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Abstract

Background

Expansions of short tandem repeats are the cause of many neurogenetic disorders including

familial amyotrophic lateral sclerosis, Huntington disease, and many others. Multiple methods

have been recently developed that can identify repeat expansions in whole genome or exome

sequencing data. Despite the widely-recognized need for visual assessment of variant calls in

clinical settings, current computational tools lack the ability to produce such visualizations for

repeat expansions. Expanded repeats are difficult to visualize because they correspond to large

insertions relative to the reference genome and involve many misaligning and ambiguously

aligning reads.

Results

We implemented REViewer, a computational method for visualization of sequencing data in

genomic regions containing long repeat expansions. To generate a read pileup, REViewer

reconstructs local haplotype sequences and distributes reads to these haplotypes in a way that

is most consistent with the fragment lengths and evenness of read coverage. To create

appropriate training materials for onboarding new users, we performed a concordance study

involving 12 scientists involved in STR research. We used the results of this study to create a

user guide that describes the basic principles of using REViewer as well as a guide to the typical

features of read pileups that correspond to low confidence repeat genotype calls. Additionally,

we demonstrated that REViewer can be used to annotate clinically-relevant repeat interruptions

by comparing visual assessment results of 44 FMR1 repeat alleles with the results of triplet

repeat primed PCR. For 38 of these alleles, the results of visual assessment were consistent

with triplet repeat primed PCR.

Conclusions

Read pileup plots generated by REViewer offer an intuitive way to visualize sequencing data in

regions containing long repeat expansions. Laboratories can use REViewer to assess the
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quality of repeat genotype calls as well as to visually detect interruptions or other imperfections

in the repeat sequence and the surrounding flanking regions.

Keywords

Repeat expansions, short tandem repeats, visualization, short-read sequencing data

Background

Visual inspection of sequencing data supporting a given genetic variant is an important part of

clinical bioinformatics pipelines. Effective visualizations enable scientists to quickly assess the

quality of sequencing data supporting a genotype call. Factors that impact genotyping accuracy

such as local depth, evenness of coverage, presence of any additional variation, and other

locus-specific features are difficult to piece together from genome-wide quality metrics and

various per-variant scores typically reported by variant calling methods. Recent guidelines from

the Association for Medical Pathology and the College of American Pathologists strongly

recommend review of such visualizations during routine sign out of variant calls (Roy et al.

2018).

The Integrative Genomics Viewer (Robinson et al. 2011), JBrowse (Buels et al. 2016), and other

general-purpose tools for visualization of sequencing data work well for single nucleotide

variants, short indels, and copy number variants. Additionally, specialized methods have been

developed for visualizing reads associated with variants that involve more complex indel

patterns and distal breakpoints (Gymrek 2014; Nattestad et al. 2021; Spies et al. 2015; Belyeu

et al. 2021). However, there is a lack of methods for visualizing sequencing data in regions

harboring long repetitive sequences such as long stretches of short tandem repeats (STRs).

Analysis and visualization of regions containing long STRs using short read sequencing data

pose a number of unique challenges. For instance, it is difficult to correctly align reads

originating within the sequence of a long STR because the number of possible alignment

positions increases linearly with the length of the STR allele. Regions containing multiple

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465046doi: bioRxiv preprint 

https://paperpile.com/c/07DuyK/IFbG
https://paperpile.com/c/07DuyK/IFbG
https://paperpile.com/c/07DuyK/zMuD
https://paperpile.com/c/07DuyK/ZTdi
https://paperpile.com/c/07DuyK/myUh+hddw+tier+e1gE
https://paperpile.com/c/07DuyK/myUh+hddw+tier+e1gE
https://doi.org/10.1101/2021.10.20.465046
http://creativecommons.org/licenses/by-nc-nd/4.0/


adjacent STRs—including the regions linked with Huntington disease, Friedreich ataxia, and

Spinocerebellar ataxia 8—are especially prone to alignment artifacts because adjacent repeats

may have a high sequence similarity and because the sizes of these repeats in a given

individual often differ from those in the reference genome.

Here we present the Repeat Expansion Viewer (REViewer), a novel method for visualizing short

read sequencing data in genomic regions containing one or multiple STRs. REViewer has been

designed to work with the read alignments produced by ExpansionHunter (Dolzhenko et al.

2017, 2019), though it will work with any repeat genotyping software that produces output in the

appropriate format. We also describe FlipBook, a companion image viewer that is designed for

manual curation of large collections of images generated by REViewer.

