
Supplemental Information

Structure in motion:
visual motion perception as online hierarchical inference

Johannes Bill, Samuel J. Gershman, Jan Drugowitsch

Contents

1 Supplemental figures 2

2 Generative model of structured motion 8
2.1 Composition of observable velocity from motion motifs . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Generation of observable velocities from stochastic, latent motion sources . . . . . . . . . . . . . . . . 8
2.3 Motion structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Extension to multiple spatial dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Polar coordinates: rotational and radial motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Online hierarchical inference algorithm 10
3.1 Inference via the Expectation-Maximization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Inference of motion sources for a given structure (E-step) . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Inference of motion strengths and sparsity prior (M-step) . . . . . . . . . . . . . . . . . . . . . . 12
3.1.3 Extension to multiple spatial dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Continuous-time, online inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Equivalent formulation of the generative model and inference using natural parameters . . . . 13
3.2.2 Continuous-time dynamics of natural parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.3 Simultaneous online inference of motion sources and structure . . . . . . . . . . . . . . . . . . 14

3.3 Adiabatic approximation for prediction error-based inference . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.1 Prediction error-based formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2 Convergence approximation on the posterior precision . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.3 Analytic solution for diagonal covariance matrices . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.4 Putting it together: neuro-friendly algorithm for online structure inference . . . . . . . . . . . 17
3.3.5 A pleasant note on inference of rotational and radial motion . . . . . . . . . . . . . . . . . . . . 17

4 Extensions of the online algorithm 17
4.1 Non-isotropic observation noise and missing observations . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Heterogeneous time constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Interaction priors capturing feature compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Detecting motion components that had decayed to baseline . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 Learning the motion components on long time-scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Neural network implementation 20
5.1 Aims and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Linearly decodable variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Motion structure inference via at-most quadratic operations . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4 Neural dynamics for integrating linear and quadratic differential equations . . . . . . . . . . . . . . . 21
5.5 Recurrent network model for online motion structure inference . . . . . . . . . . . . . . . . . . . . . . 22
5.6 Neural coding of the input: an example for area MT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Captions to the supplemental videos 27

1/28



1. Supplemental figures

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

0

1

2

3

4

In
fe

rre
d 

m
ot

io
n 

st
re

ng
th

s 
m

a

Online EM
Approx. algorithm
Ground truth

+
+
-
-

+
+
-
-

+
+
-
-

+
+
-
-

+
+
-
-

+
+
-
-

13.5 14.0 14.5 15.0 15.5 16.0 16.5
Time [s]

3

2

1

0

1

2

3

So
ur

ce
s 

x-
di

re
ct

io
n,

 s
x(t

)

b

13.5 14.0 14.5 15.0 15.5 16.0 16.5
Time [s]

3

2

1

0

1

2

3

So
ur

ce
s 

y-
di

re
ct

io
n,

 s
y(t

)

c

0 25 50 75 100 125 150 175 200
Time [s]

0

1

2

3

4

In
fe

rre
d 

m
ot

io
n 

st
re

ng
th

s 
m

d

Online EM
Approx. algorithm
Ground truth

0 5 10 15 20 25 30
Time [s]

0

1

2

3

4

In
fe

rre
d 

m
ot

io
n 

st
re

ng
th

s 
m

e

Online EM
Approx. algorithm
Ground truth

Figure S1. The online algorithm correctly recovers the structure and motion sources of presented input. (a) Inferred
motion strengths by the online algorithm. Two-dimensional input was generated from the generative model for a deeply nested
structure with shared motion (pink; λ=4), two separate groups of counter-rotating sub-groups (dark- and light-blue; +/− in the
inset indicates Ckm =+1/− 1; λ=2.25 and 1.75), and eight individual motions (greens; λ=1). Other parameters are the default
parameters for object-indexed experiments (see table in the Methods section of the main paper). Shown are the inferred strengths
for the approximate online algorithm (solid lines; given by eqn. (1)−(3) of the main text), the more accurate, but computationally
also more complex online EM algorithm (dashed lines; given by eqn. (29), (30), and (35) of the Supplemental Information), and the
ground truth (dotted lines). The approximate algorithm yields results similar to the reference online EM algorithm. Both algorithms
underestimate the motion strengths due to the sparsity prior p(λ2). (b) Inferred motion sources, x-direction for the highlighted
duration of the simulation in panel a. Same color key as in panel a. (c) Same as panel b, but for the y-direction. (d) Repetition of
the simulation in panel a, but with 10x longer time constant τλ, longer run time, and uniform prior over the motion strengths. The
underestimation in the reference algorithm vanishes; the approximate algorithm maintains its approximation quality. (e) Repetition
of the simulation in panel a, but with a temporally changing structure. After 10 s, the shared component is switched off in the input.
After 20 s, the shared component is re-introduced, but the groups are switched off. Both inference algorithms successfully detect
these changes.

2/28



0 20 40 60 80 100 120
Time [s]

0.00

0.25

0.50

0.75

1.00

1.25

In
fe

rre
d 

m
ot

io
n 

st
re

ng
th

s 
m

Online EM
Approx. algorithm

Figure S2. The online algorithm prefers simple structures, recruiting only necessary components from the reservoir.
Shown is a repetition of the Johansson experiment from Figure 2c, yet with a duplicated shared motion component in the observer
model (pink and orange, see inset in the top-left). A small difference at initialization (t=0) between the two components widens,
such that eventually only one component is recruited and the other one is dismissed. This preference for simpler structures is a
direct consequence of the sparsity-inducing Jeffreys prior. If a uniform prior had been used, both shared components would have
been maintained (not shown). Furthermore, we notice that the reference online EM algorithm converges more rapidly than the
approximate algorithm. The reason is found in the posterior covariance matrix, Σ, which is fully computed for online EM according
to eqn. (29) and in which the off-diagonal element between the two shared components introduces competition during the credit
assignment in eqn. (39) (uncertainty in the two sources is negatively correlated, leading to a negative matrix element in Σ).

3/28



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [s]

0

1

2

3

In
fe

rre
d 

m
ot

io
n 

st
re

ng
th

s 
m

Stimulus: I,  Human choice: I,  Model pred. prob.: (I,G,C,H) = 0.88, 0.01, 0.08, 0.03

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [s]

0

1

2

3

4

In
fe

rre
d 

m
ot

io
n 

st
re

ng
th

s 
m

Stimulus: I,  Human choice: H,  Model pred. prob.: (I,G,C,H) = 0.04, 0.04, 0.21, 0.71

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [s]

0

1

2

3

4

In
fe

rre
d 

m
ot

io
n 

st
re

ng
th

s 
m

Stimulus: G,  Human choice: G,  Model pred. prob.: (I,G,C,H) = 0.01, 0.95, 0.01, 0.03

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [s]

0

1

2

3

4

5

In
fe

rre
d 

m
ot

io
n 

st
re

ng
th

s 
m

Stimulus: G,  Human choice: H,  Model pred. prob.: (I,G,C,H) = 0.01, 0.37, 0.03, 0.59

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

In
fe

rre
d 

m
ot

io
n 

st
re

ng
th

s 
m

Stimulus: C,  Human choice: C,  Model pred. prob.: (I,G,C,H) = 0.04, 0.01, 0.85, 0.10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
fe

rre
d 

m
ot

io
n 

st
re

ng
th

s 
m

Stimulus: C,  Human choice: H,  Model pred. prob.: (I,G,C,H) = 0.01, 0.01, 0.58, 0.40

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [s]

0.0

0.5

1.0

1.5

In
fe

rre
d 

m
ot

io
n 

st
re

ng
th

s 
m

Stimulus: H,  Human choice: H,  Model pred. prob.: (I,G,C,H) = 0.02, 0.21, 0.12, 0.65

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [s]

0

2

4

6

In
fe

rre
d 

m
ot

io
n 

st
re

ng
th

s 
m

Stimulus: H,  Human choice: G,  Model pred. prob.: (I,G,C,H) = 0.01, 0.50, 0.02, 0.47

Figure S3. Examples of motion structure inference for trials from (Yang et al., 2021). Shown are traces for λ(t) for eight
example trials of participant # 1. Axes titles state the ground truth, the participant’s classification, and the predicted choice
probabilities of the model. Left column: Trials of each structure which were correctly classified by the human participant. Right
column: Trials of each structure which were incorrectly classified by the human participant.

4/28



I

G

C

H

H
um

an

.88 .00 .04 .08

.00 .85 .02 .13

.02 .00 .75 .23

.09 .18 .32 .41

# 1

I G C H

I

G

C

H

M
od

el
Tr

ue
 s

tru
ct

ur
e

.87 .01 .06 .05

.01 .80 .02 .17

.04 .01 .75 .20

.03 .25 .28 .44

.60 .02 .34 .04

.01 .79 .03 .17

.02 .02 .55 .41

.03 .19 .33 .44

# 2

I G C H

.59 .02 .25 .14

.01 .80 .03 .16

.04 .04 .63 .29

.02 .14 .36 .48

.68 .00 .20 .12

.00 .89 .04 .07

.04 .00 .63 .33

.02 .36 .20 .41

# 3

I G C H

.65 .03 .20 .12

.01 .84 .02 .12

.07 .01 .66 .26

.02 .38 .18 .42

.71 .00 .08 .21

.02 .71 .21 .06

.07 .05 .77 .11

.21 .11 .41 .27

# 4

I G C H

.73 .02 .20 .05

.05 .62 .15 .18

.14 .02 .67 .16

.12 .17 .45 .27

.69 .02 .18 .11

.00 1.00 .00 .00

.05 .14 .52 .29

.08 .38 .14 .40

# 5

I G C H

.68 .10 .13 .09

.01 .95 .01 .03

.11 .07 .50 .32

.04 .35 .22 .39

.69 .00 .22 .09

.00 .76 .05 .18

.05 .03 .55 .37

.07 .26 .43 .24

# 6

I G C H

.63 .04 .22 .11

.02 .77 .05 .16

.10 .04 .59 .27

.06 .20 .36 .38

I

G

C

H

H
um

an

.96 .00 .03 .01

.00 .94 .00 .06

.12 .03 .70 .15

.07 .32 .18 .43

# 7

I G C H

I

G

C

H

M
od

el

.91 .01 .06 .02

.01 .93 .01 .04

.16 .07 .52 .24

.06 .28 .28 .37

.68 .02 .08 .23

.00 .76 .00 .24

.24 .04 .56 .17

.12 .14 .45 .29

# 8

I G C H

.70 .05 .15 .10

.03 .65 .08 .24

.20 .03 .52 .26

.14 .18 .33 .35

.71 .03 .12 .15

.00 .84 .07 .09

.00 .00 .64 .36

.03 .17 .30 .50

# 9

I G C H

Human choice / model prediction

.69 .01 .20 .09

.01 .82 .02 .14

.03 .03 .60 .34

.03 .19 .29 .49

.45 .02 .37 .16

.03 .74 .00 .24

.00 .02 .67 .30

.02 .14 .28 .57

# 10

I G C H

.43 .02 .37 .18

.01 .73 .03 .23

.03 .03 .63 .31

.02 .13 .30 .56

.76 .00 .17 .07

.00 .88 .00 .12

.08 .00 .72 .20

.02 .13 .28 .57

# 11

I G C H

.76 .01 .17 .06

.01 .78 .03 .18

.06 .01 .71 .22

.02 .20 .27 .51

.66 .00 .23 .11

.00 .80 .00 .20

.06 .02 .64 .28

.02 .31 .17 .50

# 12

I G C H

.68 .05 .16 .11

.01 .85 .02 .12

.04 .02 .60 .34

.02 .20 .26 .52

Figure S4. The online algorithm captures participant-specific error patterns in the data from (Yang et al., 2021). Shown
are the confusion matrices for all 12 participants along with the cross-validated predictions of our model. The model captures
participant-specific patterns, such as general performance levels; the preferential misclassification of hierarchical motion (H) as
either global (G) or clustered (C); and the asymmetry between the I-C and C-I elements.

