
Supporting information

Supplementary Fig 1: To choose the best way of computing residuals to obtain the phenotype adjusted for population structure, we randomly extracted five SNPs in the dataset (rs12488468, rs1005678, rs11714286, rs2267844, rs11720964) and compared the associated outputs of epistasis detection. First, we computed the different residuals: we ran a logistic regression model with binary phenotypes as the response variable and 7 PCs as independent variables. We derived three vectors of adjusted phenotypes from the response, working and Pearson residuals. Then, we looked for statistical epistasis: we computed linear models using the different residuals as the response variable and two SNPs and their interactions a independent variables. Finally, we performed logistic regressions with the binary phenotype as the dependent variable, two SNPs and their interaction as explanatory variables, in addition to 7 PCs as covariates. We aimed at identifying the residuals leading to P-values as close as possible to the P-values from the logistic regression. P-values obtained with response residuals as phenotypes are the closest to the ones obtained with the logistic regression and are therefore selected as adjusted phenotypes in our analysis.

Supplementary Table 1: The 16 pathways enriched in the eQTL analysis. They are obtained from one gene neighborhood (HYAL1, HYAL3, SPAM1).

GO hyaluronoglycosaminidase activity

GO hexosaminidase activity

KEGG glycosaminoglycan degradation

GO hydrolase activity hydrolyzing o glycosyl compounds

GO hydrolase activity acting on glycosyl bonds

NABA ecm regulators

GO response to UV B

GO hyaloronan catabolic process

REACTOME hyaluronan metabolism

GO hyaluronan metabolic process

REACTOME chondoitrin sulfate dermatan sulfate

GO aminoglycan catabolic process

NABA matrisome associated

GO cellular response to UV B

REACTOME CS DS degradation

REACTOME hyaluronan uptake and degradation

Supplementary Table 2: The 71 pathways enriched in the *Positional* + *eQTL* + *Chromatin* analysis. They are obtained from two gene neighborhoods (*HYAL3*, *HYAL1*, *HYAL2*, and *PLA2G2E PLA2G5 PLA2G2C*).