Implementation

Overview

REViewer is designed to work with the BAM (Li et al. 2009) and VCF files (Danecek et al. 2011)

generated by ExpansionHunter (Dolzhenko et al. 2017, 2019), a commonly used method for

repeat genotyping. The VCF file is used to obtain repeat genotypes while the BAM file contains

reads realigned to a sequence graph representing the entire repeat region (Figure 1, panels

1-4). Additionally, we created a wrapper script that accepts regular BAM files containing

alignments of reads to a linear genome and a tab-separated file containing reference

coordinates of the target STRs, repeat units, and repeat genotypes making it possible to use

REViewer with other software (supplementary information).

Read pileup generation

Read pileups are generated using genotypes of all STRs present at the target region and reads

aligned to a sequence graph representing the region (Figure 1, panel 1-4; (Dolzhenko et al.

2019)). For repeats on diploid chromosomes, REViewer constructs all possible pairs of

haplotype sequences from the STR genotypes. For example, if a region contains two STRs then

there are four possible haplotypes that can be formed and two possible haplotype pairings

(Figure 1, panel 5). The reads are next aligned to all haplotype pairs by transforming the graph
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alignments from the BAM file generated by ExpansionHunter into linear alignments. The

haplotype pair that yields the highest cumulative read alignment score is selected for

visualization (Figure 1, panel 6). Loci with a single STR or on haploid chromosomes have

unambiguous haplotypes and so the haplotype sequence selection steps are skipped. Next, for

each read pair, REViewer finds the top-scoring alignments to any haplotype sequence (Figure
1, panel 7). A read pair originating completely within a sequence surrounding the repeats and

shared by all haplotypes has exactly one alignment position on each haplotype (Figure 1, panel

7a). When one mate originates fully within the repeat, the number of positions for the read pair

increases linearly with the repeat length (Figure 1, panel 7b). In contrast, when both mates

originate inside the repeat, the number of positions increases quadratically (Figure 1, panel 7c).

For read pairs where one or both mates have multiple alignments, REViewer selects pairs of

alignments that correspond to fragment length closest to the mean fragment length calculated

for read pairs mapping to the flanking regions surrounding the repeats. Finally, REViewer

generates read pileup by selecting one pair of alignments at random for each read pair (Figure
1, panel 8).

This algorithm is based on the idea that if a given locus is sequenced well and each constituent

repeat is genotyped correctly, then it is possible to distribute the reads to achieve an even

coverage of each haplotype. Importantly, assignment of some reads to the correct haplotype of

origin will be ambiguous, especially in cases when the repeats are homozygous, and the

resulting haplotypes are identical.

Pileups corresponding to correctly genotyped repeats are characterized by a relatively even

read coverage of both alleles (Figure 2, panels 1-3). At the typical whole-genome sequencing

depths (30-60x), each position of a haplotype sequence is expected to be covered by many

reads (15-30), though the coverage may dip in certain regions due to technical factors like GC

bias. For repeats much shorter than the read length, this implies the presence of multiple

spanning reads (Figure 2, both alleles on panel 1 and short allele on panel 2). Repeats much

larger than the read length are expected to contain multiple in-repeat reads (Figure 2, long

allele on panel 1 and both alleles on panel 2). An incorrectly called expanded allele might have

low sequencing depth inside the repeat compared to the depth of the region surrounding the

repeat (Figure 2, long allele on panel 4). Additionally, the presence of multiple indels in the

alignments of in-repeat reads indicates that the reads may not be correctly aligned (possibly due

to sequencing errors) and that the size of the repeat may be overestimated (Figure 2, panel 5).
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Finally, a short allele supported by one or very few spanning reads may not be real. For

instance, the short allele depicted on panel 6 of Figure 2 is supported by just one spanning and

one flanking read, which is less than expected based on the coverage of the surrounding region.

There is also a slight excess of the flanking reads on the long allele of this repeat. Taken

together, these observations suggest that (a) the single spanning read may be a result of an

incorrect alignment and (b) the correct genotype is likely to be a double expansion. Some real

examples corresponding to the scenarios depicted in Figure 2 are included in online

documentation (Examples.md at Master · Illumina/REViewer n.d.).