5/28



0 5 10 15 20 25 30
Time [s]

0

1

2

3

4

5

In
fe

rre
d 

m
ot

io
n 

st
re

ng
th

s 
m

a

0 1 2 3 4 5 6 7 8
Time [s]

2

1

0

1

2

So
ur

ce
s 

x-
di

re
ct

io
n,

 s
x(t

)

b

0 1 2 3 4 5 6 7 8
Time [s]

2

1

0

1

2

So
ur

ce
s 

y-
di

re
ct

io
n,

 s
y(t

)

c

0 5 10 15 20 25 30
Time [s]

0

1

2

3

4

In
fe

rre
d 

m
ot

io
n 

st
re

ng
th

s 
m

d

0 1 2 3 4 5 6 7 8
Time [s]

1.5

1.0

0.5

0.0

0.5

1.0

1.5

So
ur

ce
s 

x-
di

re
ct

io
n,

 s
x(t

)

e

0 1 2 3 4 5 6 7 8
Time [s]

1.5

1.0

0.5

0.0

0.5

1.0

1.5

So
ur

ce
s 

y-
di

re
ct

io
n,

 s
y(t

)

f

Figure S5. Detailed evolution of all motion strengths and sources in the illusion from Lorenceau. (a) Motion strengths,
λ(t), in the low-noise condition. Motion is decomposed into a deep hierarchy of self-motion (yellow), shared motion (magenta),
group motion (dark and light blue), and individual motion of all K=20 dots (greens). In the generative model, self-motion affects
the velocities of all dots and of the zero-mean vestibular input (lowest row in the C-matrix inset). (b) Inferred x-direction, µx(t), of
all motion sources in the low-noise condition, for the highlighted duration in panel a. (c) Same as panel b, but for the y-direction.
(d–f) Same as panels a–c, but for the high-noise condition.

6/28



List of used variables

Variable Description Variable Description

v = (v1, ..,vK)
T Observable velocity s = (s1, .., sM)T Latent motion source

vk = vk,d(t) Dim. d and time t often suppressed sm = sm,d(t) Dim. d and time t often suppressed
v̂ = (v̂1, .., v̂K)

T Noise-free velocity λ = (λ1, ..,λM)T Motion strength
µ = (µ1, ..,µM)T Mean vector in s-posterior ε = (ε1, ..,εK)

T Prediction error
Σ = Ω−1 Covariance in s-post. and inv. precision fΣ Adiabatic approx. of σ2

σ2 Vect. of diag. elements (Σ11, ..,ΣMM)T C Component matrix of shape (K×M)

D no. dimensions cm m-th column of C
diag[x] Diag. matrix over some vec. x 〈 f (x)〉p(x) Expectation of f (x) under p(x)
τs Time const. for s-inference (OU process) J Interaction prior on motion comp.
τλ Time const. for λ-inference δt Obs. interval (inverse frame rate)
τε Time const. for pred. err. δ(t), δij Dirac and Kronecker delta
tobs Obs. time point in cont.-time (CT) ∂t Partial derivative (here, w.r.t. t)
t No. time steps (DT); Or: time (CT) ν No. of µ-pseudo obs. (hyperprior)
Iχ(ν,κ2) Scaled inverse chi-squared distribution κ Val. of pseudo observations
σρ MT width of speed tuning κα MT precision of direction tuning
σobs Observation noise (δt-independent) Q(λ) EM expect. compl. data log-likelihood
σ̃obs Disc.-time obs. noise (=σobs/

√
δt) S Structure I, G,C, H in (Yang et al., 2021)

R Radial rec. field loc. β Inv. temp. in (Yang et al., 2021)
ϑ Angular rec. field location bG,bC,bH Biases in (Yang et al., 2021)
sr, sϕ Polar sources: radial and angular velocity πL Lapse prob. in (Yang et al., 2021)
ρ Speed in MT tuning func. α Direction (angle) in MT tuning
nρ, nα, Nρ, Nα MT neuron indices, max. values µρ(nρ), µα(nα) Tuning center of neuron (nρ,nα)

ψ MT max. firing rate multiplier In(κ) Modified Bessel function of order n
f , fσ, fρ, fα MT tuning func. and sub-functions I Identity matrix
W ,W Linear maps in algo. & neural domain Q, Q Quad. maps in algo. & neural domain
b,b Add. constants in algo. & neural domain A, A† Linear decoding matrix & adjoint
x,y,z Variables in generic network derivation xk, yk Spatial locations for 2-dim. stimuli
rinp, rdis, r1-to-1 Firing rates in the network model γ Direction repulsion opening angle
vvst Vestibular self-motion input ϕ̇ Angular (rotational) velocity
σvst Obs. noise for vestibular input ṙ Radial velocity
ηC Learning rate for C-learning

Table 1. List of used variables. In a few cases, we chose to accept notation clashes when confusion is ruled out and the dual
use actually facilitates clarity. These cases are indicated with “Or:” in the description.

7/28



Theory of the inference algorithms and the neural network model

In Section 2, we introduce the generative model for structured motion. In Section 3, we derive the online hierarchical
inference algorithm. In Section 4, we present optional extensions to the algorithm. In Section 5, we derive the
recurrent neural network model.

2. Generative model of structured motion
The following model of hierarchically structured motion is an adaptation of the generative model from (Bill et al.,
2020). We consider K observable velocities, vk,d(t), in D spatial dimensions. To prevent clutter, we will develop most
of the theory for the one-dimensional case, D=1, and use the vector notation, v=(v1, ..,vK)

T. The extension to D>1
is straightforward and will be covered in a dedicated subsection. We will often suppress the explicit time dependence
when confusion is ruled out. In other cases, we may write time as an index, vt, when a compact notion is desirable.
Observable velocities, v, are noisy instantiations of noise-free velocities, v̂, which are generated by M latent motion
sources, sm,d(t), as will be specified below. Similar to velocities, we abbreviate s=(s1, .., sM)T.

2.1 Composition of observable velocity from motion motifs
For the purpose of this work, we restrict the influence of motion source sm(t) on velocity v̂k(t) to three particularly
basic relations: the motion of sm can affect v̂k either positively (e.g., the latent flock motion on an observed bird’s
velocity), negatively (e.g., the effect of self-motion on the observed scene), or not at all (e.g., the flock motion’s
effect on a tree). Formally, we describe these influences in a K×M component matrix C, with Ckm= + 1, −1, and
0 for positive, negative and absent influence, respectively. We will sometimes refer to the columns of C as motion
motif or motion component cm. Typically, we have M > K because every observable can have its individual motion
component which exclusively affects this observable.

The overall velocity v̂k is the sum of all the motion sources’ contributions:

v̂ = C s . (1)

It is easy to see that all tree-like hierarchies can be cast into this form. As a word of warning, the opposite is not true:
not every possible C represents hierarchically structured motion.

Finally, it is worth mentioning that motion components are not necessarily limited to the simple Ckm= ± 1 values.
For modeling gradual relationships, a motion source could affect some observables stronger than others. For instance,
the current of a river could influence the water’s velocity in the middle of the river stronger than close to the bank.
All subsequent derivations likewise hold for such gradual relationships, as long as they influence the observed
velocities linearly.

2.2 Generation of observable velocities from stochastic, latent motion sources
For the generative model, we assume that the motion sources, sm(t), evolve independently according to an Ornstein-
Uhlenbeck process, see, e.g., (Gardiner, 2009),

dsm =− 1
τs

sm dt + λm dWm , (2)

where Wiener process Wm(t) drives changes in sm via random forces, motion strength λm ≥ 0 controls the magnitude
of these forces, and τs > 0 is the typical time constant of significant changes in sm. The equilibrium distribution of
this process is a normal distribution with zero mean and variance τs

2 λ2
m:

lim
t→∞

p(sm(t)) =N
(
sm; 0, τs

2 λ2
m
)

. (3)

The Ornstein-Uhlenbeck process is a suitable first-order approximation for modeling real-world motion as it
(i) generates continuous trajectories sm(t), (ii) includes a notion of inertia/momentum via its temporal filtering
with τs, (iii) offers an intuitive parameterization by scaling typical velocities linearly in λm, and (iv) implements a
slow-velocity prior via a normal distribution like in (Weiss, Simoncelli, and Adelson, 2002).

Observable velocities, v(t), are generated by composing the latent motion sources to noise-free velocities according
to eqn. (1) and then applying independent Gaussian noise:

v(t)∼N
(
C s(t), σ̃2

obs I
)

. (4)

8/28



Origin (Fixation point)

RF center

dista
nce R

angle ϑ
x

y

Noise-free velocity

ṙ
  R·φ̇

ẋ

ẏ

Figure S6. Coordinate transformation from polar motion sources to Cartesian velocities for supporting rotational and
radial motion motifs. When receptive field (RF) centers are fixed, rotational motion, ϕ̇, and radial motion, ṙ, feature fixed linear
relations to the resulting Cartesian velocities in x- and y-direction. The angles ϑ and ϕ are measured relative to the x-axis in
counter-clockwise direction by convention. Cartesian components are measured in rightward (x) and upward (y) direction.

In foresight of the continuous-time formulation, we denote the observation noise by σ̃obs (with a tilde). It will later
be adjusted to the frame rate of incoming observations such that the information per unit time remains constant.
To keep the derivation tractable, we will ignore the reported velocity-dependence of observation noise in human
perception (Weber’s law) and treat σ̃obs as a constant.

Marginalizing over the stationary distribution of the latent motion sources, eqn. (3), the observable velocities are
jointly normally distributed due to their linear dependence on a Gaussian origin, with zero mean and covariance
matrix τs

2 C diag
[
λ2]CT + σ̃2

obs I, with diag
[
λ2] denoting the diagonal matrix generated from vector λ2=(λ2

1, .., λ2
M)T.

2.3 Motion structure
The motion strengths λ play a particularly important role in the generative process described by eqn. (2)+(4). For
λm=0, dependent motion sources decay to zero, i.e., sm→ 0. Hence, motion strengths describe the presence (λm > 0)
or absence (λm=0) of motion components, as well as their typical magnitude (〈|sm|〉 ∝ λm). In other words, given a
reservoir of components, C, which have been learned to occur in visual scenes in general, the vector λ will describe
the structural composition of motion relations in a specific visual scene. Knowing λ therefore is equivalent to
knowing the motion structure of the scene.

2.4 Extension to multiple spatial dimensions
For D > 1, we will usually assume that all sm,d with the same index m share motion strength λm and motion
component cm, yet each sm,d follows its own stochastic evolution, i.e., has its own Wiener process, Wm,d, in eqn. (2).
This choice reflects that space is isotropic: due to the Gaussianity of each sm,d, the joint distribution p(sm,1, .., sm,D) will
be a multivariate Gaussian with covariance matrix τs

2 λ2
m I, with I denoting the identity matrix, and is, thus, invariant

to rotations in the experimenter’s choice of the coordinate system. Again, this is a useful first-order approximation,
even though human motion perception has been reported to be not perfectly isotropic (Manning, Thomas, and
Braddick, 2018; Moscatelli et al., 2019).

