
 
 
Ebbesen & Froemke           Page 1 of 68 

 

 
 1 

 2 

 3 

 4 

 5 

Automatic mapping of multiplexed social receptive fields  6 

by deep learning and GPU-accelerated 3D videography 7 

 8 

 9 

Christian L. Ebbesen1,2,* & Robert C. Froemke1,2,* 10 

 11 

 12 

 13 

1 Skirball Institute of Biomolecular Medicine, Neuroscience Institute, Departments of Otolaryngology,  14 

Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA.  15 

2 Center for Neural Science, New York University, New York, NY, 10003, USA.  16 

* Correspondence to: C.L.E. (christian.ebbesen@nyumc.org) or R.C.F. (robert.froemke@med.nyu.edu)   17 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.21.109629


 
 
Ebbesen & Froemke           Page 2 of 68 

 

 
Abstract 18 

Social interactions powerfully impact the brain and the body, but high-resolution descriptions of these 19 

important physical interactions are lacking. Currently, most studies rely on labor-intensive methods such 20 

as manual annotation. Scalable and objective tracking methods are required to understand the neural cir-21 

cuits underlying social behavior. Here we describe a hardware/software system and analysis pipeline that 22 

combines 3D videography, deep learning, physical modeling, and GPU-accelerated robust optimization, 23 

with automatic analysis of neuronal receptive fields recorded in interacting mice. Our system is capable 24 

of fully automatic multi-animal tracking with minimal errors (including in complete darkness) during 25 

complex, spontaneous social encounters, together with simultaneous electrophysiological recordings. We 26 

capture posture dynamics of multiple unmarked mice with high spatiotemporal precision (~2 mm, 60 27 

frames/s). A generative model revealed the multiplexed ‘social receptive field’ of neurons in barrel cortex. 28 

This approach could be broadly useful for neurobehavioral studies of multiple animals interacting in com-29 

plex low-light environments.  30 
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Introduction 31 

Objective quantification of natural social interactions is difficult. The majority of our knowledge about 32 

rodent social behavior comes from hand-annotation of videos, yielding ethograms of discrete social be-33 

haviors such as ‘social following’, ‘mounting’, or ‘anogenital sniffing’1. It is widely appreciated that these 34 

methods are susceptible to experimenter bias and have limited throughput. There is an additional problem 35 

with these approaches, in that manual annotation of behavior yields limited information about movement 36 

kinematics and physical body postures. This shortcoming is especially critical for studies relating neural 37 

activity patterns or other physiological signals to social behavior. For example, neural activity in many 38 

areas of the cerebral cortex are strongly modulated by movement and posture2,3, and activity profiles in 39 

somatosensory regions can be difficult to analyze without understanding the physics and high-resolution 40 

dynamics of touch. Important aspects of social behavior, from gestures to light touch and momentary 41 

glances can be transient and challenging to observe in most settings, but critical to capturing the details 42 

and changes to social relationships and networks4,5.  43 

 44 

The use of deep convolutional networks to recognize objects in images has revolutionized computer vision, 45 

and consequently, also led to major advances in behavioral analysis. Drawing upon these methodological 46 

advances, several recent publications have developed algorithms for single animal6–13 and multi-animal 47 

tracking14–21 . These methods function by detection of key-points in 2D videos, and estimation of 3D 48 

postures is not straightforward in interacting animals, where some form of spatiotemporal regularization 49 

is needed to ensure that tracking is stable and error-free, even when multiple animals are closely interacting. 50 

During mounting or allo-grooming, for example, interacting animals block each other from the camera 51 

view and tracking algorithms can fail. Having a large number of cameras film the animals from all sides 52 

can solve these problems22,23, but this has required extensive financial resources for equipment, laboratory 53 

space and processing power, which renders widespread use infeasible.  54 

 55 
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Some recent single24- and multi-animal17–19 tracking methods have bypassed the problem of estimating 56 

the 3D posture of closely interacting animals by training a classifier to replicate human labeling discrete 57 

behavioral categories, such as attack and mounting. This approach is very powerful for automatically 58 

generating ethograms; however, to relating neural data to behavior, lack of detailed information about 59 

movement and posture kinematics of interacting animals can be a critical drawback. In essentially every 60 

brain region, neural activity is modulated by motor signals25–28 and vestibular signals2,3,29. Thus, any ob-61 

served differences in neural activity between behavioral categories may be related instead to differences 62 

in movements and postures made by the animals in those different categories. To reveal how neural circuits 63 

process body language, touch and other social cues21 during a social interaction, descriptions of neural 64 

coding must be able to account for these important but complex motor- and posture-related activity pat-65 

terns or confounds. 66 

 67 

In parallel with deep-learning based tracking methods, some studies have used depth-cameras for animal 68 

tracking, by fitting a physical 3D body-model of the animal to 3D data30–32. These methods are powerful 69 

because they can explicitly model the 3D movement and poses of multiple animals, throughout the social 70 

interaction. However, due to technical limitations of depth imaging hardware (e.g., frame rate, resolution, 71 

motion blur), to date it has been possible only to extract partial posture information about small and fast-72 

moving animals, such as lab mice. Consequently, when applied to mice, these methods are prone to track-73 

ing mistakes when interacting animals get close to each other and the tracking algorithms require contin-74 

uous manual supervision to detect and correct errors. This severely restricts throughput, making tracking 75 

across long time scales infeasible.  76 

 77 

Here we describe a novel system for multi-animal tracking and neuro-behavioral data analysis that com-78 

bines ideal features from both approaches. Our method fuses physical modeling of depth data and deep 79 

learning-based analysis of synchronized color video to estimate 3D body postures, enabling us to reliably 80 

track multiple mice during naturalistic social interactions. Our method is fully automatic (i.e., quantitative, 81 
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scalable, and free of experimenter bias), is based on inexpensive consumer cameras, and is implemented 82 

in Python, a simple and widely used computing language. Our method is capable of tracking the animals 83 

using only infrared video channels (i.e., in visual darkness for mice, a nocturnal species), is self-aligning 84 

and requires only a few hundred labeled frames for training. We combine our tracking method with silicon 85 

probe recordings of single-unit activity in barrel cortex to demonstrate the usefulness of a continuous 3D 86 

posture estimation and an interpretable body model: We implement a full-automatic neural data analysis 87 

pipeline (included along with the tracking code), that yields a population-level map of neural tuning to the 88 

features of a social interaction (social touch, movements, postures, spatial location, etc.) directly from raw 89 

behavior video and raw spike trains.  90 
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Results 91 

Raw data acquisition  92 

We built an experimental setup that allowed us to capture synchronized color images and depth images 93 

from multiple angles, while simultaneously recording synchronized neural data (Fig. 1a). We used inex-94 

pensive, state-of-the-art ‘depth cameras’ for computer vision and robotics. These cameras contain several 95 

imaging modules: one color sensor, two infrared sensors and an infrared laser projector (Fig. 1b). Imaging 96 

data pipelines, as well as intrinsic and extrinsic sensor calibration parameters can be accessed over USB 97 

through a C/C++ SDK with Python bindings. We placed four depth cameras, as well as four synchroniza-98 

tion LEDs around a transparent acrylic cylinder which served as our behavioral arena (Fig. 1c). 99 

 100 

Each depth camera projects a static dot pattern across the imaged scene, adding texture in the infrared 101 

spectrum to reflective surfaces (Fig. 1d). By imaging this highly-textured surface simultaneously with two 102 

infrared sensors per depth camera, it is possible to estimate the distance of each pixel in the infrared image 103 

to the depth camera by stereopsis (by locally estimating the binocular disparity between the textured im-104 

ages). Since the dot pattern is static and only serves to add texture, multiple cameras do not interfere with 105 

each other and it is possible to image the same scene simultaneously from multiple angles. Simultaneous 106 

capture from all angles is one key aspect of our method, not possible with depth imaging systems that rely 107 

on actively modulated light (such as the Microsoft Kinect system and earlier versions of the Intel Re-108 

alsense cameras, where multi-view capture requires offset capture times). 109 

 110 

Since mouse movement is fast (on a millisecond time scale33), it is vital to minimize motion blur in the 111 

infrared images and thus the final 3D data (‘point-cloud’). To this end, our method relies on two key 112 

features. First, we use depth cameras where the infrared sensors have a global shutter (e.g., Intel D435) 113 

rather than a rolling shutter (e.g., Intel D415). Using a global shutter reduces motion blur in individual 114 

image frames, but also enables synchronized image capture across cameras. Without synchronization be-115 

tween cameras, depth images are taken at different times, which adds blur to the composite point-cloud. 116 
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We set custom firmware configurations in our recording program, such that all infrared sensors on all four 117 

cameras are hardware-synchronized to each other by TTL-pulses via custom-built, buffered synchroniza-118 

tion cables (Fig. 1b). 119 

  120 

We wrote a custom multithreaded Python program with online compression, that allowed us to capture the 121 

following types of raw data from all four cameras simultaneously: 8-bit RGB images (320 x 210 pixels, 122 

60 frames/s), 16-bit depth images (320 x 240 pixels, 60 frames/s) and the 8-bit intensity trace of a blinking 123 

LED (60 samples/s, automatically extracted in real-time from the infrared images). Our program also 124 

captures camera meta-data, such as hardware time-stamps and frame numbers of each image, which allows 125 

us to identify and correct for possible dropped frames. On a standard desktop PC, the recording system 126 

had very few dropped frames and the video recording frame rate and the imaging and USB image transfer 127 

pipeline was stable (Fig. 1e,f). 128 

 129 

Temporal stability and temporal alignment  130 

In order to relate tracked behavioral data to neural recordings, we need precise temporal synchronization. 131 

Digital hardware clocks are generally stable but their internal speed can vary, introducing drift between 132 

clocks. Thus, even though all depth cameras provide hardware timestamps for each acquired image, for 133 

long-term recordings, across behavioral time scales (hours to days), a secondary synchronization method 134 

is required.  135 

 136 

For synchronization to neural data, our recording program uses a USB-controlled Arduino microprocessor 137 

to output a train of randomly-spaced voltage pulses during recording. These voltage pulses serve as TTL 138 

triggers for our neural acquisition system (sampled at 30 kHz) and drive LEDs, which are filmed by the 139 

depth cameras (Fig. 1a). The cameras sample an automatically detected ROI to sample the LED state at 140 

60 frames/s, integrating across a full infrared frame exposure (Fig. 1g). We use a combination of cross-141 

correlation and robust regression to automatically estimate and correct for shift and drift between the depth 142 
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camera hardware clocks and the neural data. Since we use random pulse trains for synchronization, align-143 

ment is unambiguous and we can achieve super-frame-rate-precision. In a typical experiment, we esti-144 

mated that the depth camera time stamps drifted with ~49 µs/min. For each recording, we automatically 145 

estimate and correct for this drift to yield stable residuals between TTL flips and depth frame exposures 146 

(Fig. 1h). Note that the neural acquisition system is not required for synchronization and for a purely 147 

behavioral study, we can run the same LED-based protocol to correct for potential shift and drift between 148 

cameras by choosing one camera as a reference. 149 

 150 

Detection of body key-points by deep learning 151 

We preprocessed the raw image data to extract two types of information for the tracking algorithm: the 152 

location in 3D in space of body key-points and the 3D point-cloud corresponding to the body surface of 153 

the animals. We used a deep convolutional neural network to detect key-points in the RGB images, and 154 

extracted the 3D point-cloud from the depth images (Fig. 2a). For key-point detection (nose, ears, base of 155 

tail, and neural implant for implanted animals), we used a ‘stacked hourglass network’34. This type of 156 

encoder-decoder network architecture combines residuals across successive upsampling and downsam-157 

pling steps to generate its output, and has been successfully applied to human pose estimation34 and limb 158 

tracking in immobilized flies35 ( Fig. 2b, details of network architecture in Supplementary Fig. 1). 159 

 160 

We used back-propagation to train the network to output four ‘target maps’, each indicating the pseudo-161 

posterior probability of each type of key-point, given the input image. The target maps were generated by 162 

manually labeling the key-points in training frames, followed by down-sampling and convolution with 163 

Gaussian kernels (Fig. 2c, ‘targets’). We selected the training frames using image clustering to avoid re-164 

dundant training on very similar frames8. The manual key-point labeling can be done with any labeling 165 

software. We customized a version of the lightweight, open source labeling GUI from the ‘DeepPoseKit’ 166 

package8 for the four types of key-points, which we provide as supplementary software (Supplementary 167 

Fig. 2). 168 
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  169 

In order to improve key-point detection, we used two additional strategies. First, we also trained the net-170 

work to predict ‘affinity fields’36, which have been shown to improve human36 and animal8,15 body key-171 

point tracking. We used ‘1D’ affinity fields8, generated by convolving the path between labeled body key-172 

points that are anatomically connected in the animal. With our four key-points, we added seven affinity 173 

fields (e.g., ‘nose-to-ears’, ‘nose-to-tail’), that together form a skeletal representation of each body (Fig. 174 

2c, ‘affinity fields’). Thus, from three input channels (RGB pixels), the network predicts eleven output 175 

channels (Fig. 2d). As the stacked hourglass architecture involves intermediate prediction, which feeds 176 

back into subsequent hourglass blocks (repeated encoding and decoding, Fig 2b), prediction of affinity 177 

fields feeds into downstream predictions of body key-points. This leads to improvement of downstream 178 

key-point predictions, because the affinity fields give the network access to holistic information about the 179 

body. The intuitive probabilistic interpretation is that instead of simply asking questions about the key-180 

points (e.g., ‘do these pixels look like an ear?’), we can increase predictive accuracy by considering the 181 

body context (e.g., ‘these pixels sort of look like an ear, and those pixels sort of look like a nose – but does 182 

this path between the pixels also look like the path from an ear to a nose?’). 183 