FlipBook image viewer

In many situations, researchers may wish to look at STR genotypes for a variety of known

repeat loci across many samples. To simplify the painstaking manual task of reviewing many

REViewer pileups and recording the results of manual review, we developed FlipBook—a

photo-album-like application that lets a user quickly assess pileups on their local hard drive and

record notes about each one. Additional features of this software include 1) displaying custom

information above the images—such as affected status and STR locus information, 2)

customizing the questions a user can answer about each image, and 3) displaying more than

one image at a time—such as when evaluating data from multiple family members.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465046doi: bioRxiv preprint 

https://paperpile.com/c/07DuyK/7g6D
https://doi.org/10.1101/2021.10.20.465046
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: An overview of the pileup generation algorithm: (1-3) reads originating in the

region containing target STRs are realigned using the sequence graph aligner within

ExpansionHunter software; (4,5) putative pairs of haplotype sequences are generated from

repeat genotypes; (6) a haplotype pair that has the highest consistency with read alignments is

selected; (7) possible alignments of each read to each haplotype sequence are generated from

the original sequence-graph alignments; (8) pairs of read alignments that correspond to the

most consistent fragment length are selected for each read pair and then one of these is

randomly selected for visualization.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.10.20.465046doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.20.465046
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Examples of read pileups. Pileups corresponding to correctly genotyped repeats: (1)

both repeat alleles are short; (2) one allele is expanded; (3) both alleles are expanded. Pileups

corresponding to incorrectly genotyped repeats: (4) expanded allele is supported by just one

read suggesting that its size is overestimated; (5) expanded allele is supported by poorly

aligning reads (each containing multiple indels) suggesting that the reads are incorrectly

mapped and that size of the repeat is overestimated; (6) the short allele is supported by just one

spanning read suggesting that this allele is not real and that both alleles are expanded.
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Results

A concordance study

To solicit feedback on REViewer and FlipBook and create training materials for new REViewer

users, we performed a concordance study involving 12 scientists (analysts). We used a

collection of whole-genome sequencing (WGS) samples described in a recent study of subjects

with suspected neurological disorders (Ibanez et al. 2020) and additional samples from the

100,000 Genomes Project that were validated by PCR (see supplementary information). The

HTT, TBP, AR, ATXN3, ATN1, ATXN2, ATXN7, ATXN1, CACNA1A, DMPK, PPP2R2B, FXN,

FMR1, and C9orf72 STR loci were genotyped in these samples with ExpansionHunter (EH) and

also tested with PCR. To emulate a practical assessment strategy, only the STRs for which the

size confidence interval reported by EH overlapped or exceeded an intermediate or full

expansion threshold were selected for review. This totaled 133 STR genotypes (one genotype

per sample) across all 14 STR loci. REViewer read pileups corresponding to these 133

genotypes (Table S1) were evaluated by the analysts using FlipBook software. The analysts

categorized the genotyped STRs into normal, intermediate expansion, full expansion, and

biallelic expansion categories. The verdicts were recorded by FlipBook for subsequent analysis.

To measure consistency of analysts’ responses, we calculated the number of discordant

verdicts for each genotyped STR. A verdict was defined as discordant if it differed from the most

common consensus verdict. The majority of verdicts were highly consistent—three or more

analysts disagreed with the consensus verdict for only 9 out of 133 genotyped STRs (Figure 3,

panel 1). The mean number of STRs with discordant verdicts was below one for all STR loci

(Figure 3, panel 2). FMR1 repeats had the largest number of discordant verdicts (0.94 on

average) which is consistent with earlier observations that the FMR1 locus is harder to size

accurately as the repeat becomes long (Dolzhenko et al. 2017). Disagreements in verdicts

arose for STRs where the size estimate was close to the pathogenic threshold (Figure 3, panel

3).

Next, we compared the verdicts for repeats where EH and PCR-based calls agreed to those

where they disagreed (using binary categorization for FMR1 and C9orf72 repeats; see below).

When EH and PCR-based calls agreed, most repeats (94 out of 114) had no discordant verdicts

but when the EH and PCR-based calls disagreed, only a few (4 out of 19) had no discordant
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verdicts (Figure 3, panel 4). This suggests that, with additional training, the information

presented in REViewer/FlipBook visualizations can be used to reduce the false positive rate for

many known pathogenic loci. To provide such training, we created online documentation that

consists of both a tutorial describing how to review the pileups (Figure 2 and (REViewer: A Tool

for Visualizing Alignments of Reads in Regions Containing Tandem Repeats n.d.)) and a

repository of pileups corresponding to harder to interpret correct and incorrect calls.

