 362

with the lowest losses in the 200-by-200 matrix of losses. This ‘top-k’ resampling strategy has two ad-363

vantages. First, it can be done without fully sorting the matrix46, the most computationally expensive step 364

in resampling47. Second, it provides a type of ‘importance sampling’. During resampling, some poses in 365

the next iteration might be duplicates (picked from the same row or column in the 200-by-200 loss matrix.), 366

allowing particles in each subspace to collapse at different rates (if the particle filter is very certain about 367

one body pose, but not the other, for example). 368

 369

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 17 of 68

By investigating the performance of the particle filter across iterations, we found that the filter generally 370

converged sufficiently within five iterations (Supplementary Fig. 11d, Supplementary Video 2) to pro-371

vide good tracking across frames (Supplementary Fig. 11e). In every frame, the particle filter fit yields a 372

noisy estimate of the 3D location of the mouse bodies. The transformation from the joint pose parameters 373

(e.g., rotation angles, spine scaling) to 3D space is highly nonlinear, so simple smoothing of the trajectory 374

in pose parameter space would distort the trajectory in real space. Thus, we filtered the tracked trajectories 375

by a combination of Kalman-filtering and maximum likelihood-based smoothing48,49 and 3D rotation 376

smoothing in quaternion space50 (Supplementary Fig. 12, Supplementary Video 3). 377

 378

Representing the joint postures of the two animals with this parametrization was highly data efficient, 379

reducing the memory footprint from ~3.7 GB/min for raw color/depth image data, to ~0.11 GB/min for 380

pre-processed point-cloud/key-point data to ~1 MB/min for tracked body model parameters. On a regular 381

desktop computer with a single GPU, we could do key-point detection in color image data from all four 382

cameras in ~2x real time (i.e., it took 30 minute to process a 1 hr experimental session). Depth data pro-383

cessing (point-cloud merging and key-point deprojection) ran at ~0.7x real time, and the tracking algo-384

rithm ran at ~0.2x real time (if the filter uses 200 particles and 5 filter iterations per frame). Thus, for a 385

typical experimental session (~ hours), we would run the tracking algorithm overnight, which is possible 386

because the code is fully automatic. 387

 388

Error detection 389

Error detection and correction is a critical component of behavioral tracking. Even if error rates are nom-390

inally low, errors are non-random, and errors often happen exactly during the behaviors in which we are 391

most interested: interactions. In multi-animal tracking, two types of tracking error are particularly fatal as 392

they compound over time: identity errors and body orientation errors (Supplementary Fig. 13a). In con-393

ventional tracking approaches using only 2D videos, it is often difficult to correctly track identities when 394

interacting mice are closely interacting, allo-grooming, or passing over and under each other. Although 395

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 18 of 68

swapped identities can be corrected later once the mice are well-separated again, this still leaves individual 396

behavior during the actual social interaction unresolved5,16. We found that our tracking algorithm was 397

robust against both identity swaps (Supplementary Fig. 13b-e) and body direction swaps (Supplemen-398

tary Fig. 14). This observation agrees with the fact that tracking in 3D space (subject to our implemented 399

spatiotemporal regularizations) should in principle allow better identity tracking. In full 3D space it is 400

easier to determine who is rearing over whom during an interaction, for example. 401

 402

To test our algorithm for subtler errors, we manually inspected 500 frames, randomly selected across an 403

example 21-minute recording session. In these 500 frames, we detected only a single tracking mistake, 404

corresponding to 99.8% correct tracking (Supplementary Fig. 15a). The identified tracking mistake was 405

visible as a large, transient increase in the point-cloud loss function (Supplementary Fig. 15b). After the 406

tracking mistake, the robust particle filter quickly recovered to correct tracking again (Supplementary 407

Fig. 15c). By detecting such loss function anomalies, or by detecting ‘unphysical’ postures or movements 408

in the body models, potential tracking mistakes can be automatically ‘flagged’ for inspection (Supple-409

mentary Fig. 15c,d). After inspection, errors can be manually corrected or automatically corrected in 410

many cases, for example by tracking the particle filter backwards in time after it has recovered. As the 411

algorithm recovers after a tracking mistake, it is generally unnecessary to actively supervise the algorithm 412

during tracking, and manual inspection for potential errors can be performed after running the algorithm 413

overnight. We provide a GUI for viewing and quality control of tracked behavior (raw data, body skeleton, 414

ellipsoid surfaces and time trajectory) running in an interactive Jupyter notebook (Supplementary Fig. 415

2b, Supplementary Video 5). 416

 417

Automated analysis of movement kinematics and social events 418

As a validation of our tracking method, we demonstrate that out methods can automatically extract both 419

movement kinematics and behavioral states (movement patterns, social events) during spontaneous social 420

interactions. Some unsupervised methods for discovering structure and states in behavioral data do not 421

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 19 of 68

rely on an explicit body model of the animal, and instead use statistical methods to detect behavioral states 422

directly from tracked features6,33,51–53. In an alternative approach, some supervised methods label behav-423

ioral events of interest by hand on training data, and then train a classifier to find similar events in unla-424

beled data17–19 . Both of these types of analysis are compatible with our method (e.g., by running directly 425

on the time series data of the 17 dimensions that parametrize the body models of the two animals, Sup-426

plementary Fig. 11). Our tracking system yields an easily interpretable 3D body model of the animals, 427

which makes two additional types of analyses straightforward as well: First, we can easily define 3D body 428

postures or multi-animal postures of interest as templates16,30. Second, we can use unsupervised methods 429

to discover behavioral states in the 3D reference frame of the animal’s own body, making these models 430

and states straightforward to interpret and ‘sanity check’ (manually inspect for errors). 431

 432

To demonstrate posture-template-based analysis, we defined social behaviors of interest as templates and 433

matched these templates to tracked data. We know that anogenital sniffing54 and nose-to-nose touch55 are 434

prominent events in rodent social behavior, so we designed a template to detect these events. In this tem-435

plate, we exploited the fact that we could easily calculate both body postures and movement kinematics, 436

in the reference frame of each animal’s own body. For every frame, we first extracted the 3D coordinates 437

of the body model skeleton (Supplementary Fig. 12a). From these skeleton coordinates, we calculated 438

the position (Fig. 5a) and a three-dimensional speed vector for each mouse (‘forward speed’, along the 439

hip ellipsoid, ‘left speed’ perpendicular the body axis and ‘up speed’ along the z-axis; Fig. 5b). We also 440

calculated three instantaneous ‘social distances’, defined as the 3D distance between the tip of each ani-441

mal’s noses (‘nose-to-nose’; Fig. 5b), and from the tip of each animal’s nose to the posterior end of the 442

conspecific’s hip ellipsoid (‘nose-to-tail’; Fig. 5b). From these social distances, we could automatically 443

detect when the mouse bodies were in a nose-to-nose or a nose-to-tail configuration (Fig. 5c). It is straight-444

forward to further subdivide these social events by body postures and kinematics, in order to separate 445

stationary nose-to-tail configurations (anogenital sniffing/grooming) and nose-to-tail configurations dur-446

ing locomotion (social following). 447

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 20 of 68

 448

To demonstrate unsupervised behavioral state discovery, we used GPU-accelerated probabilistic program-449

ming56 and state space modeling to automatically detect and label movement states. To discover types 450

locomotor behavior, we fitted a ‘sticky’ multivariate hidden Markov model57 to the two components of 451

the speed vector that lie in the xy-plane (Supplementary Fig. 16a-h). With five hidden states, this model 452

yielded interpretable movement patterns that correspond to known mouse locomotor ‘syllables’: resting 453

(no movement), turning left and right, and moving forward at slow and fast speeds (Fig. 5d). Fitting a 454

similar model with three hidden states to the z-component of the speed vector (Supplementary Fig. 16i-455

n) yielded interpretable and known ‘rearing syllables’: rest, rearing up and ducking down (Fig. 5e). Using 456

the maximum a posteriori probability from these fitted models, we could automatically generate locomo-457

tor ethograms and rearing ethograms for the two mice (Fig. 5b). 458

 459

In line with previous observations, we found that movement bouts were short (medians, 460

rest/left/right/fwd/fast-forward: 0.83/0.50/0.52/0.45/0.68 s, a ‘sub-second’ timescale33). In the locomotion 461

ethograms, bouts of rest were longer than bouts of movement (all p < 0.05, Mann-Whitney U-test; Fig. 5f) 462

and bouts of fast forward locomotion was longer than other types of locomotion (all p < 0.001, Mann-463

Whitney U-test; Fig. 5f). In the rearing ethograms, the distribution of rests was very wide, consisting of 464

both long (~seconds) and very short (~tenths of a second) periods of rest (Fig. 5g). As expected, by plotting 465

the rearing height against the duration of rearing syllables, we found that short rests in rearing were asso-466

ciated with standing high on the hind legs (the mouse rears up, waits for a brief moment before ducking 467

back down), while longer rests happened when the mouse was on the ground (‘rearing’ and ‘crouching’, 468

Fig. 5h). Like the movement types and durations, the transition probabilities from the fitted hidden Mar-469

kov models were also in agreement with known behavioral patterns. In the locomotion model, for example, 470

the most likely transition from “rest” was to “slow forward”. From “slow forward”, the mouse was likely 471

to transition to “turning left”, “fast forward” or “turning right”, it was unlikely to transition directly from 472

“fast forward” to “rest” or from “turning left” to “turning right, and so on (Supplementary Fig. 16o,p). 473

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 21 of 68

 474

Automatic measurement of firing rate modulations during social touch 475

By combining our tracking system with silicon-probe recording of single unit activity, we could automat-476

ically measure how neural activity is modulated during social interactions. As proof-of-concept for our 477

system, we implanted a male mouse with a 32-channel silicon probe electrode in barrel cortex (the primary 478

whisker representation in somatosensory cortex). In an example experiment, we simultaneously recorded 479

31 single units in barrel cortex while tracking the behavior of the implanted mouse interacting with a male 480

and a female conspecific for 20 minutes each. We then used the posture-template-based analysis to detect 481

three types of social touch events: nose-to-nose touch (“Nose ↔ Nose”), the implanted animal touching 482

the partner’s anogenital region with its whiskers (“Nose0 → Tail1”) and the partner animal touching the 483

implanted animal’s anogenital region with its whiskers (“Nose1 → Tail0”, Fig. 6a). The automatic pos-484

ture-template-based analysis confirmed58 that the duration of social touch events and inter-touch-intervals 485

spanned multiple orders of magnitude (from short millisecond touch events to longer touch events lasting 486

multiple seconds, Fig 6b-d). 487

 488

Using a ‘classic’ peri-stimulus time histogram-based analysis, we found several single units that had a 489

significant firing modulation at the time of the detected social touch events (example neurons shown in 490

Fig. 6e, top row, labeled “naïve PSTH”). The firing rate modulations detected in the “naïve” approach 491

were surprisingly small (only a small ‘bump’ in the PSTH at the time of touch), and much smaller than 492

observed in ‘classic’ barrel cortex studies, where a controlled whisker stimulus is presented59. We won-493

dered if the magnitude of firing rate modulation appeared small in the PSTHs, because during un-trained 494

and self-initiated behavior, the detected touch events occurred in close temporal proximity and/or were 495

overlapping with other touch events and postural changes58. To test the possibility that larger effects sizes 496

were masked by other touch events occurring in close temporal proximity, we also computed PSTHs where 497

we only included social touch events where no other social touch event was detected in the ‘baseline’ 498

period (4 seconds before the social touch). In these PSTHs with a “cleaned” baseline (Fig. 6e, bottom row, 499