In summary, the generative model of structured motion is characterized by the following set of parameters:
number of spatial dimensions D, motion strengths λ, component matrix C, time constant τs, and observation
noise σ̃obs. Some extensions of this model covering heterogeneous time constants, non-isotropic observation noise
and missing observations will be discussed in dedicated subsections in the context of online inference, below.

2.5 Polar coordinates: rotational and radial motion
The discussion so far assumed that motion sources affect velocities in a translational (Cartesian) manner, that is, by
adding the same vector to all dependent velocities. An important exception are rotational and radial motion in two
dimensions (D=2) which typically occur in flow field parsing (when moving forward, everything expands on the
retina; when tilting your head, everything rotates in the opposite rotational direction).

It turns out that rotational and radial motion sources can be incorporated into our framework of linear velocity
generation as per eqn. (1), when the spatial locations of all dependent velocities are fixed. This is, for example, fulfilled
in experimental setups using drifting gratings: the drifting grating has motion energy, but its location stays fixed

9/28



at the same spot. Note how this setup is different from the perspective commonly taken in physics where velocity
entails changes in location. The perspective we take here is geared towards studying brain computation where a
group of neurons often processes motion in a certain, fixed area of the inputs. Specifically, this is satisfied in many
visual areas including V1, MT, and MST, where neurons feature a fixed spatial receptive field in retinal coordinates.
The index k in vk then refers to a fixed location on the retina. We therefore call this condition “location-indexed”.

To derive the generative model for rotational and radial motion in a location-indexed experiment, consider the
spatial receptive fields illustrated in Fig. S6. Each receptive field (RF) has a fixed center relative to the fovea and is
characterized by radial distance R and angle ϑ, which is measured relative to the x-axis in counter-clockwise direction
by convention. The generative model can use latent motion sources in radial direction, denoted by ṙ in the figure,
and in angular direction, denoted by ϕ̇. These polar motion sources generate velocities ẋ and ẏ in Cartesian space.
Importantly, the (generative) transformation from polar to Cartesian coordinates is linear for each receptive field:

ẋ = ṙ cosϑ− ϕ̇ Rsinϑ (5)
ẏ = ṙ sinϑ + ϕ̇ Rcosϑ .

Consequently, the generative process can be included into the component matrix C when each polar motion
source affects dependent observables, v̂k, in both spatial dimensions. In contrast to the previously discussed
translational motion sources, rotational and radial motion sources maintain separate motion components cm and
motion strengths λm:

ck,m=rad,d=x = cosϑk , ck,m=rot,d=x =−Rk sinϑk (6)
ck,m=rad,d=y = sinϑk , ck,m=rot,d=y =+Rk cosϑk .

As before, the model adds up the velocities from different sources and applies the observation noise only to the final
velocity (in Cartesian space). The example of rotational and radial motion demonstrates how spatial dimensions can
be mixed, as long as the coordinate transformation is linear for every observable v̂k.

3. Online hierarchical inference algorithm

In Section 3.1, we develop the hierarchical inference algorithm in a discrete-time, batch formulation, using the
Expectation-Maximization (EM) algorithm. In Section 3.2, we draw the continuous-time limit to obtain an online
algorithm. Finally, in Section 3.3, we introduce an adiabatic approximation which reduces the required computations
to neuron-friendly operations. This is the online algorithm underlying all simulations of the main paper.

3.1 Inference via the Expectation-Maximization algorithm
Our goal for motion structure inference is to simultaneously infer the value of motion sources s(t) and the underlying
structure λ from a stream of observations v1:t = (v1, ..,vt) with observations arriving at time steps of duration δt
(inverse frame rate). The number of spatial dimensions D, components C, time constant τs, and observation noise σ̃obs
are assumed to be known (although C could be learned on longer time scales, see Section 4.5). The challenge in this
hierarchical inference task is that st and λ are mutually dependent on another: λ acts as a parameter in p( st |λ ) per
eqn. (2), and will therefore affect the posterior p( st |v1:t ). On the other hand, inferring the presence of, say, flocking
birds (λflock > 0) depends on “perceiving” an instantaneous flock motion, sflock(t), in the first place.

The EM algorithm (Dempster, Laird, and Rubin, 1977) offers a solution to this chicken-and-egg problem. For
its application, we leverage the fact that motion sources and strengths change on different time scales, τs for st and
τλ for λ. For τλ� τs, we can treat λ as a constant while inferring s(t)—known as the E-step in EM—, and then, in
alternation, optimize λ based on the inferred motion strengths—the M-step in EM. In Section 3.1.1 and Section 3.1.2,
we will address the E-step and the M-step separately. As before, we will develop the theory in one spatial dimension
for notational clarity and then generalize to D > 1. Further, we will present the derivation in discrete time in a batch
formulation. The continuous-time limit will be drawn in Section 3.2.

3.1.1 Inference of motion sources for a given structure (E-step)
For the E-step, we aim to infer p( s1:t |v1:t ; λ ) for a given structure λ, and then compute the expected value of the
log-likelihood of the augmented data distribution p(v1:t, s1:t ; λ), see, e.g., Section 9.3. in (Bishop, 2006). For the
remainder of this subsection, we will often suppress the explicit dependence on λ to avoid notational clutter. Since

10/28



we are interested in an online algorithm, we will use the filtering solution which is obtained from iterative application
of temporal propagation to the next observation time,

p( st−1 |v1:t−1 ) −→ p( st |v1:t−1 ) , (7)

and integration of the next observation,

p( st |v1:t ) ∝ p( st |v1:t−1 ) p(vt | st ) . (8)

Propagation, eqn. (7), is performed by propagating the density according to the stochastic process in eqn. (2).
Mathematically, this is done by convolving p( st−1 |v1:t−1 ) with the Gaussian transition density p( st | st−1 ) of the
Ornstein-Uhlenbeck process. Integration, eqn. (8), is the application of Bayes rule using the emission model of
eqn. (4).

For linear stochastic dynamics with a Gaussian emission model, i.e., the present case, the posterior will always be
a multivariate Gaussian with some mean µt and covariance Σt: p( st |v1:t ) =N (st; µt, Σt). Kalman filtering (Kalman,
1960) is one possible algorithm for calculating the posterior moments µt and Σt, and we refer the interested reader to
the Supporting Information of (Bill et al., 2020) for explicit forms of the Kalman filter’s state transition matrix and
process noise covariance matrix. For the present work, we will employ a more elegant, continuous-time solution
that is equivalent to the Kalman-Bucy filter (Kalman and Bucy, 1961; Jazwinski, 2007) for calculating µt and Σt. The
derivation, which is provided in Section 3.2, will furthermore facilitate a neuro-friendly approximate implementation
(Section 3.3). For now, let us assume that the posterior moments, µ1:t and Σ1:t, have been computed by whichever
method of choice.

E-step. We compute the expected value of the log-likelihood of the augmented data distribution,1

Q(λ) =〈log p(v1:t, s1:t ; λ)〉p( s1:t |v1:t )
(9)

=
t

∑
j=1
〈log p

(
vj | sj ; λ

)
+ log p

(
sj | sj−1 ; λ

)
〉p( sj ,sj−1 |v1:t )

(10)

ind.≈
t

∑
j=1
〈log p

(
vj | sj ; λ

)
+ log p(sj ; λ)〉p( sj |v1:j )

def.
=

t

∑
j=1

Qj(λ) , (11)

where, at the third equality, we have made two approximations, namely, that (i) consecutive observations were
independent, and (ii) we take the expectation w.r.t. the filtering posterior, p

(
sj |v1:j

)
, rather than the smoothing

density, p
(

sj |v1:t
)
. The first approximation will be corrected for during the M-step in Section 3.1.2, where we will

weigh the likelihood term as if it was comprised of only t · δt/τs independent samples when combining it with
a sparsity prior on λ. This correction is justified because it is equivalent to considering only a sparse subsample
of observations that each lie τs apart. Consecutive observations in this subsample are almost decoupled since the
Ornstein-Uhlenbeck process in eqn. (2) decorrelates the motions sources at time scale τs. The second approximation—
filtering rather than smoothing—is a modeling assumption for what information is employed by an online agent,
e.g., a human observer.

The Qj(λ) can be calculated analytically:

Qj(λ) =〈log p
(

vj | sj ; λ
)
+ log p(sj ; λ)〉p( sj |v1:j )

← with p(sj |v1:j) =N
(
sj; µj, Σj

)
(12)

=〈− 1
2 (vj − Csj)

Tσ̃−2
obs I (vj − Csj)− 1

2 sTj diag
[ τs

2 λ2]−1
sj − 1

2 log | σ̃2
obs I | − 1

2 log |diag
[ τs

2 λ2] |〉p( sj |v1:j )
+ const.

(13)

=
M

∑
m=1
− 1

τs

µ2
j,m + σ2

j,m

λ2
m

− 1
2

logλ2
m [dropping λ-independent terms and using 〈s2〉N (s;µ,σ2) = µ2 + σ2] (14)

with σ2
j,m := Σj,mm, | · | denoting the determinant, and the λ-independent terms have been dropped because they will

not play a role in the maximization w.r.t. λ in Section 3.1.2. For the full Q(λ), we thus obtain:

Q(λ) =
t

∑
j=1

Qj(λ) =−
t
τs

M

∑
m=1

〈µ2
j,m + σ2

j,m〉j
λ2

m
+

τs

2
logλ2

m , (15)

1In the 2nd line, we implicitly assume, for mathematical rigor only, that there is an initial distribution, p(st=0), which is absorbed again in the
3rd line.

11/28



with 〈·〉j being the time average over the batch.

3.1.2 Inference of motion strengths and sparsity prior (M-step)
For the M-step, Q(λ) is maximized w.r.t. λ to obtain the maximum likelihood (ML) solution. Here, we will make
use of the additional freedom to impose a prior distribution, p(λ), on the motion strengths, see, e.g., Section 9.4.
in (Bishop, 2006). First, we will introduce a family of prior distributions which reflect our knowledge that from a
reservoir of motion components most components will be absent or small in any given scene (sparsity prior). Then,
we will perform the M-step to derive the maximum a posteriori (MAP) solution.

Sparsity prior. In foresight of the M-step, we formulate the prior over λ2 (instead of λ) and choose

p(λ2 ; ν, κ2) =
M

∏
m=1
Iχ(λ2

m ; νm, κ2
m) with Iχ(λ2 ; ν, κ2) =

1
λ(2+ν)

exp
[
− νκ2

2λ2 − A(ν, κ2)

]
. (16)

Iχ(λ2 ; ν, κ2) denotes the density of the scaled inverse chi-squared distribution which is the conjugate prior to a
normal distribution with known mean and unknown variance. Conceptually, this is exactly our task at hand: we
know that 〈sm〉 = 0 in the generative model, but we have to estimate its variance, 〈s2

m〉, which is controlled by λ2
m.

As will become obvious in the M-step, the (hyper-)parameters, ν and κ2, will take the role of pseudo-counts and
pseudo-observations, respectively. The log-partition, A(ν, κ2) = logΓ( ν

2 )−
ν
2 log νκ2

2 , will have no effect on the MAP
estimate.

Two choices of ν and κ2 are of particular interest. For ν=κ2=0, we have p(λ2) ∝ 1/λ2 which is a non-informative
(Jeffreys) prior on the variance of s2. For ν=−2, κ2=0, we have p(λ2) ∝ 1 which is a uniform prior. The latter choice
of hyper-parameters will turn the MAP estimate into the ML estimate.

