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Abstract 

Early implantable epilepsy therapy devices provided open-loop electrical stimulation without brain 
sensing, computing, or an interface for synchronized behavioral inputs from patients. Recent epi-
lepsy stimulation devices provide brain sensing but have not yet developed analytics for accurately 
tracking and quantifying behavior and seizures. Here we describe a distributed brain co-processor 
providing an intuitive bi-directional interface between patient, implanted neural stimulation and sens-
ing device, and local and distributed computing resources. Automated analysis of continuous stream-
ing electrophysiology is synchronized with patient reports using a hand-held device and integrated 
with distributed cloud computing resources for quantifying seizures, interictal epileptiform spikes, and 
patient symptoms during therapeutic electrical brain stimulation. The classification algorithms for in-
terictal epileptiform spikes and seizures were developed and parameterized using long-term ambu-
latory data from 9 humans and 8 canines with epilepsy, and then implemented prospectively in out-
of-sample testing in 2 pet canines and 4 humans with drug resistant epilepsy living in their natural 
environments.  
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Introduction 

Epilepsy affects nearly 1.0% of the world population and is associated with a high disease burden.1,2 
Approximately 1/3 of people with epilepsy continue to have seizures despite antiseizure medica-
tions.3 Electrical brain stimulation has emerged as a reversible and effective palliative therapy for 
drug resistant epilepsy, but therapy optimization is slow and long-term seizure freedom rare.4,5 De-
spite the addition of brain sensing current electrical stimulation devices lack accurate seizure dia-
ries.6–8 Currently physician rely on patient seizure diaries that are known to unreliable9,10 coupled 
with incomplete electrographic data.6,8 The challenge of patient management without accurate sei-
zure counts has remained a persistent technology gap impeding epilepsy management. 
 
Here we describe a distributed brain co-processor for integration of implantable brain sensing and 
stimulation devices with off-the-body commercial electronics for clinical and neuroscience research 
applications.11–14 The integration of implantable devices with commercial electronics via bi-directional 
wireless connectivity allows algorithm complexity to scale with advances in consumer computer hard-
ware. Brain implants providing sensing and bi-directional wireless connectivity enable continuous 
electrophysiology data streaming, and when coupled with off-the-body computing resources over-
come the computational and data storage limitations of current implantable electrical brain stimula-
tion (EBS) devices. Until recently, there were several obstacles to consolidating the technology lay-
ers required for EBS, streaming continuous brain electrophysiology, and synchronized behavior re-
ports. Here we utilize the investigational Medtronic Summit RC+STM (RC+STM), a rechargeable sens-
ing and stimulation implantable device with a bi-directional application programming interface, to 
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demonstrate these capabilities in canines and humans living with epilepsy.11–13,15 The system ena-
bles continuous streaming of intracranial electroencephalography (iEEG) to a hand-held tablet or 
smartphone for real-time analysis and tracking of interictal epileptiform spikes (IES), seizures, and 
correlation with synchronized patient reports (Fig. 1). The electrophysiology classifiers (seizure and 
IES) were validated, tested, and then prospectively deployed for out-of-sample testing in pet canines 
and humans living in their natural environments with epilepsy.  

Materials and Methods 

Study design and data sources 

To develop classification algorithms, we used a large database of iEEG from two different implanted 
devices, the NeuroVista (NV) and Medtronic devices that wirelessly stream iEEG data (Table 1). The 
development dataset included 13 humans (NV1-9; MH1-4) and 8 canines. The MD1 dog (implanted 
at Mayo), UCD1 and UCD2 (implanted at UC-Davis), and 5 NeuroVista - dogs with epilepsy im-
planted across multiple institutions in US16,17 had naturally occurring epilepsy. We used 9 NV humans 
and 8 dogs (MD1, UCD1, UCD2, and 5 NV dogs) for training, validation, and pseudo-prospective 
testing seizure and IES detection algorithms. Then classification algorithms were prospectively 
tested within a distributed brain co-processor for neurophysiologic tracking and adaptive stimulation 
in 2 pet dogs (UCD1, UCD2) and four human subjects (MH1-4) in their natural environments. 

Devices, training, validation, and testing data 

Datasets collected from two implantable devices were utilized for system training, validation, and 
testing (Table 1). The investigational NeuroVista system is a 16-channel brain sensing (0.1–100 Hz 
bandwidth; 400 Hz sampling) implantable device providing continuous iEEG wireless streaming to 
an off-the-body data storage and analytics device carried by the patients and dogs. The RC+STM is 
a 16 channel electrical stimulation and sensing implantable device capable of selective sensing from 
any 4 of the 16 channels (1–70, 125, 250 Hz bandwidth; programmable sampling 250, 500, or 1000 
Hz) and wireless streaming to a handheld tablet computer with cellular and internet connectivity to a 
central cloud based data and analytics platform.11,12 The investigational NeuroVista and RC+STM 
devices have yielded massive datasets of ambulatory iEEG in naturalistic settings and are idea for 
development of robust automated algorithms for brain behavioral state classification, IES and seizure 
detection. We have previously used the NeuroVista Inc. device data from humans9 and canines18 for 
developing seizure detection and forecasting algorithms.16,19–21 