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 22 of 68

labeled “cleaned PSTH”), we both observed a larger proportion of neurons with a significant change in 500

firing rate (Fig. 6f) and a larger effect size compared to the naïve PSTHs (Fig. 6g, the distributions of 501

effect sizes in the cleaned PSTH are “wider”). For example, the third neuron shown in Figure 6e showed 502

no firing rate modulation in the naïve PSTH, but instead showed a large, highly statistically significant 503

firing rate decrease around whisker touch in the “cleaned” PSTH. 504

 505

Fully automatic mapping of ‘social receptive fields’ 506

Cleaning the PSTHs (by controlling for only three types of social touch) increased our estimates of the 507

magnitude of firing rate modulations associated with social touch events. However, a PSTH-based analysis 508

strategy has inherent drawbacks when analyzing naturalistic behavior. During free behavior, touch, move-509

ment and postural changes happen simultaneously, as continuous and overlapping variables. Furthermore, 510

in line with “vicarious” somatosensory responses reported in human somatosensory cortex60 and barrel 511

cortex responses observed just before touch61, barrel cortex neurons may be related to the behavior of the 512

partner animal, in a kind of “mirror neuron”-like response. 513

 514

To deal with these challenges, we drew inspiration from discovery of multiplexed spatial coding in hip-515

pocampal circuits62 and developed a fully-automatic python pipeline that can automatically discover ‘so-516

cial’ receptive fields. Our tracking method is able to recover the 3D posture and head direction of both 517

animals: The head direction of the implanted animal was given by the skeleton of the body model (the 518

implant is fixed to the head). For computational efficiency, we exploited the rotational symmetry of the 519

body model of the non-implanted partner to decrease the dimensionality of the search space during track-520

ing (Fig. 4c) and used the 3D coordinates of the detected ‘ear’ key-points to infer the 3D head direction 521

of the partner (Supplementary Figs. 17,18). 522

 523

Using the full 3D body model of both animals, we designed our analysis pipeline to automatically extract 524

45 continuous features that might be associated with firing rate changes in a social interaction: social 525

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 23 of 68

“between-animal” features (nose-to-nose distance, nose-to-partner’s-genitals distance, relative orientation 526

of the partner with respect to the implanted animal, and a temporal derivative of the distance between the 527

center of the two hip ellipsoids that measures if the animals are moving towards each other or away from 528

each other, Fig. 7a), postural features (head yaw/pitch/roll, etc.), spatial features (to detect ‘spatial’ activity, 529

such as place fields, border or head-direction activity), movement features (temporal derivatives of the 530

running trajectory, temporal derivatives of posture angles, etc.), and posture, space and movement features 531

of the partner animal (Fig. 7b, Supplementary Fig. 19a, detailed feature table in Methods). 532

 533

We assumed the following generative model of the observed neuronal spike trains62: A neuron’s spike 534

train is generated by a Poisson process, and the rate of this Poisson process is determined by a linear 535

combination of the behavioral predictors, each associated with their own tuning curve (Fig. 7c). To deter-536

mine what behavioral features significantly contribute to the firing rate modulation of a neuron, and the 537

associated tuning curves, we used a model comparison approach: Starting from a null model where the 538

observed spikes are simply generated by a Poisson process with a constant rate, we iteratively added pre-539

dictors that passed a cross-validated significance criterion (a significant increase in likelihood compared 540

to a simpler model). The tuning curves were regularized to be smooth and allowed to be re-fit with each 541

additional predictor added to the multiplexed code (details in Methods). 542

 543

Using this analysis approach, we found several neurons with a multiplexed encoding of features of the 544

social interactions (Fig. 7d-e). Because of the 3D body models, the discovered neural coding schemes 545

were straightforward to interpret and compare to expected touch-related response patterns in barrel cor-546

tex59. For example, the example neuron shown in Fig. 7d is strongly modulated by social facial touch 547

(strongly tuned to a low nose-to-nose distance) and strongly lateralized (the neuron is strongly tuned to 548

orientation angle, with a peak at ~ –π/2, i.e., when the partner is on the contralateral side of the animal’s 549

face, relative to the implanted recording electrode). The example neuron shown in Fig. 7e was also 550

strongly tuned to social facial touch (tuned to a low nose-to-nose distance), was strongly tuned to a positive 551

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 24 of 68

head roll (i.e., when the head is turned such that the whisker field contralateral to the recording electrode 552

is in contact with the floor) and was strongly tuned to a positive temporal derivative of the hip ellipsoid 553

yaw (when the animal is running counterclockwise, e.g., along the edge of the arena, such that the contra-554

lateral whisker field is brushing against the arena wall or other obstacles). Across the population, we found 555

that the neurons overwhelmingly encoded whisker touch and orientation angle (lateralization), and the 556

posture and movements of the implanted animal, but not the partner animal (Fig. 7f). 557

 558

Mapping the network topology of social responses 559

To map how neurons across the population might also be tuned to features of social interactions, we ex-560

tracted the estimated neural tuning curves of all features that were encoded by at least 4 neurons (Fig. 8a). 561

For some features, there was a clear pattern across the population, in line with known response patterns in 562

barrel cortex59: All neurons that were modulated by social touch increased their firing rate during touch 563

(tuned to a low nose-to-nose and nose-to-tail distance), were tuned to touch contralateral to the implanted 564

electrode (tuning peak at orientation angle ≈ –π/2), and decreased firing rate during higher locomotion 565

speeds (negatively correlated with forward speed). For the remaining movement and posture features, the 566

tuning was more heterogeneous across the population (Fig. 8a). 567

 568

Finally, our automatic tracking and tuning curve estimation pipeline makes it straightforward to determine 569

how features might be multiplexed together in the same neurons. In our example session, we found that 570

52% of the neurons encoded at least one behavioral feature, with a median number of five encoded features 571

(Fig. 8b). Using all neurons that encoded at least one feature, we computed a population “co-encoding 572

matrix”, where the entries of the matrix is the probability that two features are encoded by the same neuron 573

(Fig. 8c, Supplementary Fig. 19b). This co-encoding matrix was structured, such that there was a large 574

overlap between neurons that encode nose-to-nose touch, neurons that encode nose-to-partner-genital 575

touch and neurons that had lateralized responses (modulated by the relative orientation angle of the ani-576

mals, preferring touch to the contralateral whisker field, relative to the implanted recording electrode59, 577

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 25 of 68

Fig. 8d). The co-encoding matrix specified a network graph of encoded features (Fig. 8e), which would 578

then be amenable to various methods of network topology analysis (e.g., locality, clustering, subgraph 579

motifs, etc.). Thus, our fully-automatic pipeline enables direct connections from raw behavioral videog-580

raphy and spike train recordings to higher-order statistics about how features of a social interaction are 581

mapped onto a neural population during naturalistic behavior. 582

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 26 of 68

Discussion 583

We combined 3D videography, deep learning and GPU-accelerated robust optimization to estimate the 584

posture dynamics of multiple freely-moving mice, engaging in naturalistic social interactions. Our method 585

is cost-effective (requiring only inexpensive consumer depth cameras and a GPU), has high spatiotemporal 586

precision, is compatible with neural implants for continuous electrophysiological recordings, and tracks 587

unmarked animals of the same coat color (e.g., enabling behavioral studies in transgenic mice). Our 588

method is fully unsupervised, which makes the method scalable across multiple PCs or GPUs. Unsuper-589

vised tracking allows us to investigate social behavior across long behavioral time scales beyond what is 590

feasible with manual annotation, in order to elucidate developmental trajectories, dynamics of social learn-591

ing, or individual differences among animals63,64, among other types of questions. Finally, our method 592

uses no message-passing from future frames, but only relies on past data, which makes the method a 593

promising starting point for real-time tracking. A major next step for future work is to apply such algo-594

rithms to animal behavior in different conditions. For example, the algorithm can easily be adapted to 595

track other animal body shapes such as juvenile mice or other species, or movable, deformable objects 596

that might be important for foraging or other behaviors in complex environments. 597

 598

Multi-animal body tracking and mirror neurons 599

In social interactions, rodents respond to the behavior of conspecifics, but we are only beginning to dis-600

cover how the rodent brain encodes complex features such as gaze direction or body postures of oth-601

ers3,21,65,66. Compared to our knowledge about sensorimotor mirror neurons in monkeys67 and vicarious 602

sensory responses in human subjects60 (both foundational to theories about human social cognition68 and 603

empathy69), we still know very little about a putative rodent mirror neuron system69. For demonstration 604

and validation, we applied our analysis pipeline to barrel cortex neurons, and were able to recover expected 605

neural tuning to (lateralized) whisker touch and movement59. Our end-to-end tracking method and analysis 606

pipeline maps tuning to movements and postures of the partner’s body, and is also ideally suited to detect 607

potential social interaction systems such as rodent ‘mirror neuron’ signals in other brain areas70,71. The 45 608

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 27 of 68

potential predictors that we have included in our analysis pipeline could be expanded to add additional 609

features of interest. Similar to multiplexed spatial tuning in parahippocampal cortices (e.g., “conjunctive” 610

grid- and head-direction cells72), we model multiplexed tuning as multiplicative62. It is straightforward to 611

modify our model comparison code to also consider other coding schemes, such as nonlinear or condi-612

tional interactions between predictors. This is of particular interest to the social neuroscience of joint ac-613

tion, where movements and postures can have particular social meaning when performed in coordination 614

with a social partner21. 615

 616

Automatic mapping of social phenotypes 617

Social dysfunctions can be devastating symptoms in a multitude of mental conditions, including autism 618

spectrum disorders, social anxiety, depression, and personality disorders73. Social interactions also pow-619

erfully impact somatic physiology, and social interactions are emerging as a promising protective and 620

therapeutic element in somatic conditions, such as inflammation74 and chronic pain75. Disorders charac-621

terized by deficits in social interaction and communication generally lack effective treatment options, 622

largely because even the neurobiological basis of ‘healthy’ social behavior is poorly understood. In addi-623

tion to relating behavior to neural activity, automated 3D body tracking can yield a high-fidelity readout 624

of behavioral changes associated with manipulations of neural activity, both at short (e.g., optogenetic), 625

medium (e.g., pharmacological) and long (e.g., gene knockout) time scales. 626

 627

Long-term multi-animal behavior tracking has a particular advantage in comparative social neuroscience. 628

For example, human genomics have linked several genes to autism2–4, but we still know little about how 629

these genetic changes increase the risk of autism. A ‘computational ethology’76 approach to social behavior 630

analysis based on automatic posture tracking (such as pioneered in laboratory studies of insects, worms 631

and fish20,77–82 and in field ethology83–86) does not require us to a priori imagine how, e.g., autism-related 632

gene perturbations manifest in mice, and can identify subtle changes in higher-order behavioral statistics 633

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 28 of 68

without human observer bias. By recording days of social interactions, it may be possible to use methods 634

from computational topology to ask how the high-dimensional space defined by touch, posture and move-635

ment dynamics is impacted by different genotypes or pathological conditions. The statistical power and 636

granularity of the long-term continuous 3D behavior data may allow us to identify what specific core 637

components of social behaviors are altered in different social relations, by various neuroactive drugs, and 638

in disease states53, and hopefully identify novel therapies for alleviating social dysfunction in patients. 639

 640

Moving towards real-time behavior tracking and electrophysiology 641

Our algorithm is automatic, does not use any message-passing from future frames, and robustly recovers 642

from tracking mistakes. Thus, it is possible in principle to run the algorithm in real-time. Currently, the 643

processing time per frame is higher than the camera frame rate (60 frames/s), but the algorithm is also not 644

yet fully optimized for speed. For example, in the current version of the algorithm, we first record the 645

images to disk, and then read and pre-process the images later. This is convenient for algorithm develop-646

ment and exploration, but writing and reading the images to disk, and moving them onto and off a GPU 647

are time-intensive steps. Beyond speed optimizations, tracking at a lower frame rate would allow more 648

data processing time per frame. Going forward, it is important to explore ways to increase tracking ro-649

bustness further, such as using the optical flow between video frames to link key-points together in multi-650

animal tracking15, using a 3D convolutional neural network to detect body key-points by considering ‘up-651

projected’ views from all cameras around the behavioral arena simultaneously10, real-time painting-in of 652

depth artifacts87, and better online trajectory forecasting with a network trained to propose trajectories 653

based on previously tracked mouse movements. Experimentation and optimization is clearly needed, but 654

our algorithm – requiring data transfer from only a few cameras, with deep convolutional networks, phys-655

ical modeling and particle filter tracking implemented as tensor algebra on the same GPU – is a promising 656

starting point for the development of real-time, multi-animal 3D tracking, compatible with head mounted 657

electrophysiology, e.g., for closed-loop experimental control triggered on behavioral and/or neural events. 658

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 29 of 68

References 659

1. Crusio, W. E., Sluyter, F. & Gerlai, R. T. Ethogram of the mouse. in Behavioral Genetics of the 660
Mouse 17–22 (Cambridge Univeristy Press, 2013). doi:10.1017/CBO9781139541022.004. 661