 184 

The second optimization approach was image data augmentation during training37. Instead of only training 185 

the network on manually-labeled images, we also trained the network on morphed and distorted versions 186 

of the labeled images (Supplementary Fig. 3). Training the network on morphed images (e.g., rotated or 187 

enlarged), gives a similar effect to training on a much larger dataset of labeled images, because the network 188 

then learns to predict many artificially generated, slightly different views of the animals. Training the 189 

network on distorted images is thought to reduce overfitting on single pixels and reduce the effect of 190 

motion blur37. 191 

 192 
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Using a training set of 526 images, and by automatically adjusting learning rate during training, the net-193 

work was well-trained (plateaued) within one hour of training on a standard desktop computer (Fig. 2e), 194 

yielding good predictions of both body key-points and affinity fields (Fig. 2f).  195 

 196 

All-infrared tracking 197 

As mice are nocturnal, we also developed a version of the tracking software that only relies on the infrared 198 

video stream (i.e., in visual darkness for the mice). This facilitates the study of naturalistic social interac-199 

tions in darkness. For ‘all-infrared’ experiments, the arena was lit with infrared LED lamps, and the soft-200 

ware was changed to save only the infrared images (16-bit, 640 x 448, 60 frames/s). Detection of body 201 

key-points by deep learning from in these images are made difficult by the prominent infrared laser dot 202 

pattern (Fig. 2g). We trained the deep neural network to ignore the dot pattern by using a data augmenta-203 

tion strategy. We recorded and labeled body parts in a training data set (720 images), where the infrared 204 

laser was turned off, and trained the network on labeled images augmented with a probabilistically gener-205 

ated noise pattern of white dots with a similar size and density to the ‘real’ laser pattern (Fig. 2h). A 206 

network trained on these data allowed us to successfully detect body key-points in real images with the 207 

infrared laser turned on (Fig. 2i). 208 

 209 

To optimize the network architecture and estimate pseudo-posterior probability cutoffs in the network 210 

output maps with a good tradeoff between missed body key-points, false positives and network training/in-211 

ference time, we profiled the network across the number of hourglass stacks (Supplementary Figs. 4, 5), 212 

with and without various types of training data augmentation (Supplementary Fig. 6), and with and with-213 

out part affinity fields (Supplementary Fig. 7). Based on the hand-labeled validation data, we found that 214 

3 hourglass stacks and a pseudo-posterior probability cutoff of 0.5 led to good performance (Supplemen-215 

tary Figs. 4-7).  216 

 217 
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Pre-processing of 3D video 218 

By aligning the color images to the depth images, and aligning the depth images in 3D space, we could 219 

assign three dimensional coordinates to the detected key-points. We pre-processed the depth data to ac-220 

complish two goals. First, we wanted to align the cameras to each other in space, so we could fuse their 221 

individual depth images to one single 3D point-cloud. Second, we wanted to extract only points corre-222 

sponding to the animals’ body surfaces from this composite point-cloud. 223 

 224 

To align the cameras in space, we filmed the trajectory of a sphere that we moved around the behavioral 225 

arena. We then used a combination of motion filtering, color filtering, smoothing, and thresholding to 226 

detect the location of the sphere in the color frame, extracted the partial 3D surface from the aligned depth 227 

data, and used a robust regression method to estimate the center coordinate (Fig. 3a). This procedure 228 

yielded a 3D trajectory in the reference frame of each camera (Fig. 3b) that we could use to robustly 229 

estimate the transformation matrices needed to bring all trajectories into the same frame of reference (Fig. 230 

3c). This robust alignment is a key aspect of our method, as errors can easily be introduced by moving the 231 

sphere too close to a depth camera or out of the field of view during recording (Fig. 3b,c, arrow). After 232 

alignment, the median camera-to-camera difference in the estimate of the center coordinate of the 40-mm-233 

diameter sphere was only 2.6 mm across the entire behavioral arena (Fig. 3d,e). 234 

 235 

We used a similar robust regression method to automatically detect the base of the behavioral arena. We 236 

detected planes in composite point-cloud (Fig. 3f) and used the location and normal vector, estimated 237 

across 60 random frames (Fig. 3g), to transform the point-cloud such that the base of the behavioral arena 238 

laid in the xy-plane (Fig. 3h). To remove imaging artifacts stemming from light reflection and refraction 239 

due to the curved acrylic walls, we automatically detected the location and radius of the acrylic cylinder 240 

(Fig. 3i). With the location of both the arena base and the acrylic walls, we used simple logic filtering to 241 

remove all points associated with the base and walls, leaving only points inside the behavioral arena (Fig. 242 
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3j). Note that if there is no constraint on laboratory space, an elevated platform can be used as a behavioral 243 

arena, eliminating imaging artifacts associated with the acrylic cylinder.  244 

 245 

Loss function design 246 

The pre-processing pipeline described above takes color and depth images as inputs, and outputs two types 247 

of data: a point-cloud, corresponding to the surface of the two animals, and the 3D coordinates of detected 248 

body key-points (Fig. 4a, Supplementary Video 1). To track the body postures of interacting animals 249 

across space and time, we developed an algorithm that incorporates information from both data types. The 250 

basic idea of the tracking algorithm is that for every frame, we fit the mouse bodies by minimizing a loss 251 

function of both the point-cloud and key-points, subject to a set of spatiotemporal regularizations.  252 

 253 

For the loss function, we made a simple parametric model of the skeleton and body surface of a mouse. 254 

The body model consists of two prolate spheroids (the ‘hip ellipsoid’ and ‘head ellipsoid’), with dimen-255 

sions based on an average adult mouse (Fig. 4b). The head ellipsoid is rigid, but the hip ellipsoid has a 256 

free parameter (s) modifying the major and minor axes to allow the hip ellipsoids to be longer and narrower 257 

(e.g., during stretching, running, or rearing) or shorter and wider (e.g., when still or self-grooming). The 258 

two ellipsoids are connected by a joint that allows the head ellipsoid to turn left/right and up/down within 259 

a cone corresponding to the physical movement limits of the neck. 260 

 261 

Keeping the number of degrees of freedom low is vital to make loss function minimization computation-262 

ally feasible38. Due to the rotational symmetry of the ellipsoids, we could choose a parametrization with 263 

8 degrees of freedom per mouse body: the central coordinate of the hip ellipsoid (x, y, z), the rotation of 264 

the major axis of the hip ellipsoid around the y- and z-axis (β, γ), the left/right and up/down rotation of the 265 

head ellipsoid (θ, φ), and the stretch of the hip ellipsoids (s). For the implanted animal, we added an 266 

additional sphere to the body model, approximating the surface of the head-mounted neural implant (Fig. 267 
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4b). The sphere is rigidly attached to the head ellipsoid and has one degree of freedom; a rotational angle 268 

(ψ) that allows the sphere to rotate around the head ellipsoid, capturing head tilt of the implanted animal. 269 

Thus, in total, the joint pose (the body poses of both mice) was parametrized by only 17 variables.  270 

 271 

To fit the body model, we adjusted these parameters to minimize a weighted sum of two loss terms: (i) 272 

The shortest distance from every point in the point-cloud to body model surface. (ii) The distance from 273 

detected key-points to their corresponding location on the body model surface (e.g., nose key-points near 274 

the tip of one of the head ellipsoids, tail key-points near the posterior end of a hip ellipsoid).  275 

 276 

We then used several different approaches for optimizing the tracking. First, for each of the thousands of 277 

point in the point-cloud, we needed to calculate the shortest distance to the body model ellipsoids. Calcu-278 

lating these distances exactly is not computationally feasible, as this requires solving a six-degree polyno-279 

mial for every point39. As an approximation, we instead used the shortest distance to the surface, along a 280 

path that passes through the centroid (Supplementary Fig. 8a,b). Calculating this distance could be im-281 

plemented as pure tensor algebra40, which could be executed efficiently on a GPU in parallel for all points 282 

simultaneously. Second, to reduce the effect of imaging artifacts in the color and depth imaging (which 283 

can affect both the point-cloud or the 3D coordinates of the key-points), we clipped distance losses at 3 284 

cm, such that distant ‘outliers’ do contribute and not skew the fit (Supplementary Fig. 8c). Third, because 285 

pixel density in the depth images depends on the distance from the depth camera, we weighed the contri-286 

bution of each point in the point-cloud by the squared distance to the depth camera (Supplementary Fig. 287 

8d).  Fourth, to ensure that the minimization does not converge to unphysical joint postures (e.g., where 288 

the mouse bodies are overlapping), we added a penalty term to the loss function if the body models overlap. 289 

Calculating overlap between two ellipsoids is computationally expensive41, so we computed overlaps be-290 

tween implant sphere and spheres centered on the body ellipsoids with a radius equal to the minor axis 291 

(Supplementary Fig. 8f). Fifth, to ensure spatiotemporal continuity of body model estimates, we also 292 

added a penalty term to the loss function, penalizing overlap between the mouse body in the current frame, 293 
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and other mouse bodies in the previous frame. This ensures that the bodies do not switch place, something 294 

that could otherwise happen if the mice are in joint poses with certain mirror symmetries (Supplementary 295 

Fig. 8g,h). 296 

 297 

GPU-accelerated robust optimization 298 

Minimizing the loss function requires solving three major challenges. The first challenge is computational 299 

speed. The number of key-points and body parts is relatively low (~tens), but the number of points in the 300 

point-cloud is large (~thousands), which makes the loss function computationally expensive. For minimi-301 

zation, we need to evaluate the loss function multiple times per frame (at 60 frames/s). If loss function 302 

evaluation is not fast, tracking becomes unusably slow. The second challenge is that the minimizer has to 303 

properly explore the loss landscape within each frame and avoid local minima. In early stages of develop-304 

ing this algorithm, we were only tracking interacting mice with no head implant. In that case, for the small 305 

frame-to-frame changes in body posture, the loss function landscape was nonlinear, but approximately 306 

convex, so we could use a fast, derivative-based minimizer to track changes in body posture (geodesic 307 

Levenberg-Marquardt steps38). For use in neuroscience experiments, however, one or more mice might 308 

carry a neural implant for recording or stimulation. The implant is generally at a right angle and offset 309 

from the ‘hinge’ between the two hip and head ellipsoids, which makes the loss function highly non-310 

convex42. The final challenge is robustness against local minima in state space. Even though a body pos-311 

ture minimizes the loss in a single frame, it might not be an optimal fit, given the context of other frames 312 

(e.g., spatiotemporal continuity, no unphysical movement of the bodies). 313 

 314 

To solve these three challenges – speed, state space exploration, and spatiotemporal robustness – we de-315 

signed a custom GPU-accelerated minimization algorithm, which incorporates ideas from annealed parti-316 

cle filters43 and online Bayesian filtering (Fig. 4c). To maximize computational speed, the algorithm was 317 

implemented as pure tensor algebra in Pytorch, a high-performance GPU computing library44. Annealed 318 

particle filters are suited to explore highly non-convex loss surfaces43, which allowed us to avoid local 319 
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minima within each frame. Between frames, we used online filtering, to avoid being trapped in low-prob-320 

ability solutions given the context of the preceding tracking. For every frame, we first proposed the state 321 

of the 17-parameters using a recursive least-squares (‘RLS’) filter bank trained on preceding frames. After 322 

particle filter-based loss function minimization within a single frame, we updated the RLS filter bank, and 323 

proposed a particle filter starting point for the next frame (Fig. 4d-e).  324 

 325 

The ‘two-layer’ tracking strategy (particle filter within frames and RLS filter between frames) has three 326 

major advantages. First, by proposing a solution from the RLS bank, we often already start the loss func-327 

tion minimization close to the new minimum. Second, if the RLS filter deems that the fit for a single frame 328 

is unlikely (an outlier), based on the preceding frames, this fit will only weakly update the filter bank, and 329 

thus only weakly perturb the upcoming tracking. This gives us a convenient way to balance the information 330 

provided by the fit of a single frame, and the ‘context’ provided by previous frames. Third, the RLS filter-331 

based approach is only dependent on previously tracked frames, not future frames. This is in contrast to 332 

other approaches to incorporating context that rely on versions of backwards belief propagation5,16,35. Note 333 

that since our algorithm only relies on past data for tracking, it is possible – in future work – to optimize 334 

our algorithm for real-time use in closed-loop experiments.  335 

 336 

For each recording, we first automatically initiated the tracking algorithm: We automatically scanned for-337 

ward in the video to find a frame, where the mice were well separated (assessed by k-means clustering of 338 

the 3D positions of the body key-points into two clusters, and by requiring that the ‘cross-mouse’ cluster 339 

distance is at least 5 cm (Supplementary Fig. 9). From this starting point, we explored the loss surface 340 

with 200 particles (Fig. 4d). We generated the particles by perturbing the proposed minimum by quasi-341 

random, low-discrepancy sampling45 (Supplementary Fig. 10). We exploited the fact that the loss func-342 

tion structure allowed us to execute several key steps in parallel, across multiple independent dimensions, 343 

and implemented these calculations as vectorizes tensor operations. This allowed us to leverage the power 344 

of CUDA kernels for fast tensor algebra on the GPU44. Specifically, to efficiently calculate the point-cloud 345 
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loss (shortest distance from a point in the point-cloud to the surface of a body model), we calculated the 346 

distance to all five body model spheroids for all points in the point-cloud and for all 200 particles, in 347 

parallel (Fig. 4c). We then applied fast minimization kernels across the two body models, to generate a 348 

smallest distance to either mouse, for all points in the point cloud. Because the mouse body models are 349 

independent, we only had to apply a minimization kernel to calculate the smallest distance, for every point, 350 

to 40,000 (200 x 200) joint poses if the two mice. These parallel computation steps are a key aspect of our 351 

method, which allows our tracking algorithm to avoid the ‘curse of dimensionality’, by not exploring a 352 