Canine Device Implants 

 The animal research and clinical care took place at Mayo Clinic, Rochester MN and University of 
California Davis, Davis, CA under IACUC Protocol A00002655 Chronic Wireless Electrophysiology 
and Modulation in Epileptic Dogs. Epilepsy occurs naturally in dogs with prevalence, age of onset, 
and clinical presentation similar to human epilepsy.22 Naturally occurring canine epilepsy is often 
drug resistant and new therapies are needed. In addition, the canines provide a platform for preclin-
ical testing, since dogs are large enough to accommodate devices designed for humans. All canines 
were implanted at either Mayo Clinic (MD1) or at University of California, Davis (UCD1-2).  
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Electrode and RC+STM implantation in dogs: Medtronic deep brain stimulation electrodes were 
implanted intracranially in canines under anesthesia using a custom-made stereotactic frame. Ca-
nines underwent a 3.0T MRI using a stereotactic T1-weighted sequence (Fig. 5). Targets and trajec-
tories were planned using stereotactic software (CompassTM Stereotactic Systems) adapted for a 
large animal head frame. Burr holes were drilled into the skull for each of the four electrodes (Med-
tronic models 3391 and 3387) that were inserted to the target depth and secured with metal anchors 
and bone screws. The electrode tails were tunneled to the RC+STM in a pocket behind the canine’s 
right scapula. The canine underwent a post-op x-ray CT scan, which was then co-registered to the 
stereotactic MRI (Analyze 12.0, BIR, Mayo Foundation) in order to verify targeting accuracy. We 
have previously described the similar procedure for the previous NeuroVista Inc. device implants 
carried out at Mayo Clinic, University of Minnesota, University of Pennsylvania, and University of 
California Davis in canines.16,18 

Human Subjects 

NeuroVista device: The 9 human dataset collected with the investigational NeuroVista Inc. device 
were from the NeuroVista device trial in humans carried out in Melbourne, Australia, between March 
24, 2010, and June 21, 2011.9 

Investigational RC+STM Summit: The human subject research with RC+STM was carried out at 
Mayo Clinic under an FDA IDE: G180224 and Mayo Clinic IRB: 18-005483 “Human Safety and Fea-
sibility Study of Neurophysiologically Based Brain State Tracking and Modulation in Focal Epilepsy”. 
The study is registered at https://clinicaltrials.gov/ct2/show/NCT03946618. The patients provided 
written consent in accordance with the IRB and FDA requirements.  

We consented 6 patients and implanted 4          patients with drug resistant temporal lobe epilepsy (TLE) 
as part of the NIH Brain Initiative UH3NS95495 Neurophysiologically-Based Brain State Tracking & 
Modulation in Focal Epilepsy. The details of the approach for implantation have been previously de-
scribed.23 Magnetic resonance imaging was performed after Leksell (Elekta Inc.) frame fixation for 
stereotactic targeting. Medtronic 3387s electrodes were then implanted in the ANT by direct targeting 
of the mammillothalamic tract on MRI (FGATIR sequence).24 Medtronic 3391 electrodes were im-
planted into the hippocampus through direct targeting of the amygdala and hippocampal head (Fig. 
6.). After confirmation of the electrode location with intraoperative computed tomography (CT), the 
leads were connected to bifurcated extensions and tunneled to the RC+STM in an infraclavicular 
pocket. The FDA IDE protocol investigates electrical brain stimulation (EBS) paradigms, including 
low frequency (2 & 7 Hz) and high frequency (100 & 145 Hz) stimulation, seizure detection and 
forecasting, behavioral state tracking, and adaptive     EBS control.  
 
Patient MH1. 57-year-old ambidextrous woman with drug resistant mesial temporal lobe epilepsy 
(mTLE). History of head trauma with loss of consciousness followed by generalized tonic-clonic sei-
zure beginning at age 9. She did well until age 21 yrs., when her seizures became drug resistant. 
She has comorbid depression and anxiety.  
 
Patient MH2. 20-year-old right-handed woman with diabetes mellitus type-1 and drug resistant 
mTLE. No epilepsy risk factors. Epilepsy onset at age 7 years, and a prior left temporal lobectomy 
at age 9 years. She was seizure free until age 17 years when seizures recurred while off all medica-
tions. Thereafter she has been drug resistant. She has comorbid depression and anxiety. 
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Patient MH3 41-year-old right-handed woman with drug resistant mTLE. No clear risk factors for 
epilepsy. Epilepsy diagnosis was at age 31 years. Despite VNS she had continued seizures. She 
has comorbid depression and anxiety.  
 
Patient MH4. A 35-year-old right-handed woman history of diabetes mellitus and drug resistant tem-
poral lobe epilepsy. She has no epilepsy risk factors. Epilepsy onset at age 4 years old. Significant 
comorbid depression. Elevated GAD-65 that did not respond to immunotherapy 

Detection of interictal epileptiform spikes 

Interictal epileptiform spikes are an electrographic marker of pathologic brain tissue capable of gen-
erating unprovoked seizures. In recent years there has been rapid development of new and reliable 
techniques for automated IES detection. To train and evaluate the IES detector we used continuous 
hippocampal recordings from the RC+STM.12 We used a previously validated algorithm25 that models 
and adapts based on statistical distributions of signal envelopes from background (normal) iEEG 
activity. This enables differentiating signals containing IESs from signals with background activity 
even in long term data recordings with changing background electrophysiological activity. The IES 
detector also identified low-amplitude IES in cases where the background activity power is low and 
IES are often missed by expert visual review.  
 