M-step. To maximize Q, we find the roots of its λ2
m-derivatives:

0 !
=

d
dλ2

m

(
Q(λ) + log p(λ2 ; ν, κ2)

)
=

t
τs

(
〈µ2

j,m + σ2
j,m〉j

(λ2
m)

2 − τs

2
1

λ2
m

)
+

νm κ2
m

2 (λ2
m)

2 −
1 + νm

2
λ2

m
(17)

⇒ t 〈µ2
j,m + σ2

j,m〉j +
τs
2 νmκ2

m = t τs
2 λ2

m + τs
2 (2 + νm)λ

2
m (18)

⇒ τs
2 λ2

m =
t 〈µ2

j,m + σ2
j,m〉j +

τs
2 νmκ2

m

2 + νm + t
. (19)

Eqn. (19) highlights several intuitive properties of motion structure inference. First, the MAP value of motion
strength λ2

m only depends on the inferred posterior moments of the corresponding motion source sm, that is, there is
no cross-talk between motion sources sm and sm′ . Second, recalling that τs

2 λ2
m is the expected long-term variance of sm

according to eqn. (3), eqn. (19) tells us to match this expected variance, τs
2 λ2

m, to the observed variance, 〈µ2
j,m + σ2

j,m〉j,
of the inferred motion source over time.2 Third, hyper-parameter κm plays the role of an average pseudo-observation,
τs
2 κ2

m = 〈µ2
m + σ2

m〉, which is then weighted as νm pseudo-samples against the t observed data samples. Thus, κm
describes (a priori) typical values of λm. (The summand 2 in the denominator of eqn. (19) is a relict of the scale-
invariant Jeffreys prior.) Finally, a uniform hyper-prior, νm=−2, κm=0, yields straightforward variance matching as
the ML solution.

We conclude the M-step, by correcting eqn. (19) for the fact that the t data samples actually only represent t · δt/τs
independent samples, as promised in Section 3.1.1,

τs
2 λ2

m =

t·δt
τs
〈µ2

j,m + σ2
j,m〉j +

τs
2 νmκ2

m

2 + νm + t·δt
τs

. (20)

Eqn. (20) is the batch solution to motion structure inference which we will build on for the continuous-time
formulation in Section 3.2.

2This is to be distinguished from the posterior’s instantaneous uncertainty σ2
t,m.

12/28



3.1.3 Extension to multiple spatial dimensions
When D > 1, we typically assume that each λm controls the variance of the sm,d in all spatial dimensions d (see
Section 2.4). When going through the derivation of the EM algorithm, the decisive changes happen in eqn. (15): (i)
the expectation now runs over all spatial dimensions, i.e., 〈∑D

d=1 µ2
j,m,d + σ2

j,m,d〉j; (ii) the log-partition gets multiplied

by D, due to each λm contributing with the power of D to log |diag
[
λ2] |. With these changes, the M-step in eqn. (20)

finds its optimum when

D τs
2 λ2

m =

t·δt
τs
〈∑D

d=1 µ2
j,m,d + σ2

j,m,d〉j +
τs
2 νmκ2

m
2
D + νm + t·δt

τs

. (21)

Here, we have made a slight re-parameterization of νm and κm to preserve the developed intuition that κm describes
typical values of λm, and that νm counts the number of pseudo-observations.3

3.2 Continuous-time, online inference
We now turn to a continuous-time formulation of the above motion stucture inference algorithm. While doing
so, we will overload the notation of time t which previously denoted integer-valued time steps and now becomes
real-valued. We will point out the respective locations where this transition happens, below, to preclude confusion.
Concretely, we will first reformulate the generative model in the form of natural parameters in Section 3.2.1. Then,
we derive continuous-time dynamics on these parameters in Section 3.2.2, as had been promised in Section 3.1.1,
for solving the E-step. Finally, we cast eqn. (21) into a recursive equation for an online, continuous-time M-Step in
Section 3.2.3. This results in the reference online EM algorithm for online hierarchical motion structure inference.

3.2.1 Equivalent formulation of the generative model and inference using natural parameters
Knowing that all distributions involved in propagation, eqn. (7), and integration, eqn. (8), are multivariate Gaussians,
we write the emission model, eqn. (4), in terms of the sufficient statistics of st,

p(vt | st ) =N
(
vt; C st, σ̃2

obs I
)

∝ exp

( st

stsTt

)
·

 CT vt
σ̃2

obs

− 1
2

CTC
σ̃2

obs

 , (22)

where we have dropped all st-independent terms because they will play no role in the inference. Denoting the
propagated, yet pre-integration, distribution by

p( st |v0:t−δt ) ∝ exp

[(
st

stsTt

)
·
(

Ωµt

− 1
2 Ωt

)]
, (23)

with yet-to-be-determined natural parameters Ωt :=Σ−1
t and Ωµt :=Ωt µt, the integration of observations, eqn. (8),

amounts to the following simple updates:

Ωt 7→Ωt +
CTC
σ̃2

obs
and Ωµt 7→Ωµt +

CT vt

σ̃2
obs

. (24)

In eqn. (23), we have made use already of the continuous-time notation, with time running from 0 to t and observations
arriving at δt-intervals. We next address propagation, i.e., the continuous-time dynamics of eqn. (2) in terms of Ωµt
and Ωt.

3.2.2 Continuous-time dynamics of natural parameters
For the OU process, eqn. (2), we know the evolution of the distribution of st between observations in closed form
(see, e.g., (Gardiner, 2009)). Namely, the mean µt decays towards 0 exponentially with time constant τs, and the
covariance Σt decays towards its steady state value diag

[ τs
2 λ2] exponentially with time constant τs

2 . From these
known dynamics of µt and Σt, we calculate the dynamics of the natural parameters:

∂tΩt =−Ωt (∂tΣt)Ωt = . . . = ( τs
2 )
−1 (I −Ωt diag

[ τs
2 λ2])︸ ︷︷ ︸

©?

Ωt +
CTC
σ̃2

obs
δ(t− tobs) . (25)

3Specifically, we substituted νm
D → νm and Dκ2

m→ κ2
m. Then, νm=1 means one pseudo-observation in each spatial dimension. A uniform prior

is imposed by νm= − 2/D and κm = 0.

13/28



For completeness, we have already included the integration of observations, eqn. (24), at observation time tobs in the
dynamics. In contrast to the dynamics of Σt, the dynamics of Ωt are non-linear. Yet, we observe that, in the absence
of observations, eqn. (25) leads to the desired fixed point since ©? = 0 for Ω−1 = diag

[ τs
2 λ2]. Likewise, we obtain for

the other natural parameter Ωµt:

∂t(Ωµt) = (∂tΩt)µt + Ωt (∂tµt) = . . . = τ−1
s (I − 2Ωt diag

[ τs
2 λ2])︸ ︷︷ ︸

©?©?

Ωµt +
CT vt

σ̃2
obs

δ(t− tobs) . (26)

Again, as a sanity check, we observe the desired decay to zero because of ©?©? →−1, in the absence of observations.

Continuous stream of observations. So far, we have treated observations vt as point observations which arrive
only at distinct time points tobs and, then, lead to “jumps” via integrating over the Dirac delta. For a complete
continuous-time formulation, we choose to turn observations into a continuous input stream. When observations
arrive every δt-interval and are corrupted by i.i.d. Gaussian noise of variance σ̃2

obs, we can render their information
content δt-independent by setting

σ̃2
obs = σ2

obs/δt (27)

with the alternative parameter σ2
obs being independent of the observation frame rate (see, e.g., (Jazwinski, 2007;

Drugowitsch et al., 2012)). Furthermore, for δt→ 0, we use that

δt δ(t− tobs)→ 1 (28)

because we get one Dirac delta-integration per δt in eqn. (25) and (26) while all other variables stay (almost) constant.
With these two substitutions, we obtain:

∂tΩt = ( τs
2 )
−1 (I −Ωt diag

[ τs
2 λ2])Ωt +

CTC
σ2

obs
, (29)

∂t(Ωµt) = τ−1
s (I − 2Ωt diag

[ τs
2 λ2])Ωµt +

CT vt

σ2
obs

, (30)

with a continuous stream of observations, vt. Together, eqn. (29) and (30) solve the E-step (from Section 3.1.1) by
re-transforming the parameters via Σt = Ω−1

t and µt = Σt Ωµt. These moments are used in the filtering posterior
p( st |v0:t; λ ) of the reference online EM algorithm. The solution in terms of natural parameters is equivalent to
the Kalman-Bucy filter (Kalman and Bucy, 1961) which is derived directly in terms of µt and Σt, as we will see in
Section 3.3.1.

3.2.3 Simultaneous online inference of motion sources and structure
We complete our derivation of online, hierarchical inference of motion sources and motion structure by casting the
M-step, eqn. (20), into a recursive form and drawing the continuous-time limit. We restate eqn. (20) for reference,

τs
2 λ2

m =

t·δt
τs
〈µ2

j,m + σ2
j,m〉j +

τs
2 νmκ2

m

2 + νm + t·δt
τs

, (31)

where µj,m and σ2
j,m=Σj,mm are the posterior parameters obtained from the E-step. Recalling that λ2

t is based on the

time average of t discrete-time samples, we formulate λ2
t+1 as a sliding window average,

λ2
t+1 =

(
1− 1

t

)
· λ2

t +
1
t
·
(τs

2

)−1 t·δt
τs

(µ2
t+1 + σ2

t+1) +
τs
2 νκ2

2 + ν + t·δt
τs

, (32)

where (1− 1
t ) and 1

t are the weights for convex combination, and all vector operations are elementwise. Subtracting λ2
t

and dividing by inter-observation interval δt, we obtain:

λ2
t+1 − λ2

t
δt

=− 1
t δt

(
λ2

t −
(τs

2

)−1 t·δt
τs

(µ2
t+1 + σ2

t+1) +
τs
2 νκ2

2 + ν + t·δt
τs

)
. (33)

14/28



In this form, drawing the continuous-time limit is straight-forward. We let δt→ 0 while keeping τλ :=t δt constant:

∂tλ
2
t =−

1
τλ

(
λ2

t −
(τs

2

)−1 τλ
τs
(µ2

t + σ2
t ) +

τs
2 νκ2

2 + ν + τλ
τs

)
. (34)

Time t is now in continuous-time. The time constant τλ is the (continuous-time) width of the integration window and
defines the minimum time scale at which significant changes of λ2

t are expected to occur. From a strict algorithmic
perspective of EM, we require that τλ � τs. However, we observe in computer simulations that for practical
applications even small values, τλ ' τs, work reliably.

Extension to multiple spatial dimensions. We conclude by generalizing eqn. (34) to multiple spatial dimensions via
comparison of eqn. (20) and eqn. (21):

∂tλ
2
t =−

1
τλ

(
λ2

t −
(

D τs

2

)−1 τλ
τs
(∑D

d=1 µ2
t,d + σ2

t,d) +
τs
2 νκ2

2
D + ν + τλ

τs

)
. (35)

Eqn. (35) is used for inferring the motion strengths λ2
t in the reference online EM algorithm. The interactions of

eqn. (29), (30) and (35) confirm and particularize our earlier chicken-and-egg intuition that motion sources, st, and
motion structure, λt, are mutually coupled. The exact interactions are rather convoluted, and we will identify in
Section 3.3 an approximate interaction that is intuitively more accessible.