FMR1 and C9orf72 repeat loci

Due to the difficulty of distinguishing between the intermediate and full expansions of FMR1

(Dolzhenko et al. 2017) and C9orf72 repeats (full expansions start at 600bp and 360bp respectively),

they were categorized into two categories: normal and expanded. This categorization also reflects

the fact that, in practice, the ability to distinguish between normal and abnormal sized repeats is

more important than being able to accurately classify intermediate versus expanded alleles.

Individuals identified with abnormal-sized repeats that may explain their phenotype or place

them at risk for disease or passing on an expandable repeat are likely to be sent for orthogonal

confirmation testing, regardless of whether the estimated STR size is in the intermediate or

pathogenic range.
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Figure 3: (1) counts of STR genotypes where the specified number of analysts disagreed with

the consensus verdict (discordant verdict); (2) distribution of discordant verdict counts stratified

by STR locus; (3) distribution of distances between STR sizes estimated by ExpansionHunter

(EH) and PCR; (4) the counts of repeat genotypes where NGS and PCR agree and disagree.

Annotating interruptions with REViewer

REViewer visualizations also display deviations from the predicted sequence and this can allow

users to identify STR interruptions. To demonstrate this functionality, we assessed the pileups of

29 FMR1 reference samples (Dolzhenko et al. 2017) with prior TP-PCR data (Rajan-Babu et al.

2015; Chen et al. 2010) on repeat length and number and position of AGG interruptions. The

concordance between AGG-interruption maps derived from the REViewer pileups and TP-PCR

was evaluated. Figure 4 shows the read pileups and TP-PCR electropherograms of two

representative samples–a normal male (NA06890, panel 1) and an intermediate female

(NA20234, panel 2). NA06890 with 30 repeat units has two AGGs evident in the pileups as
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mismatches at repeat positions 11 and 21. This (CGG)10AGG(CGG)9AGG(CGG)9 structure is

consistent with TP-PCR. In NA20234, the pileups show the clear assignment of reads to the

correct haplotypes, a 31-repeat normal and a 46-repeat intermediate allele with

(CGG)10AGG(CGG)9AGG(CGG)10 and (CGG)9AGG(CGG)9AGG(CGG)13AGG(CGG)12 structures,

respectively. The TP-PCR analysis had consistent repeat structures, but the superimposing

amplicon peaks from the two FMR1 alleles in some heterozygous female samples with complex

repeat structures may make AGG-interruption mapping relatively harder with TP-PCR

(Rajan-Babu et al. 2015).

Of the 44 alleles assessed in total (14 males and 15 females), the AGG-interruption maps of 38

alleles derived from the pileups were consistent with that of TP-PCR (Table S2). Concordant

results (86.36%) were noted for 20/23 normal, 5/5 intermediate, 6/8 premutation, and 7/8

3’-uninterrupted full-mutation alleles.

Among the six discrepant alleles, the normal alleles of NA20243 and NA20240 had an incorrect

ExpansionHunter genotype and inadequate spanning/flanking reads in the pileups that

hampered the interpretation of AGG interruptions. The normal allele of NA20244 was sized one

CGG-repeat less by ExpansionHunter, and the pileup and TP-PCR structures were

(CGG)9AGG(CGG)8AGG(CGG)21 and (CGG)9AGG(CGG)9AGG(CGG)21, respectively. We could

not resolve the AGG-interruption pattern of the premutation allele in NA20240 due to the

ambiguity in the assignment of reads to the two haplotypes as ExpansionHunter genotyped this

heterozygous premutation sample (30/80 repeats) as homozygous premutation (95/95 repeats).

In NA06907, the premutation haplotype did not have sufficient reads to support the TP-PCR’s

(CGG)10AGG(CGG)80 repeat structure. In NA07537, we could not confidently ascertain the

interruption pattern of the full-mutation allele from the pileups because of the ambiguity in read

assignment. In general, the TP-PCR data supported the presence of uninterrupted

CGG-repeats at the 3’ ends of the full-mutation alleles. Nonetheless, in two full-mutation males

(NA06852 and NA06897), the pileup visualization enabled the detection of an AGG interruption

at the 5’ end of the full-mutation, which, as expected, was not evident from the TP-PCR

analyses that target the 3’ ends. See Additional File 2 for pileups and TP-PCR profiles of

additional FMR1 intermediate, premutation, and full-mutation samples.
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Figure 4: REViewer read pileups and TP-PCR electropherograms of FMR1 repeats in samples
(1) NA06890 and (2) NA20234.
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Discussion