We benchmarked the IES detector using data acquired with a chronically implanted brain stimulator. 
We deployed the detector in a cloud system that received the continuously streaming hippocampal 
data over one year. We compared the detector performance with the manual visual review (GW & 
NG electroencephalographers) scoring in selected epochs (see Data for IES Detector). The IES de-
tector ran during different anterior nucleus of the thalamus (ANT) stimulation paradigms, no stimula-
tion, 2, 7, and 145 Hz stimulation) with changing stimulation current amplitudes (2, 3, 5 mA) and 
pulse widths of 90 and 200 usec.  
 
To investigate how IESs characteristics change in periods of different seizure frequency we selected 
epochs of the data in periods of frequent (cluster) and less frequent seizure activity (non-cluster). 
The seizure cluster period was defined as more than two seizures in a day. For each of the two 
(cluster, non-cluster) we selected 5-minute-long epochs for left and right hippocampal channels. 
Each selected epoch was taken at distinct times to assess differences between sleep and wake 
cycles. In total we selected twenty-four 5-minutes long epochs reviewed independently by two elec-
troencephalographers. All IESs were marked in both hippocampal channels and used subsequently 
to calculate congruence score between experts and to validate the automated IES detector. Subse-
quently, we used the two-months period of the data continuously streamed from the human with 
implanted RC+STM to analyze IES rates and IES characteristics. 

Generic seizure detector 

The training dataset consists of long term NeuroVista recordings from 5 canines and 2 human pa-
tients (Table 1). In canines, all seizures were included in training (340 in total). Another 628 interictal 
segments with various electrophysiological activity patterns were manually selected. The human da-
taset consists of 1049 seizures and 846 interictal segments. Half of the seizures (524) and half of 
the interictal segments (423) were bootstrapped and used as training data and the other half of data 
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used in the validation dataset. The validation dataset included two sets of data. The first dataset has 
data from RC+STM recordings from three canines. Each recording spans at least 210 days. In total, 
133 electrographic seizures and 833 interictal segments were selected from the continuous record-
ings upon visual review by an expert reviewer. The second dataset contains the other half of the data 
(2 NeuroVista patient recordings) generated by bootstrapping in the training dataset.  
The testing datasets include previously collected NV datasets that were used for pseudo-prospective 
testing and RC+STM datasets for prospective testing. The pseudo-prospective NeuroVista human 
data was from 7 patients and four human subjects, and two pet canines implanted with the RC+STM 
system. The pseudo-prospective NV human dataset period is ~10.5 years and includes 2046 sei-
zures in total (Table 2).  
 
The prospective deployment ran over 723 days and contains 204 seizures that were recorded in the 
four humans (MH1-4) and two pet canines (UCD1 and UCD2 RC+STM system). 

Detector Design - utilizing LSTM neural network 

To design a generalizable seizure detection algorithm for a generic implantable system, we required 
the algorithm operate independently of the recording system, spatial electrode position, and species 
tested. We used two of the few implantable neuro-devices capable of continuous streaming local 
field potential data through a wireless connection. This allows long-term, real-time monitoring since 
the collected data are continually transferred from the implantable device to the brain co-processer 
system (tablet or smartphone, and cloud computational resource) 12. For this reason, the algorithm 
must be capable of processing data streams with artifacts and data drops caused by interference or 
disconnections.  
 
Seizures recorded with intracranially implanted electrodes exhibit temporal evolution of spectral 
power across a wide range of frequencies. Different electrographic signatures are observed in the 
data based on their initial power distribution. It is important to note that seizures in one patient might 
have multiple ictal patterns, therefore training on different ictal patterns is necessary for high sensi-
tivity seizure detection. The detector has to distinguish ictal patterns from sharp transient artifacts 
coming from a recording device or short interictal discharges which might temporarily increase spec-
tral power similar to an electrographic seizure.  
 
Previously reported seizure detectors20,26–28 usually utilize combination of features extracted from 
multiple channels, or features extracted from shorter segments without adaptation to a long-term 
baseline. This is a crucial design input requirement in designing the seizure detector for a long-term 
monitoring in chronically implanted devices.  Another drawback of previously reported detectors is 
that the testing is usually done on isolated ictal and interictal segments, and not on a long-term 
continuous recording spanning weeks and months of time. The deployment of trained and validated 
seizure detectors on previously unseen out of sample unbalanced data is critical for evaluation and 
real-time performance of a generalizable seizure detector. Our method focuses on spectral changes 
in iEEG recordings from only one channel and marks a probability of seizure over time thus providing 
independence from the neighboring channels and the short interictal discharges that could confuse 
current state of the art detectors. 
 
In order to address these requirements, we developed a convolutional long short-term memory 
(LSTM)29,30 neural network utilizing Short Time Fourier Transform (STFT) calculated from single lead 
iEEG as an input. We previously used CNN with LSTM for automated classification of iEEG.31 The 
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STFT converts the single lead time series data into time-frequency representation (spectrogram). 
Invariance to sampling frequency is achieved by using a constant time window of 1 second with 0.5 
seconds overlap, and subsequently selecting only frequencies lower than 100 Hz. A raw data seg-
ment is always transformed into a spectrogram image with dimensions 100xT, where T is the number 
fast Fourier transform (FFT) calculations, not depending on sampling frequency (frequency domain 
resolution is always 1Hz per sample). Time series data of 5 min length were empirically chosen to 
provide long enough EEG baseline temporal context for the LSTM, so the relative power of seizure 
stands out of the background activity. The final classification is made for every 0.5 sec of the 5-
minute input raw data signal using a many-to-many LSTM architecture. Raw data are z-score nor-
malized prior to STFT calculation and each frequency band of the resulting spectrogram is z-score 
normalized prior to the neural network inference. Dropout layers in neural networks are used for 
regularization during training to prevent overfitting. Similarly, we drop random segments prior to the 
spectrogram computation. This enables the network to handle the data from the wireless system with 
possible short data gaps.  
 