17-dimensional space, but rather explore the intersection of two independent 8-dim and 9-dim subspaces 353 

in parallel. We found that our GPU-accelerated implementation of the filter increased the processing time 354 

of a single frame by more than an order of magnitude compared to a fast CPU (e.g. ~16-fold speed increase 355 

for 200 particles, Fig. 4f).  356 

 357 

Tracking algorithm performance 358 

To ensure that the tracking algorithm did not get stuck in suboptimal solutions, we forced the particle filter 359 

to explore a large search space within every frame (Supplementary Fig. 11a-c). In successive iterations, 360 

we gradually made perturbations to the particles smaller and smaller by annealing the filter43), to approach 361 

the minimum. At the end of each iteration, we ‘resampled’ the particles by picking the 200 joint poses 362 

with the lowest losses in the 200-by-200 matrix of losses. This ‘top-k’ resampling strategy has two ad-363 

vantages. First, it can be done without fully sorting the matrix46, the most computationally expensive step 364 

in resampling47. Second, it provides a type of ‘importance sampling’. During resampling, some poses in 365 

the next iteration might be duplicates (picked from the same row or column in the 200-by-200 loss matrix.), 366 

allowing particles in each subspace to collapse at different rates (if the particle filter is very certain about 367 

one body pose, but not the other, for example).  368 

 369 
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By investigating the performance of the particle filter across iterations, we found that the filter generally 370 

converged sufficiently within five iterations (Supplementary Fig. 11d, Supplementary Video 2) to pro-371 

vide good tracking across frames (Supplementary Fig. 11e). In every frame, the particle filter fit yields a 372 

noisy estimate of the 3D location of the mouse bodies. The transformation from the joint pose parameters 373 

(e.g., rotation angles, spine scaling) to 3D space is highly nonlinear, so simple smoothing of the trajectory 374 

in pose parameter space would distort the trajectory in real space. Thus, we filtered the tracked trajectories 375 

by a combination of Kalman-filtering and maximum likelihood-based smoothing48,49 and 3D rotation 376 

smoothing in quaternion space50 (Supplementary Fig. 12, Supplementary Video 3). 377 

 378 

Representing the joint postures of the two animals with this parametrization was highly data efficient, 379 

reducing the memory footprint from ~3.7 GB/min for raw color/depth image data, to ~0.11 GB/min for 380 

pre-processed point-cloud/key-point data to ~1 MB/min for tracked body model parameters. On a regular 381 

desktop computer with a single GPU, we could do key-point detection in color image data from all four 382 

cameras in ~2x real time (i.e., it took 30 minute to process a 1 hr experimental session). Depth data pro-383 

cessing (point-cloud merging and key-point deprojection) ran at ~0.7x real time, and the tracking algo-384 

rithm ran at ~0.2x real time (if the filter uses 200 particles and 5 filter iterations per frame). Thus, for a 385 

typical experimental session (~ hours), we would run the tracking algorithm overnight, which is possible 386 

because the code is fully automatic.  387 

 388 

Error detection 389 

Error detection and correction is a critical component of behavioral tracking. Even if error rates are nom-390 

inally low, errors are non-random, and errors often happen exactly during the behaviors in which we are 391 

most interested: interactions. In multi-animal tracking, two types of tracking error are particularly fatal as 392 

they compound over time: identity errors and body orientation errors (Supplementary Fig. 13a). In con-393 

ventional tracking approaches using only 2D videos, it is often difficult to correctly track identities when 394 

interacting mice are closely interacting, allo-grooming, or passing over and under each other. Although 395 
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swapped identities can be corrected later once the mice are well-separated again, this still leaves individual 396 

behavior during the actual social interaction unresolved5,16. We found that our tracking algorithm was 397 

robust against both identity swaps (Supplementary Fig. 13b-e) and body direction swaps (Supplemen-398 

tary Fig. 14). This observation agrees with the fact that tracking in 3D space (subject to our implemented 399 

spatiotemporal regularizations) should in principle allow better identity tracking. In full 3D space it is 400 

easier to determine who is rearing over whom during an interaction, for example.  401 

 402 

To test our algorithm for subtler errors, we manually inspected 500 frames, randomly selected across an 403 

example 21-minute recording session. In these 500 frames, we detected only a single tracking mistake, 404 

corresponding to 99.8% correct tracking (Supplementary Fig. 15a). The identified tracking mistake was 405 

visible as a large, transient increase in the point-cloud loss function (Supplementary Fig. 15b). After the 406 

tracking mistake, the robust particle filter quickly recovered to correct tracking again (Supplementary 407 

Fig. 15c). By detecting such loss function anomalies, or by detecting ‘unphysical’ postures or movements 408 

in the body models, potential tracking mistakes can be automatically ‘flagged’ for inspection (Supple-409 

mentary Fig. 15c,d). After inspection, errors can be manually corrected or automatically corrected in 410 

many cases, for example by tracking the particle filter backwards in time after it has recovered. As the 411 

algorithm recovers after a tracking mistake, it is generally unnecessary to actively supervise the algorithm 412 

during tracking, and manual inspection for potential errors can be performed after running the algorithm 413 

overnight. We provide a GUI for viewing and quality control of tracked behavior (raw data, body skeleton, 414 

ellipsoid surfaces and time trajectory) running in an interactive Jupyter notebook (Supplementary Fig. 415 

2b, Supplementary Video 5). 416 

 417 

Automated analysis of movement kinematics and social events 418 

As a validation of our tracking method, we demonstrate that out methods can automatically extract both 419 

movement kinematics and behavioral states (movement patterns, social events) during spontaneous social 420 

interactions. Some unsupervised methods for discovering structure and states in behavioral data do not 421 
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rely on an explicit body model of the animal, and instead use statistical methods to detect behavioral states 422 

directly from tracked features6,33,51–53. In an alternative approach, some supervised methods label behav-423 

ioral events of interest by hand on training data, and then train a classifier to find similar events in unla-424 

beled data17–19 . Both of these types of analysis are compatible with our method (e.g., by running directly 425 

on the time series data of the 17 dimensions that parametrize the body models of the two animals, Sup-426 

plementary Fig. 11). Our tracking system yields an easily interpretable 3D body model of the animals, 427 

which makes two additional types of analyses straightforward as well: First, we can easily define 3D body 428 

postures or multi-animal postures of interest as templates16,30. Second, we can use unsupervised methods 429 

to discover behavioral states in the 3D reference frame of the animal’s own body, making these models 430 

and states straightforward to interpret and ‘sanity check’ (manually inspect for errors). 431 

 432 

To demonstrate posture-template-based analysis, we defined social behaviors of interest as templates and 433 

matched these templates to tracked data. We know that anogenital sniffing54 and nose-to-nose touch55 are 434 

prominent events in rodent social behavior, so we designed a template to detect these events. In this tem-435 

plate, we exploited the fact that we could easily calculate both body postures and movement kinematics, 436 

in the reference frame of each animal’s own body. For every frame, we first extracted the 3D coordinates 437 

of the body model skeleton (Supplementary Fig. 12a). From these skeleton coordinates, we calculated 438 

the position (Fig. 5a) and a three-dimensional speed vector for each mouse (‘forward speed’, along the 439 

hip ellipsoid, ‘left speed’ perpendicular the body axis and ‘up speed’ along the z-axis; Fig. 5b). We also 440 

calculated three instantaneous ‘social distances’, defined as the 3D distance between the tip of each ani-441 

mal’s noses (‘nose-to-nose’; Fig. 5b), and from the tip of each animal’s nose to the posterior end of the 442 

conspecific’s hip ellipsoid (‘nose-to-tail’; Fig. 5b). From these social distances, we could automatically 443 

detect when the mouse bodies were in a nose-to-nose or a nose-to-tail configuration (Fig. 5c). It is straight-444 

forward to further subdivide these social events by body postures and kinematics, in order to separate 445 

stationary nose-to-tail configurations (anogenital sniffing/grooming) and nose-to-tail configurations dur-446 

ing locomotion (social following). 447 
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 448 

To demonstrate unsupervised behavioral state discovery, we used GPU-accelerated probabilistic program-449 

ming56 and state space modeling to automatically detect and label movement states. To discover types 450 

locomotor behavior, we fitted a ‘sticky’ multivariate hidden Markov model57 to the two components of 451 

the speed vector that lie in the xy-plane (Supplementary Fig. 16a-h). With five hidden states, this model 452 

yielded interpretable movement patterns that correspond to known mouse locomotor ‘syllables’: resting 453 

(no movement), turning left and right, and moving forward at slow and fast speeds (Fig. 5d). Fitting a 454 

similar model with three hidden states to the z-component of the speed vector (Supplementary Fig. 16i-455 

n) yielded interpretable and known ‘rearing syllables’: rest, rearing up and ducking down (Fig. 5e). Using 456 

the maximum a posteriori probability from these fitted models, we could automatically generate locomo-457 

tor ethograms and rearing ethograms for the two mice (Fig. 5b).  458 

 459 

In line with previous observations, we found that movement bouts were short (medians, 460 

rest/left/right/fwd/fast-forward: 0.83/0.50/0.52/0.45/0.68 s, a ‘sub-second’ timescale33). In the locomotion 461 

ethograms, bouts of rest were longer than bouts of movement (all p < 0.05, Mann-Whitney U-test; Fig. 5f) 462 

and bouts of fast forward locomotion was longer than other types of locomotion (all p < 0.001, Mann-463 

Whitney U-test; Fig. 5f). In the rearing ethograms, the distribution of rests was very wide, consisting of 464 

both long (~seconds) and very short (~tenths of a second) periods of rest (Fig. 5g). As expected, by plotting 465 

the rearing height against the duration of rearing syllables, we found that short rests in rearing were asso-466 

ciated with standing high on the hind legs (the mouse rears up, waits for a brief moment before ducking 467 

back down), while longer rests happened when the mouse was on the ground (‘rearing’ and ‘crouching’, 468 

Fig. 5h). Like the movement types and durations, the transition probabilities from the fitted hidden Mar-469 

kov models were also in agreement with known behavioral patterns. In the locomotion model, for example, 470 

the most likely transition from “rest” was to “slow forward”. From “slow forward”, the mouse was likely 471 

to transition to “turning left”, “fast forward” or “turning right”, it was unlikely to transition directly from 472 

“fast forward” to “rest” or from “turning left” to “turning right, and so on (Supplementary Fig. 16o,p). 473 
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 474 

Automatic measurement of firing rate modulations during social touch 475 

By combining our tracking system with silicon-probe recording of single unit activity, we could automat-476 

ically measure how neural activity is modulated during social interactions. As proof-of-concept for our 477 

system, we implanted a male mouse with a 32-channel silicon probe electrode in barrel cortex (the primary 478 

whisker representation in somatosensory cortex). In an example experiment, we simultaneously recorded 479 

31 single units in barrel cortex while tracking the behavior of the implanted mouse interacting with a male 480 

and a female conspecific for 20 minutes each. We then used the posture-template-based analysis to detect 481 

three types of social touch events: nose-to-nose touch (“Nose ↔ Nose”), the implanted animal touching 482 

the partner’s anogenital region with its whiskers (“Nose0 → Tail1”) and the partner animal touching the 483 

implanted animal’s anogenital region with its whiskers (“Nose1 → Tail0”, Fig. 6a). The automatic pos-484 

ture-template-based analysis confirmed58 that the duration of social touch events and inter-touch-intervals 485 

spanned multiple orders of magnitude (from short millisecond touch events to longer touch events lasting 486 

multiple seconds, Fig 6b-d).  487 

 488 

Using a ‘classic’ peri-stimulus time histogram-based analysis, we found several single units that had a 489 

significant firing modulation at the time of the detected social touch events (example neurons shown in 490 

Fig. 6e, top row, labeled “naïve PSTH”). The firing rate modulations detected in the “naïve” approach 491 

were surprisingly small (only a small ‘bump’ in the PSTH at the time of touch), and much smaller than 492 

observed in ‘classic’ barrel cortex studies, where a controlled whisker stimulus is presented59. We won-493 

dered if the magnitude of firing rate modulation appeared small in the PSTHs, because during un-trained 494 

and self-initiated behavior, the detected touch events occurred in close temporal proximity and/or were 495 

overlapping with other touch events and postural changes58. To test the possibility that larger effects sizes 496 

were masked by other touch events occurring in close temporal proximity, we also computed PSTHs where 497 

we only included social touch events where no other social touch event was detected in the ‘baseline’ 498 

period (4 seconds before the social touch). In these PSTHs with a “cleaned” baseline (Fig. 6e, bottom row, 499 
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labeled “cleaned PSTH”), we both observed a larger proportion of neurons with a significant change in 500 

firing rate (Fig. 6f) and a larger effect size compared to the naïve PSTHs (Fig. 6g, the distributions of 501 

effect sizes in the cleaned PSTH are “wider”). For example, the third neuron shown in Figure 6e showed 502 

no firing rate modulation in the naïve PSTH, but instead showed a large, highly statistically significant 503 

firing rate decrease around whisker touch in the “cleaned” PSTH.  504 

 505 

Fully automatic mapping of ‘social receptive fields’ 506 

Cleaning the PSTHs (by controlling for only three types of social touch) increased our estimates of the 507 

magnitude of firing rate modulations associated with social touch events. However, a PSTH-based analysis 508 

strategy has inherent drawbacks when analyzing naturalistic behavior. During free behavior, touch, move-509 

ment and postural changes happen simultaneously, as continuous and overlapping variables. Furthermore, 510 

in line with “vicarious” somatosensory responses reported in human somatosensory cortex60 and barrel 511 

cortex responses observed just before touch61, barrel cortex neurons may be related to the behavior of the 512 

partner animal, in a kind of “mirror neuron”-like response. 513 

 514 

To deal with these challenges, we drew inspiration from discovery of multiplexed spatial coding in hip-515 

pocampal circuits62 and developed a fully-automatic python pipeline that can automatically discover ‘so-516 

cial’ receptive fields. Our tracking method is able to recover the 3D posture and head direction of both 517 

animals: The head direction of the implanted animal was given by the skeleton of the body model (the 518 

implant is fixed to the head). For computational efficiency, we exploited the rotational symmetry of the 519 

body model of the non-implanted partner to decrease the dimensionality of the search space during track-520 

ing (Fig. 4c) and used the 3D coordinates of the detected ‘ear’ key-points to infer the 3D head direction 521 

of the partner (Supplementary Figs. 17,18).  522 

 523 

Using the full 3D body model of both animals, we designed our analysis pipeline to automatically extract 524 