REViewer enables visualization of sequencing data in genomic regions containing one or more
tandem repeats by reconstructing local haplotypes containing the repeats of interest and then
generating read pileups over these haplotypes. FlipBook, the companion image viewer for
REViewer, enables interactive curation of large sets of read pileups and subsequent output of
the curation results into a file. We have shown that REViewer and FlipBook can be used for a
wide range of purposes including quality assessment of repeat expansion calls produced by
bioinformatics pipelines and studies of interruptions and other imperfections in repeat
sequences. Additionally, these visualizations are a valuable tool for continued development of
new methods for STR analysis.

To create a user guide for REViewer, we performed a concordance study involving 12 scientists
involved in STR research. This study highlights a range of pileup features (Figure 2 and
(REViewer: A tool for visualizing alig...)) that can help to identify lower confidence calls and
potential genotyping errors. This information, together with representative example pileups, was
documented in the online user guide. The concordance study also helped to highlight some
important limitations of REViewer. Namely, pileups cannot be used to determine if the size of a
long repeat expansion is underestimated. This is because pileups of longer repeats missing
in-repeat reads can be indistinguishable from pileups corresponding to shorter repeats.

REViewer visualization offers the unique advantage of analysing interruptions at both the 5’- and
3’-ends of the repeat sequences and determining the exact sequences of the interrupting motifs.
In the extremely GC-rich FMR1 repeat locus, which is prone to coverage bias, REViewer
achieved an overall 86.36% concordance across normal, intermediate, premutation, and
full-mutation genotypes. Interruptions are observed in a number of repeat expansions and their
presence or absence may modify the pathogenicity, disease severity or presentation (Matsuura
et al. 2006; Kraus-Perrotta and Lagalwar 2016; Cumming et al. 2018). The ability to visualize
and assess interruptions is a valuable addition to bioinformatic repeat expansion pipelines. We
believe that future improvements to ExpansionHunter genotyping and REViewer's ability to
consider interruptions during the assignment of reads to the haplotypes will enable even better
annotations of STR interruptions.

We are planning to continue improving REViewer and FlipBook in response to feedback from
the user community. In particular, we are considering extending REViewer to support other
variant types.

Conclusions
Clinical applications of sequencing data continue to rapidly expand. Bioinformatics pipelines for
genome analysis continue to increase the types of variants that they profile and incorporate
even more difficult regions of the genome. Visualization of sequencing evidence supporting
more complex variants requires specialized visualization algorithms and user interfaces. The
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work here demonstrates that variant-specific visualizations that augment general purpose
visualization tools are a pragmatic strategy to increase the utility of bioinformatics pipelines.

Availability and requirements
Project name: REViewer and FlipBook

Project home page: https://github.com/Illumina/REViewer,

https://github.com/broadinstitute/flipbook/

Operating systems: REViewer: Linux and macOS; FlipBook: Linux, macOS, and Windows

Programming languages: C++ (REViewer) and Python (FlipBook)

License: GNU GPLv3 (REViewer) and MIT (FlipBook)

Abbreviations
REViewer: Repeat expansion viewer
STR: Short tandem repeat
In-repeat read: Read fully contained in the repeat sequence
TP-PCR: Triplet primed PCR
EH: ExpansionHunter
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Supplementary information

Additional file 1

Note S1: Description of the concordance study dataset, ​​​​Note S2: Description of the wrapper
script, Table S2: REViewer allele structure of FMR1 reference samples

Additional file 2
Table S1: A description of 133 repeats used for the concordance study. Each row describes the
basic sample/repeat information (columns Sample, Sex, Locus), repeat size estimated by PCR
and EH (columns PCR_short, PCR_long, EH_short, EH_long, EH_short_CI, EH_long_CI), size
thresholds (columns Premuation, Pathogenic), verdicts based on PCR & EH size estimates
(columns PCR_verdict, EH_verdict), and analyst verdicts (columns Analyst 1, …, Analyst 12).

Additional file 3
Figure S1: REViewer pileups and TP-PCR profiles of additional FMR1 intermediate,
premutation, and full-mutation samples (1) NA20232, (2) NA20230, (3) CD00014, (4) GM06892,
(5) GM06852, (6) GM07063.
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