The convolutional LSTM model consists of 2 convolutional blocks (convolution and ReLU) with ker-
nels {5, 5} and {96, 3}, respectively. Subsequently, time distributed feature representation is pro-
cessed with 2 layers of bidirectional LSTM recurrent neural network. Lastly, a fully connected layer 
with a softmax activation function transforms the LSTM output into probability output. The proposed 
architecture is trained with Adam optimizer (learning rate = 10-3, weight regularization = 10-4) in a 
many-to-many training scheme, where every input FFT window has a multiclass label. We imple-
mented 4 types of labels – normal activity, IES together with artifacts, dropout segments, and sei-
zures. Adding additional labels might improve learning because the model is forced to not only dis-
tinguish interictal activity from continuous seizure activity but also interictal discharges which are not 
considered as electrographic seizures in different behavioral states, and thus lower the number of 
false positives. The temporal resolution of the detector is defined by the FFT window step (0.5 sec-
onds). In order to train the network, we use a special purpose deep learning computer Lambda Labs 
Inc. (8x GTX 2080TI GPU, 64 CPU cores and 512 GB RAM). The data-parallel training method runs 
on all GPUs and average model gradients and is used to reduce training time. The model is built in 
the PyTorch deep-learning library for Python. 

Training and validation of seizure detection model 

The model was trained on NeuroVista data (5 canines, 2 human patients, Table 2). All training seg-
ments were 10 minutes long. Random 5 minutes intervals were sampled from the full segments 
during the training every time the segment was used in training. Because the human training dataset 
had a higher number of examples than the canine training dataset during the training epoch training 
examples were randomly sampled in a way that the number of examples from both classes was 
balanced. 
 
Performance of the model during the training was evaluated by area under the precision-recall curve 
(AUPRC), where all seizure targets were set to one and all the other classes were set to zero. Vali-
dation of CNNs is typically measured by validation loss, but we used AUPRC for scoring because it 
is independent of the probability threshold of the classifier and it is not dependent on the true negative 
samples in the dataset. Validation examples were fixed 5-minute intervals and were not randomly 
sampled. Validation scores (AUPRC) were calculated on two different datasets (3 canines with 
RC+STM, 2 human patients with NeuroVista device) independently. The two validation scores were 
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averaged after each training epoch and the model with the best score achieved during training was 
deployed on the test dataset in order to obtain results (Table 2).  

Model deployment 

We arbitrarily chose 10 continuous seconds of ictal activity as an electrographic event that we want 
to detect 32. The model iterates over the data with 5-minute windows with 100 seconds of overlap. 
The model gives a probability of seizure for every 0.5 seconds (higher probability is used in the 
overlap region) in every channel. Seizures in the test dataset are marked across all channels without 
specification therefore we combine probabilities from all channels in the following way. The three 
highest probabilities from all channels are averaged and from this averaged probability the final per-
formance measures are calculated. For a given probability threshold the system identified continuous 
detection whenever the probability was above a threshold (see example of a detection in Fig. 2). 
Next, every detection interval above a threshold was automatically extended if in the next 10 seconds 
from the current detection was another detection. Subsequently, the two detections were merged 
into one interval. Thus, for every probability threshold, we detected intervals of various lengths which 
the model marks as seizures. Intervals shorter than 10 seconds were dropped from detected events. 
For detected events longer than 10 seconds AUPRC and area under the receiver operator curve 
(AUROC) scores were calculated based on the region overlap with gold standard seizures marked 
by an expert reviewer. 
 
The model was deployed in local cloud storage to continuously process incoming data from RC+STM 
animal and human study. Due to a different electrode configuration in the RC+STM system in com-
parison with the NeuroVista system, we could not use an average of the three highest probabilities. 
Instead, a maximal probability given by two hippocampal channels was taken as an output of the 
model. Subsequently, the detected intervals were calculated from the probabilities in the same man-
ner as for the data from the NeuroVista dataset. The model has been running online and continuously 
detecting seizure events as the new data were coming in. A revision of the raw data by an expert 
reviewer created gold standard seizure marks for comparison of classifier performance. Thus, with 
all detected events and true seizure marks AUPRC and AUROC scores were calculated. 
 
The performance of the model on out-of-sample data is numerically shown in Table 2. The perfor-
mance of the generalized classifier is visualized using standard machine learning graphs of PRC 
and ROC for each individual human (Fig. 3). The results of model detections outperform state of the 
art detectors published recently Baldassano, Brinkmann et. al20 and directly compare two hundred 
teams of data scientists across the globe comprising 241 individuals. An advantage over a Kaggle 
competition we were able to take and use a larger portion of the full dataset in a more realistic setting, 
where the classifier is trained and then pseudo-prospectively run on the new out-of-sample data of 
different subjects in a sequential way fully simulating a real prospective situation of recording where 
new data are arriving each second and detector runs in near real-time manner. Yet, the classifier 
doesn’t need to be retrained for patient specific applications and is fully generalized. On the other 
hand, Fig. 7 shows an example of a short period (a minute) of iEEG data with seizure for all sixteen 
neocortical electrodes of patient NV7 from NV human dataset. The seizure is visually apparent in 
only a few channels with adequate signal to background ratio suitable for automated detections. This 
is likely a common situation with electrodes spanning the space from seizure onset zone to surround-
ing regions of the brain. Fig. 7 reveals the time-frequency analysis of these iEEG signals showing 
the different signatures of seizure electrophysiology in different channels and below is the visualiza-
tion of the classifier output probabilities for each electrode. This also shows in the time-frequency 
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domain that for some electrodes the seizure is very prominent while for others not differentiable from 
the background signal. Therefore, here the model decides based on the seizure probabilities of the 
electrodes taken as a mean of top three probabilities.  
 