45 continuous features that might be associated with firing rate changes in a social interaction: social 525 
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“between-animal” features (nose-to-nose distance, nose-to-partner’s-genitals distance, relative orientation 526 

of the partner with respect to the implanted animal, and a temporal derivative of the distance between the 527 

center of the two hip ellipsoids that measures if the animals are moving towards each other or away from 528 

each other, Fig. 7a), postural features (head yaw/pitch/roll, etc.), spatial features (to detect ‘spatial’ activity, 529 

such as place fields, border or head-direction activity), movement features (temporal derivatives of the 530 

running trajectory, temporal derivatives of posture angles, etc.), and posture, space and movement features 531 

of the partner animal (Fig. 7b, Supplementary Fig. 19a, detailed feature table in Methods).  532 

 533 

We assumed the following generative model of the observed neuronal spike trains62: A neuron’s spike 534 

train is generated by a Poisson process, and the rate of this Poisson process is determined by a linear 535 

combination of the behavioral predictors, each associated with their own tuning curve (Fig. 7c). To deter-536 

mine what behavioral features significantly contribute to the firing rate modulation of a neuron, and the 537 

associated tuning curves, we used a model comparison approach: Starting from a null model where the 538 

observed spikes are simply generated by a Poisson process with a constant rate, we iteratively added pre-539 

dictors that passed a cross-validated significance criterion (a significant increase in likelihood compared 540 

to a simpler model). The tuning curves were regularized to be smooth and allowed to be re-fit with each 541 

additional predictor added to the multiplexed code (details in Methods). 542 

 543 

Using this analysis approach, we found several neurons with a multiplexed encoding of features of the 544 

social interactions (Fig. 7d-e). Because of the 3D body models, the discovered neural coding schemes 545 

were straightforward to interpret and compare to expected touch-related response patterns in barrel cor-546 

tex59. For example, the example neuron shown in Fig. 7d is strongly modulated by social facial touch 547 

(strongly tuned to a low nose-to-nose distance) and strongly lateralized (the neuron is strongly tuned to 548 

orientation angle, with a peak at ~ –π/2, i.e., when the partner is on the contralateral side of the animal’s 549 

face, relative to the implanted recording electrode). The example neuron shown in Fig. 7e was also 550 

strongly tuned to social facial touch (tuned to a low nose-to-nose distance), was strongly tuned to a positive 551 
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head roll (i.e., when the head is turned such that the whisker field contralateral to the recording electrode 552 

is in contact with the floor) and was strongly tuned to a positive temporal derivative of the hip ellipsoid 553 

yaw (when the animal is running counterclockwise, e.g., along the edge of the arena, such that the contra-554 

lateral whisker field is brushing against the arena wall or other obstacles). Across the population, we found 555 

that the neurons overwhelmingly encoded whisker touch and orientation angle (lateralization), and the 556 

posture and movements of the implanted animal, but not the partner animal (Fig. 7f). 557 

 558 

Mapping the network topology of social responses 559 

To map how neurons across the population might also be tuned to features of social interactions, we ex-560 

tracted the estimated neural tuning curves of all features that were encoded by at least 4 neurons (Fig. 8a). 561 

For some features, there was a clear pattern across the population, in line with known response patterns in 562 

barrel cortex59: All neurons that were modulated by social touch increased their firing rate during touch 563 

(tuned to a low nose-to-nose and nose-to-tail distance), were tuned to touch contralateral to the implanted 564 

electrode (tuning peak at orientation angle ≈ –π/2), and decreased firing rate during higher locomotion 565 

speeds (negatively correlated with forward speed). For the remaining movement and posture features, the 566 

tuning was more heterogeneous across the population (Fig. 8a). 567 

 568 

Finally, our automatic tracking and tuning curve estimation pipeline makes it straightforward to determine 569 

how features might be multiplexed together in the same neurons. In our example session, we found that 570 

52% of the neurons encoded at least one behavioral feature, with a median number of five encoded features 571 

(Fig. 8b). Using all neurons that encoded at least one feature, we computed a population “co-encoding 572 

matrix”, where the entries of the matrix is the probability that two features are encoded by the same neuron 573 

(Fig. 8c, Supplementary Fig. 19b). This co-encoding matrix was structured, such that there was a large 574 

overlap between neurons that encode nose-to-nose touch, neurons that encode nose-to-partner-genital 575 

touch and neurons that had lateralized responses (modulated by the relative orientation angle of the ani-576 

mals, preferring touch to the contralateral whisker field, relative to the implanted recording electrode59, 577 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.21.109629


 
 
Ebbesen & Froemke           Page 25 of 68 

 

 
Fig. 8d). The co-encoding matrix specified a network graph of encoded features (Fig. 8e), which would 578 

then be amenable to various methods of network topology analysis (e.g., locality, clustering, subgraph 579 

motifs, etc.). Thus, our fully-automatic pipeline enables direct connections from raw behavioral videog-580 

raphy and spike train recordings to higher-order statistics about how features of a social interaction are 581 

mapped onto a neural population during naturalistic behavior.  582 
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Discussion 583 

We combined 3D videography, deep learning and GPU-accelerated robust optimization to estimate the 584 

posture dynamics of multiple freely-moving mice, engaging in naturalistic social interactions. Our method 585 

is cost-effective (requiring only inexpensive consumer depth cameras and a GPU), has high spatiotemporal 586 

precision, is compatible with neural implants for continuous electrophysiological recordings, and tracks 587 

unmarked animals of the same coat color (e.g., enabling behavioral studies in transgenic mice). Our 588 

method is fully unsupervised, which makes the method scalable across multiple PCs or GPUs. Unsuper-589 

vised tracking allows us to investigate social behavior across long behavioral time scales beyond what is 590 

feasible with manual annotation, in order to elucidate developmental trajectories, dynamics of social learn-591 

ing, or individual differences among animals63,64, among other types of questions. Finally, our method 592 

uses no message-passing from future frames, but only relies on past data, which makes the method a 593 

promising starting point for real-time tracking. A major next step for future work is to apply such algo-594 

rithms to animal behavior in different conditions. For example, the algorithm can easily be adapted to 595 

track other animal body shapes such as juvenile mice or other species, or movable, deformable objects 596 

that might be important for foraging or other behaviors in complex environments. 597 

 598 

Multi-animal body tracking and mirror neurons 599 

In social interactions, rodents respond to the behavior of conspecifics, but we are only beginning to dis-600 

cover how the rodent brain encodes complex features such as gaze direction or body postures of oth-601 

ers3,21,65,66. Compared to our knowledge about sensorimotor mirror neurons in monkeys67 and vicarious 602 

sensory responses in human subjects60 (both foundational to theories about human social cognition68 and 603 

empathy69), we still know very little about a putative rodent mirror neuron system69. For demonstration 604 

and validation, we applied our analysis pipeline to barrel cortex neurons, and were able to recover expected 605 

neural tuning to (lateralized) whisker touch and movement59. Our end-to-end tracking method and analysis 606 

pipeline maps tuning to movements and postures of the partner’s body, and is also ideally suited to detect 607 

potential social interaction systems such as rodent ‘mirror neuron’ signals in other brain areas70,71. The 45 608 
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potential predictors that we have included in our analysis pipeline could be expanded to add additional 609 

features of interest. Similar to multiplexed spatial tuning in parahippocampal cortices (e.g., “conjunctive” 610 

grid- and head-direction cells72), we model multiplexed tuning as multiplicative62. It is straightforward to 611 

modify our model comparison code to also consider other coding schemes, such as nonlinear or condi-612 

tional interactions between predictors. This is of particular interest to the social neuroscience of joint ac-613 

tion, where movements and postures can have particular social meaning when performed in coordination 614 

with a social partner21. 615 

 616 

Automatic mapping of social phenotypes 617 

Social dysfunctions can be devastating symptoms in a multitude of mental conditions, including autism 618 

spectrum disorders, social anxiety, depression, and personality disorders73. Social interactions also pow-619 

erfully impact somatic physiology, and social interactions are emerging as a promising protective and 620 

therapeutic element in somatic conditions, such as inflammation74 and chronic pain75. Disorders charac-621 

terized by deficits in social interaction and communication generally lack effective treatment options, 622 

largely because even the neurobiological basis of ‘healthy’ social behavior is poorly understood. In addi-623 

tion to relating behavior to neural activity, automated 3D body tracking can yield a high-fidelity readout 624 

of behavioral changes associated with manipulations of neural activity, both at short (e.g., optogenetic), 625 

medium (e.g., pharmacological) and long (e.g., gene knockout) time scales.  626 

 627 

Long-term multi-animal behavior tracking has a particular advantage in comparative social neuroscience. 628 

For example, human genomics have linked several genes to autism2–4, but we still know little about how 629 

these genetic changes increase the risk of autism. A ‘computational ethology’76 approach to social behavior 630 

analysis based on automatic posture tracking (such as pioneered in laboratory studies of insects, worms 631 

and fish20,77–82 and in field ethology83–86) does not require us to a priori imagine how, e.g., autism-related 632 

gene perturbations manifest in mice, and can identify subtle changes in higher-order behavioral statistics 633 
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without human observer bias. By recording days of social interactions, it may be possible to use methods 634 

from computational topology to ask how the high-dimensional space defined by touch, posture and move-635 

ment dynamics is impacted by different genotypes or pathological conditions. The statistical power and 636 

granularity of the long-term continuous 3D behavior data may allow us to identify what specific core 637 

components of social behaviors are altered in different social relations, by various neuroactive drugs, and 638 

in disease states53, and hopefully identify novel therapies for alleviating social dysfunction in patients.  639 

 640 

Moving towards real-time behavior tracking and electrophysiology 641 

Our algorithm is automatic, does not use any message-passing from future frames, and robustly recovers 642 

from tracking mistakes. Thus, it is possible in principle to run the algorithm in real-time. Currently, the 643 

processing time per frame is higher than the camera frame rate (60 frames/s), but the algorithm is also not 644 

yet fully optimized for speed. For example, in the current version of the algorithm, we first record the 645 

images to disk, and then read and pre-process the images later. This is convenient for algorithm develop-646 

ment and exploration, but writing and reading the images to disk, and moving them onto and off a GPU 647 

are time-intensive steps. Beyond speed optimizations, tracking at a lower frame rate would allow more 648 

data processing time per frame. Going forward, it is important to explore ways to increase tracking ro-649 

bustness further, such as using the optical flow between video frames to link key-points together in multi-650 

animal tracking15, using a 3D convolutional neural network to detect body key-points by considering ‘up-651 

projected’ views from all cameras around the behavioral arena simultaneously10, real-time painting-in of 652 

depth artifacts87, and better online trajectory forecasting with a network trained to propose trajectories 653 

based on previously tracked mouse movements. Experimentation and optimization is clearly needed, but 654 

our algorithm – requiring data transfer from only a few cameras, with deep convolutional networks, phys-655 

ical modeling and particle filter tracking implemented as tensor algebra on the same GPU – is a promising 656 

starting point for the development of real-time, multi-animal 3D tracking, compatible with head mounted 657 

electrophysiology, e.g., for closed-loop experimental control triggered on behavioral and/or neural events.  658 
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Figures and Legends882 

883 

Figure 1. Raw data acquisition, temporal alignment and recording stability. a, Schematic of recording 884 

setup, showing flow of synchronization pulses and raw data. We use a custom Python program to record 885 

RGB images, depth images, and state (on/off) of synchronization LEDs from all four cameras. Neural data 886 

and TTL state of LEDs are recorded with a standard electrophysiology recording system. We use a custom 887 
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Python program to record video frames over USB (60 frames/s) and automatically deliver LED synchro-888 

nization pulses with randomized delays via Arduino microcontroller. b, Close-up images of the depth 889 

cameras, showing the two infrared sensors, color sensor, and cables for data transfer and synchronization. 890 

c, Photograph of recording setup, showing the four depth cameras, synchronization LEDs, and circular 891 

behavioral arena (transparent acrylic, 12” diameter). d, Example raw data images (top left: single infrared 892 

image with visible infrared laser dots; top right: corresponding automatically-generated mask image for 893 

recording LED synchronization state (arrow, LED location); bottom left: corresponding depth image, es-894 

timated from binocular disparity between two infrared images; bottom right: corresponding color image). 895 

e, Inter-frame-interval from four cameras (21 min of recording). Vertical ticks indicate 16.66 ms (corre-896 

sponding to 60 frames/s), individual cameras are colored and vertically offset. Frame rate is very stable 897 

