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1 Supplementary Methods

1.1 Binary cFDR

Let p1, ..., pm ∈ (0,1] be a set of p-values corresponding to the null hypotheses of no association

between the SNP and the trait of interest. Let q1, ...,qm ∈ {0,1} be a set of binary covariates for the

same m SNPs, and denote the null (no association) and alternative (association) hypotheses as H0

and H1 respectively. Assume that p and q are realisations of random variables P,Q satisfying:

P|H0 ∼U(0,1)

P⊥⊥ Q|H0.

(1)

We follow the standard methodology introduced by Liley and Wallace (2021) to derive a v-value, vi,

for each (pi,qi) pair. That is, we find the smallest rejection region that each observation (pi,qi) is

contained in, estimate the distribution of P,Q under the null hypothesis and integrate this distribution

over the rejection region to obtain the v-value.

Since all q are binary, the support of P,Q is two lines and so the rejection regions are of the form

L(p0, p1) = (P≤ p0,Q = 0)∪ (P≤ p1,Q = 1), (2)

where p0 and p1 are unknown.

We wish to find v-values such that for all α ,

Pr(vi < α|H0) = α

Pr(vi < α|H1) is maximal.
(3)

That is, the v-values behave like p-value in that they are uniform under the null, but are as small

as possible under the alternative hypothesis. Appendix A.1 in Liley and Wallace (2021) (and

also Du and Zhang (2014) and Alishahi et al. (2016), for example) show that this corresponds to

rejection regions formed by the set of points for which f0(p,q)/ f1(p,q)< k(α), for some k, where

f0(p,q) = f (P = p,Q = q|H0) and f1(p,q) = f (P = p,Q = q|H1). That is, p0 and p1 will satisfy
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the property
f0(p0,0)
f1(p0,0)

=
f0(p1,1)
f1(p1,1)

. (4)

Let

f (p,q) = f (P = p,Q = q) = π0 f0(p,q)+(1−π0) f1(p,q), (5)

where π0 = Pr(H0). Then equation (4) implies

f0(p0,0) f1(p1,1) = f0(p1,1) f1(p0,0) (6)

f0(p0,0)
f (p1,1)−π0 f0(p1,1)

1−π0
= f0(p1,1)

f (p0,0)−π0 f0(p0,0)
1−π0

(7)

f (p1,1)−π0 f0(p1,1)
f0(p1,1)

=
f (p0,0)−π0 f0(p0,0)

f0(p0,0)
(8)

f (p1,1)
f0(p1,1)

=
f (p0,0)
f0(p0,0)

. (9)

To solve equation (4) for p0 and p1, we approximate

f0(pi,qi)

f (pi,qi)
=

Pr(P = pi,Q = qi|H0)

Pr(P = pi,Q = qi)
(10)

≈ Pr(P≤ pi,Q = qi|H0)

Pr(P≤ pi,Q = qi)
(11)

=
Pr(P≤ pi|Q = qi,H0)Pr(Q = qi|H0)

Pr(P≤ pi|Q = qi)Pr(Q = qi)
(12)

≈ pi×Pr(Q = qi|H0)
∧

| j : p j ≤ pi,q j = qi|/m
(13)

where Pr(Q = qi|H0)
∧

=
| j : q j = qi, p j > 1/2|
| j : p j > 1/2|

and m is the total number of observations (i.e. the

total number of SNPs). If qi = 0 then we set p0 = pi and use approximation (13) to solve equation

(4) for p1. If qi = 1, then we set p1 = pi and solve for p0.
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Specifically, if qi = 0 then we set p0 = pi and solve the following for p1:

pi×
| j : q j = 0, p j > 1/2|
| j : p j > 1/2|

| j : p j ≤ pi,q j = 0|/m
=

p1×
| j : q j = 1, p j > 1/2|
| j : p j > 1/2|

| j : p j ≤ p1,q j = 1|/m
(14)

pi×
| j : q j = 0, p j > 1/2|
| j : p j > 1/2|

| j : p j ≤ pi,q j = 0|×
| j : q j = 1, p j > 1/2|
| j : p j > 1/2|

=
p1

| j : p j ≤ p1,q j = 1|
. (15)

In practise, we do this using a fold-removal protocol for estimation to ensure that rejection rules are

not applied to the same data on which those rules were determined. Specifically, we either leave

out each chromosome or each LD block in turn and use the remaining SNPs to estimate the values

for the held out SNPs.