Data and materials availability: All results associated with this study are present in the paper. The 
data and analysis code are available upon reasonable request (https://www.mayo.edu/re-
search/labs/bioelectronics-neurophysiology-engineering/overview) 

Results 

Tracking behavior and epilepsy biomarkers in humans & canines 

We used analysis of intracranially recorded electroencephalography to detect seizures and IES in 
ambulatory humans and canines with drug resistant epilepsy living in their natural environments. 
Continuous streaming iEEG was analyzed in a cloud environment and on a tablet computer, carried 
by subjects that also enabled synchronized patient inputs. Physicians and engineers remain in the 
loop using a web-based Epilepsy Dashboard to review biomarker trends (IES rates & seizures), 
patient annotations (seizures, auras, medication logs), and implanted device data (battery status, 
telemetry, and EBS parameters). The system provides an integrated machine learning platform for 
algorithm development, data viewing, biomarker tracking and expert annotation of events, e.g. con-
firmation that a detected electrophysiological event or patient reported event was a true positive 
seizure (Fig. 1). 

Automated seizure detection 

Accurate seizure catalogues are critical for optimal epilepsy management and assessment of EBS 
outcomes, but remain a basic technology gap for the field.6–8 We created an accurate seizure diary 
based on a generic seizure detector using a Long-Short-Term-Memory (LSTM)30 artificial recurrent 
neural network (RNN) and convolutional neural network (CNN)29 applied to continuous iEEG to reli-
ably detect seizures in ambulatory canine and human subjects with epilepsy. 
 
The large testing, validation, and training dataset from multiple brain structures in humans and ca-
nines was collected over multiple years with two different fully implantable recording devices (Neu-
roVista Inc. or Medtronic PLC, see methods). The LSTM model was trained on a dataset from five 
dogs with naturally occurring epilepsy (340 seizures) implanted with NeuroVista devices16,18 and one 
half of the data from two, randomly selected human subjects with epilepsy implanted with the Neu-
roVista device (524 seizures). The model was then validated on the other half of the data from two 
NeuroVista patients (524 seizures) and three canines (133 seizures in dogs: UCD1, UCD2, MD1) 
implanted with RC+STM devices (Table 1).12  
 
Automated detection of spontaneous seizures recorded with iEEG is possible because of the char-
acteristic spectral patterns that are readily identified visually and by machine learning approaches.17 
Figure 2 shows an example of a typical seizure with its time-frequency (spectrogram) characteristics, 
raw data, and LSTM model seizure probability for MH1 from the out-of-sample data. The LSTM 
model probability for seizure classification changes in context of raw iEEG and spectral content 
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showing high probability within the seizure activity and low probability outside the seizure (before 
and after the seizure). The example highlights the importance of the LSTM in the model, since fea-
ture-based machine learning models would detect the bursts of IES at the beginning and during the 
seizure, while the LSTM model raises the seizure probability prior and during the seizure time. 
 
The precision recall curves (PRC), and receiver operator curves (ROC) curves are calculated by 
sequentially changing the model probability detection threshold and evaluating the results for all 
seizures from each subject in the testing datasets (Fig. 3).   
 
The performance of the generalized automated seizure detector using out-of-sample data from 7 
human patients implanted with the NeuroVista device (total seizures 2046 over 3820 days) was 
AUPRC 0.78 ± 0.24 and AUROC 0.97 ± 0.03 (Table 2).  
 

Detection of interictal epileptiform spikes 

Interictal epileptiform spikes are an established biomarker of epileptogenic brain,33 and associated 
with risk for spontaneous, unprovoked seizures.34–36 For long iEEG datasets it is labor intensive and 
impractical to use visual analysis to calculate IES rates. Here we trained, validated, and tested an 
automated IES detector on long-term continuous ambulatory iEEG recordings. We implemented a 
previously published automated IES detection algorithm,25 where the data are continuously accumu-
lated by streaming iEEG from the RC+STM device to a cloud database. We compared the automated 
IES detections to expert visual scoring from two epileptologists (NG & GW). These data included 
periods during day, night, seizure clusters (2 or more seizures in 12 hours) and non-seizure cluster 
periods. There was good concordance for the IES labeling by expert visual review (Cohen’s kappa 
score 0.87) and between the algorithm and experts (F1-score 0.82 ± 0.08 with sensitivity 91 ± 0.6% 
and positive predictive value 77 ± 1.6%). 
 