3.3 Adiabatic approximation for prediction error-based inference
The inference algorithm described by eqn. (29), (30), and (35) is a nice solution from a mathematical perspective. Yet,
for a theory of brain computation, it is questionable whether neural dynamics could reliably calculate 3rd-order
polynomials in the variables Ωµt, Ωt, and λ2

t as demanded, for instance, by eqn. (30).
In the following, we therefore explore an alternative, approximate solution which, as we will see, considerably

simplifies the involved computations while leading to almost identical results during motion structure inference. We
will proceed in three steps. First, in Section 3.3.1, we transfer eqn. (29) + (30) back into the domain of moments, µt
and Σt, and recover a prediction error-based update equation known as the Kalman-Bucy filter (Kalman and Bucy,
1961; Jazwinski, 2007). Then, in Section 3.3.2, we introduce an adiabatic approximation for the posterior covariance,
Σt, assuming that it has always converged to stationarity. Finally, in Section 3.3.3, we derive an analytical solution
for the converged uncertainty for the special case of diagonal covariance. The resulting algorithm, which we term the
adiabatic observer model and which is the online algorithm used in the main text, features interpretable dynamics on
the behaviorally relevant quantities µt and λ2

t and relies on only quadratic computations of vector-valued variables,
rather than 3rd-order computations on matrix-valued variables.

3.3.1 Prediction error-based formulation
We first transform eqn. (29) into dynamics of Σt:

∂tΣt =−Σt (∂tΩt)Σt (36)

=−( τs
2 )
−1Σt + diag

[
λ2]− Σt

CTC
σ2

obs
Σt , (37)

and use this result for transforming eqn. (30) into dynamics of µt:

∂tµt = ∂t(Σt Ωµt) = (∂tΣt)Ωµt + Σt ∂tΩµt (38)

=−µt

τs
+ ΣtCT

(
vt

σ2
obs
− Cµt

σ2
obs

)
. (39)

Eqn. (39) is a pretty neat equation as it reveals the “inner working” of inference as updating µt with the help of
prediction errors (vt − C µt), which are projected “up” into motion source space via CT, and then weighted by the
relative uncertainty of internal estimates vs. the uncertainty of observations, Σt / σ2

obs. In particular, in the absence of
observations (σ2

obs→∞), the estimated mean µt = 〈st〉 decays to zero with time constant τs, as expected from the OU
process. At first glance, it may seem that the inferred structure, λ2, plays no role in inferring st anymore. But actually,
λ2 still is present in eqn. (39) indirectly through its effect on Σt. We will study this indirect effect in the following.

15/28



0 1 2 3 4
Squared motion strength 2

m

0.00

0.01

0.02

0.03

0.04

0.05

Po
st

er
io

r v
ar

ia
nc

e 
f

(
2 m
)

Figure S7. Adiabatic, diagonal solution for the posterior variance. Shown is the function fΣ(λ
2
m), given by eqn. (42).

Parameters: τs=300ms, σobs=0.05, ‖cm‖2=4 .

3.3.2 Convergence approximation on the posterior precision

For τλ > τs, we observe that Σt can be calculated directly as a function of λ2
t , instead of going through the hassle

of integrating eqn. (37). This can be see as follows. We know that the posterior covariance Σt decays towards its
stationary value with a time constant in the order of τs/2. The stationary value itself is a dynamic equilibrium between
increasing uncertainty due to diffusion (the underlying Wiener process in eqn. (2)) and decreasing uncertainty due
to incoming observations (corresponds to the term CTC/σ2

obs in eqn. (29)). Notably, the stationary value does not
depend on the observations, vt. This is a peculiarity of the inference task at hand which is known from Kalman
filtering. This leaves λ2

t as the only dynamic variable in eqn. (37) to influence the stationary point of Σt. Since
λ2

t changes on time scales τλ > τs, the covariance, Σt, will always have enough time to react to any change in its
stationary value. This justifies treating Σt as having converged at any time, a method known in physics as adiabatic
approximation.

For stationary Σt, it follows from setting ∂tΣt=0 in eqn. (37) that

τs

2
Σ

CTC
σ2

obs
Σ + Σ− diag

[ τs
2 λ2]= 0 . (40)

3.3.3 Analytic solution for diagonal covariance matrices
Eqn. (40) is a continuous-time algebraic Riccati equation which can, in general, be solved using eigendecompositions
of an extended matrix. However, for a neural implementation, we will follow a simpler route by assuming that
Σ is diagonal. This amounts to ignoring correlations in uncertainty about latent motion sources in the posterior
distribution, for instance, during reasoning of the type: “I have correctly decomposed all velocities in expectation, and I
know my uncertainty about each motion component. But if I underestimated the flock velocity, then I likely overestimated the
birds’ individual velocities.” Only the last step of this reasoning will be ignored by dropping off-diagonal elements
in Σ. We observe in computer simulations that neglecting these posterior correlations typically has little impact on
the solution.

For diagonal Σ, eqn. (40) can be solved for each element σ2
m := Σmm separately:

τs

2
‖cm‖2

σ2
obs

(σ2
m)

2 + σ2
m −

τs

2
λ2

m = 0 , (41)

where we have defined ‖cm‖2 = ∑K
k=1 C2

km to denote the vector-norm of the m-th column of C, that is, the squared
Euclidean length of the m-th motion component. Solving eqn. (41) is straightforward, and we denote with fΣ(λ

2
m)

the resulting function for calculating σ2
m as a function of λ2

m:

σ2
m = fΣ(λ

2
m) =

σ2
obs

τs ‖cm‖2

(
−1 +

√
1 +

τs2 ‖cm‖2

σ2
obs

λ2
m

)
. (42)

fΣ is a monotonically increasing, non-negative function. Its graph is shown in Fig. S7 for typical parameter values.
In the limit of small motion strengths, λm→ 0, the variance grows quadratically in λm (non-squared): fΣ(λ

2
m)≈ τs

2 λ2
m.

For large strengths, λm→∞, the variance becomes linear in λm: fΣ(λ
2
m)≈

σobs
‖cm‖λm .

16/28



3.3.4 Putting it together: neuro-friendly algorithm for online structure inference

To obtain the neuro-friendly adiabatic observer model, we simply plug eqn. (42) into the dynamics of λ2
t , given by

eqn. (35), and µt, given by eqn. (39):

∂tλ
2
t =−

1
τλ

(
λ2

t −
(

D τs

2

)−1 τλ
τs
(∑D

d=1 µ2
t,d + fΣ(λ

2
t )) +

τs
2 νκ2

2
D + ν + τλ

τs

)
, (43)

∂tµt =−
µt

τs
+ fΣ(λ

2
t )CT

(
vt

σ2
obs
− Cµt

σ2
obs

)
, (44)

with fΣ(λ
2
m) =

σ2
obs

τs ‖cm‖2

(
−1 +

√
1 +

τs2 ‖cm‖2

σ2
obs

λ2
m

)
.

In this vector notation, fΣ(λ
2
t ) is evaluated elementwise, and the sum in eqn. (43) includes one evaluation of fΣ for

each spatial dimension d = 1..D. In eqn. (44), fΣ(λ
2
t ) is multiplied elementwise with the “up-projected” prediction

error.
We recognize how the motion structure, λt, controls the gating function, fΣ(λ

2
t ), for performing the credit

assignment of the prediction errors, in eqn. (44). Furthermore, we note that also the posterior uncertainty can be
recovered at any time since σ2

t,m = fΣ(λ
2
t,m).

For D = 1, eqn. (43) is eqn. (1) from the main text, eqn. (44) is eqn. (2), and eqn. (42) is eqn. (3).

3.3.5 A pleasant note on inference of rotational and radial motion
The approximations introduced for the adiabatic observer model hold, remarkably and importantly, also for the
biologically relevant case of radial and rotational motion (cf. Section 2.5 and Fig. S6 for the generative model).

To illustrate this, consider the case of two motion sources, radial srad(t) and rotational srot(t), with motion features
given by eqn. (6). The motion features C depend on the receptive field locations with parameters Rk and ϑk. For
inferring the radial component, srad(t), all receptive fields are equally informative, irrespective of their eccentricity, Rk.
Accordingly, eqn. (44) weighs all radial prediction errors equally, as expressed by the Rk-independence of the radial
row in CT. This is different when estimating rotational motion, srot(t). Here, prediction errors measured near the
fovea (small Rk) contribute only little to ∂tµrot: for small Rk, we expect to observe a small rotational motion energy
via C µt, such that the “Cartesian” observation noise of size σobs makes the stimulus virtually uninformative about
the rotational velocity ϕ̇. The scaling of CT with Rk accounts for that. Receptive fields far away from the fovea, in
contrast, predict a strong rotational velocity via C µt, such that noise of size σobs (in Cartesian space) has only a minor
impact on estimating µrot. Accordingly, the scaling of CT with Rk assigns a higher weight to peripheral receptive
fields for estimating rotational motion.

As a final remark, the above example assumed the observation noise σobs to be constant across all receptive fields.
Eqn. (44) naturally supports extensions to heterogeneous observation noise because all local prediction errors are
measured in units of their local noise.

4. Extensions of the online algorithm

4.1 Non-isotropic observation noise and missing observations
For the main manuscript, we have assumed the observation noise, σobs, to be a constant across time, t, observed
features, k, and spatial dimensions, d. In real-world scenes, the observation noise could change along all those indices.
An object could be occluded, or otherwise temporarily invisible, leading to 1/σ2

obs=0. Different objects might have
different observation noise, e.g., due to different visual contrast. The aperture problem could render local velocity
signals ambiguous: e.g., what is the direction of motion for a straight line that is larger than the aperture? This
could be modeled by small observation noise perpendicular to the line, and large noise parallel to the line. The
so-constructed diagonal covariance matrix, Σdiag, is then rotated as per Σxy=QT Σdiag Q with rotation matrix, Q,
into the canonical x-y-coordinate frame.

The above extensions of the observation noise are supported by our online algorithm, as long as changes in σ2
obs

occur slower than τs (so the adiabatic approximation remains valid). In eqn. (44), 1
σ2

obs
is extended to have different

17/28



elements, 1
σ2

obs,k,d
, and is multiplied elementwise with vt,k,d and (Cµ)t,k,d. When calculating fΣ, replace

‖cm‖2

σ2
obs

by
(

CTdiag
[

1
σ2

obs

]
C
)

mm
(45)

for each spatial dimension. In eqn. (43), the summation then runs over the different spatial dimensions of fΣ. The
idea that 1

σ2
obs

is vector-valued is also used in the network implementation in Section 5.

A note on the provided Python code package: In the code for the network, σ2
obs can currently have different

values for every input velocity vk, but is assumed to be (a) identical in both spatial dimensions, and (b) not to change
over time. The code for the algorithm is less restrictive by supporting temporary masking of inputs (presented via
class ObservationGeneratorVelo; leading to posterior variance σ2

m= fΣ(λ
2
m)=

τs
2 λ2

m if all dependent objects
are invisible according to eqn. (41)) and different noise in spatial dimensions.

4.2 Heterogeneous time constants
Different motion components, sm, might have different time-constants, τs, for typical changes in speed and direction
to occur. An extension to a vector τs=(τs,1, ..,τs,M) is straightforward by replacing all occurences of τs and 1/τs
by diag[τs] and diag

[
τs
−1], respectively. The code package supports heterogeneous time constants for both the

algorithm and the network.

4.3 Interaction priors capturing feature compatibility
Some motion components may be unlikely to occur together. Consider, for example, two cluster components in C
which are overlapping but do not contain one another: the simultaneous occurrence of the two clusters would not be
compatible with a tree structure. We can accommodate such incompatibility with the help of an interaction prior.