2. Angelaki, D. E. et al. A gravity-based three-dimensional compass in the mouse brain. Nat. Com-662
mun. 11, 1855 (2020). 663

3. Mimica, B., Dunn, B. A., Tombaz, T., Bojja, V. P. T. N. C. S. & Whitlock, J. R. Efficient cortical 664
coding of 3D posture in freely behaving rats. Science 362, 584–589 (2018). 665

4. Shemesh, Y. et al. High-order social interactions in groups of mice. eLife 2, e00759 (2013). 666
5. Weissbrod, A. et al. Automated long-term tracking and social behavioural phenotyping of animal 667

colonies within a semi-natural environment. Nat. Commun. 4, 1–10 (2013). 668
6. Pereira, T. D. et al. Fast animal pose estimation using deep neural networks. Nat. Methods 16, 117–669

125 (2019). 670
7. Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep 671

learning. Nat. Neurosci. 21, 1281–1289 (2018). 672
8. Graving, J. M. et al. DeepPoseKit, a software toolkit for fast and robust animal pose estimation us-673

ing deep learning. eLife 8, e47994 (2019). 674
9. Zhang, L., Dunn, T., Marshall, J., Olveczky, B. & Linderman, S. Animal pose estimation from video 675

data with a hierarchical von Mises-Fisher-Gaussian model. in International Conference on Artificial 676
Intelligence and Statistics 2800–2808 (PMLR, 2021). 677

10. Dunn, T. W. et al. Geometric deep learning enables 3D kinematic profiling across species and envi-678
ronments. Nat. Methods 18, 564–573 (2021). 679

11. Marshall, J. D. et al. Continuous Whole-Body 3D Kinematic Recordings across the Rodent Behav-680
ioral Repertoire. Neuron 109, 420-437.e8 (2021). 681

12. Wu, A. et al. Deep Graph Pose: a semi-supervised deep graphical model for improved animal pose 682
tracking. bioRxiv 2020.08.20.259705 (2020) doi:10.1101/2020.08.20.259705. 683

13. Liu, X. et al. OptiFlex: video-based animal pose estimation using deep learning enhanced by optical 684
flow. bioRxiv 2020.04.04.025494 (2020) doi:10.1101/2020.04.04.025494. 685

14. Lauer, J. et al. Multi-animal pose estimation and tracking with DeepLabCut. bioRxiv 686
2021.04.30.442096 (2021) doi:10.1101/2021.04.30.442096. 687

15. Pereira, T. D. et al. SLEAP: Multi-animal pose tracking. bioRxiv 2020.08.31.276246 (2020) 688
doi:10.1101/2020.08.31.276246. 689

16. Chaumont, F. de et al. Real-time analysis of the behaviour of groups of mice via a depth-sensing 690
camera and machine learning. Nat. Biomed. Eng. 3, 930–942 (2019). 691

17. Hong, W. et al. Automated measurement of mouse social behaviors using depth sensing, video 692
tracking, and machine learning. Proc. Natl. Acad. Sci. 112, E5351–E5360 (2015). 693

18. Nilsson, S. R. O. et al. Simple Behavioral Analysis (SimBA): an open source toolkit for computer 694
classification of complex social behaviors in experimental animals. bioRxiv 2020.04.19.049452 695
(2020) doi:10.1101/2020.04.19.049452. 696

19. Segalin, C. et al. The Mouse Action Recognition System (MARS): a software pipeline for auto-697
mated analysis of social behaviors in mice. bioRxiv 2020.07.26.222299 (2020) 698
doi:10.1101/2020.07.26.222299. 699

20. Walter, T. & Couzin, I. D. TRex, a fast multi-animal tracking system with markerless identification, 700
2D body posture estimation and visual field reconstruction. eLife 10:e64000 (2021). 701

21. Ebbesen, C. L. & Froemke, R. C. Body language signals for rodent social communication. Curr. 702
Opin. Neurobiol. 68, 91–106 (2021). 703

22. Nath, T. et al. Using DeepLabCut for 3D markerless pose estimation across species and behaviors. 704
Nat. Protoc. 14, 2152–2176 (2019). 705

23. Bala, P. C. et al. OpenMonkeyStudio: Automated Markerless Pose Estimation in Freely Moving 706
Macaques. bioRxiv 2020.01.31.928861 (2020) doi:10.1101/2020.01.31.928861. 707

24. Batty, E. et al. BehaveNet: nonlinear embedding and Bayesian neural decoding of behavioral vid-708
eos. in Advances in Neural Information Processing Systems 32 (eds. Wallach, H. et al.) 15706–709

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 30 of 68

15717 (Curran Associates, Inc., 2019). 710

25. Parker, P. R. L., Brown, M. A., Smear, M. C. & Niell, C. M. Movement-Related Signals in Sensory 711
Areas: Roles in Natural Behavior. Trends Neurosci. 43, 581–595 (2020). 712

26. Kropff, E., Carmichael, J. E., Moser, M.-B. & Moser, E. I. Speed cells in the medial entorhinal cor-713
tex. Nature 523, 419–424 (2015). 714

27. Omrani, M., Kaufman, M. T., Hatsopoulos, N. G. & Cheney, P. D. Perspectives on classical contro-715
versies about the motor cortex. J. Neurophysiol. 118, jn.00795.2016-jn.00795.2016 (2017). 716

28. Georgopoulos, A. P., Kalaska, J. F., Caminiti, R. & Massey, J. T. On the relations between the direc-717
tion of two-dimensional arm movements and cell discharge in primate motor cortex. J. Neurosci. 2, 718
1527–1537 (1982). 719

29. Kalaska, J. F. The representation of arm movements in postcentral and parietal cortex. Can. J. Phys-720
iol. Pharmacol. 66, 455–463 (1988). 721

30. Matsumoto, J. et al. A 3D-Video-Based Computerized Analysis of Social and Sexual Interactions in 722
Rats. PLOS ONE 8, e78460 (2013). 723

31. Nakamura, T. et al. A Markerless 3D Computerized Motion Capture System Incorporating a Skele-724
ton Model for Monkeys. PLOS ONE 11, e0166154 (2016). 725

32. Sheets, A. L., Lai, P.-L., Fisher, L. C. & Basso, D. M. Quantitative Evaluation of 3D Mouse Behav-726
iors and Motor Function in the Open-Field after Spinal Cord Injury Using Markerless Motion 727
Tracking. PLOS ONE 8, e74536 (2013). 728

33. Wiltschko, A. B. et al. Mapping Sub-Second Structure in Mouse Behavior. Neuron 88, 1121–1135 729
(2015). 730

34. Newell, A., Yang, K. & Deng, J. Stacked Hourglass Networks for Human Pose Estimation. 731
ArXiv160306937 Cs (2016). 732

35. Günel, S. et al. DeepFly3D, a deep learning-based approach for 3D limb and appendage tracking in 733
tethered, adult Drosophila. eLife 8, e48571 (2019). 734

36. Cao, Z., Simon, T., Wei, S.-E. & Sheikh, Y. Realtime Multi-Person 2D Pose Estimation using Part 735
Affinity Fields. ArXiv161108050 Cs (2017). 736

37. Shorten, C. & Khoshgoftaar, T. M. A survey on Image Data Augmentation for Deep Learning. J. 737
Big Data 6, 60 (2019). 738

38. Transtrum, M. K., Machta, B. B. & Sethna, J. P. Geometry of nonlinear least squares with applica-739
tions to sloppy models and optimization. Phys. Rev. E 83, 036701 (2011). 740

39. Hart, J. C. Distance to an ellipsoid. in Graphics Gems (ed. Heckbert, P.) vol. 1994 113–119 (Aca-741
demic Press). 742

40. Kleinsteuber, M. & Hüper, K. Approximate Geometric Ellipsoid Fitting: A CG-Approach. in Recent 743
Advances in Optimization and its Applications in Engineering (eds. Diehl, M., Glineur, F., Jarle-744
bring, E. & Michiels, W.) 73–82 (Springer, 2010). doi:10.1007/978-3-642-12598-0_7. 745

41. Wang, W., Wang, J. & Kim, M.-S. An algebraic condition for the separation of two ellipsoids. Com-746
put. Aided Geom. Des. 18, 531–539 (2001). 747

42. Choset, H. M. Principles of robot motion: theory, algorithms, and implementation. (MIT Press, 748
2005). 749

43. Deutscher, J. & Reid, I. Articulated Body Motion Capture by Stochastic Search. Int. J. Comput. Vis. 750
61, 185–205 (2005). 751

44. Paszke, A. et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. in Ad-752
vances in Neural Information Processing Systems 32 (eds. Wallach, H. et al.) 8024–8035 (Curran 753
Associates, Inc., 2019). 754

45. Sobol, I. M. On the distribution of points in a cube and the approximate evaluation of integrals. 755
USSR Comput. Math. Math. Phys. 7, 86–112 (1967). 756

46. Das, G. Top-k Algorithms and Applications. in Database Systems for Advanced Applications (eds. 757
Zhou, X., Yokota, H., Deng, K. & Liu, Q.) 789–792 (Springer, 2009). doi:10.1007/978-3-642-758
00887-0_74. 759

47. Murray, L. M., Lee, A. & Jacob, P. E. Parallel Resampling in the Particle Filter. J. Comput. Graph. 760
Stat. 25, 789–805 (2016). 761

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 31 of 68

48. Rauch, H. E., Tung, F. & Striebel, C. T. Maximum likelihood estimates of linear dynamic systems. 762

AIAA J. 3, 1445–1450 (1965). 763
49. Simon, D. Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches. (John Wiley & 764

Sons, Inc., 2006). doi:10.1002/0470045345. 765
50. Landis, M. F., Cheng, Y., Crassidis, J. L. & Oshman, Y. Averaging quaternions. J. Guid. Control 766

Dyn. 30, 1193–1197 (2007). 767
51. Berman, G. J., Choi, D. M., Bialek, W. & Shaevitz, J. W. Mapping the stereotyped behaviour of 768

freely moving fruit flies. J. R. Soc. Interface 11, 20140672 (2014). 769
52. Berman, G. J., Bialek, W. & Shaevitz, J. W. Predictability and hierarchy in Drosophila behavior. 770

Proc. Natl. Acad. Sci. 113, 11943–11948 (2016). 771
53. Wiltschko, A. B. et al. Revealing the structure of pharmacobehavioral space through motion se-772

quencing. Nat. Neurosci. 1–11 (2020) doi:10.1038/s41593-020-00706-3. 773
54. Barnett, S. A. The rat: A study in behaviour. xvi, 248 (Aldine, 1963). 774
55. Wolfe, J., Mende, C. & Brecht, M. Social facial touch in rats. Behav. Neurosci. 125, 900–910 775

(2011). 776
56. Bingham, E. et al. Pyro: Deep Universal Probabilistic Programming. ArXiv181009538 Cs Stat 777

(2018). 778
57. Fox, E., Sudderth, E., Jordan, M. & Willsky, A. Bayesian Nonparametric Methods for Learning 779

Markov Switching Processes. IEEE Signal Process. Mag. 5563110 (2010) 780
doi:10.1109/MSP.2010.937999. 781

58. Ebbesen, C. L., Bobrov, E., Rao, R. P. & Brecht, M. Highly structured, partner-sex- and subject-sex-782
dependent cortical responses during social facial touch. Nat. Commun. 10, 1–16 (2019). 783

59. Petersen, C. C. H. Sensorimotor processing in the rodent barrel cortex. Nat. Rev. Neurosci. 20, 533–784
546 (2019). 785

60. Keysers, C., Kaas, J. H. & Gazzola, V. Somatosensation in social perception. Nat. Rev. Neurosci. 11, 786
417–428 (2010). 787

61. Lenschow, C. & Brecht, M. Barrel Cortex Membrane Potential Dynamics in Social Touch. Neuron 788
85, 718–725 (2015). 789

62. Hardcastle, K., Maheswaranathan, N., Ganguli, S. & Giocomo, L. M. A Multiplexed, Heterogene-790
ous, and Adaptive Code for Navigation in Medial Entorhinal Cortex. Neuron 94, 375-387.e7 (2017). 791

63. Díaz López, B. When personality matters: personality and social structure in wild bottlenose dol-792
phins, Tursiops truncatus. Anim. Behav. 163, 73–84 (2020). 793