Similarly, if qi = 1, then we set p1 = pi and solve the following for p0:

p0×
| j : q j = 0, p j > 1/2|
| j : p j > 1/2|

| j : p j ≤ p0,q j = 0|/m
=

pi×
| j : q j = 1, p j > 1/2|
| j : p j > 1/2|

| j : p j ≤ pi,q j = 1|/m
(16)

p0

| j : p j ≤ p0,q j = 0|
=

pi×
| j : q j = 1, p j > 1/2|
| j : p j > 1/2|

| j : p j ≤ pi,q j = 1|×
| j : q j = 0, p j > 1/2|
| j : p j > 1/2|

. (17)

4



We derive the final v-values by integrating the distribution of P,Q under the null hypothesis over

the rejection regions:

∫
L(p0,p1)

d f0 = Pr((P,Q) ∈ L(p0, p1)|H0) (18)

= Pr((P≤ p0,Q = 0)∪ (P≤ p1,Q = 1)|H0) (19)

= Pr(P≤ p0,Q = 0|H0)

+Pr(P≤ p1,Q = 1|H0)

(20)

= Pr(P≤ p0|Q = 0,H0)Pr(Q = 0|H0)

+Pr(P≤ p1|Q = 1,H0)Pr(Q = 1|H0)

(21)

= p0× (1−q0)+ p1×q0 (22)

where q0 = Pr(Q = 1|H0)
∧

.

The v-value, vi, can be interpreted as the probability that a randomly-chosen (p,q) pair has a more

extreme cFDR value than cFDR(pi,qi) under H0. That is, a quantity analogous to a p-value that can

be readily FDR controlled using any FDR controlling procedure that allows for slightly dependent

p-values, such as the Benjamini-Hochberg (BH) procedure (Benjamini and Hochberg, 1995).

1.2 Simulation analysis

We evaluated the performance of Binary cFDR as implemented in the fcfdr R package using a

simulation-based analysis.

1.2.1 Simulating GWAS results (p)

Following Hutchinson et al. (2021), we first simulated GWAS p-values for the arbitrary “principal

trait”. We collected haplotype data for 3781 individuals from the UK10K project (REL-2012-06-02)

(The UK10K Consortium, 2015) at 80,356 SNPs residing on chromosome 22 with MAF ≥ 0.05 (to

match the convention that genetic association studies identify common genetic variation). We split

the haplotype data into 24 LD blocks representing approximately independent genomic regions

defined by the LD detect method (Berisa and Pickrell, 2016). We then further stratified these so
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that no more than 1000 SNPs were present in each block, subsequently recording the LD block that

each SNP resided in.

We used the simGWAS R package (https://github.com/chr1swallace/simGWAS) (Fortune and

Wallace, 2019) to simulate Z-scores for SNPs within each block. The simGWAS::simulate_z_scores

function requires input for (i) the number of cases and controls (ii) the causal variants (iii) the log

ORs at the causal variants and (iv) haplotype frequencies. For our simulation analysis, we selected

5000 cases and 5000 control samples, and within each block we randomly sampled 2, 3 or 4 causal

variants with log OR effect sizes simulated from the standard Gaussian prior used in case-control

genetic fine-mapping studies, N(0,0.22) (Wellcome Trust Case Control Consortium, 2007). For the

haplotype frequency parameter, we supplied a data.frame of haplotypes using the UK10K data,

with a column of computed frequencies for each haplotype. We collated the Z-scores from each

region and converted these to p-values representing the evidence of association between the SNPs

and the arbitrary principal trait.