In the following, we outline how interaction priors can be included in the theory, and how they will affect the
inference process. We endow the λ2-prior from eqn. (16) with an interaction term:

p(λ2 ; ν, κ2) ∝

[
M

∏
m=1
Iχ(λ2

m ; νm, κ2
m)

]
· e
−1

2
(λ2)T J(λ2)

, (46)

where the interaction matrix J ∈RM×M is a symmetric, zero-diagonal matrix that models feature incompatibility. For
instance, positive values, Jml = Jlm > 0, describe a (soft) incompatibility between the mth and lth motion component.

In the derivation of the M-step, the interaction prior leads to an additional term (−Jλ)m on the right-hand side of
eqn. (17).4 For the optimum in eqn. (19), this leads to the following equation (using vector notation and covering
multiple spatial dimensions):

D τs
2

(
I +

2
2/D + ν + t

diag
[
(λ2)2] J

)
λ2 =

t ∑d〈µ2
j + σ2

j 〉j +
τs
2 νκ2

2/D + ν + t
. (47)

For small values of ‖J‖ or, similarly, large values of t (=τλ/τs in continuous-time), the matrix
J̃ :=

(
I + 2

2/D+ν+t diag
[
(λ2)2] J

)
is invertible with the approximate inverse J̃−1 ≈

(
I − 2

2/D+ν+t diag
[
(λ2)2] J

)
. We

can therefore move this matrix to the right-hand side and follow the derivation for online inference without interaction
priors. This leads to the following equivalent of eqn. (43):

∂tλ
2
t =−

1
τλ

(
λ2

t −
(

D τs

2

)−1
(

I − 2
2
D + ν + τλ

τs

diag
[
(λ2)2] J

) τλ
τs
(∑D

d=1 µ2
t,d + fΣ(λ

2
t )) +

τs
2 νκ2

2
D + ν + τλ

τs

)
. (48)

The only difference to eqn. (43) is that the target values on the right hand side are mixed together via J̃−1. This gives
rise to quite intuitive dynamics: if two motion components are incompatible, they mutually subtract their respective
(independent) target values from another, thereby slightly changing the motion structure in which the E-step will
interpret future input and, ultimately, leading to soft winner-takes-all competition. The term (diag

[
(λ2)2]) limits the

competition to those components that are significantly different from zero.

4Note that the normalization of the distribution in eqn. (46) will not depend on λ2, and thus will play no role in the M-step, which uses
λ2-derivatives of log p(λ2).

18/28



4.4 Detecting motion components that had decayed to baseline
If motion components are not detected in the structure for a longer time, the associated strength, λm, will decay to
zero. Since fΣ(0)=0, this will prohibit future detection of said motion component. This issue can be addressed in
two ways. In a biological agent, noise in the nervous system will lead to small fluctuations in the encoded value of
λ, thereby “probing” the presence of motion components simply via noisy deviations from λm=0. Alternatively, a
more principled solution exploits the hyperparameters, νm and κm, in eqn. (16) to prevent λm from decaying to zero,
e.g., by choosing νm=1 and κm=0.1. This follows the intuition that pseudo-observations in support of λm=κm had
been observed for a duration νm τs.

4.5 Learning the motion components on long time-scales
While not being the focus of this work, we briefly touch upon the question of how the motion components, C, could
be learned online from observations in an unsupervised manner. To this end, we follow a similar EM scheme as for
inferring λ and note that in eqn. (13) only the quadratic term depends on C. For the M-step, however, instead of
maximizing Q directly, we perform gradient ascent with respect to C:

∇CQt(C) = 〈∇C [−
1

2σ2
obs

(vt − Cst)
T (vt − Cst)]〉p( st |v0:t )

(49)

=
1

σ2
obs
〈vt sTt − C (st sTt )〉p( st |v0:t )

(50)

=
1

σ2
obs

(
vt µT

t − C
(

µt µT
t + Σt

))
. (51)

This gradient establishes the intuition to compare the observed covariance between inputs and motion components
against their expected covariance.

Furthermore, we note that the parameterization of motion structure via C and λ leaves an invariance: any scaling
of λ can be compensated by an inverse scaling of C. Due to the sparsity prior on λ, which favors small values,
this bears the risk of unbounded growth in C. We can address this risk by imposing a regularizing prior on C,
e.g., a Laplace prior or a Gaussian prior, such that the system finds a balance between small λ and small ‖C‖. We
incorporate the regularizer in the gradient-based update rule with the aim to balance prior and likelihood such that
the likelihood is weighted to contribute NC independent samples:

∂tC = ηC

[
1

σ2
obs

(
vt µT

t − C
(

µt µT
t + Σt

))
+

1
NC
∇C log p(C)

]
. (52)

Examples for the regularizer are ∇C log p(C) = −sign(C)/b for a Laplace prior and ∇C log p(C) = −C/b for a
Gaussian prior. For the online M-step, both µt and λt must have time to adapt to any changes in C. This is ensured
by requiring that the learning rate, ηC, is small enough to average over a large number of independent samples, i.e.,
ηC� 1/τλ. The small learning rate emphasizes how we think of C-optimization as a long-term learning process of a
“feature dictionary”.

Eqn. (52) offers a path to learning C via an online EM algorithm. In a network implementation with linear
population codes, however, it remains unclear how the update could be communicated to synapses: C determines
many synaptic weights in the network. Finding encoding and decoding vectors of the variables to support simple
plasticity rules is future work.

19/28



5. Neural network implementation
How could biological recurrent neural networks implement online motion structure inference? In light of the theory developed
in Section 3.3, we will operationalize this question by implementing eqn. (43) and eqn. (44).

While we will strive to incorporate salient properties from motion sensitive brain areas, the exact computational
mechanisms underlying many experimental findings are still elusive. Thus, inevitably, several modeling assumptions
have to be made. These assumptions are presented in Section 5.1. We then discuss, in Section 5.2, which variables—
input and latent—we choose to be linearly decodable by downstream populations, and, in Section 5.3, express the
adiabatic observer model in terms of these variables. For performing the required computations on these variables,
we will extend the ideas developed in (Beck, Latham, and Pouget, 2011), in Section 5.4, to a systematic theory of
neural integration of high-dimensional linear and quadratic differential equations. In Section 5.5, we will apply
the theory to derive a rate-based recurrent neural network model for online motion structure inference. Finally, in
Section 5.6, we introduce—as an example for the computer simulations—a neural encoding model of input variables
that captures many properties of middle temporal visual area (MT) while staying mathematically tractable with
regard to its computational function.

5.1 Aims and assumptions
We view our network model as a starting point for an experiment–theory loop. Some neural response properties will
be rather general and could be tested in experiments directly. Others will be more specific and could guide targeted
experiments. In any case, we expect that many aspects of this initial model will be revised and refined in the process.

For the model, we make three assumptions:

• Rate-based network. We assume that all information is conveyed in the neuronal firing rates. Thus, no exact
spike-timing is considered. Further, we will allow negative firing rates—think of them as negative deviations
from a baseline value.

• Linear and quadratic operations. We assume that neurons can integrate their synaptic inputs in two ways:
linearly and quadratically. Specifically, we assume that the dynamics of the firing rate of a neuron (or small
population) i takes the form,

τi ∂tri =−ri + fi(wT
i r + rT Q(i) r + bi) , (53)

with time constant τi, a potentially non-linear activation function fi, weight vector wT
i , quadratic interaction

matrix Q(i), and bias bi. In the main text, we had omitted the (per-neuron) bias, bi, because it can be absorbed
in fi. For the following formal derivation, we make the bias explicit for clarity, and, as we will see, this leads to
activation functions, fi, which are different only on a per-population basis. Eqn. (53) is a standard form for
rate-based network models (Dayan and Abbott, 2001), and quadratic interactions are commonly used in neural
network modeling (Salinas and Abbott, 1996; Beck, Latham, and Pouget, 2011).

• Linear decoding of task-relevant variables. A subset of variables, especially those which are relevant for
actions and decision making, can be read out linearly by downstream populations. We will specify the subset
of variables in the next section.

5.2 Linearly decodable variables
Inspecting eqn. (43) and eqn. (44), an elegant decomposition into basic operations (that is, addition, linear and
quadratic multiplication) employs the following variables:

µt , λ2
t ,

vt

σ2
obs

,
1

σ2
obs

,
(

vt

σ2
obs
− C µt

σ2
obs

)
︸ ︷︷ ︸

Pred.err.εt

, fΣ(λ
2
t ) . (54)

The first three variables, µt, λ2
t , vt, are directly related to the task of decomposing visual scenes. Further, we include

the observation noise, 1/σ2
obs, as an input variable (rather than treating it as a constant) to accommodate the extended

theory presented in Section 4.1, permitting the network to handle, for instance, transient occlusion of objects. Of
course, the value of σ2

obs could also be a constant in the network. The prediction error, εt, is an auxiliary variable to
restrict the complexity of operations to being at most quadratic. (We will see in Section 5.4 that the computational
complexity is directly inherited by the neural dynamics.) Finally, the posterior variance, fΣ(λ

2
t ), which is a hallmark

20/28



of Bayesian computation, is required for motion structure decomposition and, potentially, for Bayesian decision
making.

The variables listed in eqn. (54) are assumed to be linearly decodable, that is, they can be read out from neural
activity (at the example of µt) via

µt = Aµ rt , (55)

with some readout matrix Aµ. The other variables maintain corresponding matrices Aλ, Av, Aσ, Aε, and AΣ,
respectively. Here, rt are the instantaneous firing rates of a population of neurons that encode µt. Multiple variables
can be encoded by the same neural population.

5.3 Motion structure inference via at-most quadratic operations
First, we observe that eqn. (43) and eqn. (44) almost exclusively contain linear and quadratic terms when expressed
in the variables of eqn. (54):

∂tλ
2
t =−

1
τλ

λ2
t +

2
D τs τλ (

2
D + ν + τλ

τs
)

(
τλ

τs

D

∑
d=1

µt,d � µt,d +
D τλ

τs
fΣ(λ

2
t ) +

τs
2 νκ2

)
, (56)

∂tµt =−
1
τs

µt + fΣ(λ
2
t ) � CT εt , (57)

∂tεt =−
1
τε

(
εt −

vt

σ2
obs

+
1

σ2
obs
� Cµt

)
=− 1

τε
εt +

1
τε

vt

σ2
obs
− 1

τε

1
σ2

obs
� Cµt , (58)

where we have made elementwise multiplication explicit via the �-operator, and moved the prediction error, εt,
into a separate dynamic equation with time constant τε. For this separation to maintain faithful results, we require
that τε < τs, such that the prediction error can react to changes in µt. The only variable in eqn. (54) that cannot be
calculated within this scheme is fΣ(λ

2), which contains a square root, and, thus, has to be addressed separately,
below. The variables vt/σ2

obs and 1/σ2
obs are the input variables that are fed into the system.

5.4 Neural dynamics for integrating linear and quadratic differential equations
We will now establish how linear and quadratic dynamics of latent variables, such as eqn. (56) – (58), can be integrated
in neural space. What follows is basically a clearly structured generalization of (Beck, Latham, and Pouget, 2011).

Notation in the algorithmic domain. Inevitably, some notation has to be introduced for addressing all of the above
dynamics in both the algorithmic domain (i.e., dynamics of variables) and the network domain (i.e., dynamics of neuronal
firing rates). To keep the presentation general, we will adopt variable-dynamics of the generic form

∂tz = yQx + Wx + b with (yQx)i
def
= ∑

j,k
Qijkyjxk . (59)

Here, z, y, and x denote vector-valued variables. Further, b is a vector-valued additive constant, W a matrix, and Q a
3rd-order tensor, for which we establish the notation of small, capital, and underlined capital letters, respectively.