64. Tao, L., Ozarkar, S., Beck, J. M. & Bhandawat, V. Statistical structure of locomotion and its modu-794
lation by odors. eLife 8, e41235 (2019). 795

65. Concha-Miranda, M., Hartmann, K., Reinhold, A., Brecht, M. & Sanguinetti-Scheck, J. I. Play, but 796
not observing play, engages rat medial prefrontal cortex. Eur. J. Neurosci. n/a, (2020). 797

66. Carrillo, M. et al. Emotional Mirror Neurons in the Rat’s Anterior Cingulate Cortex. Curr. Biol. 29, 798
1301-1312.e6 (2019). 799

67. Kilner, J. M. & Lemon, R. N. What We Know Currently about Mirror Neurons. Curr. Biol. 23, 800
R1057–R1062 (2013). 801

68. Hickok, G. Do mirror neurons subserve action understanding? Neurosci. Lett. 540, 56–58 (2013). 802
69. Keysers, C. & Gazzola, V. Neural Correlates of Empathy in Humans, and the Need for Animal 803

Models. in Neuronal Correlates of Empathy 37–52 (Elsevier, 2018). doi:10.1016/B978-0-12-804
805397-3.00004-8. 805

70. Tombaz T, Dunn BA, Hovde K, Cubero RJ, Mimica B, Mamidanna P, Roudi Y, & Whitlock JR. Ac-806
tion representation in the mouse parieto-frontal network. Sci Rep. 10:5559 (2020). 807

71. Carcea, I., et al. Oxytocin neurons enable social transmission of maternal behaviour. Nature 808
596:553-557 (2021). 809

72. Sargolini, F. et al. Conjunctive representation of position, direction, and velocity in entorhinal cor-810
tex. Science 312, 758–62 (2006). 811

73. Porcelli, S. et al. Social brain, social dysfunction and social withdrawal. Neurosci. Biobehav. Rev. 812
97, 10–33 (2019). 813

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 32 of 68

74. Uchino, B. N. et al. Social support, social integration, and inflammatory cytokines: A meta-analysis. 814

Health Psychol. 37, 462–471 (2018). 815
75. Che, X., Cash, R., Ng, S. K., Fitzgerald, P. & Fitzgibbon, B. M. A Systematic Review of the Pro-816

cesses Underlying the Main and the Buffering Effect of Social Support on the Experience of Pain. 817
Clin. J. Pain 34, 1061–1076 (2018). 818

76. Anderson, D. J. & Perona, P. Toward a Science of Computational Ethology. Neuron 84, 18–31 819
(2014). 820

77. Gal, A., Saragosti, J. & Kronauer, D. J. anTraX, a software package for high-throughput video 821
tracking of color-tagged insects. eLife 9, e58145 (2020). 822

78. Bozek, K., Hebert, L., Portugal, Y., Mikheyev, A. S. & Stephens, G. J. Markerless tracking of an 823
entire honey bee colony. Nat. Commun. 12, 1733 (2021). 824

79. Imirzian, N. et al. Automated tracking and analysis of ant trajectories shows variation in forager ex-825
ploration. Sci. Rep. 9, 13246 (2019). 826

80. Klibaite, U., Berman, G. J., Cande, J., Stern, D. L. & Shaevitz, J. W. An unsupervised method for 827
quantifying the behavior of paired animals. Phys. Biol. 14, 015006 (2017). 828

81. Franks, N. R. et al. Social behaviour and collective motion in plant-animal worms. Proc. R. Soc. B 829
Biol. Sci. 283, 20152946 (2016). 830

82. Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S. & Couzin, I. D. Revealing the hidden 831
networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. 832
Proc. Natl. Acad. Sci. 112, 4690–4695 (2015). 833

83. Adam, T. et al. Joint modelling of multi-scale animal movement data using hierarchical hidden 834
Markov models. Methods Ecol. Evol. 10, 1536–1550 (2019). 835

84. Strandburg-Peshkin, A., Farine, D. R., Couzin, I. D. & Crofoot, M. C. Shared decision-making 836
drives collective movement in wild baboons. Science 348, 1358–1361 (2015). 837

85. Patterson, T. A. et al. Statistical modelling of individual animal movement: an overview of key 838
methods and a discussion of practical challenges. ArXiv160307511 Q-Bio Stat (2017). 839

86. Smith, J. E. & Pinter-Wollman, N. Observing the unwatchable: Integrating automated sensing, natu-840
ralistic observations and animal social network analysis in the age of big data. J. Anim. Ecol. n/a, 841
(2020). 842

87. Gillis, W. et al. Revealing elements of naturalistic reinforcement learning through closed-loop ac-843
tion identification. in 2019 Neuroscience Meeting Planner Program No. 146.17 (Society for Neuro-844
science, 2019). 845

88. Kamada, T. & Kawai, S. An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31, 846
7–15 (1989). 847

89. Sayed, A. & Kailath, T. Recursive Least-Squares Adaptive Filters. in Digital Signal Processing 848
Fundamentals vol. 20094251 1–40 (CRC Press, 2009). 849

90. Blei, D. M., Kucukelbir, A. & McAuliffe, J. D. Variational Inference: A Review for Statisticians. J. 850
Am. Stat. Assoc. 112, 859–877 (2017). 851

91. Franklin, K. B. J. & Paxinos, G. The mouse brain in stereotaxic coordinates. (2019). 852
92. Vöröslakos, M. et al. 3D-printed recoverable microdrive and base plate system for rodent electro-853

physiology. (2021). 854
93. Siegle, J. H. et al. Open Ephys: an open-source, plugin-based platform for multichannel electro-855

physiology. J. Neural Eng. 14, 045003 (2017). 856
94. Yger, P. et al. A spike sorting toolbox for up to thousands of electrodes validated with ground truth 857

recordings in vitro and in vivo. eLife 7, 1–23 (2018). 858
95. Rossant, C. et al. Spike sorting for large, dense electrode arrays. Nat. Neurosci. 19, 634–641 (2016). 859
96. Larsson, J. eulerr: Area-Proportional Euler and Venn Diagrams with Ellipses. https://cran.r-pro-860

ject.org/web/packages/eulerr/citation.html (2020). 861
97. Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring Network Structure, Dynamics, and Function 862

using NetworkX. 5 (2008). 863

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 33 of 68

Acknowledgements 864

This work was supported by The Novo Nordisk Foundation (C.L.E.), the NIH (DC012557, HD088411, 865

and NS107616 to R.C.F.), and a Howard Hughes Medical Institute Faculty Scholarship (R.C.F.). We thank 866

György Buzsáki, David Tingley, and Manuel Valero for help in establishing silicon probe recordings and 867

for the gift of 3D printed silicon drive parts. 868

 869

Author Contributions 870

C.L.E. designed and implemented the system, performed experiments, analyzed the data, made figures, 871

and wrote the first version of the manuscript. R.C.F. supervised the study. C.L.E and R.C.F. wrote the 872

manuscript. 873

 874

Competing Interests 875

The authors declare no competing interests. 876

 877

Data and Code Availability 878

All code (the recording software and all analysis code) and an example dataset were submitted with this 879

manuscript. All code will be available in a dedicated Github repository before or upon publication, the 880

example dataset will be deposited on Zenodo. 881

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 34 of 68

Figures and Legends882

883

Figure 1. Raw data acquisition, temporal alignment and recording stability. a, Schematic of recording 884

setup, showing flow of synchronization pulses and raw data. We use a custom Python program to record 885

RGB images, depth images, and state (on/off) of synchronization LEDs from all four cameras. Neural data 886

and TTL state of LEDs are recorded with a standard electrophysiology recording system. We use a custom 887

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 35 of 68

Python program to record video frames over USB (60 frames/s) and automatically deliver LED synchro-888

nization pulses with randomized delays via Arduino microcontroller. b, Close-up images of the depth 889

cameras, showing the two infrared sensors, color sensor, and cables for data transfer and synchronization. 890

c, Photograph of recording setup, showing the four depth cameras, synchronization LEDs, and circular 891

behavioral arena (transparent acrylic, 12” diameter). d, Example raw data images (top left: single infrared 892

image with visible infrared laser dots; top right: corresponding automatically-generated mask image for 893

recording LED synchronization state (arrow, LED location); bottom left: corresponding depth image, es-894

timated from binocular disparity between two infrared images; bottom right: corresponding color image). 895

e, Inter-frame-interval from four cameras (21 min of recording). Vertical ticks indicate 16.66 ms (corre-896

sponding to 60 frames/s), individual cameras are colored and vertically offset. Frame rate is very stable 897

(jitter across all cameras: ±26 µs). Arrow, example dropped frame. f, Number of dropped frames across 898

the example 21 min recording. g, Top row, LED state (on/off) as captured by one camera (the 8-bit value 899

of central pixel of LED ROI mask), at start of recording and after 20 minutes of recording. Bottom row, 900

aligned LED trace, as recorded by electrophysiology recording system. h, Temporal residuals between 901

recorded camera LED trace (g, top) and recorded TTL LED trace (g, bottom) are stable, but drift slightly 902

(49 µs/min, left panel). We can automatically detect and correct for this small drift (right panel). 903

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 36 of 68

 904

Figure 2. Detection of body key-points with a deep convolutional neural network. a, Workflow for 905

pre-processing of raw image data. b, The ‘stacked hourglass’ convolutional network architecture. Each 906

‘hourglass’ block of the network uses pooling and upsampling to incorporate both fine (high-resolution) 907

and large-scale (low-resolution) information in the target prediction. The hourglass and scoring blocks are 908

repeated seven times (seven ‘stacks’), such that intermediate key-point and affinity field predictions feed 909

into subsequent hourglass blocks. Both the intermediate and final target maps contribute to the training 910

loss, but only the final output map is used for prediction. c, Example training data for the deep convolu-911

tional neural network. The network is trained to output four types of body key-points (Implant, Ears, Noses, 912

Tails) and seven 1-D affinity fields, connecting key-points within each body. d, Example of full training 913

target tensor. e, Convergence plot of example training set. Top, loss function for each mini-batch of the 914

training set (526 images) and validation set (50 images). Bottom, learning rate. Network loss is trained 915

(plateaued) after ~ 60 minutes. f, Network performance as function of training epoch for two example 916

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 37 of 68

images in the validation set. Left, input images; right, final output maps for key-points and affinity fields. 917

g, In an infrared frame (under infrared illumination), the clear view of the mice is ‘obstructed’ by the 918

infrared laser dot pattern. h, Example labeled training frame (with the laser turned off), showing the aug-919

mentation strategy of applying a probabilistically generated ‘fake’ laser dot pattern during training. i, Ex-920

ample network output of the trained network on a ‘real’ infrared frame with the infrared laser turned on. 921

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 38 of 68

 922

Figure 3. Depth data alignment and pre-processing. a, Calibration ball detection pipeline. We use a 923

combination of motion filtering, color filtering, and smoothing filters to detect and extract 3D ball surface. 924

We estimate 3D location of the ball by fitting a sphere to the extracted surface. b, Estimated 3D trajectories 925

of calibration ball as seen by the four cameras. One trajectory has an error (arrow) where ball trajectory 926

was out of view. c, Overlay of trajectories after alignment in time and space. Our alignment pipeline uses 927

a robust regression method and is insensitive to errors (arrow) in the calibration ball trajectory. d, Distri-928

bution of residuals, using cam 0 as reference. e, Estimated trajectory in 3D space, before and after align-929

ment of camera data. f, Example frame used in automatic detection of the behavioral arena location. Show 930

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 39 of 68

are pixels from the four cameras, after alignment (green), estimated normal vectors to the behavioral plat-931

form floor (red), the estimated rotation vector (blue), and the reference vector (unit vector along z-axis, 932

black). g, Estimated location (left) and normal vector (right) to the behavioral platform floor, across 60 933

random frames. h, Example frame, after rotating the platform into the xy-plane, and removing pixels be-934

low and outside the arena. Inferred camera locations are indicated with stick and ball. i, Automatic detec-935

tion of behavioral arena location. j, Example 3D frame, showing merged data from four cameras, after 936

automatic removal of the arena floor and imaging artifacts induced by the acrylic cylinder. Colors, which 937

camera captured the pixels. 938

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 40 of 68

 939

Figure 4. Mouse body model and GPU-accelerated tracking algorithm. a, Full assembly pipeline for 940

a single pre-processed data frame, going from raw RGB and depth images (left columns) to assembled 3D 941

point-cloud (black dots, right) and body key-point positions in 3D space (colored dots, right). b, Schematic 942

depiction of mouse body model (grey, deformable ellipsoids) and implant model (grey sphere), fit to point-943