(jitter across all cameras: ±26 µs). Arrow, example dropped frame. f, Number of dropped frames across 898 

the example 21 min recording. g, Top row, LED state (on/off) as captured by one camera (the 8-bit value 899 

of central pixel of LED ROI mask), at start of recording and after 20 minutes of recording. Bottom row, 900 

aligned LED trace, as recorded by electrophysiology recording system. h, Temporal residuals between 901 

recorded camera LED trace (g, top) and recorded TTL LED trace (g, bottom) are stable, but drift slightly 902 

(49 µs/min, left panel). We can automatically detect and correct for this small drift (right panel).  903 
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 904 

Figure 2. Detection of body key-points with a deep convolutional neural network. a, Workflow for 905 

pre-processing of raw image data. b, The ‘stacked hourglass’ convolutional network architecture. Each 906 

‘hourglass’ block of the network uses pooling and upsampling to incorporate both fine (high-resolution) 907 

and large-scale (low-resolution) information in the target prediction. The hourglass and scoring blocks are 908 

repeated seven times (seven ‘stacks’), such that intermediate key-point and affinity field predictions feed 909 

into subsequent hourglass blocks. Both the intermediate and final target maps contribute to the training 910 

loss, but only the final output map is used for prediction. c, Example training data for the deep convolu-911 

tional neural network. The network is trained to output four types of body key-points (Implant, Ears, Noses, 912 

Tails) and seven 1-D affinity fields, connecting key-points within each body. d, Example of full training 913 

target tensor. e, Convergence plot of example training set. Top, loss function for each mini-batch of the 914 

training set (526 images) and validation set (50 images). Bottom, learning rate. Network loss is trained 915 

(plateaued) after ~ 60 minutes. f, Network performance as function of training epoch for two example 916 
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images in the validation set. Left, input images; right, final output maps for key-points and affinity fields. 917 

g, In an infrared frame (under infrared illumination), the clear view of the mice is ‘obstructed’ by the 918 

infrared laser dot pattern. h, Example labeled training frame (with the laser turned off), showing the aug-919 

mentation strategy of applying a probabilistically generated ‘fake’ laser dot pattern during training. i, Ex-920 

ample network output of the trained network on a ‘real’ infrared frame with the infrared laser turned on.  921 
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 922 

Figure 3. Depth data alignment and pre-processing. a, Calibration ball detection pipeline. We use a 923 

combination of motion filtering, color filtering, and smoothing filters to detect and extract 3D ball surface. 924 

We estimate 3D location of the ball by fitting a sphere to the extracted surface. b, Estimated 3D trajectories 925 

of calibration ball as seen by the four cameras. One trajectory has an error (arrow) where ball trajectory 926 

was out of view. c, Overlay of trajectories after alignment in time and space. Our alignment pipeline uses 927 

a robust regression method and is insensitive to errors (arrow) in the calibration ball trajectory. d, Distri-928 

bution of residuals, using cam 0 as reference. e, Estimated trajectory in 3D space, before and after align-929 

ment of camera data. f, Example frame used in automatic detection of the behavioral arena location. Show 930 
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are pixels from the four cameras, after alignment (green), estimated normal vectors to the behavioral plat-931 

form floor (red), the estimated rotation vector (blue), and the reference vector (unit vector along z-axis, 932 

black). g, Estimated location (left) and normal vector (right) to the behavioral platform floor, across 60 933 

random frames. h, Example frame, after rotating the platform into the xy-plane, and removing pixels be-934 

low and outside the arena. Inferred camera locations are indicated with stick and ball. i, Automatic detec-935 

tion of behavioral arena location. j, Example 3D frame, showing merged data from four cameras, after 936 

automatic removal of the arena floor and imaging artifacts induced by the acrylic cylinder. Colors, which 937 

camera captured the pixels.  938 
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 939 

Figure 4. Mouse body model and GPU-accelerated tracking algorithm. a, Full assembly pipeline for 940 

a single pre-processed data frame, going from raw RGB and depth images (left columns) to assembled 3D 941 

point-cloud (black dots, right) and body key-point positions in 3D space (colored dots, right). b, Schematic 942 

depiction of mouse body model (grey, deformable ellipsoids) and implant model (grey sphere), fit to point-943 
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cloud (black dots) and body key-points (colored dots). The loss function assigns loss to distance from the 944 

point-cloud to the body model surface (black arrows) and from key-point locations to landmark locations 945 

on the body model (e.g., from nose key-points to the tip of the nose ellipsoids; colored arrows). c, Sche-946 

matic of loss function calculation and tracking algorithm. All operations implemented as GPU-accelerated 947 

tensor algebra. d, Example steps showing convergence of the particle filter on a single frame. e, Iteration 948 

time of a particle filter step, as a function of particles, on a GPU and CPU. For 200 particles (i.e. 40.000 949 

joint poses), the GPU-accelerated particle filter is ~16.5 times faster than the CPU f, Schematic depiction 950 

of the two levels of the tracking algorithm: Within a single frame, the joint poses are estimated with the 951 

particle filter. Between frames, the RLS filter bank incorporates information from multiple previous 952 

frames to estimate and propose the minimum in ‘pose space’.  953 
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 954 

Figure 5. Automatic classification of movement patterns and behavioral states during social inter-955 

actions. a, Tracked position of both mice, across an example 21 min recording. b, Extracted behavioral 956 

features: three speed components (forward, left and up in the mice’s egocentric reference frames), and 957 

three ‘social distances’ (nose-to-nose distance and two nose-to-tail distances). Colors indicate ethograms 958 

of automatically detected behavioral states. c, Examples of identified social events: nose-to-nose-touch, 959 
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and anogenital nose-contacts. e, Mean and covariance (3 standard deviations indicated by ellipsoids) for 960 

each latent state for the forward/leftward running (dots indicate a subsample of tracked speeds, colored by 961 

their most likely latent state) e, Mean and variance of latent states in the z-plane (shaded color) as well as 962 

distribution of tracked data assigned to those latent states (histograms) f, Distribution of the duration of 963 

the five behavioral states in the xy-plane. Periods of rest (blue) are the longest (p < 0.05, Mann-Whitney 964 

U-test) and bouts of fast forward movement (green) are to be longer other movement bouts (p < 0.001, 965 

Mann-Whitney U-test). g, Distribution of duration of the three behavioral states in the z-plane. Periods of 966 

rest (light blue) are either very short or very long. h, Plot of body elevation against behavior duration. 967 

Short periods of rest happen when the z-coordinate is high (the mouse rears up, waits for a brief moment 968 

before ducking back down), whereas long periods of rest happen when the z-coordinate is low (when the 969 

mouse is resting or moving around the arena, ρ = –0.47, p < 0.001, Spearman rank).  970 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.05.21.109629doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.21.109629


 
 
Ebbesen & Froemke           Page 44 of 68 

 

 

 971 

Figure 6. Automatic measurement of firing rate modulations during social touch. a, Automatically-972 

detected social touch events in mouse implanted with silicon probe (Si-probe) with 31 single-units from 973 

barrel cortex during a single 20-minute behavioral session. Yellow, nose-to-nose; purple, implanted-nose-974 

to-partner-tail; blue, partner-nose-to-implanted-tail. b, Distribution of touch durations with male (dashed) 975 

and female (solid) partner. c, Percentage of behavioral session classified as social touch events, by partner 976 

sex, for two behavioral sessions. d, Distribution of inter-touch-intervals for the two example behavioral 977 

sessions. e, Social touch PSTHs for four neurons. For each neuron, the top row shows ‘naïve’ PSTHs 978 

(aligned to social touch event) and the bottom row shows ‘cleaned’ PSTHs (we only include events where 979 

no other social touch event occurred in the –4 s to 0 s period before the detected social touch). The PSTHs 980 

in the bottom row have fewer trials, but show much larger effect sizes. f, Percentage of neurons that pass 981 

a p < 0.05 significance criterion, based on the ‘naïve’ and ‘cleaned’ PSTHs shown above. g, Distributions 982 

of effect size (measured as a firing rate modulation index), based on the ‘naïve’ and ‘cleaned’ PSTHs 983 

shown above.  984 
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 985 

Figure 7. Automatic mapping of neural receptive fields in a natural ‘social situation’. a, Schematic 986 

depiction of automatically extracted social features (top: nose-to-nose and nose-to-tail distances, center-987 

to-center velocity and head-center-to-head-center angle) and movement/posture features (bottom: rotation 988 

and movement of the body model ellipsoids). b, Names and example traces of extracted behavioral fea-989 

tures: social features (red color) and movement (yellow), posture (blue) and spatial (green) features, for 990 

both the subject and partner animal. c, Schematic depiction of the generative model: We assume that every 991 
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behavioral feature (‘predictor’) is associated with a tuning curve and that spikes are generated by a Poisson 992 

process. d, Model selection history (with associated p-values of each included predictor) for an example 993 

neuron (average spike shape and ISI-histogram shown to the left). The ‘raw’ marginal firing rate distribu-994 

tion (bars), and the fitted multiplexed tuning curves (10 lines, one line for each data fold) of the identified 995 

predictors are shown below. The barrel cortex neuron multiplexes five features, including nose-to-nose 996 

distance (the neuron fires more when this is close to zero, i.e., when noses touch) and orientation angle 997 

(the neuron fires most at roughly –π/2, i.e., when the partner is on the right side, the contralateral side 998 

relative to the recording electrode). e, Another example neuron (same plots as in d). This barrel cortex 999 

neuron multiplexes four features: during nose-to-nose touch, when turning or rolling the head to the right, 1000 

when partner’s nose is tilted up, or when partner’s nose is slightly downwards. f, Distribution of the num-1001 

ber of neurons that encode the tested behavioral features (ordering as in b). The neurons mainly encoded 1002 

social touch features (nose-to-nose, implanted-nose-to-partner-tail and orientation angle) and move-1003 

ment/posture features of the implanted animal itself (blue and yellow bars, above ‘own behavior’).  1004 
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1005 

Figure 8. Population tuning and co-encoding network structure in a social situation. a, Top, single 1006 

neuron tuning curves and ‘population tuning curve’ (average tuning, shaded area indicates standard devi-1007 

ation) for all behavioral features encoded by more than three single neurons. Bottom, schematic depiction 1008 

of the physical interpretation of the population tuning, in relation to the 3D body models. b, Distribution 1009 

of the number of behavioral features that each single neuron multiplexes. The arrow indicated the median 1010 

number of features encoded by a neuron that encode at least one feature. c, Co-encoding matrix of the 1011 

neural population: The grayscale color in i’th and j’th bin in the heatmap indicates the number neurons 1012 

that encode both feature i and j (ordering and color on the axes as in Fig. 7). d, Euler diagram of a subset 1013 

of the co-encoding matrix: This shows the number of neurons that encode nose-to-nose touch, implanted-1014 

nose-to-partner-tail touch and orientation angle (i.e. are lateralized). e, Network graph depiction of the full 1015 

co-encoding matrix. The size of the nodes indicates the number of neurons that encode a feature, the width 1016 
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of the edges indicates the number of neurons that co-encode a behavioral feature. The network is shown 1017 

in the Kamada-Kawai projection86 (the distance between nodes approximate their graph-theoretical dis-1018 

tance), with additional text labels on the network on the right.  1019 
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Methods 1020 
 1021 
Hardware 1022 
 1023 
Necessary hardware: 1024 
 1025 

Item Recommendation Price  
(USD) N Total 

(USD) 

Depth cameras Intel RealSense D435 179.00 4 716.00 

Camera stands Etubby 26” gooseneck webcam 
stand 24.96 4 99.84 

PCIe card with 4 independent USB 3.0 
controllers Startech 4-port superspeed 83.54 1 83.54 

Active, repeating USB 3.0 cables UGREEN, USB 3.0 Active Re-
peater Cable 18.89 4 75.56 

Arduino with USB cable Arduino Uno R3 13.98 1 13.98 

Pytorch-compatible GPU Any NVIDIA card with CUDA 
support 500.00 1 500.00 

Behavioral arena (acrylic cylinder or  
elevated platform) 

12”-diameter, 5/32” thick acrylic 
cylinder 71.20 1 71.20 

Depth camera GPIO pin connector 
(jumper) JST ASSHSSH28K305 0.54 8 4.32 

Depth camera GPIO pin connector  
(jumper housing) JST SHR-09V-S 0.19 4 0.76 

Colored ping-pong balls (for calibration) Stiga 40 mm ITTF Regulation 
size 6.64 1 6.64 

Total    1571.84 
 1026 
General lab electronics (tape, wire, soldering equipment, etc.) and: 1027 
 1028 
Item N 
Infrared or red LEDs 4 
0.1” pin headers or jumper wires 2 
20 kOhm resistors 4 
22 nF capacitors 4 
200 Ohm resistor (or same order of magnitude) 1 
Stick (for moving ping-pong ball during calibration) 1 
 1029 
 1030 
Software 1031 
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Our system uses the following software: Linux (tested on Ubuntu 16.04 LTE, but should work on others, 1032 

https://ubuntu.com/), Intel Realsense SDK (https://github.com/IntelRealSense/librealsense), Python 1033 