1.2.2 Simulating auxiliary data (q)

We considered three use-cases of Binary cFDR (simulations A-C) defined by dependence on the

principal trait p-value (pi) and correlations between realisations of q. In simulation A we leveraged

binary auxiliary data that was independent of pi: qi ∼ Bernoulli(0.05). In simulations B and C we

leveraged binary auxiliary data that was dependent on pi by first defining “functional SNPs” as

causal variants plus any SNPs within 10,000-bp (to incorporate SNPs residing in the same arbitrary

“functional mark”), and “non-functional SNPs” as the remainder. We then sampled qi from different

mixture Gaussian distributions for functional and non-functional SNPs. Specifically, in simulation

B we sampled:

qi ∼


Bernoulli(0.05), if SNP i is non-functional

Bernoulli(0.4), if SNP i is functional.
(23)

Our method will likely be used to leverage functional genomic data iteratively, and so we also

evaluated the impact of repeatedly iterating over auxiliary data that captured the same functional
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mark. Thus, in simulation C we iterated over realisations of q that were highly correlated:

qi ∼


Bernoulli(0.05), if SNP i is non-functional

Bernoulli(0.8), if SNP i is functional.
(24)

(The auxiliary data is highly correlated in simulation C because in each iteration 80% of the

functional SNPs are expected to have an auxiliary data value of 1, and the functional SNPs are the

same across iterations in each simulation.)

1.2.3 Implementing Binary cFDR

We used the fcfdr::binary_cfdr function to implement Binary cFDR in our simulation anal-

ysis. To ensure that rejection rules were not applied to the same data on which those rules were

determined, we used a vector of indices of the LD blocks (Berisa and Pickrell, 2016) that each SNP

resided on for the group parameter. In each simulation for each simulation scenario, we applied

Binary cFDR iteratively 5 times to represent leveraging multi-dimensional covariates.

1.2.4 Evaluating sensitivity, specificity and FDR control

To quantify the results from our simulations, we used the BH procedure to derive FDR-adjusted

v-values from Flexible cFDR, which we call “FDR values” for conciseness (that is, we used the

stats::p.adjust R function with method="BH"). We then calculated proxies for the sensitivity

(true positive rate) and the specificity (true negative rate) at an FDR threshold of α = 5e−06, which

roughly corresponds to the genome-wide significance p-value threshold of 5e−08 (the maximum

FDR value amongst SNPs with raw p-value≤ 5e−08 was 5.4e−06). We defined a subset of “truly

associated SNPs” as any SNPs with r2 ≥ 0.8 with any of the causal variants. Similarly, we defined

a subset of “truly not-associated SNPs” as any SNPs with r2 ≤ 0.01 with all of the causal variants.

(Note that there are 3 non-overlapping sets of SNPs: “truly associated”, “truly not-associated” and

neither of these). We calculated the sensitivity proxy as the proportion of truly associated SNPs

that were called significant and the specificity proxy as the proportion of truly not-associated SNPs

that were called not significant.
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To assess whether the FDR was controlled within a manageable number of simulations, we raised

α to 0.05 and calculated the proportion of SNPs called FDR significant which were truly not-

associated (that is, r2 ≤ 0.01 with all of the simulated causal variants).

1.3 T1D application

1.3.1 T1D GWAS data

We downloaded full harmonised GWAS summary statistics for T1D (Onengut-Gumuscu et al., 2015)

from the NHGRI-EBI GWAS Catalog (Buniello et al., 2019) (study GCST005536 accessed on

08/10/21) and used these as the principal trait p-values. We then used the LDAK software (https:

//dougspeed.com/ldak/) to obtain LDAK weights for each SNP, and defined our independent

SNP set (used to fit the KDE in Flexible cFDR) as the set of SNPs given a non-zero LDAK weight

(an LDAK weight of 0 means that its signal is (almost) perfectly captured by neighbouring SNPs).

For the MAF matching step described in Hutchinson et al. (2021), we used MAFs estimated from

the CEU sub-population samples in the 1000 Genomes Project Phase 3 data set (The 1000 Genomes

Project Consortium, 2015). For any SNPs with missing MAF, we randomly sampled a value from

the empirical distribution of non-missing MAFs.

To define independent loci for our locus-level results, we first calculated LD between each pair of

SNPs using haplotype data from the 503 individuals of European ancestry in the 1000 Genomes

Project Phase 3 data set (The 1000 Genomes Project Consortium, 2015). We then used PLINK’s

LD-clumping algorithm with a 5-Mb window and an r2 threshold of 0.01. This conservative

clumping approach sorts SNPs into ascending order of p-value and then moves down the list,

sequentially removing SNPs within a 5-Mb window and with r2 > 0.01. The SNP with the smallest

p-value in the data set in each LD clump was called the “lead variant”.