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 41 of 68

cloud (black dots) and body key-points (colored dots). The loss function assigns loss to distance from the 944

point-cloud to the body model surface (black arrows) and from key-point locations to landmark locations 945

on the body model (e.g., from nose key-points to the tip of the nose ellipsoids; colored arrows). c, Sche-946

matic of loss function calculation and tracking algorithm. All operations implemented as GPU-accelerated 947

tensor algebra. d, Example steps showing convergence of the particle filter on a single frame. e, Iteration 948

time of a particle filter step, as a function of particles, on a GPU and CPU. For 200 particles (i.e. 40.000 949

joint poses), the GPU-accelerated particle filter is ~16.5 times faster than the CPU f, Schematic depiction 950

of the two levels of the tracking algorithm: Within a single frame, the joint poses are estimated with the 951

particle filter. Between frames, the RLS filter bank incorporates information from multiple previous 952

frames to estimate and propose the minimum in ‘pose space’. 953

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 42 of 68

 954

Figure 5. Automatic classification of movement patterns and behavioral states during social inter-955

actions. a, Tracked position of both mice, across an example 21 min recording. b, Extracted behavioral 956

features: three speed components (forward, left and up in the mice’s egocentric reference frames), and 957

three ‘social distances’ (nose-to-nose distance and two nose-to-tail distances). Colors indicate ethograms 958

of automatically detected behavioral states. c, Examples of identified social events: nose-to-nose-touch, 959

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 43 of 68

and anogenital nose-contacts. e, Mean and covariance (3 standard deviations indicated by ellipsoids) for 960

each latent state for the forward/leftward running (dots indicate a subsample of tracked speeds, colored by 961

their most likely latent state) e, Mean and variance of latent states in the z-plane (shaded color) as well as 962

distribution of tracked data assigned to those latent states (histograms) f, Distribution of the duration of 963

the five behavioral states in the xy-plane. Periods of rest (blue) are the longest (p < 0.05, Mann-Whitney 964

U-test) and bouts of fast forward movement (green) are to be longer other movement bouts (p < 0.001, 965

Mann-Whitney U-test). g, Distribution of duration of the three behavioral states in the z-plane. Periods of 966

rest (light blue) are either very short or very long. h, Plot of body elevation against behavior duration. 967

Short periods of rest happen when the z-coordinate is high (the mouse rears up, waits for a brief moment 968

before ducking back down), whereas long periods of rest happen when the z-coordinate is low (when the 969

mouse is resting or moving around the arena, ρ = –0.47, p < 0.001, Spearman rank). 970

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 44 of 68

 971

Figure 6. Automatic measurement of firing rate modulations during social touch. a, Automatically-972

detected social touch events in mouse implanted with silicon probe (Si-probe) with 31 single-units from 973

barrel cortex during a single 20-minute behavioral session. Yellow, nose-to-nose; purple, implanted-nose-974

to-partner-tail; blue, partner-nose-to-implanted-tail. b, Distribution of touch durations with male (dashed) 975

and female (solid) partner. c, Percentage of behavioral session classified as social touch events, by partner 976

sex, for two behavioral sessions. d, Distribution of inter-touch-intervals for the two example behavioral 977

sessions. e, Social touch PSTHs for four neurons. For each neuron, the top row shows ‘naïve’ PSTHs 978

(aligned to social touch event) and the bottom row shows ‘cleaned’ PSTHs (we only include events where 979

no other social touch event occurred in the –4 s to 0 s period before the detected social touch). The PSTHs 980

in the bottom row have fewer trials, but show much larger effect sizes. f, Percentage of neurons that pass 981

a p < 0.05 significance criterion, based on the ‘naïve’ and ‘cleaned’ PSTHs shown above. g, Distributions 982

of effect size (measured as a firing rate modulation index), based on the ‘naïve’ and ‘cleaned’ PSTHs 983

shown above. 984

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 45 of 68

 985

Figure 7. Automatic mapping of neural receptive fields in a natural ‘social situation’. a, Schematic 986

depiction of automatically extracted social features (top: nose-to-nose and nose-to-tail distances, center-987

to-center velocity and head-center-to-head-center angle) and movement/posture features (bottom: rotation 988

and movement of the body model ellipsoids). b, Names and example traces of extracted behavioral fea-989

tures: social features (red color) and movement (yellow), posture (blue) and spatial (green) features, for 990

both the subject and partner animal. c, Schematic depiction of the generative model: We assume that every 991

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 46 of 68

behavioral feature (‘predictor’) is associated with a tuning curve and that spikes are generated by a Poisson 992

process. d, Model selection history (with associated p-values of each included predictor) for an example 993

neuron (average spike shape and ISI-histogram shown to the left). The ‘raw’ marginal firing rate distribu-994

tion (bars), and the fitted multiplexed tuning curves (10 lines, one line for each data fold) of the identified 995

predictors are shown below. The barrel cortex neuron multiplexes five features, including nose-to-nose 996

distance (the neuron fires more when this is close to zero, i.e., when noses touch) and orientation angle 997

(the neuron fires most at roughly –π/2, i.e., when the partner is on the right side, the contralateral side 998

relative to the recording electrode). e, Another example neuron (same plots as in d). This barrel cortex 999

neuron multiplexes four features: during nose-to-nose touch, when turning or rolling the head to the right, 1000

when partner’s nose is tilted up, or when partner’s nose is slightly downwards. f, Distribution of the num-1001

ber of neurons that encode the tested behavioral features (ordering as in b). The neurons mainly encoded 1002

social touch features (nose-to-nose, implanted-nose-to-partner-tail and orientation angle) and move-1003

ment/posture features of the implanted animal itself (blue and yellow bars, above ‘own behavior’). 1004

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 47 of 68

1005

Figure 8. Population tuning and co-encoding network structure in a social situation. a, Top, single 1006

neuron tuning curves and ‘population tuning curve’ (average tuning, shaded area indicates standard devi-1007

ation) for all behavioral features encoded by more than three single neurons. Bottom, schematic depiction 1008

of the physical interpretation of the population tuning, in relation to the 3D body models. b, Distribution 1009

of the number of behavioral features that each single neuron multiplexes. The arrow indicated the median 1010

number of features encoded by a neuron that encode at least one feature. c, Co-encoding matrix of the 1011

neural population: The grayscale color in i’th and j’th bin in the heatmap indicates the number neurons 1012

that encode both feature i and j (ordering and color on the axes as in Fig. 7). d, Euler diagram of a subset 1013

of the co-encoding matrix: This shows the number of neurons that encode nose-to-nose touch, implanted-1014

nose-to-partner-tail touch and orientation angle (i.e. are lateralized). e, Network graph depiction of the full 1015

co-encoding matrix. The size of the nodes indicates the number of neurons that encode a feature, the width 1016

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 48 of 68

of the edges indicates the number of neurons that co-encode a behavioral feature. The network is shown 1017

in the Kamada-Kawai projection86 (the distance between nodes approximate their graph-theoretical dis-1018

tance), with additional text labels on the network on the right. 1019

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 49 of 68

Methods 1020
 1021
Hardware 1022
 1023
Necessary hardware: 1024
 1025

Item Recommendation Price
(USD) N Total

(USD)

Depth cameras Intel RealSense D435 179.00 4 716.00

Camera stands Etubby 26” gooseneck webcam
stand 24.96 4 99.84

PCIe card with 4 independent USB 3.0
controllers Startech 4-port superspeed 83.54 1 83.54

Active, repeating USB 3.0 cables UGREEN, USB 3.0 Active Re-
peater Cable 18.89 4 75.56

Arduino with USB cable Arduino Uno R3 13.98 1 13.98

Pytorch-compatible GPU Any NVIDIA card with CUDA
support 500.00 1 500.00

Behavioral arena (acrylic cylinder or
elevated platform)

12”-diameter, 5/32” thick acrylic
cylinder 71.20 1 71.20

Depth camera GPIO pin connector
(jumper) JST ASSHSSH28K305 0.54 8 4.32

Depth camera GPIO pin connector
(jumper housing) JST SHR-09V-S 0.19 4 0.76

Colored ping-pong balls (for calibration) Stiga 40 mm ITTF Regulation
size 6.64 1 6.64

Total 1571.84
 1026
General lab electronics (tape, wire, soldering equipment, etc.) and: 1027
 1028
Item N
Infrared or red LEDs 4
0.1” pin headers or jumper wires 2
20 kOhm resistors 4
22 nF capacitors 4
200 Ohm resistor (or same order of magnitude) 1
Stick (for moving ping-pong ball during calibration) 1
 1029
 1030
Software 1031

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 50 of 68

Our system uses the following software: Linux (tested on Ubuntu 16.04 LTE, but should work on others, 1032

https://ubuntu.com/), Intel Realsense SDK (https://github.com/IntelRealSense/librealsense), Python 1033

(tested on Python 3.6, we recommend Anaconda, https://www.anaconda.com/distribution/). Required Py-1034

thon packages will be installed with PIP or conda (script in supplementary software). All required software 1035

is free and open source. 1036

 1037

Animal welfare 1038

All experimental procedures were performed according to animal welfare laws under the supervision of 1039

local ethics committees. Animals were kept on a 12hr/12hr light cycle with ad libitum access to food and 1040

water. Mice presented as partner animals were housed socially in same-sex cages, and post-surgery im-1041

planted animals were housed in single animal cages. Neural recordings electrodes were implanted on the 1042

dorsal skull under isoflurane anesthesia, with a 3D-printed electrode drive and a hand-built mesh hous-1043

ing. All procedures were approved under NYU School of Medicine IACUC protocols. 1044

 1045

Computer hardware 1046

All experiments and benchmarks were done on a desktop PC running Ubuntu 16.04 LTE on a 3.7 GHz 1047

6-core CPU (Intel i7-8700K), with 32 GB 2400 MHz RAM, and an Nvidia GeForce RTX 2080Ti GPU. 1048

 1049

Recording data structure 1050

The Python program is set to pull raw images at 640 x 480 (color) and 640 x 480 (depth), but only saves 1051

320 x 210 (color) and 320 x 240 (depth). We do this to reduce noise (multi-pixel averaging), save disk 1052

space and reduce processing time. Our software also works for saving images up to 848 x 480 (color) and 1053

848 x 480 (depth) at 60 frames/s, in case the system is to be used for a bigger arena, or to detect smaller 1054

body parts (e.g., eyes, paws). Images were transferred from the cameras with the python bindings for the 1055

Intel Realsense SDK (https://github.com/IntelRealSense/librealsense), and saved as 8-bit, 3-channel PNG 1056

files with opencv (for color images) or as 16-bit binary files (for depth images). 1057

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 51 of 68

 1058

3D data structure 1059

For efficient access and storage of the large datasets, we save all pre-processed data to hdf5 files. Because 1060

the number of data points (point-cloud and key-points) per frame varies, we save every frame as a jagged 1061

array. To this end, we pack all pre-processed data to a single array. If we detect N points in the point-cloud 1062

and M key-points in the color images, we save a stack of the 3D coordinates of the points in the point-1063

cloud (Nx3, raveled to 3N), the weights (N), the 3D coordinates of the key-points (Mx3, raveled to 3M), 1064

their pseudo-posterior (M), an index indicating key-point type (M), and the number of key-points (1). 1065

Functions to pack and unpack the pre-processed data from a single line (‘pack_to_jagged’ and ‘un-1066

pack_from_jagged’) are provided. 1067

 1068

Temporal synchronization 1069

LED blinks were generated with voltage pulses from an Arduino (on digital pin 12), controlled over USB 1070

with a python interface for the Firmata protocol (https://github.com/tino/pyFirmata). To receive the Fir-1071

mata messages, the Arduino was flashed with the ‘StandardFirmata’ example, that comes with the standard 1072

Arduino IDE. TTL pulses were 150 ms long and spaced by ~U(150,350) ms. We recorded the emitted 1073

voltage pulses in both the infrared images (used to calculate the depth image) and on a TTL input on an 1074