(tested on Python 3.6, we recommend Anaconda, https://www.anaconda.com/distribution/). Required Py-1034 

thon packages will be installed with PIP or conda (script in supplementary software). All required software 1035 

is free and open source. 1036 

 1037 

Animal welfare 1038 

All experimental procedures were performed according to animal welfare laws under the supervision of 1039 

local ethics committees. Animals were kept on a 12hr/12hr light cycle with ad libitum access to food and 1040 

water. Mice presented as partner animals were housed socially in same-sex cages, and post-surgery im-1041 

planted animals were housed in single animal cages. Neural recordings electrodes were implanted on the 1042 

dorsal skull under isoflurane anesthesia, with a 3D-printed electrode drive and a hand-built mesh hous-1043 

ing. All procedures were approved under NYU School of Medicine IACUC protocols.  1044 

 1045 

Computer hardware 1046 

All experiments and benchmarks were done on a desktop PC running Ubuntu 16.04 LTE on a 3.7 GHz 1047 

6-core CPU (Intel i7-8700K), with 32 GB 2400 MHz RAM, and an Nvidia GeForce RTX 2080Ti GPU. 1048 

 1049 

Recording data structure 1050 

The Python program is set to pull raw images at 640 x 480 (color) and 640 x 480 (depth), but only saves 1051 

320 x 210 (color) and 320 x 240 (depth). We do this to reduce noise (multi-pixel averaging), save disk 1052 

space and reduce processing time. Our software also works for saving images up to 848 x 480 (color) and 1053 

848 x 480 (depth) at 60 frames/s, in case the system is to be used for a bigger arena, or to detect smaller 1054 

body parts (e.g., eyes, paws). Images were transferred from the cameras with the python bindings for the 1055 

Intel Realsense SDK (https://github.com/IntelRealSense/librealsense), and saved as 8-bit, 3-channel PNG 1056 

files with opencv (for color images) or as 16-bit binary files (for depth images). 1057 
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 1058 

3D data structure 1059 

For efficient access and storage of the large datasets, we save all pre-processed data to hdf5 files. Because 1060 

the number of data points (point-cloud and key-points) per frame varies, we save every frame as a jagged 1061 

array. To this end, we pack all pre-processed data to a single array. If we detect N points in the point-cloud 1062 

and M key-points in the color images, we save a stack of the 3D coordinates of the points in the point-1063 

cloud (Nx3, raveled to 3N), the weights (N), the 3D coordinates of the key-points (Mx3, raveled to 3M), 1064 

their pseudo-posterior (M), an index indicating key-point type (M), and the number of key-points (1). 1065 

Functions to pack and unpack the pre-processed data from a single line (‘pack_to_jagged’ and ‘un-1066 

pack_from_jagged’) are provided. 1067 

 1068 

Temporal synchronization 1069 

LED blinks were generated with voltage pulses from an Arduino (on digital pin 12), controlled over USB 1070 

with a python interface for the Firmata protocol (https://github.com/tino/pyFirmata). To receive the Fir-1071 

mata messages, the Arduino was flashed with the ‘StandardFirmata’ example, that comes with the standard 1072 

Arduino IDE. TTL pulses were 150 ms long and spaced by ~U(150,350) ms. We recorded the emitted 1073 

voltage pulses in both the infrared images (used to calculate the depth image) and on a TTL input on an 1074 

Open Ephys Acquisition System (https://open-ephys.org/). We detected LED blinks and TTL flips by 1075 

threshold crossing and roughly aligned the two signals by the first detected blink/flip. We first refined the 1076 

alignment by cross correlation in 10 ms steps, and then identified pairs of blinks/flips by detecting the 1077 

closest blink, subject to a cutoff (zscore < 2, compared to all blink-to-flip time differences) to remove 1078 

blinks missed by the camera (because an experimenter moved an arm in front of a camera to place a mouse 1079 

in the arena, for example). The final shift and drift was estimated by a robust regression (Theil-Sen esti-1080 

mator) on the pairs of blinks/links.    1081 

 1082 

Deep neural network 1083 
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We used a stacked hourglass network34 implemented in Pytorch44 (https://github.com/pytorch/pytorch). 1084 

The network architecture code is from the implementation in ‘PyTorch-Pose’ 1085 

(https://github.com/bearpaw/pytorch-pose). The full network architecture is shown in Supplementary 1086 

Figure 1. The Image augmentation during training was done with the ‘imgaug’ library 1087 

(https://github.com/aleju/imgaug). Our augmentation pipeline is shown in Supplementary Figure 3. The 1088 

‘fake laser dot pattern’ was generated using the ‘snowflakes’ generator in the imgaug routines for gener-1089 

ating weather effects, tuned to look – by eye – to a similar dot size and density to the real laser dot pattern. 1090 

The network was trained by RMSProp (α = 0.99, ε = 10-8) with an initial learning rate of 0.00025. During 1091 

training, the learning rate was automatically reduced by a factor of 10 if the training loss decreased by less 1092 

than 0.1% for five successive steps (using the built-in learning rate scheduler in Pytorch). After training, 1093 

we used the final output map of the network for key-point detection, and used a maximum filter to detect 1094 

key-point locations as local maxima in network output images with a posterior pseudo-probability of at 1095 

least 0.5.  1096 

 1097 

Image labeling and target maps 1098 

For training the network to recognize body parts, we need to generate labeled frames by manual annotation. 1099 

For each frame, 1-5 body parts are labeled on the implanted animal and 1-4 body parts on the partner 1100 

animal. This can be done with any annotation software; we used a modified version of the free ‘DeepPo-1101 

seKit-Annotator’8 (https://github.com/jgraving/DeepPoseKit-Annotator/) included in the supplementary 1102 

code. This software allows easy labeling of the necessary points, and pre-packages training data for use in 1103 

our training pipeline. Body parts are indexed by i/p for implanted/partner animal (‘nose_p’ is the nose of 1104 

the partner animal, for example). Target maps were generated by adding a Gaussian function (σ = 3 px for 1105 

implant, σ = 1 px for other body parts, scaled to peak value = 1) to an array of zeros (at 1/4th the resolution 1106 

of the input color image) at the location of every labeled body key-point. 1D part affinity maps were 1107 

created by connecting labeled key-points in an array of zeros with a 1 px wide line (clipped to max value 1108 

= 1), and blurring the resulting image with a Gaussian filter (σ = 3 px).  1109 
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 1110 

Aligning depth and color data 1111 

The camera intrinsics (focal lengths, f, optical centers, p, depth scale, dscale) and extrinsics (rotation matri-1112 

ces, R, translation vectors, 𝑡̅) for both the color and depth sensors can be accessed over the SDK. Depth 1113 

and color images were aligned to each other using a pinhole camera model. For example, the z coordinate 1114 

of a single depth pixel with indices (𝑖%, 𝑖') and 16-bit depth value, dij, is given by: 1115 

𝑧' = 	𝑑,- ⋅ 𝑑/%012  1116 

And the x and y coordinates are given by: 1117 

3
𝑥'
𝑦'6 =

7𝑗' − 𝑝;,'< ⋅ 𝑧'/𝑓;,'
7𝑖' − 𝑝?,'< ⋅ 𝑧'/𝑓?,'

 1118 

Using the extrinsics between the depth and color sensors, we can move the coordinate to the reference 1119 

frame of the color sensor: 1120 

@
𝑥
𝑦
𝑧
A
%

= R'→% @
𝑥
𝑦
𝑧
A
'

+ 𝑡'̅→% 1121 

Using the focal length and optical center, we can project the pixel onto the color image: 1122 

E𝑖%𝑗%
F =

𝑓?,% ⋅ 𝑦%/𝑧% + 𝑝?,%	
𝑓;,% ⋅ 𝑥%/𝑧% + 𝑝;,%

 1123 

For assigning color pixel values to depth pixels, we simply rounded the color pixel indices (𝑖%, 𝑖') to the 1124 

nearest integer and cloned the value. More computationally intensive methods based on ray-tracking exist 1125 

(‘rs2_project_color_pixel_to_depth_pixel’ in the Librealsense SDK, for example), but the simple pinhole 1126 

camera approximation yielded good results (small jitter average out across multiple key-points) which 1127 

allowed us to skip the substantial computational overhead of ray tracing for our data pre-processing. 1128 

 1129 

Depth camera calibration, exposure and 3D alignment 1130 

To align the cameras in space, we first mounted a blue ping-pong ball on a stick and moved it around the 1131 

behavioral arena while recording both color and depth video. For each camera, we used a combination of 1132 

motion filtering, color filtering, smoothing and thresholding to detect the location of the ping-pong ball in 1133 
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the color frame (details in code). We then aligned the color frames to depth frames and extracted the 1134 

corresponding depth pixels, yielding a partial 3D surface of the ping-pong ball. By fitting a sphere to this 1135 

partial surface, we could estimate the 3D coordinate of the center of the ping-pong ball (Fig. 3a). This 1136 

procedure yielded a 3D trajectory of the ping-pong ball in the reference frame of each camera (Fig. 3b). 1137 

We used a robust regression method (RANSAC routines to fit a sphere with a fixed radius of 40 mm, 1138 

modified from routines in https://github.com/daavoo/pyntcloud), insensitive to errors in the calibration 1139 

ball trajectory to estimate the transformation matrices needed to bring all trajectories into the same frame 1140 

of reference (Fig. 3c). The software includes a step-by-step recipe for performing the alignment procedure. 1141 

The depth cameras have a minimum working distance of 20 cm, so they must be placed at least this dis-1142 

tance from the behavioral arena. The depth map is calculated from the infrared camera stream, so – as 1143 

with the RGB video – it is important that the image is not under- or over-exposed. The code includes a 1144 

tool for streaming live video from all cameras to verify that: (i) the whole arena is in view of all the 1145 

cameras and (ii) that the exposure is reasonable. The exposure settings can be changes in the config files, 1146 

that are loaded and applied when recording (the Intel RealSense SDK demo C application library also 1147 

includes a nice tool for testing different exposure settings). The 3D pixel density drops off with distance 1148 

from the camera (following the inverse-square law). In our tested use (standard neuroscience behavioral 1149 

arena, max. ~ 1 x 1 m), the exact relative placement of the four depth cameras does not matter (as they are 1150 

aligned by the calibration). However, for very large arenas, it may be necessary to add more depth cameras 1151 

(additional cameras mounted above the arena, for example). Adding more cameras will only affect the 1152 

pre-processing time (can be run in parallel – which can minimize the impact of more cameras), not the 1153 

actual body model fitting time (the slowest part of the algorithm). The body model fitting time is deter-1154 

mined by the number of mice tracked (the particle filter sorting step scales exponentially with the number 1155 

of mice, because the algorithm evaluates multi-animal poses).  1156 

 1157 

Body model 1158 
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We model each mouse at two prolate ellipsoids. The model is specified by the 3D coordinate of the center 1159 

of the hip ellipsoid, 𝑐H̅,I = [𝑥, 𝑦, 𝑧], and the major and minor axis of the ellipsoids are scaled by a coordi-1160 

nate, 𝑠 ∈ [0,1] that can morph the ellipsoid from long and narrow to short and fat: 1161 

𝑎H,I = 𝑎H,I,Q + 𝑎H,I,R ⋅ 𝑠 1162 

𝑏H,I = 𝑏H,I,Q + 𝑏H,I,R ⋅ (1 − 𝑠) 1163 

The ‘neck’ (the joint of rotation between the hip and nose ellipsoid) is sitting a distance, 𝑑H,I = 0.75 ⋅1164 

𝑎H,I, along the central axis of the hip ellipsoid. In the frame of reference of the mouse body (taking 𝑐H̅,I 1165 

as the origin, with the major axis of the hip ellipsoid along the x-axis), a unit vector pointing to of the nose 1166 

ellipsoid, from the ‘neck’ to the center of the nose ellipsoid along the major axis is: 1167 

𝑒Z̅[/2 = \
cos𝜃

sin 𝜃 cos𝜙
sin 𝜃 sin𝜙

d 1168 

In the frame of reference of the laboratory (‘world coordinates’), we allow the hip ellipsoid to rotate around 1169 

the z-axis (‘left’/’right’) and around the y-axis (‘up’/’down’, in the frame of reference of the mouse). We 1170 

define R7𝛼;, 𝛼?, 𝛼f< as a 3D rotation matrix specifying the rotation by an angle 𝛼 around the three axes, 1171 

and R(�̅�h, �̅�i) as a 3D rotation matrix that rotates the vector �̅�h onto �̅�i. The we can define: 1172 

𝐑H,I = 𝐑(0, 𝛽, 𝛾) 1173 

𝐑H20' = 𝐑(𝑒;̅, 𝑒Z̅[/2) 1174 

, where 𝑒;̅ is a unit vector along the x-axis. In the frame of reference of the mouse body, the center of the 1175 

nose ellipsoid is:  1176 

𝑐Z̅[/2,m[n/2 = 𝐑H20' \
𝑑Z[/2
0
0

d + \
𝑑H,I
0
0
d 1177 

So, in world coordinates, the center is:  1178 

𝑐Z̅[/2,o[p1' = 𝐑H,I𝑐Z[/2,m[n/2 + 𝑐H̅,I 1179 
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The center of the neural implant if offset from the center of the nose ellipsoid by a distance 𝑥,mI1 along 1180 

the major axis of the nose ellipsoid, and a distance 𝑧,mI1  orthogonal to the major axis. We allow the im-1181 

plant to rotate around the nose ellipsoid by an angle, 𝜓. Thus, in the frame of reference of the mouse body, 1182 

the center of the ellipsoid is: 1183 

𝑐,̅mI1,m[n/2 = 𝐑H20' r
𝑠,mI1

𝑑,mI1 ⋅ cos𝜓
𝑑,mI1 ⋅ sin 𝜓

s + \
𝑑H,I
0
0
d 1184 

And in world coordinates, same as the center of the nose ellipsoid: 1185 

𝑐,̅mI1,o[p1' = 𝑅H,I𝑐,mI1,m[n/2 + 𝑐H̅,I 1186 

We calculated other skeleton points (tip of the nose ellipsoid, etc.) in a similar method. We can use the 1187 

rotation matrices for the hip and the nose ellipsoids to calculate the characteristic ellipsoid matrices: 1188 