The algorithm performs well during night, day, high and low seizure periods (Table 3). The IES rates 
are higher during seizure clusters periods (2 or more seizures in 12 hour period), but performance 
of the automated detector is similar during periods with high and low IES rates (F1-score was 0.84 
in seizure cluster and 0.80 in non-cluster seizure periods).36 Despite the difference in IES rates be-
tween day (approximately 25% lower IES rates) and night the algorithm performed similarly (day F1-
score was 0.81 and 0.82 at night). Visual examples of IES and comparison of automated detections 
with expert visual review are shown in Fig. 4 for day (A) and the night (B) and illustrate the concord-
ance between expert visual review and the automated classifier. The hippocampus IES rate varia-
tions during day and night over a two-month period show circadian and multi-day fluctuations (Fig. 
4C). We analyzed IES characteristics to explore how the hippocampal IES properties differ in various 
behavioral states (Fig. 4D) and find higher peak to trough IES amplitudes during night compared to 
wake for all four human subjects (p<0.001).  
 

Prospective long-term ambulatory monitoring and algorithm testing 

After training, validation, and retrospective testing using previously collected data we then deployed 
the automated IES and seizure classifiers prospectively in four humans (subjects MH1-4) and two 
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pet dogs (UCD1-2) with epilepsy living in their home environments. In total, the system was able to 
record an average of 66 ± 0.17% of the data across all human subjects.  
 
The performance of the IES detection in the ambulatory prospective data compared to gold standard 
expert visual reviewed events was 0.90 sensitivity and F1-score of 0.81. (Table 3).  
 
The prospective testing of the seizure detector in ambulatory subjects in real-world environments 
showed excellent performance, with an area under the ROC of 0.99 ± 0.01 and PRC of 0.76 ± 0.25 
using the expert visual review of the continuously acquired iEEG as the gold standard for the humans 
(MH1-4) and the two pet canines (UCD1,2). The area under the PRC that more accurately describes 
the results of this highly imbalanced data with over 99% of the time spent in a non-seizure (interictal) 
state was 0.93, 0.89, 0.82, 0.75 and 0.47, 0.88 for the four humans and two pet canines (UCD1,2), 
respectively (Table 4a). 
 
The human subjects reported a total of 555 seizures using the EPAD over the course of 945 days of 
monitoring, but only 39.71 + 29.20 % were associated with an electrographic correlate (verified sei-
zures) (Table 4b).  
 
Interestingly, of the 407 detected electrographic (ECoG) seizures 43.86 ± 30.77 % were not identified 
by the patient (Table 4b).   

Discussion 

There has been significant progress in EBS devices for drug resistant epilepsy, but the time to 
achieve optimal individualized stimulation parameters is long and complete seizure free outcomes 
remain relatively rare.  We suspect that the ability to continuously track electrophysiology, seizure 
counts, and patient behavior will accelerate the optimization of individualized EBS therapy. To ad-
dress the technology gaps in currently available EBS systems we developed and deployed a distrib-
uted brain co-processor to investigate and continuously track patient reported symptoms, IES bi-
omarkers, and seizures during EBS.  
 
We show that seizures and hippocampal IES rates and characteristics are dynamically changing in 
a circadian pattern with IES rates highest at night.  The hippocampus IES rate variations showed a 
circadian fluctuations and higher peak to trough IES amplitudes during the night.  The accurate au-
tomated quantification of IES is potentially of fundamental importance in epilepsy.37,38 Interestingly, 
seizures preferentially occurred during wakefulness in the human subjects despite increased IES 
rates during sleep.39,40 The reason for this phenomenon remains unclear, but future research using 
accurate seizure and IES rate data streams in ambulatory subjects will enable further investigation 
into long-term temporal dynamics of IES and seizures and enable investigations exploring the IES 
rates34, changing IES morphology41–43 and circadian rhythms35,44 in association with seizures occur-
rence. The use of IES as a biomarker for seizure forecasting in the setting of EBS is an important 
direction for future investigation. 
Regarding seizure reporting there are two important observations. Similar to previous studies, we 
found that patients9,45 and pet owners often do not create reliable seizure diaries when compared to 
gold-standard seizure catalogs created from automated seizure detection algorithms applied to con-
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tinuous iEEG. This is not surprising given that seizures can be subtle, can go unnoticed by caregiv-
ers, and patients are often amnestic for their seizures. This result highlights the potential challenge 
of optimizing EBS and medical therapy if arguably the most critical measure of epilepsy therapy 
outcome, seizure rates, are inaccurate. This may play a role in the long time required for therapy 
optimization with current FDA approved devices. Furthermore, we determined that only 56.13 ± 
30.77 % of ECoG captured seizures are reported by patients, thus many electrographic seizures 
would not be available for informing EBS therapy adjustments.  Whether the unreported ECoG elec-
trographic seizures reflect amnestic episodes or are truly subclinical seizures without clinical symp-
toms is unclear and raises an interesting future avenue of investigation where automated seizure 
detections could trigger an automated patient assessment46 to probe mood, cognition, memory, and 
motor impairments during and around seizures.  
 
The current study has several limitations. The technology layers deployed in the system described 
here are associated with additional patient burden given that three rechargeable devices (Fig. 1.; 
implantable device, CTM, and tablet computer)14 must be periodically charged. This is the primary 
reason that not all data is captured during a long study. Given the fact that seizures can be relatively 
rare events the accumulation of adequate statistics remains a fundamental challenge for epilepsy 
research. 
 