Open Ephys Acquisition System (https://open-ephys.org/). We detected LED blinks and TTL flips by 1075

threshold crossing and roughly aligned the two signals by the first detected blink/flip. We first refined the 1076

alignment by cross correlation in 10 ms steps, and then identified pairs of blinks/flips by detecting the 1077

closest blink, subject to a cutoff (zscore < 2, compared to all blink-to-flip time differences) to remove 1078

blinks missed by the camera (because an experimenter moved an arm in front of a camera to place a mouse 1079

in the arena, for example). The final shift and drift was estimated by a robust regression (Theil-Sen esti-1080

mator) on the pairs of blinks/links. 1081

 1082

Deep neural network 1083

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 52 of 68

We used a stacked hourglass network34 implemented in Pytorch44 (https://github.com/pytorch/pytorch). 1084

The network architecture code is from the implementation in ‘PyTorch-Pose’ 1085

(https://github.com/bearpaw/pytorch-pose). The full network architecture is shown in Supplementary 1086

Figure 1. The Image augmentation during training was done with the ‘imgaug’ library 1087

(https://github.com/aleju/imgaug). Our augmentation pipeline is shown in Supplementary Figure 3. The 1088

‘fake laser dot pattern’ was generated using the ‘snowflakes’ generator in the imgaug routines for gener-1089

ating weather effects, tuned to look – by eye – to a similar dot size and density to the real laser dot pattern. 1090

The network was trained by RMSProp (α = 0.99, ε = 10-8) with an initial learning rate of 0.00025. During 1091

training, the learning rate was automatically reduced by a factor of 10 if the training loss decreased by less 1092

than 0.1% for five successive steps (using the built-in learning rate scheduler in Pytorch). After training, 1093

we used the final output map of the network for key-point detection, and used a maximum filter to detect 1094

key-point locations as local maxima in network output images with a posterior pseudo-probability of at 1095

least 0.5. 1096

 1097

Image labeling and target maps 1098

For training the network to recognize body parts, we need to generate labeled frames by manual annotation. 1099

For each frame, 1-5 body parts are labeled on the implanted animal and 1-4 body parts on the partner 1100

animal. This can be done with any annotation software; we used a modified version of the free ‘DeepPo-1101

seKit-Annotator’8 (https://github.com/jgraving/DeepPoseKit-Annotator/) included in the supplementary 1102

code. This software allows easy labeling of the necessary points, and pre-packages training data for use in 1103

our training pipeline. Body parts are indexed by i/p for implanted/partner animal (‘nose_p’ is the nose of 1104

the partner animal, for example). Target maps were generated by adding a Gaussian function (σ = 3 px for 1105

implant, σ = 1 px for other body parts, scaled to peak value = 1) to an array of zeros (at 1/4th the resolution 1106

of the input color image) at the location of every labeled body key-point. 1D part affinity maps were 1107

created by connecting labeled key-points in an array of zeros with a 1 px wide line (clipped to max value 1108

= 1), and blurring the resulting image with a Gaussian filter (σ = 3 px). 1109

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 53 of 68

 1110

Aligning depth and color data 1111

The camera intrinsics (focal lengths, f, optical centers, p, depth scale, dscale) and extrinsics (rotation matri-1112

ces, R, translation vectors, 𝑡̅) for both the color and depth sensors can be accessed over the SDK. Depth 1113

and color images were aligned to each other using a pinhole camera model. For example, the z coordinate 1114

of a single depth pixel with indices (𝑖%, 𝑖') and 16-bit depth value, dij, is given by: 1115

𝑧' = 	𝑑,- ⋅ 𝑑/%012 1116

And the x and y coordinates are given by: 1117

3
𝑥'
𝑦'6 =

7𝑗' − 𝑝;,'< ⋅ 𝑧'/𝑓;,'
7𝑖' − 𝑝?,'< ⋅ 𝑧'/𝑓?,'

 1118

Using the extrinsics between the depth and color sensors, we can move the coordinate to the reference 1119

frame of the color sensor: 1120

@
𝑥
𝑦
𝑧
A
%

= R'→% @
𝑥
𝑦
𝑧
A
'

+ 𝑡'̅→% 1121

Using the focal length and optical center, we can project the pixel onto the color image: 1122

E𝑖%𝑗%
F =

𝑓?,% ⋅ 𝑦%/𝑧% + 𝑝?,%	
𝑓;,% ⋅ 𝑥%/𝑧% + 𝑝;,%

 1123

For assigning color pixel values to depth pixels, we simply rounded the color pixel indices (𝑖%, 𝑖') to the 1124

nearest integer and cloned the value. More computationally intensive methods based on ray-tracking exist 1125

(‘rs2_project_color_pixel_to_depth_pixel’ in the Librealsense SDK, for example), but the simple pinhole 1126

camera approximation yielded good results (small jitter average out across multiple key-points) which 1127

allowed us to skip the substantial computational overhead of ray tracing for our data pre-processing. 1128

 1129

Depth camera calibration, exposure and 3D alignment 1130

To align the cameras in space, we first mounted a blue ping-pong ball on a stick and moved it around the 1131

behavioral arena while recording both color and depth video. For each camera, we used a combination of 1132

motion filtering, color filtering, smoothing and thresholding to detect the location of the ping-pong ball in 1133

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 54 of 68

the color frame (details in code). We then aligned the color frames to depth frames and extracted the 1134

corresponding depth pixels, yielding a partial 3D surface of the ping-pong ball. By fitting a sphere to this 1135

partial surface, we could estimate the 3D coordinate of the center of the ping-pong ball (Fig. 3a). This 1136

procedure yielded a 3D trajectory of the ping-pong ball in the reference frame of each camera (Fig. 3b). 1137

We used a robust regression method (RANSAC routines to fit a sphere with a fixed radius of 40 mm, 1138

modified from routines in https://github.com/daavoo/pyntcloud), insensitive to errors in the calibration 1139

ball trajectory to estimate the transformation matrices needed to bring all trajectories into the same frame 1140

of reference (Fig. 3c). The software includes a step-by-step recipe for performing the alignment procedure. 1141

The depth cameras have a minimum working distance of 20 cm, so they must be placed at least this dis-1142

tance from the behavioral arena. The depth map is calculated from the infrared camera stream, so – as 1143

with the RGB video – it is important that the image is not under- or over-exposed. The code includes a 1144

tool for streaming live video from all cameras to verify that: (i) the whole arena is in view of all the 1145

cameras and (ii) that the exposure is reasonable. The exposure settings can be changes in the config files, 1146

that are loaded and applied when recording (the Intel RealSense SDK demo C application library also 1147

includes a nice tool for testing different exposure settings). The 3D pixel density drops off with distance 1148

from the camera (following the inverse-square law). In our tested use (standard neuroscience behavioral 1149

arena, max. ~ 1 x 1 m), the exact relative placement of the four depth cameras does not matter (as they are 1150

aligned by the calibration). However, for very large arenas, it may be necessary to add more depth cameras 1151

(additional cameras mounted above the arena, for example). Adding more cameras will only affect the 1152

pre-processing time (can be run in parallel – which can minimize the impact of more cameras), not the 1153

actual body model fitting time (the slowest part of the algorithm). The body model fitting time is deter-1154

mined by the number of mice tracked (the particle filter sorting step scales exponentially with the number 1155

of mice, because the algorithm evaluates multi-animal poses). 1156

 1157

Body model 1158

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 55 of 68

We model each mouse at two prolate ellipsoids. The model is specified by the 3D coordinate of the center 1159

of the hip ellipsoid, 𝑐H̅,I = [𝑥, 𝑦, 𝑧], and the major and minor axis of the ellipsoids are scaled by a coordi-1160

nate, 𝑠 ∈ [0,1] that can morph the ellipsoid from long and narrow to short and fat: 1161

𝑎H,I = 𝑎H,I,Q + 𝑎H,I,R ⋅ 𝑠 1162

𝑏H,I = 𝑏H,I,Q + 𝑏H,I,R ⋅ (1 − 𝑠) 1163

The ‘neck’ (the joint of rotation between the hip and nose ellipsoid) is sitting a distance, 𝑑H,I = 0.75 ⋅1164

𝑎H,I, along the central axis of the hip ellipsoid. In the frame of reference of the mouse body (taking 𝑐H̅,I 1165

as the origin, with the major axis of the hip ellipsoid along the x-axis), a unit vector pointing to of the nose 1166

ellipsoid, from the ‘neck’ to the center of the nose ellipsoid along the major axis is: 1167

𝑒Z̅[/2 = \
cos𝜃

sin 𝜃 cos𝜙
sin 𝜃 sin𝜙

d 1168

In the frame of reference of the laboratory (‘world coordinates’), we allow the hip ellipsoid to rotate around 1169

the z-axis (‘left’/’right’) and around the y-axis (‘up’/’down’, in the frame of reference of the mouse). We 1170

define R7𝛼;, 𝛼?, 𝛼f< as a 3D rotation matrix specifying the rotation by an angle 𝛼 around the three axes, 1171

and R(�̅�h, �̅�i) as a 3D rotation matrix that rotates the vector �̅�h onto �̅�i. The we can define: 1172

𝐑H,I = 𝐑(0, 𝛽, 𝛾) 1173

𝐑H20' = 𝐑(𝑒;̅, 𝑒Z̅[/2) 1174

, where 𝑒;̅ is a unit vector along the x-axis. In the frame of reference of the mouse body, the center of the 1175

nose ellipsoid is: 1176

𝑐Z̅[/2,m[n/2 = 𝐑H20' \
𝑑Z[/2
0
0

d + \
𝑑H,I
0
0
d 1177

So, in world coordinates, the center is: 1178

𝑐Z̅[/2,o[p1' = 𝐑H,I𝑐Z[/2,m[n/2 + 𝑐H̅,I 1179

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 56 of 68

The center of the neural implant if offset from the center of the nose ellipsoid by a distance 𝑥,mI1 along 1180

the major axis of the nose ellipsoid, and a distance 𝑧,mI1 orthogonal to the major axis. We allow the im-1181

plant to rotate around the nose ellipsoid by an angle, 𝜓. Thus, in the frame of reference of the mouse body, 1182

the center of the ellipsoid is: 1183

𝑐,̅mI1,m[n/2 = 𝐑H20' r
𝑠,mI1

𝑑,mI1 ⋅ cos𝜓
𝑑,mI1 ⋅ sin 𝜓

s + \
𝑑H,I
0
0
d 1184

And in world coordinates, same as the center of the nose ellipsoid: 1185

𝑐,̅mI1,o[p1' = 𝑅H,I𝑐,mI1,m[n/2 + 𝑐H̅,I 1186

We calculated other skeleton points (tip of the nose ellipsoid, etc.) in a similar method. We can use the 1187

rotation matrices for the hip and the nose ellipsoids to calculate the characteristic ellipsoid matrices: 1188

𝐐H,I = 𝐑H,I v
1/𝑎H,Ii 		 0 0

0 1/𝑏H,Ii 0
0 0 1/𝑏H,Ii

w 7𝐑H,I<
x
 1189

𝐐Z[/2 = 𝐑H,I𝐑H20' r
1/𝑎Z[/2i 0 0

0 1/𝑏Z[/2i 0
0 0 1/𝑏Z[/2i

s 7𝐑H,I𝐑H20'<
x
 1190

Calculating the shortest distance from a point to the surface of an 3D ellipsoid in 3 dimensions requires 1191

solving a computationally-expensive polynomial39. Doing this for each of the thousands of points in the 1192

point-cloud, multiplied by four body ellipsoids, multiplied by 200 particles pr. fitting step is not compu-1193

tationally tractable. Instead, we use the shortest distance to the surface, 𝑑y, along a path that passes through 1194

the centroid (Supplementary Fig. 8a,b). This is a good approximation to d (especially when averaged 1195

over many points), and the calculation of 𝑑y can be implemented as pure vectorized linear algebra, which 1196

can be calculated very efficiently on GPU40. Specifically, to calculate the distance from any point �̅� in the 1197

point-cloud, we just center the points on the center of an ellipsoid, and – for example – calculate: 1198