GO HYALURONONGLUCOSAMINIDASE ACTIVITY

GO CELLULAR RESPONSE TO UV B

GO HEXOSAMINIDASE ACTIVITY

REACTOME HYALURONAN UPTAKE AND DEGRADATION

GO RESPONSE TO UV B

GO HYALURONAN CATABOLIC PROCESS

REACTOME HYALURONAN METABOLISM

KEGG ALPHA LINOLENIC ACID METABOLISM

KEGG GLYCOSAMINOGLYCAN DEGRADATION

GO ARACHIDONIC ACID SECRETION

KEGG ETHER LIPID METABOLISM

KEGG LINOLEIC ACID METABOLISM

GO HYALURONAN METABOLIC PROCESS

GO FATTY ACID DERIVATIVE TRANSPORT

GO LONG CHAIN FATTY ACID TRANSPORT

KEGG ARACHIDONIC ACID METABOLISM

GO AMINOGLYCAN CATABOLIC PROCESS

GO CELLULAR RESPONSE TO UV

KEGG GLYCEROPHOSPHOLIPID METABOLISM

KEGG LONG TERM DEPRESSION

GO HYDROLASE ACTIVITY HYDROLYZING O GLYCOSYL COMPOUNDS

KEGG VEGF SIGNALING PATHWAY

GO FATTY ACID TRANSPORT

KEGG FC EPSILON RI SIGNALING PATHWAY

GO CELLULAR RESPONSE TO LIGHT STIMULUS

KEGG GNRH SIGNALING PATHWAY

GO HYDROLASE ACTIVITY ACTING ON GLYCOSYL BONDS

GO ACID SECRETION

KEGG VASCULAR SMOOTH MUSCLE CONTRACTION

GO ENTRY INTO HOST

chr3p21

GO RESPONSE TO UV

GO MUCOPOLYSACCHARIDE METABOLIC PROCESS

REACTOME GLYCOSAMINOGLYCAN METABOLISM

GO MONOCARBOXYLIC ACID TRANSPORT

NABA ECM REGULATORS

GO CELLULAR RESPONSE TO RADIATION

REACTOME CS DS DEGRADATION

GO AMINOGLYCAN METABOLIC PROCESS

GO INTERACTION WITH HOST

GO CARBOHYDRATE DERIVATIVE CATABOLIC PROCESS

GO CARTILAGE DEVELOPMENT

GO CALCIUM DEPENDENT PHOSPHOLIPASE A2 ACTIVITY

REACTOME ACYL CHAIN REMODELLING OF PI

GO RESPONSE TO INTERLEUKIN 1

chr1p36

GO PHOSPHATIDYLGLYCEROL ACYL CHAIN REMODELING

REACTOME ACYL CHAIN REMODELLING OF PG

GO PHOSPHATIDYLINOSITOL ACYL CHAIN REMODELING

GO PHOSPHOLIPASE A2 ACTIVITY CONSUMING 1 2 DIPALMITOYLPHOSPHATIDYLCHOLINE

GO PHOSPHATIDYLSERINE ACYL CHAIN REMODELING

REACTOME ACYL CHAIN REMODELLING OF PS

GO CONNECTIVE TISSUE DEVELOPMENT

GO PHOSPHATIDYLETHANOLAMINE ACYL CHAIN REMODELING

REACTOME ACYL CHAIN REMODELLING OF PE

KEGG MAPK SIGNALING PATHWAY

GO PHOSPHOLIPASE A2 ACTIVITY

GO RESPONSE TO TUMOR NECROSIS FACTOR

GO RESPONSE TO LIGHT STIMULUS

REACTOME ACYL CHAIN REMODELLING OF PC

GO VIRAL LIFE CYCLE

GO PHOSPHATIDYLCHOLINE ACYL CHAIN REMODELING

GO PHOSPHATIDYLGLYCEROL METABOLIC PROCESS

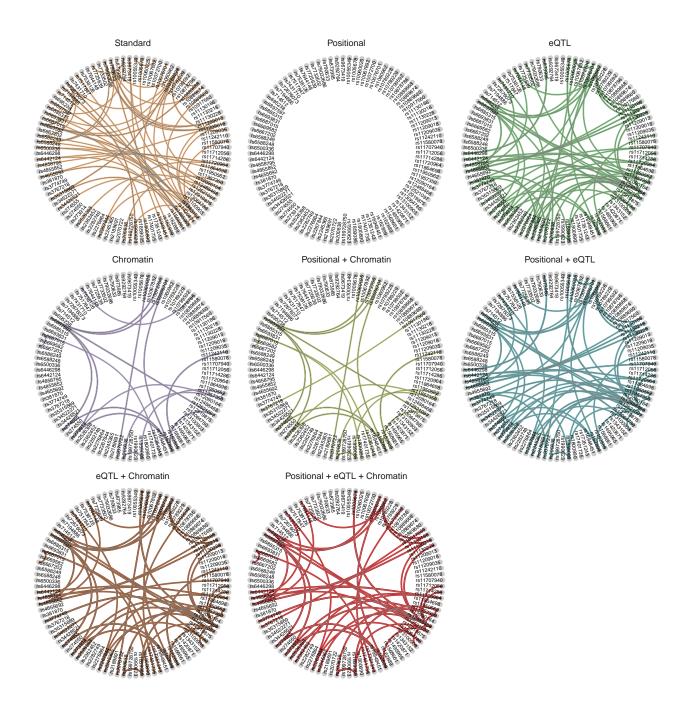
GO RESPONSE TO VIRUS

GO ORGANIC ACID CATABOLIC PROCESS

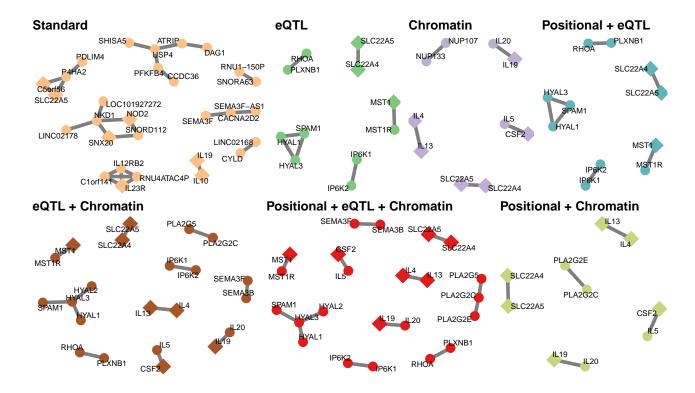
GO ORGANIC ACID TRANSPORT

GO CELLULAR RESPONSE TO ABIOTIC STIMULUS

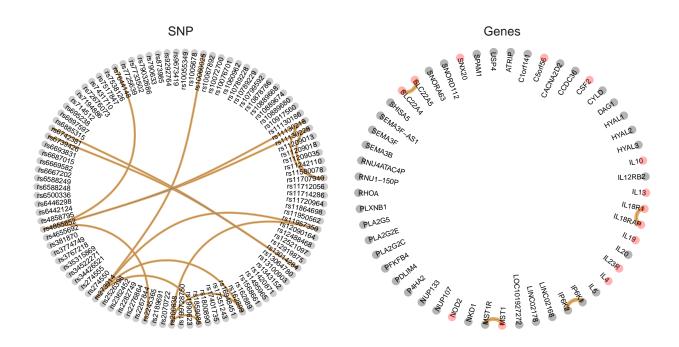
GO RESPONSE TO ANTIBIOTIC


REACTOME METABOLISM OF CARBOHYDRATES

GO PHOSPHATIDYLSERINE METABOLIC PROCESS


REACTOME SYNTHESIS OF PA

Supplementary Table 3: Tissue-specific eQTL and Chromatin analyses. For eQTL, we took associations from the following tissues: colon sigmoid, colon transverse, esophagus gastroesophageal junction, esophagus mucosa, esophagus muscularis, pancreas, small intestine terminal ileum, stomach, whole blood, aveALL (average gene expression among ten brain regions), brain anterior cingulate cortex BA24, brain caudate basal ganglia, brain cerebellar hemisphere, brain cerebellum, brain cortex, brain frontal cortex BA9, brain hippocampus, brain hypothalamus, brain nucleus accumbens basal ganglia, brain putamen basal ganglia and brain amygdala. For Chromatin, we took contacts measured in: pancreas, small bowel, orsolateral prefrontal cortex and hippocampus.


	eQTL	Chromatin
SNP models (SNPs)	$3 \times 10^5 \ (6,769)$	4615 (990)
Experimental threshold	7.3×10^{-7}	NA - No epistatic SNP-pair
		of the permutations is
		mappable a Biofilter gene-pair
Number of significant	15 (15)	NA
SNP-pairs (number of SNPs)		
Number of significant	4 (8)	NA
gene-pairs (number of genes)		
Number of significant	0	NA
$\operatorname{pathways}$		
Number of components	4	NA
in the gene network		

Supplementary Fig 2: Epistasis networks built from the significant SNP models of the different analysis.

Supplementary Fig 3: Alternative visualization of the gene-networks presented in Figure 2 of the paper. Genes associated to IBD in DisGeNET have a diamond shape.

Supplementary Fig 4: Epistasis networks built from the significant SNP models and gene models of the eQTL tissue specific analysis. Genes associated to IBD in DisGeNET are colored in pink.