In summary, we present results from a powerful system integrating a new investigational neural 
sensing and stimulation device with local and distributed computing that should prove useful for fu-
ture investigation and optimization of EBS in drug resistant epilepsy. This research identifies areas 
for future research including bi-directional interfaces to enable ECoG event triggered assessments47, 
continuous behavioral state tracking48 and seizure forecasting and adaptive EBS therapy. Future 
implantable systems with greater device computational power and data storage capacity will enable 
smart sampling paradigms to buffer data, run embedded algorithms, and trigger alarms for therapy 
change, behavioral queries, and data transfer that should enhance understanding of behavior and 
brain activity. 
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Fig. 1.  Distributed Brain Co-processor. Integrating implanted sensing and stimulation devices 
with off-the-body and cloud computing resources. The system was developed and prospectively 
tested in canines and humans with drug resistant epilepsy living in their natural environments. 
Top) Schematic for bi-directional data transmission (using Medtronic Clinician Telemetry Module 
– CTM) between implanted brain sensing and stimulation device integrated with local handheld 
computer (Epilepsy Patient Assist Device - EPAD) and cloud environment.  The integrated system 
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provides a platform for chronic ambulatory monitoring of patient reported behavior, device data 
(battery, telemetry, electrode impedances), seizures, and interictal epileptiform spikes (IES). 
Bottom left) The cloud-based Epilepsy Dashboard enables review of electrophysiology data and 
analytics from a battery of algorithms running on the patient’s local handheld. Bottom right) The 
physician can quickly review and confirm or reject automatically detected and patient reported 
candidate seizure events. The panel shows 7-days of continuous hippocampal IES rates and 
seizure detection probability. Blue triangles show patient reported seizure events. Circles denote 
automated seizure detections either confirmed as seizures (blue dots) or false positive (red) by 
expert visual review. Zoomed  circular inset shows example of raw data from hippocampus with 
automated IES detections (red circles). The patient was aware and reported (blue triangle) one 
out of the six seizures detected in the continuous iEEG and confirmed by the physician. 
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Fig. 2. A representative hippocampal seizure from human subject MH1. Top) Time-
frequency characteristics (z-score spectrogram), Middle) Raw intracranial EEG data with the 
physician annotated (grey highlight) seizure duration, and Bottom) Model seizure probability for 
patient MH1 in the out-of-sample dataset demonstrating how the probability of the long-short 
term memory (LSTM) model changes over a peri-seizure period (pre-ictal, ictal, and post-ictal 
period). The high probability (near 1) in the peri-seizure region highlights the impact of the 
LSTM function for raising the probability during and around the seizure time. 
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Fig. 3. The long short-term memory model performance. Out-of-sample retrospective testing 
in human (dotted NV3-9), and prospective testing in human (solid lines MH1-4) and canine 
(dashed lines) subjects: (A) Precision Recall Curves (PRC) and (B) Receiver Operating Curves 
(ROC). The detailed view of the ROC (blow-up view in bottom right panel) shows the results for 
each subject with optimal detector parameters that minimize the false positive rate and maximize 
sensitivity. The PRC and ROC curves are calculated by sequentially changing the model 
probability threshold and evaluating the results of Precision, Recall, and False Positive Rate for 
all seizures for each subject in the testing datasets. 
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Fig. 4. Long-term analysis of Interictal Epileptiform Spike (IES) rates. Visual example of 
comparing spike detections between the automated approach and human operators for in (A) 
day/awake and (B) night/sleep period. (C) Daily averaged spike rate per hour in left (top) and right 
(bottom) hippocampus during night and day periods of time in eight weeks of MH1 recording. (D)  
There are significant differences between night/day in left hippocampal IES peak-to-peak 
amplitudes during the prospective testing period for all four patients implanted with RC+STM. 
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Fig. 5. Canine stereotactic implant. (A) 6 yr. old pet dog with drug resistant epilepsy. High  
resolution (B) Sagittal. (C) Axial. (D) Coronal T1 MRI. The electrode implants are by direct visual 
targeting of anterior nucleus of thalamus and hippocampus. 
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Fig. 6. Human subject MH1. (A) Bilateral Anterior Nucleus Thalamus (ANT: red) and 
Hippocampus (HC: purple) and amygdala (AMG: blue) implant. Papez circuit and implanted 
electrodes. (B) MRI - the ANT and HC electrodes from co-registration of MRI and post-implant 
CT are highlighted in red. 
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Fig. 7. Spectral features of spontaneous seizures. (A) One minute of iEEG data recorded with 
NV device, sixteen neocortical electrodes, containing a spontaneous human seizure. The seizure 
is present on a few channels with a good signal to background ratio suitable for automated 
detection. (B) Time-frequency analysis of signals show the different signatures of seizure 
electrophysiology (shaded area) in different channels: channel 1, where seizure is notable and 
channel number 4 where it is hard to identify the seizure. (C) Plots of classifier probabilities for 
each electrode below actual raw data showing that for some electrodes the seizure is very 
prominent and for some not differentiable from the background signal. (D) The classifier output 
probabilities for top three probabilities together with the mean (red) and threshold (blue) showing 
when the detection is raised (time 0). 
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Table 1. Seizure detection datasets. Training, validation, and testing data used in development 
of a generic, automated seizure detection algorithm for canines and humans. Retrospective data 
included human and canine datasets acquired with two different investigational devices, 
NeuroVista (NV) and RC+STM device. Algorithm training was performed using retrospective data 
from humans and canines collected with NV devices. The validation data used NV data from two 
humans (N1, 2) and RC+STM data from three canines (UCD1, 2; MD1). Pseudo-prospective (NV 
data from 7 humans; NV3-9) and prospective (RC+STM data from 4 patients MH1-4 and 2 pet 
dogs UCD1, 2) ambulatory testing in human and canines living in natural environments (human 
at home and dogs living with their owners) was performed over multiple months. 
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Patients 