�̅�z = �̅� − 𝑐H̅,I 1199

𝑑y = {1 − ‖�̅�z‖}~��
�h { ⋅ ‖�̅�z‖ where ‖�̅�z‖}~�� = �〈�̅�z, �̅�z〉}~�� = �(�̅�z)T𝑄H,I	�̅�z 1200

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 57 of 68

In fitting the model, we used the following constants: 𝑎Z[/2 = 2.00	cm,𝑏Z[/2 = 1.20	cm, 𝑎H,I(m,Z) =1201

0.50	cm, 𝑎H,I(m0;) = 2.50	cm, 𝑏H,I(m,Z) = 1.20	cm, 𝑏H,I(m0;) = 1.50	cm,𝑑Z[/2 = 1.00	cm,𝑑H,I =1202

0.75 ⋅ 𝑎H,I, 𝑟,mI1 = 0.9 ⋅ 𝑏Z[/2, 𝑥,mI1 = 𝑑Z[/2 + 0.5 ⋅ 𝑎Z[/2, 𝑧,mI1 = 1.5 ⋅ 𝑟,mI1 . The code includes a pa-1203

rameter (‘body_scale’) that can be changed to scale the mouse body model (e.g. for other strains, or juve-1204

nile mice). 1205

 1206

Loss function evaluation and tracking 1207

Joint position of the two mice is represented as a particle in 17-dimensional space. For each data frame, 1208

we start with a proposal particle (leftmost green block, based on previous frames), from which we generate 1209

200 particles by pseudo-random perturbation within a search space (next green block). For each proposal 1210

particle, we calculate three types of weighted loss contributions: loss associated with the distance from 1211

the point-cloud to the surface of the mouse body models (top path, green color), loss associated with body 1212

key-points (middle path, key-point colors as in and loss associated with overlap of the two mouse body 1213

models (bottom path, purple color). We broadcast the results in a way, which allows us to consider all 1214

200x200 = 40.000 possible joint postures of the two mice. After calculation, we pick the top 200 joint 1215

postures with the lowest overall loss, and anneal the search space, or – if converged – continue to the next 1216

frame. When we continue to a new frame, we add the fitted frame to an online recursive filter bank, which 1217

proposes the next position of the particle for the next frame, based on previous frame. All loss function 1218

calculations, and recursive filter predictions are implemented as pure tensor algebra, fully vectorized and 1219

executed on a GPU. 1220

 1221

Online recursive filtering 1222

To propose a new location for the particle filter between frames, we use a recursive least squares filter 89, 1223

with a time embedding of 5 steps, a forgetting factor of 𝜇 = 0.99 and a regularization factor of 𝜀 = 0.1. 1224

Our implementation (‘rls_bank’) is based on the implementation in the Padasip (Python Adaptive Signal 1225

Processing) library (https://github.com/matousc89/padasip). For the first 150 frames, the filter is only 1226

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 58 of 68

trained, but after frame 150, the filter is used for prediction. The code allows this filter to run across all 1227

dimensions of the particle filter, but – in practical use – we found it sufficient to run it across the x-, y- 1228

and z- coordinates of the center of the two mouse body models (i.e., we just assume that the angular and 1229

stretch coordinates do not change from the last frame – this saves a few computations, and can be selected 1230

by commenting in/out the relevant lines in the code). 1231

 1232

Regularizations 1233

To regularize the particle filter algorithm, we imposed two hard rules (‘barriers’) on the movement of the 1234

body models (shown in Supplementary Figure 8). The first barrier was implemented by adding a large 1235

term to the particle filter’s loss function, if the center of any ellipsoids from two different bodies were 1236

closer than 0.8 times the sum of their short axes (this barrier allows a 20% overlap of spheres with a radius 1237

equal to the ellipsoid’s small axis, drawn in purple in Supplementary Fig. 8f). This barrier term prevents 1238

‘unphysical’ overlaps between the body models of the two mice. The second barrier was implemented by 1239

adding a large term to the particle filter’s loss function, if the same condition was met between the current 1240

position of a mouse body model and the interaction partners body model in the preceding frame (Supple-1241

mentary Fig. 8h). This barrier term prevents ‘flips’ between the two mice (where the body models change 1242

identity), as drawn in in Supplementary Figure 8g. 1243

 1244

State space filtering of raw tracking data 1245

After tracking, the coordinates of the skeleton points (𝑐H,I, 𝑐Z[/2, etc.) were smoothed with a 3D kinematic 1246

Kalman filter tracking both the 3D position (p), velocity (v) and (constant) acceleration (a). For example, 1247

for the center of the hip coordinate: 1248

�̅� = �𝑝;, 𝑣;, 𝑎;, 𝑝?, 𝑣?, 𝑎?, 𝑝f, 𝑣f, 𝑎f� 1249

𝑧̅ = �𝑐H,I,;, 𝑐H,I,?, 𝑐H,I,f� 1250

F = \
𝐅z 𝟎 𝟎
𝟎 𝐅z 𝟎
𝟎 𝟎 𝐅z

d , where		𝐅z = r
1 𝑑𝑡 h

i
𝑑𝑡i	

0 1 𝑑𝑡
0 0 1

s 1251

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 59 of 68

𝐇 = \
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

d 1252

𝐏 = 𝟏�×� ⋅ σ%[�i 1253

𝐑 = 𝐈�×� ⋅ 𝜎m20/np2m2Z¡i 1254

𝐐 =	 r
𝐐′ 𝟎 𝟎
𝟎 𝐐′ 𝟎
𝟎 𝟎 𝐐′

s ⋅ 𝜎Ip[%2//i 		 1255

where Q’ is the Q matrix for a discrete constant white noise model 𝐐z =

⎣
⎢
⎢
⎢
⎡
h
¦
𝑑𝑡¦ h

i
𝑑𝑡� h

i
𝑑𝑡i

h
i
𝑑𝑡� 𝑑𝑡i 𝑑𝑡

h
i
𝑑𝑡i 𝑑𝑡 1 ⎦

⎥
⎥
⎥
⎤
 and 1256

𝜎m20/np2m2Z¡ = 0.015	m, 𝜎Ip[%2// = 0.01	m,𝜎%[�i = 0.0011	mi. The 𝜎’s were the same for all points, 1257

except the slightly more noisy estimate of the center of the implant, where we used. 𝜎m20/np2m2Z¡ =1258

0.02	m, 𝜎Ip[%2// = 0.01	m, 𝜎%[�i = 0.0011	mi From the frame rate (60 fps), 𝑑𝑡	 = h
ªQ
	s. The maximum-1259

likelihood trajectory was estimated with the Rauch-Tung-Striebel method48 with a fixed lag of 16 frames. 1260

The filter and smoother was implemented using the ‘filterpy’ package (https://github.com/rlabbe/filterpy). 1261

The spine scaling, s, was smoothed with a similar filter in 1D, except that we did not model acceleration, 1262

only s and a (constant) s ‘velocity’, with 𝜎m20/np2m2Z¡ = 0.3, 𝜎Ip[%2// = 0.05	m, 𝜎%[�i = 0.0011. 1263

After filtering the trajectories of the skeleton points, we recalculated the 3D rotation matrices of the hip 1264

and head ellipsoid by the vectors pointing from 𝑐H,I to 𝑐m,' (from the middle of the hip ellipsoid to the 1265

neck joint), and from 𝑐H,I to 𝑐Z[/2 (from the neck joint to the middle of the nose ellipsoid). We then con-1266

verted the 3D rotation matrixes to unit quaternions, and smoothed the 3D rotations by smoothing the 1267

quaternions with an 10-frame boxcar filter, essentially averaging the quaternions by finding the largest 1268

eigenvalue of a matrix composed of the quaternions within the boxcar 50. After smoothing the ellipsoid 1269

rotations, we re-calculated the coordinates of the tip of the nose ellipsoid (𝑐¡,I) and the posterior end of 1270

the hip ellipsoid (𝑐¡0,1) from the smoothed central coordinates, rotations, and – for 𝑐¡0,1 – the smoothed 1271

spine scaling. A walkthrough of the state space filtering pipeline is shown in Supplementary Figure 12. 1272

 1273

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 60 of 68

Template matching 1274

To detect social events, we calculated three social distances, from three instantaneous ‘social distances’, 1275

defined as the 3D distance between the tip of each animal’s noses (‘nose-to-nose’), and from the tip of 1276

each animal’s nose to the posterior end of the conspecific’s hip ellipsoid (‘nose-to-tail’; Fig. 5c). From 1277

these social distances, we could automatically detect when the mouse bodies were in a nose-to-nose (if 1278

the nose-to-nose distance was < 2 cm and the nose-to-tail distance was > 6 cm) and in a nose-to-tail 1279

configuration (if the nose-to-nose distance was > 6 cm and the nose-to-tail distance was > 2 cm). The 1280

events were detected by the logic conditions, and then single threshold crossings due to noise were re-1281

moved by binary opening with a 3-frame kernel, followed by binary closing with a 30-frame kernel. 1282

 1283

State space modeling of mouse behavior 1284

State space modeling of the locomotion behavior was performed in Pyro56 a GPU-accelerated probabilistic 1285

programming language built on top of Pytorch44. We modeled the (centered and whitened) locomotion 1286

behavior as a hidden Markov model with discrete latent states, z, and associated transition matrix, T. 1287

𝑧(𝑡 + 1) = Categorical(𝑒f(¡)
x ⋅ 𝐓) 1288

𝐓 = 3
𝑝,- ⋯
⋮ ⋱6 1289

To make the model ‘sticky’ (discourage fast switching between latent states) we draw the transition prob-1290

abilities, 𝑝,- from a Dirichlet prior with a high mass near the ‘edges’ and initialize 𝐓,Z,¡ = (1 − 𝜂)𝐈 +1291

η/𝑛¸¹º¹»¸ where 𝜂 = 0.05. 1292

𝑝~Diriclet(0.5) 1293

Each state emits a forward speed and a left speed, drawn from a two-dimensional Gaussian distribution 1294

with a full covariance matrix. 1295

3
𝑣¾¿À
𝑣Á»¾¹ 6 ~MVNormal(𝜇, 𝐒) 1296

We draw the mean of the states from a normal distribution and use a LKJ Cholesky prior for the covariance: 1297

𝜇~Normal(0,1) 1298

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 61 of 68

𝐒 = E𝜎¾¿À 0
0 𝜎Á»¾¹

F 𝐋 E𝜎¾¿À 0
0 𝜎Á»¾¹

F 1299

𝜎~LogNormal(−1,1) 1300

𝐋~LKJcorr(2) 1301

The up speed was modeled in a similar way, except that the latent states were just a one-dimensional 1302

normal distribution. The means and variances for the latent states was initialized by kmeans clustering of 1303

the locomotion speeds. The model was fit in parallel to 600-frame snippets of a subset of the data by 1304

stochastic variational inference90. We used an automatic delta guide function (‘AutoDelta’) and an evi-1305

dence lower bound (ELBO) loss function. The model was fitted by stochastic gradient descent with a 1306

learning rate of 0.0005. After model fitting, we generated the ethograms by assigning latent states by 1307

maximum a posteriori probability with a Viterbi algorithm. 1308

 1309

3D head direction estimation 1310

We use the 3D position of the ear key-points to determine the 3d head direction of the partner animal. We 1311

assign the ear key-points to a mouse body model by calculating the distance from each key-point to the 1312

center of the nose ellipsoid of both animals (cutoff: closest to one mouse and < 3cm from the center of the 1313

head ellipsoid, Supplementary Fig 17a). To estimate the 3D head direction, we calculate the unit rejection 1314

(𝑣p2-) between a unit vector along the nose ellipsoid (𝑣Z[/2) and a unit vector from the neck joint (𝑐m,') 1315

to the average 3D position of the ear key-points that are associated with that mouse (v_ear_direction, 1316

Supplementary Fig. 17b). If no ear key-points were detected in a frame, we linearly interpolate the aver-1317

age 3D position. To average out jitter, the estimates of the average ear coordinates and the center of the 1318

nose coordinate were smoothed with a Gaussian (𝜎 = 3 frames). The final head direction vector was also 1319

smoothed with a Gaussian (𝜎 = 10 frames). 1320

 1321

Extracellular recording and spike clustering 1322

Extracellular recordings were made with sharpened 2-shank, 32-site NeuroNexus P2 profile silicon probes 1323

(NeuroNexus Technologies, Inc., MI, USA). The silicon probes were implanted in barrel cortex using a 1324