Note that expressions with elementwise multiplication are covered by the tensors. For instance, using Einstein
summation convention,

(y� x)i = yi xi = δijδikyj xk = (yQx)i with Qijk = δijδik , (60)[
W1 (y�W2x)

]
i = W1

ij(y�W2x)j = W1
ij(yjW2

jkxk) = (yQx)i with Qijk = W1
ijW

2
jk , (61)[

(W1y)� (W2x)
]

i = W1
ijyjW2

ikxk = (yQx)i with Qijk = W1
ijW

2
ik . (62)

Thus, all algorithmic dynamics in eqn. (56) – (58) are of form eqn. (59).

Notation in the network domain. We now turn to the question of how neuronal populations can calculate dynamics
of the form in eqn. (59) when the involved variables are linearly decodable, that is, when z=Az rz. Refining the
notation in eqn. (55), we will make explicit which population rz encodes variable z and suppress the time dependence
in rz

t . Again, we emphasize that differently denoted populations, e.g., rz and rx, can and often will refer to the same
population—the refined notation simply gives us the flexibility to cover various cases.

21/28



Following (Beck, Latham, and Pouget, 2011), we will further make use of what is called the adjoint matrix Az † of
matrix Az, which is characterized by Az Az †= I. Such right-inverse, albeit not unique, always exists if the rows of Az

are linearly independent, which is commonly fulfilled when the number of neurons exceeds the number of variables.
If variables z and x are encoded by the same populations of neurons, we further require that Az Ax †=Ax Az †=0. As
long as these orthogonality conditions are satisfied, the exact form of the matrices A is arbitrary, from a mathematical
point of view.

As we will show in the next paragraph, quadratic, linear, and constant terms in the algorithmic domain, eqn. (59),
translate one-to-one into quadratic, linear and constant terms in the network domain. We therefore establish the
notation Q, W , and b (with an overbar) to refer to 3rd-order tensors, matrices and biases in the neural domain,
respectively. These are exactly the function arguments that we had deemed feasible in eqn. (53) (there introduced
without the overbar).

Neural dynamics. The neural dynamics for implementing each of the computations in eqn. (59) are as follows.

Quadratic terms: ∂tz = yQx is implemented via

∂trz = ryQ rx with Qijk
def
= Az †

iα Qαβγ Ay
βj A

x
γk , in short: Q def

= Az † (QAy Ax) . (63)

Proof:

(∂tz)i = (∂t Azrz)i = (Az∂trz)i = Az
ij(r

yQrx)j = Az
ijQjklr

y
k rx

l = Az
ij A

z †
jα Qαβγ Ay

βk Ax
γlr

y
k rx

l = δiαQαβγyβxγ = (yQx)i .
(64)

Linear terms: ∂tz = Wx is implemented via

∂trz = W rx with W = Az †WAx . (65)

Proof:
∂tz = Az∂trz = AzWrx = Az Az †WAxrx = Wx . (66)

Constant terms: ∂tz = b is implemented via

∂trz = b with b = Az †b . (67)

Proof:
∂tz = Az∂trz = Azb = Az Az †b = b . (68)

Linearity: Neural dynamics for linear combinations, e.g., ∂tz = W1x + W2y are simply the sum of the individual

terms, e.g., ∂trz = W1rx + W2ry. The proof follows directly from the linearity of Az.

Shared populations: Neural dynamics of variables encoded by the same population, e.g., r=rz=rx, do not interfere.
The proof follows from the orthogonality Az Ax †=Ax Az †=0 and from observing that every term in the above neural
dynamics is led by an adjoint matrix Az † or Ax †. Therefore, neural dynamics inducing changes in z do not convey
any changes in x, and vice versa.

5.5 Recurrent network model for online motion structure inference
Section 5.4 provides us with a straight-forward recipe for implementing eqn. (56) – (58) in a neural network. To keep
the network as general as possible, the input variables, 1/σ2

obs and v/σ2
obs, are encoded by an input population, rinp.

The latent variables, λ2, µ and ε, are encoded by a distributed population, rdis. Both the input and distributed
population employ a distributed code with arbitrary readout matrices A obeying the orthonormality conditions
stated in Section 5.4. For the distributed population, the activation function, fi, in eqn. (53) is simply the identity
function. We refrain from restating the exact neural dynamics here because they are obtained directly by translating
the terms in eqn. (56) – (58) into their neural counterparts by means of eqn. (63), (65), and (67).

For a functioning network model, however, two pieces are missing: the input code, and handling of the func-
tion fΣ(λ

2
t ) as was promised in Section 5.3. These two pieces are discussed next.

22/28



Qua
dQuad

rinp

r1-to-1

rdis

In
p
u
t 

p
o
p
u
la

ti
o
n

( 
v
/σ

2
o
b
s 

, 
1

/σ
2

o
b
s  
)

D
is

tr
ib

u
te

d
 p

o
p
u
la

ti
o
n

( 
λ

2
 ,
 μ

 ,
 ε

 )

1
-t

o
-1

 p
o
p
u
la

ti
o
n

( 
f Σ

 )

Qua
d

Figure S8. Network model for motion structure inference.
The network is composed of three neuronal populations. The
input population, rinp, encodes the input variables, 1/σ2

obs and
v/σ2

obs, as a distributed code. The distributed population, rdis,
encodes the latent variables, λ2, µ and ε, as a distributed
code. The one-to-one population, r1-to-1, encodes the latent
posterior uncertainty, fΣ(λ

2), as a one-to-one code. All of
these variables can be read out linearly from the network firing
rate, at any time. Synaptic connections within and between
populations mediate linear (indicated as arrows) and quadratic
(indicated as “Quad” boxes) interactions. The non-linear func-
tion fΣ is implemented by a leaky integrate-and-fire type re-
sponse (indicated by the half-circle).
Overall, the network implements eqn. (56) – (58) of the algo-
rithmic domain and, thereby, emulates the adiabatic observer
model given by eqn. (43) + (44).

Connecting the input. The input is fed into the network externally and is thus by definition not controlled by internal
dynamics of the network. Nonetheless, the activity rinp(v/σ2

obs, 1/σ2
obs), which is a function of the input variables,

is required to support linearly decoding v/σ2
obs and 1/σ2

obs via known readout matrices Av and Aσ. Note that no
adjoint matrices are required for the input. While any valid input code can be used in our generic network model,
finding activation functions grounded in biological experiments together with matching readout matrices is typically
non-trivial. We present one such input model, which resembles fundamental response properties of area MT, in
Section 5.6.

Handling fΣ(λ
2
t ). The non-linearity of the function fΣ(λ

2
t ), given by eqn. (42), prohibits a direct incorporation of the

effect of λ2 on its dependent variables in eqn. (56) and eqn. (57), within the computational framework of Section 5.4.
The core reason is that the linear readout Aλ rdis does not commute with the square-root function. Yet, it turns out
that fΣ(λ

2
t ) can be incorporated into the network model quite easily owing to its simple functional form. Since

fΣ keeps all motion components separate, fΣ(λ
2
m) = constm · (−1 +

√
1 + constm λ2

m), we can employ a dedicated
population, r1-to-1, using a one-to-one coding model, which assigns one neuron (or small sub-population) to each
component of the posterior variance:

r1-to-1,m =
1

AΣ
mm

fΣ(Aλ
m?rdis) . (69)

Here we have used that λ2
m = Aλ

m?rdis can be read out linearly from the population’s activity. The coefficient AΣ
mm

scales the firing rate of r1-to-1,m. This leads to a neurally plausible activation function of r1-to-1: In Fig. S7, replace λ2
m

by the “input current” Aλ
m?rdis on the x-axis, and fΣ by r1-to-1 on the y-axis. This is reminiscent of the firing response

of leaky integrate-and-fire neurons or, more generally, Type I neurons, as a function of the input current. Finally, we
can read out fΣ linearly from r1-to-1 via readout matrix AΣ=diag

[
(AΣ

11, .., AΣ
MM)

]
, thereby allowing us to apply the

formalism of Section 5.4 to fΣ(λ
2) (which acts as a variable).

In the above argumentation, we have made two simplifying assumption. First, we have assumed an instantaneous
response for r1-to-1 instead of the low-pass filtered response of eqn. (53). Since fΣ varies only on the long time scale τλ,
eqn. (69) could easily be replaced by a low-pass filtered version with fi := fΣ/AΣ

mm being the neurons’ activation
function in eqn. (53). Secondly, we notice that, strictly, fΣ depends not only on λ2, but also on 1/σ2

obs. While the
quadratic interaction between these variables, as expressed by eqn. (42), is covered by the theory, we decided to
reduce the complexity of the network model by assuming a fixed default value for σ2

obs in the computer simulations.

23/28



Centers (𝜇𝛼,𝜇𝜌) of
neuronal tuning 

𝛼

𝜌

𝜎obs

Velocity at
RF center

Figure S9. Tuning functions of MT neurons. Left: The tuning of MT neurons, in response to a stimulus with direction α, speed ρ
and observation noise σobs, is separable in polar coordinates. In a local population, the neurons’ preferred velocity tuning covers
directions, µα, uniformly, while the density of neurons tuned to speed, µρ, decreases for higher speed. Note that all quantities
refer to a local coordinate system centered at the receptive field (RF) center. So, the coordinates here are not to be confused
with the coordinate system in Fig. S6 which describes RF locations. Right: Tuning function according to eqn. (70) for four
example neurons. Tuning centers and maximum firing rates are given in the axes titles. Parameters (using Python indexing, i.e.,
nρ=0, .., Nρ−1): ψ=0.1, σ2

obs=(0.05/3)2, Nα=16, Nρ=12, µρ(nρ) = ρmin + dρ n1.25
ρ , dρ = (ρmax − ρmin)/(Nρ − 1)1.25, ρmin=0.1,

ρmax=8.0, κα=1/0.352, σ2
ρ =0.352.

Again, an extension respecting the explicit σ2
obs-dependence would be straight-forward.

The complete network model. Plugging all of the components together, we obtain the network model shown in
Fig. S8. This network emulates the adiabatic observer model given by eqn. (43) + (44).

5.6 Neural coding of the input: an example for area MT
While we aimed to leave the neural code for all latent variables as generic as possible in the network examples, we
specify an input code that respects known response properties of area MT. In the following, we present the tuning
functions for the input neurons which are derived from models and properties in the literature on area MT (Born
and Bradley, 2005; Nover, Anderson, and DeAngelis, 2005; Krekelberg, 2006). Their most important computational
property is that they support linear readout of v/σ2

obs and 1/σ2
obs in Cartesian coordinates.

We will proceed in three steps. First, we define the tuning functions in polar coordinates since response properties
are commonly presented in this coordinate system in the experimental literature. Second, we state some helpful
mathematical properties of the proposed tuning functions. Third, we provide the readout matrices Av and Aσ and
demonstrate how they accurately decode the relevant variables, v/σ2

obs and 1/σ2
obs.