 
Number of 
seizures 

 

 
Tested Interval 

(Days) 

 
AUPRC 

 
AUROC 

 
Pseudo-prospective NV 
System Human Dataset 

 

Number of 
seizures 

Tested Interval 
(Days) 

AUPRC AUROC 

N3 39 728 0.21 0.90 
N4 43 726 0.99 0.96 
N5 731 558 0.88 1.00 
N6 684 183 0.70 0.99 
N7 173 766 0.86 0.99 
N8 277 394 0.83 0.98 
N9 99 465 0.93 0.99 

 
Total 

 
2046 

 
3820  

 
X 

 
X 

 
Avg ± Std. 

 
292 ± 273 

 
545 ± 198 

 
0.78 ± 0.24 

 
0.97 ± 0.03 

 
 
Table 2. Seizure detection results using NeuroVista Human Dataset. Performance of the 
generic seizure detection model for canine and human seizures deployed on out-of-sample 
human NV dataset in pseudo-prospective testing. Pseudo-prospective data was previously 
collected but analyzed while maintaining the temporal relationship of all seizures. Machine 
learning performance metrics are shown together with the number of seizures and number of 
recording days in the datasets (AUPRC - area under precision recall curve; AUROC - area under 
receiver operating characteristic curve).  
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Characteristics 

 
Cluster 

 
Non-Cluster 

 
Day 

 
Night 

 
 

IES rate per minute 
 

37.4 ± 29.1 
 

17.9 ± 7.2 
 

13.8 ± 8.7 
 

41.6 ± 23.7 
 

 
F1 - score 

 
0.84 ± 0.09 

 

 
0.8 ± 0.05 

 
0.81 ± 0.08 

 
0.82 ± 0.08 

 
PPV 

 
0.81 ± 0.2 

 

 
0.74 ± 0.14 

 
0.71 ± 0.12 

 
0.8 ± 0.18 

 
Sensitivity 

 
0.9 ± 0.08 

 
0.9 ± 0.08 

 
0.94 ± 0.001 

 
0.89 ± 0.09 

 
 

Table 3. Interictal epileptiform spike rates. Results from prospective testing of the automated 
IES classifier at different time periods (Day vs. Night) and seizure counts (seizure clusters/non-
clusters) compared to expert visual review. Periods of seizure clusters were defined by two, or 
more, seizures in a 12-hour period. The F1-score comparing the automated detector and expert 
visual review for labeling IES was similar for each condition studied. 
 

 
Prospective RC+S 

Summit System Dataset 
 

 
Number of 
seizures 

 

 
Tested Interval 

(Days) 

 
 

AUPRC 

 
 

AUROC 

MH1 134 147 0.93 0.99 
MH2 8 149 0.89 0.99 
MH3 20 44 0.82 0.99 
MH4 19 156 0.75 0.99 

UCD1 17 107 0.47 0.96 

UCD2 6 120 0.88 0.99 

Total 204 723 X X 

Average ± Std. 54 ± 49.34 120.5 ± 41.97 0.76 ± 0.25 0.99 ± 0.01 
 
Table 4a. Prospective seizure detection results. Performance of automated seizure detection 
in canine and human seizures deployed prospectively in pet canines and humans living with 
epilepsy in their home environments (MH1-4 are four human subjects and UCD1-2 are the two 
pet dogs). Machine learning performance metrics are shown together with the number of seizures 
and number of recording days in the datasets (AUPRC - area under precision recall curve; 
AUROC - area under receiver operating characteristic curve).  
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Subject Days 
monitored 

ECoG 
Seizures 

Reported 
Seizures 

Patient Seizure Reports & ECoG 

Patient report with 
ECoG  seizure [%] 

ECoG seizures not 
reported by patient 

[%] 
MH1 269 273 80 38.75 88.64 
MH2* 258 13 279 2.87 38.46 
MH3 153 89 165 43.03 20.22 

MH4** 265 32 31 74.19 28.12 
Total 945 407 555 X X 

Avg±Std. 378 ± 287 163 ± 153 222 ± 187 39.71 ± 29.20 43.86 ± 30.77 
 
Table 4b. Analysis of patient seizure diaries and electrographic seizures from continuous 
electrocorticography. Continuous invasive electrocorticography (ECoG) from bilateral 
amygdala, hippocampus and anterior nucleus of thalamus enabled direct assessment of patient 
seizure diary reports and ECoG recorded electrographic seizure activity. On average 39.7% of 
ECoG electrographic seizures had a patient seizure diary report within ±30min of the ECoG event 
and 56.14% of the patient reported seizures had associated ECoG confirmed events. These 
results from continuous ambulatory ECoG in natural environments demonstrate the complex, and 
inaccurate relationship between patient diary reports and gold-standard continuous ECoG. Note: 
All four patients had seizures independently from left and right hippocampus. The table includes 
all seizures, except for MH2 where the results are for right-hippocampal seizures only because of 
very frequent electrographic seizures (average 30/day) originating from the left hippocampal 
remanent of a prior left anterior temporal lobectomy. **MH4 excellent reporting included her 
caregiver reports. The accuracy of patient reporting of seizures is currently confounded by fact 
that ECoG seizures may be truly subclinical seizures or amnestic seizures that the patient does 
not recall. 
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