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 62 of 68

stereotax (1 mm posterior, 3.2 mm lateral to bregma91) under isoflurane anesthesia using a custom 3D 1325

printed plastic microdrive and base plates for mice, shielded by a copper mesh and bound to the animal’s 1326

skull using dental cement92. The neural data was recorded using an Intan RHD 32-channel headstage with 1327

accelerometer (Intan Technologies, CA, USA) connected to an Open Ephys Acquisition Board93 1328

(https://open-ephys.org/) at 30 kHz/16 bit resolution. The neural data was pre-clustered using SpyKING 1329

CIRCUS94 (a custom probe geometry file for the P2 probe and the full clustering script with all parameters 1330

is available in the supplementary code) and checked manually for cluster quality in KLUSTA95. Only well-1331

separated single units were included in the analysis. 1332

 1333

PSTH-based analysis of neural responses 1334

For the PSTH-based analysis, we triggered on the three social events detected as described under ‘Tem-1335

plate matching’. For the ‘naïve’ PSTH, we included all events, and for the ‘cleaned’ PSTH, we only in-1336

cluded events, where there was no other of the detected events occurring in the preceding 4 seconds. 1337

Significant firing rate changes were detected by comparing the average firing rate, 𝑟Ip2 , between –4 s and 1338

–2 s (relative to the start of the detected event) with the average firing rate, 𝑟I[/¡ , between –0.5 s and 0.5 1339

s, using a Wilcoxon signed rank test, at p < 0.05. The firing rate modulation index was calculated using 1340

the same firing rates and defined as: 1341

Mod. idx. = 	
𝑟I[/¡ − 𝑟Ip2
𝑟I[/¡ + 𝑟Ip2

 1342

 1343

Statistical modeling of neural tuning curves 1344

Our spike train modeling approach is based on ref. 62 and our python code for model fitting and model 1345

selection is based on the supplementary Matlab code from that study (available at 1346

https://github.com/GiocomoLab/ln-model-of-mec-neurons). We calculated the following features of the 1347

‘social scene’ (shown in the table below). In the table, we only list the variables associated with the pos-1348

ture, spatial location and movement of the implanted animal (subscript 0). We include identical features 1349

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 63 of 68

for the partner animal (subscript 1). The bin rages were selected to span the physically possible values 1350

(e.g., within the circular arena), or to span the observed values in the behavior (for movement speeds, for 1351

example). 1352

 1353

 1354
Class Feature Variable name

in code
Definition Binning Unit Tuning

curve
type

Social Nose <->
Nose

d_n2n Nose-to-nose di-
stance

[0.01 ,0.29], ∆bin =
0.02

m Linear

 Nose0 ->
Tail1

d_n0t1 Distance from
the nose of the
implanted ani-
mal to the tail
base of the part-
ner animal

[0.01 ,0.29], ∆bin =
0.02

m Linear

 Nose1 ->
Tail0

d_n1t0 Distance from
the nose of the
partner animal
to the tail base
of the Implanted
animal

[0.01 ,0.29], ∆bin =
0.02

m Linear

 d/dt[
d_social]

diffd_social Temporal deriv-
ative in the dis-
tance between
the center
(c_mid) of the
two mice, con-
volved with a
Gaussian (𝜎 =
10	frames).

[–0.002,0.002], 15
bins

m/frame Linear

 Orienta-
tion
angle

a_gaze_mid Relative orienta-
tion of the mice
(with the im-
planted animal
as the refer-
ence), defined as
the angle be-
tween a vector
along the nose
ellipsoid of the
implanted ani-
mal, and a vec-
tor along the
body ellipsoid
of the partner
animal (both

[–π,π-(π/15)], 15
bins

rad Circular

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 64 of 68

vectors pro-
jected into the
xy-plane).

Posture Head
yaw

a_nose_lr_0 Angle between a
vector along the
nose ellipsoid
and a vector
along the hip el-
lipsoid, in the
xy-plane)

[–π/3,π/3], 15 bins rad Linear

 Head
pitch

a_nose_ud_0 The elevation
angle of the
nose ellipsoid,
relative to the
hip ellipsoid
(The elevation
angle between a
vector along the
nose ellipsoid
and the xy-
plane, minus the
elevation angle
of the hip ellip-
soid).

[–0.9,0.9], 15 bins rad Linear

 Head roll head_roll_0 Angle between a
vector from the
center of the
nose ellipsoid to
the ‘top’ of the
head (the center
of the implant
for the im-
planted animal,
the center of the
ears in the part-
ner animal) and
a vector along
the z-axis.

[–2π/3,2π/3], 15 bins rad Linear

 Hip pitch a_hip_eleva-
tion_0

The elevation
angle between a
vector along the
hip ellipsoid and
the xy-plane.

[0,π/2], 15 bins rad Linear

 Spine
stretch

s0 Stretch parame-
ter of the hip el-
lipsoid in the
body model

[0.5,1.0], 15 bins a.u. Linear

Spatial x x_hip_0 x-component of
the center of the
hip ellipsoid
(c_hip)

[–0.13,0.13], 15 bins m Linear

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 65 of 68

 y y_hip_0 y-component of

the center of the
hip ellipsoid
(c_hip)

[–0.13,0.13], 15 bins m Linear

 z z_hip_0 z-component of
the center of the
hip ellipsoid
(c_hip)

[0.02,0.05], 15 bins m Linear

 Distance
to center

d_arena_0 Distance from
the center of the
hip ellipsoid to
the center of the
behavioral arena

[0.,0.14], 15 bins m Linear

 Head di-
rection

a_nose_hd_0 Angle of the
nose ellipsoid in
the xy-plane

[–π,π-(π/15)], 15
bins

rad Circular

Move-
ment

v_fwd fwd_0 Forward compo-
nent (along the
hip ellipsoid) of
the speed vector,
in the xy-plane

[–0.05,0.2], 15 bins m/s Linear

 v_left left_0 Orthogonal
component of
the speed vector,
in the xy-plane

[–.0.05,0.05], 11
bins

m/s Linear

 v_up up_0 z-component of
the speed vector

[–0.04,0.05], ∆bin =
0.01

m/s Linear

 |v| speed3D_0 Norm of the
speed vector

[0.01,0.20], 15 bins m/s Linear

 d/dt[
head yaw
]

diffa_nose_lr_0 Derivative of
the head yaw,
convolved with
a Gaussian (𝜎 =
10	frames).

[–0.04,0.04], 15 bins rad/frame Linear

 d/dt[
head
pitch]

diffa_nose_ud_0 Derivative of
the head pitch,
convolved with
a Gaussian (𝜎 =
10	frames).

[–0.04,0.04], 15 bins rad/frame Linear

 d/dt[
head roll
]

diffhead_roll_0 Derivative of
the head roll,
convolved with
a Gaussian (𝜎 =
10	frames).

[–0.04,0.04], 15 bins rad/frame Linear

 d/dt[hip
yaw]

diffa_hip_hd_0 Derivative of
the hip yaw,
convolved with
a Gaussian (𝜎 =
10	frames).

[–0.15,0.15], 15 bins rad/frame Linear

 d/dt[hip
pitch]

diffa_hip_eleva-
tion_0

Derivative of
the hip pitch,

[–0.3,0.3], 15 bins rad/frame Linear

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 66 of 68

convolved with
a Gaussian (𝜎 =
10	frames).

 d/dt[
spine
stretch]

diffs0 Derivative of
the spine stretch,
convolved with
a Gaussian (𝜎 =
10	frames).

[–0.1,0.1], 15 bins 1/frame Linear

 1355
We model the observed spike train as generated by the following process (Fig. 7c): The spikes are gener-1356

ated by a Poisson process. The rate of the Poisson process is determined by the features, in the following 1357

way: Each feature is multiplied with a tuning curve (taking any real value), to generate a weight. The 1358

weights of all features are summed, pass through an exponential nonlinearity (to clamp the rate of the 1359

Poisson process to be positive). This means that in the spike rate space, the tuning to the features is mul-1360

tiplicative. 1361

 1362

We convert each feature into binary dummy variables by binning (bins listed in the table above) to generate 1363

a time-by-bins matrix, 𝐴, where the i’th and j’th index is a binary variable indicating if the feature was in 1364

the j'th feature bin in the i’th frame. If we let 𝑐̅ be a column vector with the values of the tuning curve for 1365

a single predictor, then our linear model says that the rate of the Poisson process generating the spikes, 𝜆, 1366

depending on p predictors can be expressed as 1367

�̅� = expÐÑ𝐴I	𝑐ÒI
I

Ó/𝑑𝑡 1368

We fit the linear model by tuning the parameters of the tuning curves to maximize of the Poisson log-1369

likelihood of the observed number of spikes, n, in each bin of the spike train. We include a regularization 1370

term, 𝛽, that ensures that the tuning curves are smooth (it is a loss term associated with the difference 1371

between 𝑐, and 𝑐,Ôh, with circular wrap-around for the circular features). Thus, the fitted tuning curves 1372

are: 1373

𝑐̂ = argmax%Ñ log𝑃 Ð𝑛,| expÐÑ𝐴I	𝑐ÒI
I

ÓÓ −Ñ𝛽
I

ØÑ
1
2
7𝑐I,, − 𝑐I,,Ôh<

i

,

Ù
,

 1374

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 67 of 68

 1375

We fit the models using the Newton conjugate gradient trust-region algorithm (‘trust-ncg’ method in ‘min-1376

imize’ in the SciPy optimize module, using the Taylor expansion approximation to the Jacobian and Hes-1377

sian and a tolerance of 1e-3). 1378

 1379

To determine which features significantly contribute to the firing rate modulation of a neuron, we use a 1380

cross-validated model comparison approach, and a greedy forward selection of features. First, we compare 1381

a fitted ‘baseline’ model where the spikes are simply generated by a Poisson process with a constant rate 1382

to 45 fitted models, that include only one feature. The comparison is cross-validated, such that we fit the 1383

model on 90% of the data and evaluate on 10% held-out data (with 3 skips, i.e., we split the data in 30 1384

chunks, fit to 27 and evaluate on 3). To compare each of the one-feature models to the baseline model, we 1385

calculate the increase in log-likelihood of the test data, given the fitted one-feature models (relative to the 1386

baseline model), across all 10 permutations of the 10-fold cross validation. We select the best candidate 1387

feature (defined as the one with the highest average increase in log-likelihood, across the 10 folds), and 1388

check if the increase in log-likelihood is significant by performing a one-sided Wilcoxon signed-rank test, 1389

with a criterion of p < 0.05. If the best candidate feature is significant, we add that feature to a library of 1390

features that we consider significant for that neuron. If we have the number of spikes in the spike train, 𝑛Ú, 1391

and the maximum-likelihood fitted rate is �̅�(𝑐̂), then the log-likelihood increase, ∆ℒ (in bits/spike) is: 1392

ℒÜÝÀ»Á = ØÑ𝜆, − 𝑛, log(𝜆,) + log(𝑛,!)
,

Ù /Ñ𝑛,
,

 1393

ℒßÝà¸¹ºà¹ = ØÑ〈𝑛〉 − 𝑛, log(〈𝑛〉) + log(𝑛,!)
,

Ù /Ñ𝑛,
,

 1394

Δℒ = − log(2) ⋅ (ℒÜÝÀ»Á − ℒßÝà¸¹ºà¹) 1395

For all (N>1)-feature models (two features, three features, etc.), we use the same approach: We fit all 1396

possible models that add one more feature to the library of N-1 significant features (all tuning curves of 1397

all features in the library are re-fit every time), we select the best candidate feature, and use a one-sided 1398

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

Ebbesen & Froemke Page 68 of 68

Wilcoxon signed-rank test between a model with N features and a model with N-1 features to determine 1399

if that candidate feature is significant and should be added to the library. If the one-sided Wilcoxon signed-1400

rank test is not significant at p < 0.05, we stop the search for new features to add to the library. 1401

 1402

Population structure analysis 1403

The Euler diagram in Figure 8d was drawn in R using the eulerr package96. The network co-encoding 1404

graph shown in Figure 8e was drawn in the Kamada-Kawai projection88 (the distance between nodes ap-1405

proximate their graph-theoretical distance), using the NetworkX python package97. 1406

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint

https://doi.org/10.1101/2020.05.21.109629