The tuning function in polar coordinates. Commonly, MT tuning is characterized in polar coordinates because the
tuning function becomes separable, i.e., it factorizes into a product of functions over different variables. Owing to
the retinotopic organization of MT, we consider for the remainder of this subsection a local population of neurons
sharing the same spacial receptive field. Those neurons are indexed, as shown in Fig. S9 (left), by nα=1..Nα and
nρ=1..Nρ according to their preferred direction, µα, and speed (absolute value of velocity), µρ, respectively. We use
the following tuning function in response to a stimulus with direction α ∈ [0, 2π), speed ρ ≥ 0, and observation

24/28



noise σ2
obs:

f (α, ρ, σ2
obs; nα, nρ) = fσ(σ

2
obs) · fα(α; nα) · fρ(ρ; nρ) (70)

with fσ(σ
2
obs) =

ψ

σ2
obs

, (71)

fα(α; nα) =
dα

2π I0(κα)
eκα cos(α−dα nα) , (72)

fρ(ρ; nρ) =
µ′ρ(nρ)√

2πσ2
ρ µρ(nρ)

e
− (log(ρ)−log(µρ(nρ)))

2

2σ2
ρ . (73)

Example tuning functions are shown in Fig. S9 (right). Eqn. (70) is composed of sub-functions for the noise fσ, motion
direction fα, and motion speed fρ, which employ a range of parameters: The overall (maximum) firing rate is scaled
by ψ. The angle between cells’ preferred direction is dα=2π/Nα, such that neuron nα’s preferred direction is dα nα.
The directional tuning width is described by κα (formally, κα is the precision parameter of a von-Mises-distribution
density function, and I0(κα) is the modified Bessel function of order 0 for normalization). Neuron nρ’s preferred
speed is given by function µρ(nρ), with µ′ρ denoting the function’s derivative. Finally, the width of speed tuning is
controlled by σ2

ρ . Let us briefly discuss how eqn. (70) captures known properties of MT:

• Neurons are tuned to speed (absolute value of velocity) and direction (almost entirely into only one direction,
not the opposite direction).

• Direction tuning is commonly described by a von Mises density function. Preferred directions cover the circle
roughly isotropically, here via dα nα.

• Speed tuning can be described by a log-normal function of the speed ρ. The density of speed tuning centers in
MT has been reported to decrease for larger speeds, which can be captured by the function µρ(nρ).

• Activity is modulated by contrast (via σ2
obs), with lower contrast (higher noise) attenuating the overall firing

rate.

We make the simplifying assumptions that (i) all neurons have the same firing rate scaling factor ψ, and (ii) that
the tuning widths, given by κα and σ2

ρ , are “not too wide”. The meaning of “not too wide” will become clear in the
following mathematical consideration.

Mathematical properties of the tuning function. We next discuss some useful properties of the components of the
above tuning function. First, we note that fα and fρ have the form of known probability density functions over the
neuron indices nα and nρ, respectively. In particular, they integrate to one in the limit of many, narrowly spaced
neurons: ∫ 2π

dα

0
fα(α; nα)dnα =

∫ 2π

0
eκα cos(α−dα nα)/(2π I0(κα))d(dαnα) = 1 (74)

and
∫ ∞

0
fρ(ρ; nρ)dnρ =

∫ ∞

0

1√
2πσ2

ρ µρ

e
− (log(ρ)−log(µρ))

2

2σ2
ρ dµρ = 1 . (75)

Furthermore, the distributional forms give rise to nice moments w.r.t. the tuning centers dα nα and µρ(nρ):

〈ei dαnα〉 fα
= I1(κα)

I0(κα)
eiα large κα≈ eiα =

(
cosα
sinα

)
(76)

and 〈µρ(nρ)〉 fρ
= ρeσ2

ρ /2 small σρ

≈ ρ . (77)

We now understand how narrow (i.e., “not too wide”) tuning functions enable reading out the encoded direction,
α, and speed, ρ: large κα and small σ2

ρ afford the approximations in eqn. (76) and (77). Further, the mathematical
relations highlight that κα and σ2

ρ could be modulated by the observation noise σ2
obs without changing the ability to

encode/decode the input.

25/28



0°

45°

90°

135°

180°

225°

270°

315°

1
2

3

= 60°, = 2.0,  Max. rate = 57.1Hz = 60°, = 0.5,  Max. rate = 167.9Hz

= 0°, = 1.5,  Max. rate = 67.9Hz = 270°, = 2.5,  Max. rate = 53.0Hz

0°

45°

90°

135°

180°

225°

270°

315°

1
2

3

Stimulus = 0.017,  Neural est. = 0.017 Stimulus = 0.017,  Neural est. = 0.015

Stimulus = 0.017,  Neural est. = 0.017 Stimulus = 0.017,  Neural est. = 0.017

Figure S10. Linear readout of input statistics from population responses. Left: Population response when encoding four
example stimuli. The population consists of 192 neurons with the parameters given in Fig. S9. For clarity, only neurons with
µρ < 3.5 are shown. Right: Linear readout of 1/σ2

obs, vx/σ2
obs and vy/σ2

obs from the population activities on the left via weights
given by eqn. (78). Shown are, in polar coordinates, the stimulus ground truth (black) and the estimate by the linear readout (red).
The estimated uncertainty is provided is the axes titles.

Linear readout of input statistics. With the above mathematical properties at hand, we identify matrices Aσ and Av

for linear readout:

Aσ
k,(nα ,nρ)

=
1
ψ

and Av
k,(nα ,nρ)

=
1
ψ

(
cosdαnα

sindαnα

)
µρ(nρ) , (78)

because reading out with these matrices from the MT-population of the k-th observable yields:∫ ∫
Aσ

k,(nα ,nρ)
f (αk, ρk, σ2

obs,k; nα, nρ)dnα dnρ =
1

σ2
obs,k

(79)

∫ ∫
Av

k,(nα ,nρ)
f (αk, ρk, σ2

obs,k; nα, nρ)dnα dnρ =
ρk

σ2
obs,k

(
cosαk
sinαk

)
=

(
vx/σ2

obs,k
vy/σ2

obs,k

)
. (80)

Examples of the population response to four motion stimuli is shown in Fig. S10 (left) for a population of 192
neurons. The tuning centers span 12 radii (“speed”) and 16 angles (“direction”). In Fig. S10 (right), the resulting
linear readout (red) is shown alongside the ground truth (black). Even the coarse coverage of the stimulus space by
192 neurons is sufficient for a faithful reconstruction of the stimulus. As an interesting observation, while neurons
tuned to higher speeds have wider tuning curves, this does not imply that their activity would encode heightened
uncertainty: σobs is identical in all of the examples in Fig. S9 and Fig. S10.

In summary, we have identified with eqn. (70) an MT tuning function that supports linear readout of the variables
v/σ2

obs and 1/σ2
obs via matrices Av and Aσ.

26/28



6. Captions to the supplemental videos

Video S1: Johansson experiment. Top: 3-dot motion display. Bottom left: Evolution of motion strengths, λm(t).
Bottom right: Motion sources, sm(t). The stimulus is decomposed into horizontal shared motion (magenta) and
vertical individual motion (green) for the central dot.

Video S2: Duncker wheel. Top: Duncker wheel motion display. Bottom left: Evolution of motion strengths, λm(t).
Bottom right: Motion sources, sm(t). The stimulus is decomposed into rightward shared motion (magenta) and
clockwise rotation (green) for the dot on the rim.

Video S3: Motion illusion from Lorenceau (1996). Motion displays without and with motion noise are presented.
Multiple noise levels are used because the noise threshold for inducing the perceptual switch is participant-dependent.
To prevent priming on a certain grouping, different random groups were drawn for every noise level, in this demo
video. (The simulation in Fig. 4 used, apart from σ2

obs, identical inputs.)

Video S4: Location-indexed stimulus with varying fraction of shared motion. Every 10 s, the fraction of shared motion
across the apertures increases by 1/8, ranging from q=1/8 (almost independent motion) to q=7/8 (almost fully
correlated motion). Steps in q are marked by brief flashes of gray squares.

27/28



References
Beck, Jeffrey M, Peter E Latham, and Alexandre Pouget (2011). “Marginalization in neural circuits with divisive

normalization”. In: Journal of Neuroscience.
Bill, Johannes et al. (2020). “Hierarchical structure is employed by humans during visual motion perception”. In:

Proceedings of the National Academy of Sciences.
Bishop, Christopher M (2006). Pattern recognition and machine learning. springer.
Born, Richard T. and David C. Bradley (July 2005). “STRUCTURE AND FUNCTION OF VISUAL AREA MT”. In:

Annual Review of Neuroscience.
Dayan, Peter and Laurence F Abbott (2001). Theoretical neuroscience: computational and mathematical modeling of neural

systems. Computational Neuroscience Series.
Dempster, Arthur P, Nan M Laird, and Donald B Rubin (1977). “Maximum likelihood from incomplete data via the

EM algorithm”. In: Journal of the Royal Statistical Society: Series B (Methodological).
Drugowitsch, Jan et al. (2012). “The cost of accumulating evidence in perceptual decision making”. In: Journal of

Neuroscience.
Gardiner, Crispin (2009). Stochastic methods. Springer Berlin.
Jazwinski, Andrew H (2007). Stochastic processes and filtering theory. Courier Corporation.
Kalman, Rudolph E (1960). “A new approach to linear filtering and prediction problems”. In: Journal of Basic

Engineering.
Kalman, Rudolph E and Richard S Bucy (1961). “New results in linear filtering and prediction theory”. In: Journal of

Basic Engineering.
Krekelberg, B. (Aug. 2006). “Interactions between Speed and Contrast Tuning in the Middle Temporal Area: Implica-

tions for the Neural Code for Speed”. In: Journal of Neuroscience.
Manning, Catherine, Rory Trevelyan Thomas, and Oliver Braddick (2018). “Can speed be judged independent of

direction?” In: Journal of vision.
Moscatelli, Alessandro et al. (2019). “Motion direction, luminance contrast, and speed perception: an unexpected

meeting”. In: Journal of vision.
Nover, Harris, Charles H. Anderson, and Gregory C. DeAngelis (Oct. 2005). “A Logarithmic, Scale-Invariant

Representation of Speed in Macaque Middle Temporal Area Accounts for Speed Discrimination Performance”. In:
Journal of Neuroscience. Publisher: Society for Neuroscience Section: Behavioral/Systems/Cognitive.

Salinas, Emilio and Laurence F Abbott (1996). “A model of multiplicative neural responses in parietal cortex”. In:
Proceedings of the national academy of sciences.

Weiss, Yair, Eero P Simoncelli, and Edward H Adelson (2002). “Motion illusions as optimal percepts”. In: Nature
neuroscience.

28/28


	Supplemental figures
	Generative model of structured motion
	Composition of observable velocity from motion motifs
	Generation of observable velocities from stochastic, latent motion sources
	Motion structure
	Extension to multiple spatial dimensions
	Polar coordinates: rotational and radial motion

	Online hierarchical inference algorithm
	Inference via the Expectation-Maximization algorithm
	Inference of motion sources for a given structure (E-step)
	Inference of motion strengths and sparsity prior (M-step)
	Extension to multiple spatial dimensions

	Continuous-time, online inference
	Equivalent formulation of the generative model and inference using natural parameters
	Continuous-time dynamics of natural parameters
	Simultaneous online inference of motion sources and structure

	Adiabatic approximation for prediction error-based inference
	Prediction error-based formulation
	Convergence approximation on the posterior precision
	Analytic solution for diagonal covariance matrices
	Putting it together: neuro-friendly algorithm for online structure inference
	A pleasant note on inference of rotational and radial motion


	Extensions of the online algorithm
	Non-isotropic observation noise and missing observations
	Heterogeneous time constants
	Interaction priors capturing feature compatibility
	Detecting motion components that had decayed to baseline
	Learning the motion components on long time-scales

	Neural network implementation
	Aims and assumptions
	Linearly decodable variables
	Motion structure inference via at-most quadratic operations
	Neural dynamics for integrating linear and quadratic differential equations
	Recurrent network model for online motion structure inference
	Neural coding of the input: an example for area MT

	Captions to the supplemental videos