1.3.2 Validation GWAS data set

We downloaded full harmonised GWAS summary statistics for T1D (Robertson et al., 2021)

from the NHGRI-EBI GWAS Catalog (Buniello et al., 2019) (study GCST90013445 accessed on

08/10/21) and used this as our validation GWAS data set. The samples in the discovery GWAS data

set (Onengut-Gumuscu et al., 2015) were a subset of those in the validation data set, and so we said
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that a discovery validated if it’s corresponding p-value was smaller in Robertson et al. (2021) than

Onengut-Gumuscu et al. (2015).

1.3.3 Auxiliary data

We downloaded full harmonised GWAS summary statistics for rheumatoid arthritis (RA) (Eyre

et al., 2012) from the NHGRI-EBI GWAS Catalog (Buniello et al., 2019) (study GCST005569

accessed on 08/10/21). We mapped each SNP in the T1D GWAS data set to its corresponding

p-value for RA using genomic coordinates and rsIDs. We removed 6044 SNPs from the analysis

which did not have a corresponding p-value for RA.

We downloaded SNP-level annotations for all 1000 Genomes SNPs from the baseline-LD model

(version 2.2) described in Gazal et al. (2017). We extracted values for the binary annotation

“DGF_ENCODE” which quantifies sites of transcription factor occupancy. Briefly, this annotation

is derived from merging all DNase I digital genomic footprinting (DGF) regions from the narrow-

peak classifications across 57 cell types (ENCODE Project Consortium, 2012; Gusev et al., 2014).

DGF regions (corresponding to DGF annotation values of 1) are expected to precisely map sites

where regulatory factors bind to the genome (Neph et al., 2012). We matched each SNP in the T1D

GWAS data set to its binary DGF annotation using genomic coordinates. We removed 2811 SNPs

from the analysis that did not have a corresponding DGF annotation value.

We downloaded consolidated fold-enrichment ratios of H3K27ac ChIP-seq counts relative to

expected background counts from NIH Roadmap Epigenomics Mapping Consortium (Bern-

stein et al., 2010) in nine primary tissues and cells relevant for T1D (CD3, CD4+ CD25int

CD127+ Tmem, CD4+ CD25+ CD127- Treg, CD4+ CD25- Th, CD4+ CD25- CD45RA+, CD4

memory, CD4 naive, CD8 memory, CD8 naive). Specifically, we downloaded the bigWig

files from https://egg2.wustl.edu/roadmap/data/byFileType/signal/consolidated/

macs2signal/foldChange/, converted these to wig files and then to bed files, and then mapped

each SNP in the T1D GWAS data set to its corresponding genomic region in the bed files and

recorded the H3K27ac fold change values in each cell type using the bedtools intersect utility.

For SNPs on the boundary of a genomic region (and therefore mapping to two regions) we randomly

selected one of the regions. We observed that the fold change values across T1D-relevant cell types

were highly correlated (r > 0.65) (Supplementary Fig. 1) and therefore averaged values across
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cell types to avoid iterating over highly correlated auxiliary data that is likely capturing the same

functional mark. We transformed the averaged fold change values (q := log(q+1)) to deal with

long tails.
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Supplementary Fig. 1: Heatmap of the Pearson correlation coefficients between H3K27ac
fold change values amongst T1D-relevant cell types downloaded from NIH Roadmap Epige-
nomics Mapping Consortium (Bernstein et al., 2010) and (log transformed) T1D p-values from
Onengut-Gumuscu et al. (2015). Figure generated using the pheatmap R package (https:
//cran.r-project.org/web/packages/pheatmap/index.html).

1.3.4 Implementation

We used the fcfdr::flexible_cfdr and fcfdr::binary_cfdr functions to leverage the aux-

iliary data with T1D GWAS p-values iteratively. We used the chromosome for which each SNP

resided for the group parameter in fcfdr::binary_cfdr, and we used the estimated MAF

values for the optional maf parameter in the fcfdr::flexible_cfdr function. We used the

stats::p.adjust function with method="BH" to derive FDR values from the v-values (af-

ter the 3 iterations) and used these as the output of interest. We used an FDR threshold of

10

https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html


FDR≤ 3.305365e−06 to call significant SNPs, which corresponded to the genome-wide signifi-

cance threshold p≤ 5e−08 (it was the maximum FDR value amongst SNPs with raw p-values

≤ 5e−08 in the discovery GWAS data set). The full data and code to replicate the analysis are

available from https://annahutch.github.io/fcfdr/articles/t1d_app.html.