𝐐H,I = 𝐑H,I v
1/𝑎H,Ii 		 0 0

0 1/𝑏H,Ii 0
0 0 1/𝑏H,Ii

w 7𝐑H,I<
x
 1189 

𝐐Z[/2 = 𝐑H,I𝐑H20' r
1/𝑎Z[/2i 0 0

0 1/𝑏Z[/2i 0
0 0 1/𝑏Z[/2i

s 7𝐑H,I𝐑H20'<
x
 1190 

Calculating the shortest distance from a point to the surface of an 3D ellipsoid in 3 dimensions requires 1191 

solving a computationally-expensive polynomial39. Doing this for each of the thousands of points in the 1192 

point-cloud, multiplied by four body ellipsoids, multiplied by 200 particles pr. fitting step is not compu-1193 

tationally tractable. Instead, we use the shortest distance to the surface,  𝑑y, along a path that passes through 1194 

the centroid (Supplementary Fig. 8a,b). This is a good approximation to d (especially when averaged 1195 

over many points), and the calculation of 𝑑y can be implemented as pure vectorized linear algebra, which 1196 

can be calculated very efficiently on GPU40. Specifically, to calculate the distance from any point �̅� in the 1197 

point-cloud, we just center the points on the center of an ellipsoid, and – for example – calculate: 1198 

�̅�z = �̅� − 𝑐H̅,I 1199 

𝑑y = {1 − ‖�̅�z‖}~��
�h { ⋅ ‖�̅�z‖   where  ‖�̅�z‖}~�� = �〈�̅�z, �̅�z〉}~�� = �(�̅�z)T𝑄H,I	�̅�z 1200 
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In fitting the model, we used the following constants: 𝑎Z[/2 = 2.00	cm,𝑏Z[/2 = 1.20	cm, 𝑎H,I(m,Z) =1201 

0.50	cm, 𝑎H,I(m0;) = 2.50	cm, 𝑏H,I(m,Z) = 1.20	cm, 𝑏H,I(m0;) = 1.50	cm,𝑑Z[/2 = 1.00	cm,𝑑H,I =1202 

0.75 ⋅ 𝑎H,I, 𝑟,mI1 = 0.9 ⋅ 𝑏Z[/2, 𝑥,mI1 = 𝑑Z[/2 + 0.5 ⋅ 𝑎Z[/2, 𝑧,mI1 = 1.5 ⋅ 𝑟,mI1 . The code includes a pa-1203 

rameter (‘body_scale’) that can be changed to scale the mouse body model (e.g. for other strains, or juve-1204 

nile mice). 1205 

 1206 

Loss function evaluation and tracking 1207 

Joint position of the two mice is represented as a particle in 17-dimensional space. For each data frame, 1208 

we start with a proposal particle (leftmost green block, based on previous frames), from which we generate 1209 

200 particles by pseudo-random perturbation within a search space (next green block). For each proposal 1210 

particle, we calculate three types of weighted loss contributions: loss associated with the distance from 1211 

the point-cloud to the surface of the mouse body models (top path, green color), loss associated with body 1212 

key-points (middle path, key-point colors as in and loss associated with overlap of the two mouse body 1213 

models (bottom path, purple color). We broadcast the results in a way, which allows us to consider all 1214 

200x200 = 40.000 possible joint postures of the two mice. After calculation, we pick the top 200 joint 1215 

postures with the lowest overall loss, and anneal the search space, or – if converged – continue to the next 1216 

frame. When we continue to a new frame, we add the fitted frame to an online recursive filter bank, which 1217 

proposes the next position of the particle for the next frame, based on previous frame. All loss function 1218 

calculations, and recursive filter predictions are implemented as pure tensor algebra, fully vectorized and 1219 

executed on a GPU.   1220 

 1221 

Online recursive filtering 1222 

To propose a new location for the particle filter between frames, we use a recursive least squares filter 89, 1223 

with a time embedding of 5 steps, a forgetting factor of 𝜇 = 0.99 and a regularization factor of 𝜀 = 0.1. 1224 

Our implementation (‘rls_bank’) is based on the implementation in the Padasip (Python Adaptive Signal 1225 

Processing) library (https://github.com/matousc89/padasip). For the first 150 frames, the filter is only 1226 
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trained, but after frame 150, the filter is used for prediction. The code allows this filter to run across all 1227 

dimensions of the particle filter, but – in practical use – we found it sufficient to run it across the x-, y- 1228 

and z- coordinates of the center of the two mouse body models (i.e., we just assume that the angular and 1229 

stretch coordinates do not change from the last frame – this saves a few computations, and can be selected 1230 

by commenting in/out the relevant lines in the code).  1231 

 1232 

Regularizations 1233 

To regularize the particle filter algorithm, we imposed two hard rules (‘barriers’) on the movement of the 1234 

body models (shown in Supplementary Figure 8). The first barrier was implemented by adding a large 1235 

term to the particle filter’s loss function, if the center of any ellipsoids from two different bodies were 1236 

closer than 0.8 times the sum of their short axes (this barrier allows a 20% overlap of spheres with a radius 1237 

equal to the ellipsoid’s small axis, drawn in purple in Supplementary Fig. 8f). This barrier term prevents 1238 

‘unphysical’ overlaps between the body models of the two mice. The second barrier was implemented by 1239 

adding a large term to the particle filter’s loss function, if the same condition was met between the current 1240 

position of a mouse body model and the interaction partners body model in the preceding frame (Supple-1241 

mentary Fig. 8h). This barrier term prevents ‘flips’ between the two mice (where the body models change 1242 

identity), as drawn in in Supplementary Figure 8g. 1243 

 1244 

State space filtering of raw tracking data 1245 

After tracking, the coordinates of the skeleton points (𝑐H,I, 𝑐Z[/2, etc.) were smoothed with a 3D kinematic 1246 

Kalman filter tracking both the 3D position (p), velocity (v) and (constant) acceleration (a). For example, 1247 

for the center of the hip coordinate: 1248 

�̅� = �𝑝;, 𝑣;, 𝑎;, 𝑝?, 𝑣?, 𝑎?, 𝑝f, 𝑣f, 𝑎f� 1249 

𝑧̅ = �𝑐H,I,;, 𝑐H,I,?, 𝑐H,I,f� 1250 

F = \
𝐅z 𝟎 𝟎
𝟎 𝐅z 𝟎
𝟎 𝟎 𝐅z

d , where		𝐅z = r
1 𝑑𝑡 h

i
𝑑𝑡i	

0 1 𝑑𝑡
0 0 1

s  1251 
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𝐇 = \
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

d 1252 

𝐏 = 𝟏�×� ⋅ σ%[�i  1253 

𝐑 = 𝐈�×� ⋅ 𝜎m20/np2m2Z¡i  1254 

𝐐 =	 r
𝐐′ 𝟎 𝟎
𝟎 𝐐′ 𝟎
𝟎 𝟎 𝐐′

s ⋅ 𝜎Ip[%2//i 		 1255 

where Q’ is the Q matrix for a discrete constant white noise model 𝐐z =

⎣
⎢
⎢
⎢
⎡
h
¦
𝑑𝑡¦ h

i
𝑑𝑡� h

i
𝑑𝑡i

h
i
𝑑𝑡� 𝑑𝑡i 𝑑𝑡

h
i
𝑑𝑡i 𝑑𝑡 1 ⎦

⎥
⎥
⎥
⎤
 and 1256 

𝜎m20/np2m2Z¡ = 0.015	m, 𝜎Ip[%2// = 0.01	m,𝜎%[�i = 0.0011	mi. The 𝜎’s were the same for all points, 1257 

except the slightly more noisy estimate of the center of the implant, where we used. 𝜎m20/np2m2Z¡ =1258 

0.02	m, 𝜎Ip[%2// = 0.01	m, 𝜎%[�i = 0.0011	mi From the frame rate (60 fps), 𝑑𝑡	 = h
ªQ
	s. The maximum-1259 

likelihood trajectory was estimated with the Rauch-Tung-Striebel method48 with a fixed lag of 16 frames. 1260 

The filter and smoother was implemented using the ‘filterpy’ package (https://github.com/rlabbe/filterpy). 1261 

The spine scaling, s, was smoothed with a similar filter in 1D, except that we did not model acceleration, 1262 

only s and a (constant) s ‘velocity’, with 𝜎m20/np2m2Z¡ = 0.3, 𝜎Ip[%2// = 0.05	m, 𝜎%[�i = 0.0011.  1263 

After filtering the trajectories of the skeleton points, we recalculated the 3D rotation matrices of the hip 1264 

and head ellipsoid by the vectors pointing from 𝑐H,I to 𝑐m,' (from the middle of the hip ellipsoid to the 1265 

neck joint), and from 𝑐H,I to 𝑐Z[/2 (from the neck joint to the middle of the nose ellipsoid). We then con-1266 

verted the 3D rotation matrixes to unit quaternions, and smoothed the 3D rotations by smoothing the 1267 

quaternions with an 10-frame boxcar filter, essentially averaging the quaternions by finding the largest 1268 

eigenvalue of a matrix composed of the quaternions within the boxcar 50. After smoothing the ellipsoid 1269 

rotations, we re-calculated the coordinates of the tip of the nose ellipsoid (𝑐¡,I) and the posterior end of 1270 

the hip ellipsoid (𝑐¡0,1) from the smoothed central coordinates, rotations, and – for 𝑐¡0,1  – the smoothed 1271 

spine scaling. A walkthrough of the state space filtering pipeline is shown in Supplementary Figure 12. 1272 

 1273 
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Template matching 1274 

To detect social events, we calculated three social distances, from three instantaneous ‘social distances’, 1275 

defined as the 3D distance between the tip of each animal’s noses (‘nose-to-nose’), and from the tip of 1276 

each animal’s nose to the posterior end of the conspecific’s hip ellipsoid (‘nose-to-tail’; Fig. 5c). From 1277 

these social distances, we could automatically detect when the mouse bodies were in a nose-to-nose (if 1278 

the nose-to-nose distance was < 2 cm and the nose-to-tail distance was > 6 cm) and in a nose-to-tail 1279 

configuration (if the nose-to-nose distance was > 6 cm and the nose-to-tail distance was > 2 cm). The 1280 

events were detected by the logic conditions, and then single threshold crossings due to noise were re-1281 

moved by binary opening with a 3-frame kernel, followed by binary closing with a 30-frame kernel. 1282 

 1283 

State space modeling of mouse behavior 1284 

State space modeling of the locomotion behavior was performed in Pyro56 a GPU-accelerated probabilistic 1285 

programming language built on top of Pytorch44. We modeled the (centered and whitened) locomotion 1286 

behavior as a hidden Markov model with discrete latent states, z, and associated transition matrix, T. 1287 

𝑧(𝑡 + 1) = Categorical(𝑒f(¡)
x ⋅ 𝐓) 1288 

𝐓 = 3
𝑝,- ⋯
⋮ ⋱6 1289 

To make the model ‘sticky’ (discourage fast switching between latent states) we draw the transition prob-1290 

abilities, 𝑝,-  from a Dirichlet prior with a high mass near the ‘edges’ and initialize 𝐓,Z,¡ = (1 − 𝜂)𝐈 +1291 

η/𝑛¸¹º¹»¸ where 𝜂 = 0.05. 1292 

𝑝~Diriclet(0.5) 1293 

Each state emits a forward speed and a left speed, drawn from a two-dimensional Gaussian distribution 1294 

with a full covariance matrix. 1295 

3
𝑣¾¿À
𝑣Á»¾¹ 6 ~MVNormal(𝜇, 𝐒) 1296 

We draw the mean of the states from a normal distribution and use a LKJ Cholesky prior for the covariance: 1297 

𝜇~Normal(0,1) 1298 
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𝐒 = E𝜎¾¿À 0
0 𝜎Á»¾¹

F 𝐋 E𝜎¾¿À 0
0 𝜎Á»¾¹

F 1299 

𝜎~LogNormal(−1,1) 1300 

𝐋~LKJcorr(2) 1301 

The up speed was modeled in a similar way, except that the latent states were just a one-dimensional 1302 

normal distribution. The means and variances for the latent states was initialized by kmeans clustering of 1303 

the locomotion speeds. The model was fit in parallel to 600-frame snippets of a subset of the data by 1304 

stochastic variational inference90. We used an automatic delta guide function (‘AutoDelta’) and an evi-1305 

dence lower bound (ELBO) loss function. The model was fitted by stochastic gradient descent with a 1306 

learning rate of 0.0005. After model fitting, we generated the ethograms by assigning latent states by 1307 

maximum a posteriori probability with a Viterbi algorithm. 1308 

 1309 

3D head direction estimation 1310 

We use the 3D position of the ear key-points to determine the 3d head direction of the partner animal. We 1311 

assign the ear key-points to a mouse body model by calculating the distance from each key-point to the 1312 

center of the nose ellipsoid of both animals (cutoff: closest to one mouse and < 3cm from the center of the 1313 

head ellipsoid, Supplementary Fig 17a). To estimate the 3D head direction, we calculate the unit rejection 1314 