2 Supplementary Results

2.1 Results from simulation analysis

We expect that leveraging irrelevant data should not change our conclusions about a study. Sim-

ulation A showed that the sensitivity and specificity remained stable across iterations and that

the FDR was controlled at a pre-defined level when using Binary cFDR to leverage independent

binary auxiliary data with arbitrary GWAS p-values (Supplementary Fig. 2A). In contrast, when

leveraging relevant data we hope that the sensitivity improves whilst the specificity remains high.

This is what we observed for Binary cFDR in simulation B (Supplementary Fig. 2B).

It is known that cFDR should not be used to iterate over highly correlated auxiliary data that

is capturing the same functional mark, as SNPs with a modest p but extreme q will incorrectly

attain greater significance with each iteration (for a more detailed explanation see Hutchinson et al.

(2021)). Simulation C involved iterating over highly correlated auxiliary data values (mean Pearson

correlation coefficient was 0.3) that capture the same “functional mark” (80% of functional SNPs

were expected to have an auxiliary data value of 1 in each iteration). The lack of FDR control in

simulation C (Supplementary Fig. 2C) serves as a salutary reminder that care should be taken not

to repeatedly iterate over functional data that is capturing the same genomic feature.
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Supplementary Fig. 2: Mean +/- standard error for the sensitivity, specificity and FDR of FDR
values from Binary cFDR when iterating over independent (A; “simulation A”) and dependent (B;
“simulation B” and C; “simulation C”) binary auxiliary data. Iteration 0 corresponds to the original
FDR values. Our sensitivity proxy is calculated as the proportion of SNPs with r2 ≥ 0.8 with a
causal variant (“truly associated”), that were detected with a FDR value less than 5e− 06. Our
specificity proxy is calculated as the proportion of SNPs with r2 ≤ 0.01 with all the causal variants
(“truly not-associated”), that were not detected with a FDR value less than 5e−06. Our FDR proxy
is calculated as the proportion of SNPs that were detected with a FDR value less than 0.05, that
had r2 ≤ 0.01 with all the causal variants (“truly not-associated”) (we raised α to 0.05 in order to
assess FDR control within a manageable number of simulations). Results were averaged across
100 simulations.
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2.2 Supplementary results from T1D application

We evaluated the relationship between the “principal p-values” (p) and the auxiliary data (q) in each

iteration. In iteration 1 the Pearson correlation coefficient between p (T1D GWAS p-values) and q

(RA GWAS p-values) was 0.092 (Supplementary Fig. 3A). In iteration 2 the Pearson correlation

coefficient between p (v-values from iteration 1) and q (binary DGF value) was -0.022. In iteration

3 the Pearson correlation coefficient between p (v-values from iteration 2) and q (log transformed

average H3K27ac counts) was -0.083 (Supplementary Fig. 3B).

0.0

0.5

1.0

1.5

(9
e−

62
,0

.1
18

]

(0
.1

18
,0

.3
17

]

(0
.3

17
,0

.5
34

]

(0
.5

34
,0

.7
62

]

(0
.7

62
,1

]

q

p 
(−

lo
g1

0)

quantiles
(9e−62,0.118]

(0.118,0.317]

(0.317,0.534]

(0.534,0.762]

(0.762,1]

Iteration 1A

0.0

0.5

1.0

1.5

(0
,0

.3
07

]

(0
.3

07
,0

.4
07

]

(0
.4

07
,0

.5
09

]

(0
.5

09
,0

.6
91

]

(0
.6

91
,4

.9
8]

q

p 
(−

lo
g1

0)

quantiles
(0,0.307]

(0.307,0.407]

(0.407,0.509]

(0.509,0.691]

(0.691,4.98]

Iteration 3B

Supplementary Fig. 3: Violin plots showing the relationship between p and q in iterations 1 and 3
of the cFDR framework in the T1D application. Figure generated using the fcfdr::corr_plot
function with default parameter values (https://annahutch.github.io/fcfdr/reference/
corr_plot.html).
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