(𝑣p2-) between a unit vector along the nose ellipsoid (𝑣Z[/2) and a unit vector from the neck joint (𝑐m,') 1315 

to the average 3D position of the ear key-points that are associated with that mouse (v_ear_direction, 1316 

Supplementary Fig. 17b). If no ear key-points were detected in a frame, we linearly interpolate the aver-1317 

age 3D position. To average out jitter, the estimates of the average ear coordinates and the center of the 1318 

nose coordinate were smoothed with a Gaussian (𝜎 = 3 frames). The final head direction vector was also 1319 

smoothed with a Gaussian (𝜎 = 10 frames).  1320 

 1321 

Extracellular recording and spike clustering 1322 

Extracellular recordings were made with sharpened 2-shank, 32-site NeuroNexus P2 profile silicon probes 1323 

(NeuroNexus Technologies, Inc., MI, USA). The silicon probes were implanted in barrel cortex using a 1324 
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stereotax (1 mm posterior, 3.2 mm lateral to bregma91) under isoflurane anesthesia using a custom 3D 1325 

printed plastic microdrive and base plates for mice, shielded by a copper mesh and bound to the animal’s 1326 

skull using dental cement92. The neural data was recorded using an Intan RHD 32-channel headstage with 1327 

accelerometer (Intan Technologies, CA, USA) connected to an Open Ephys Acquisition Board93 1328 

(https://open-ephys.org/) at 30 kHz/16 bit resolution. The neural data was pre-clustered using SpyKING 1329 

CIRCUS94 (a custom probe geometry file for the P2 probe and the full clustering script with all parameters 1330 

is available in the supplementary code) and checked manually for cluster quality in KLUSTA95. Only well-1331 

separated single units were included in the analysis. 1332 

 1333 

PSTH-based analysis of neural responses 1334 

For the PSTH-based analysis, we triggered on the three social events detected as described under ‘Tem-1335 

plate matching’. For the ‘naïve’ PSTH, we included all events, and for the ‘cleaned’ PSTH, we only in-1336 

cluded events, where there was no other of the detected events occurring in the preceding 4 seconds. 1337 

Significant firing rate changes were detected by comparing the average firing rate, 𝑟Ip2 , between –4 s and 1338 

–2 s (relative to the start of the detected event) with the average firing rate, 𝑟I[/¡ , between –0.5 s and 0.5 1339 

s, using a Wilcoxon signed rank test, at p < 0.05. The firing rate modulation index was calculated using 1340 

the same firing rates and defined as:  1341 

Mod. idx. = 	
𝑟I[/¡ − 𝑟Ip2
𝑟I[/¡ + 𝑟Ip2

 1342 

 1343 

Statistical modeling of neural tuning curves  1344 

Our spike train modeling approach is based on ref. 62 and our python code for model fitting and model 1345 

selection is based on the supplementary Matlab code from that study (available at 1346 

https://github.com/GiocomoLab/ln-model-of-mec-neurons). We calculated the following features of the 1347 

‘social scene’ (shown in the table below). In the table, we only list the variables associated with the pos-1348 

ture, spatial location and movement of the implanted animal (subscript 0). We include identical features 1349 
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for the partner animal (subscript 1). The bin rages were selected to span the physically possible values 1350 

(e.g., within the circular arena), or to span the observed values in the behavior (for movement speeds, for 1351 

example). 1352 

 1353 

 1354 
Class Feature Variable name 

in code 
Definition Binning Unit Tuning 

curve 
type 

Social Nose <-> 
Nose 

d_n2n Nose-to-nose di-
stance 

[0.01 ,0.29], ∆bin = 
0.02  

m Linear 

 Nose0 -> 
Tail1 

d_n0t1 Distance from 
the nose of the 
implanted ani-
mal to the tail 
base of the part-
ner animal 

[0.01 ,0.29], ∆bin = 
0.02  

m Linear 

 Nose1 -> 
Tail0 

d_n1t0 Distance from 
the nose of the 
partner animal 
to the tail base 
of the Implanted 
animal 

[0.01 ,0.29], ∆bin = 
0.02  

m Linear 

 d/dt[ 
d_social ] 

diffd_social Temporal deriv-
ative in the dis-
tance between 
the center 
(c_mid) of the 
two mice, con-
volved with a 
Gaussian (𝜎 =
10	frames). 

[–0.002,0.002], 15 
bins 

m/frame Linear 

 Orienta-
tion 
angle 

a_gaze_mid Relative orienta-
tion of the mice 
(with the im-
planted animal 
as the refer-
ence), defined as 
the angle be-
tween a vector 
along the nose 
ellipsoid of the 
implanted ani-
mal, and a vec-
tor along the 
body ellipsoid 
of the partner 
animal (both 

[–π,π-(π/15)], 15 
bins 

rad Circular 
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vectors pro-
jected into the 
xy-plane). 

Posture Head 
yaw 

a_nose_lr_0 Angle between a 
vector along the 
nose ellipsoid 
and a vector 
along the hip el-
lipsoid, in the 
xy-plane) 

[–π/3,π/3], 15 bins rad Linear 

 Head 
pitch 

a_nose_ud_0 The elevation 
angle of the 
nose ellipsoid, 
relative to the 
hip ellipsoid 
(The elevation 
angle between a 
vector along the 
nose ellipsoid 
and the xy-
plane, minus the 
elevation angle 
of the hip ellip-
soid). 

[–0.9,0.9], 15 bins rad Linear 

 Head roll head_roll_0 Angle between a 
vector from the 
center of the 
nose ellipsoid to 
the ‘top’ of the 
head (the center 
of the implant 
for the im-
planted animal, 
the center of the 
ears in the part-
ner animal) and 
a vector along 
the z-axis. 

[–2π/3,2π/3], 15 bins rad Linear 

 Hip pitch a_hip_eleva-
tion_0 

The elevation 
angle between a 
vector along the 
hip ellipsoid and 
the xy-plane. 

[0,π/2], 15 bins rad Linear 

 Spine 
stretch 

s0 Stretch parame-
ter of the hip el-
lipsoid in the 
body model 

[0.5,1.0], 15 bins a.u. Linear 

Spatial x x_hip_0 x-component of 
the center of the 
hip ellipsoid 
(c_hip) 

[–0.13,0.13], 15 bins m Linear 
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 y  y_hip_0 y-component of 

the center of the 
hip ellipsoid 
(c_hip) 

[–0.13,0.13], 15 bins m Linear 

 z  z_hip_0 z-component of 
the center of the 
hip ellipsoid 
(c_hip) 

[0.02,0.05], 15 bins m Linear 

 Distance 
to center 

d_arena_0 Distance from 
the center of the 
hip ellipsoid to 
the center of the 
behavioral arena 

[0.,0.14], 15 bins m Linear 

 Head di-
rection 

a_nose_hd_0 Angle of the 
nose ellipsoid in 
the xy-plane 

[–π,π-(π/15)], 15 
bins 

rad Circular 

Move-
ment 

v_fwd  fwd_0 Forward compo-
nent (along the 
hip ellipsoid) of 
the speed vector, 
in the xy-plane 

[–0.05,0.2], 15 bins m/s Linear 

 v_left left_0 Orthogonal 
component of 
the speed vector, 
in the xy-plane 

[–.0.05,0.05], 11 
bins 

m/s Linear 

 v_up up_0 z-component of 
the speed vector 

[–0.04,0.05], ∆bin = 
0.01 

m/s Linear 

 |v| speed3D_0 Norm of the 
speed vector 

[0.01,0.20], 15 bins m/s Linear 

 d/dt[ 
head yaw 
] 

diffa_nose_lr_0 Derivative of 
the head yaw, 
convolved with 
a Gaussian (𝜎 =
10	frames). 

[–0.04,0.04], 15 bins rad/frame Linear 

 d/dt[ 
head 
pitch ] 

diffa_nose_ud_0 Derivative of 
the head pitch, 
convolved with 
a Gaussian (𝜎 =
10	frames). 

[–0.04,0.04], 15 bins rad/frame Linear 

 d/dt[ 
head roll 
] 

diffhead_roll_0 Derivative of 
the head roll, 
convolved with 
a Gaussian (𝜎 =
10	frames). 

[–0.04,0.04], 15 bins rad/frame Linear 

 d/dt[ hip 
yaw ] 

diffa_hip_hd_0 Derivative of 
the hip yaw, 
convolved with 
a Gaussian (𝜎 =
10	frames). 

[–0.15,0.15], 15 bins rad/frame Linear 

 d/dt[ hip 
pitch ] 

diffa_hip_eleva-
tion_0 

Derivative of 
the hip pitch, 

[–0.3,0.3], 15 bins rad/frame Linear 
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convolved with 
a Gaussian (𝜎 =
10	frames). 

 d/dt[ 
spine 
stretch ] 

diffs0 Derivative of 
the spine stretch, 
convolved with 
a Gaussian (𝜎 =
10	frames). 

[–0.1,0.1], 15 bins 1/frame Linear 

 1355 
We model the observed spike train as generated by the following process (Fig. 7c): The spikes are gener-1356 

ated by a Poisson process. The rate of the Poisson process is determined by the features, in the following 1357 

way: Each feature is multiplied with a tuning curve (taking any real value), to generate a weight. The 1358 

weights of all features are summed, pass through an exponential nonlinearity (to clamp the rate of the 1359 

Poisson process to be positive). This means that in the spike rate space, the tuning to the features is mul-1360 

tiplicative. 1361 

 1362 

We convert each feature into binary dummy variables by binning (bins listed in the table above) to generate 1363 

a time-by-bins matrix, 𝐴, where the i’th and j’th index is a binary variable indicating if the feature was in 1364 

the j'th feature bin in the i’th frame. If we let 𝑐̅ be a column vector with the values of the tuning curve for 1365 

a single predictor, then our linear model says that the rate of the Poisson process generating the spikes, 𝜆, 1366 

depending on p predictors can be expressed as 1367 

�̅� = expÐÑ𝐴I	𝑐ÒI
I

Ó/𝑑𝑡 1368 

We fit the linear model by tuning the parameters of the tuning curves to maximize of the Poisson log-1369 

likelihood of the observed number of spikes, n, in each bin of the spike train. We include a regularization 1370 

term, 𝛽, that ensures that the tuning curves are smooth (it is a loss term associated with the difference 1371 

between 𝑐, and 𝑐,Ôh, with circular wrap-around for the circular features). Thus, the fitted tuning curves 1372 

are: 1373 

𝑐̂ = argmax%Ñ log𝑃 Ð𝑛,| expÐÑ𝐴I	𝑐ÒI
I

ÓÓ −Ñ𝛽
I

ØÑ
1
2
7𝑐I,, − 𝑐I,,Ôh<

i

,

Ù
,

 1374 
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 1375 

We fit the models using the Newton conjugate gradient trust-region algorithm (‘trust-ncg’ method in ‘min-1376 

imize’ in the SciPy optimize module, using the Taylor expansion approximation to the Jacobian and Hes-1377 

sian and a tolerance of 1e-3). 1378 

 1379 

To determine which features significantly contribute to the firing rate modulation of a neuron, we use a 1380 

cross-validated model comparison approach, and a greedy forward selection of features. First, we compare 1381 

a fitted ‘baseline’ model where the spikes are simply generated by a Poisson process with a constant rate 1382 

to 45 fitted models, that include only one feature. The comparison is cross-validated, such that we fit the 1383 

model on 90% of the data and evaluate on 10% held-out data (with 3 skips, i.e., we split the data in 30 1384 

chunks, fit to 27 and evaluate on 3). To compare each of the one-feature models to the baseline model, we 1385 

calculate the increase in log-likelihood of the test data, given the fitted one-feature models (relative to the 1386 

baseline model), across all 10 permutations of the 10-fold cross validation. We select the best candidate 1387 

feature (defined as the one with the highest average increase in log-likelihood, across the 10 folds), and 1388 

check if the increase in log-likelihood is significant by performing a one-sided Wilcoxon signed-rank test, 1389 

with a criterion of p < 0.05. If the best candidate feature is significant, we add that feature to a library of 1390 

features that we consider significant for that neuron. If we have the number of spikes in the spike train, 𝑛Ú, 1391 

and the maximum-likelihood fitted rate is �̅�(𝑐̂), then the log-likelihood increase, ∆ℒ (in bits/spike) is:  1392 

ℒÜÝÀ»Á = ØÑ𝜆, − 𝑛, log(𝜆,) + log(𝑛,!)
,

Ù /Ñ𝑛,
,

 1393 

ℒßÝà¸¹ºà¹ = ØÑ〈𝑛〉 − 𝑛, log(〈𝑛〉) + log(𝑛,!)
,

Ù /Ñ𝑛,
,

 1394 

Δℒ = − log(2) ⋅ (ℒÜÝÀ»Á − ℒßÝà¸¹ºà¹) 1395 

For all (N>1)-feature models (two features, three features, etc.), we use the same approach: We fit all 1396 

possible models that add one more feature to the library of N-1 significant features (all tuning curves of 1397 

all features in the library are re-fit every time), we select the best candidate feature, and use a one-sided 1398 
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Wilcoxon signed-rank test between a model with N features and a model with N-1 features to determine 1399 

if that candidate feature is significant and should be added to the library. If the one-sided Wilcoxon signed-1400 

rank test is not significant at p < 0.05, we stop the search for new features to add to the library.  1401 

 1402 

Population structure analysis 1403 

The Euler diagram in Figure 8d was drawn in R using the eulerr package96. The network co-encoding 1404 

graph shown in Figure 8e was drawn in the Kamada-Kawai projection88 (the distance between nodes ap-1405 

proximate their graph-theoretical distance), using the NetworkX python package97. 1406 
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