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Abstract: 38 

Background: Investigating the relationship between task-related cortical hemodynamic 39 

activity and brain excitability is challenging because it requires simultaneous measurement of 40 

brain hemodynamic activity while applying non-invasive brain stimulation. There is also 41 

considerable inter-/intra-subject variability which both brain excitability and task-related 42 

hemodynamic responses are associated with. Here we proposed hierarchical Bayesian 43 

modeling to taking into account variability in the data at the individual and group levels, 44 

aiming to provide accurate and reliable statistical inferences on this research question.  45 

Methods: We performed a study on 16 healthy subjects with simultaneous Paired 46 

Associative Stimulation (Inhibitory PAS10, Excitatory PAS25, Sham) and functional Near-47 

Infrared Spectroscopy (fNIRS) targeting the primary motor cortex (M1). PAS was applied to 48 

modulate the cortical function and induce plasticity. Before and after each intervention 49 

cortical excitability was measured by motor evoked potentials (MEPs), and the motor task-50 

related hemodynamic response was measured using fNIRS. We constructed three models to 51 

encode 1) PAS effects on the M1 excitability; 2) PAS effects on the whole-time course of 52 

fNIRS hemodynamic responses to finger tapping tasks, and 3) the correlation between PAS 53 

effects on M1 excitability and PAS effects on task-related hemodynamic responses.  54 

Results: Significant increase of the cortical excitability was found after PAS25, whereas a 55 

small reduction of the cortical excitability was shown after PAS10 and no changes after 56 

sham. We found PAS effects on finger tapping evoked HbO/HbR within M1, around the peak 57 

of the hemodynamic time courses. Both HbO and HbR absolute amplitudes increased after 58 

PAS25 and decreased after PAS10. Cortical excitability changes and task-related HbO/HbR 59 

changes showed a high probability of being positively correlated, 0.77 and 0.79, respectively. 60 

The corresponding Pearson’s correlations were 0.58 (p<.0001, HbO with MEP) and 0.56 61 

(p<.001, HbR with MEP), respectively. 62 

Conclusion: Benefiting from this original Bayesian data analysis, our results showed that 63 

PAS modulates task-related cortical hemodynamic responses in addition to M1 excitability. 64 

The fact that PAS effects on hemodynamic response were exhibited mainly around the peak 65 

of the hemodynamic time course may indicate that the intervention only increases metabolic 66 

demanding rather than modulating hemodynamic response function per se. Moreover, the 67 

positive correlation between PAS modulations of excitability and hemodynamic brings 68 

insights to understand the fundamental properties of cortical function and cortical excitability.  69 

 70 
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Keywords: Paired Associative Stimulation (PAS), Excitability, Maximum Entropy on the 71 

Mean (MEM), Finger Tapping, Near-Infrared Spectroscopy (NIRS), Transcranial Magnetic 72 

Stimulation (TMS), Bayesian Data Analysis.  73 

 74 

Highlights:  75 

� Hierarchical Bayesian Modeling of PAS effects on M1 excitability and hemodynamic 76 

� Demonstrated PAS effects on the whole time-course of task-related hemodynamic 77 

� Increased/reduced task-related hemodynamic corresponds to higher/lower M1 78 

excitability 79 

� High probability of positive relationships between excitability and HbO/HbR changes 80 

  81 
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1 Introduction  82 

The association between hemodynamic response to a task and excitability of the 83 

corresponding cortical region helps to understand the relationship between cortical metabolic 84 

demand and cortical readiness. This knowledge might be useful to expand the field of 85 

application of non-invasive brain stimulation for treating brain disorders in which modulation 86 

of hemodynamic activity is desired. Currently, there are several non-invasive brain 87 

stimulation techniques capable of interacting with cortical function and are potentially useful 88 

to treat neurological conditions. One of the eldest and better-known techniques is repetitive 89 

Transcranial Magnetic Stimulation (rTMS): TMS pulses repeated in a train following a 90 

certain frequency induce Long-Term Potentiation (LTP)-like and Long-Term Depression 91 

(LTD)-like plasticity which are typically measured as changes of cortical excitability 92 

(Ridding and Rothwell, 2007; Di Pino et al., 2014). Another way to induce plasticity relies on 93 

the concept of Spike Timing Dependent Plasticity (STDP, Levy and Steward, 1983; Rossini 94 

et al., 2015) and is entitled Paired Associative Stimulation (PAS) (Mariorenzi et al., 1991; 95 

Stefan, 2000). PAS consists of pairs of cortical TMS and peripheral electrical Median Nerve 96 

Stimulation (MNS) delivered with proper timing: around 25ms or 10ms Interstimulus 97 

Intervals (ISI) to excite (PAS25) or to inhibit (PAS10) primary motor cortical areas, 98 

respectively. The peak-to-peak amplitude of Motor Evoked Potentials (MEPs) measured by 99 

electromyography (EMG) on the hand muscle is often used to assess the cortical excitability 100 

while delivering single pulse TMS (spTMS) on top of the primary motor cortex (Suppa et al., 101 

2017).   102 

In animal studies, by applying invasive optical imaging, Allen et al. (2007) demonstrated that 103 

low-frequency repetitive rTMS, known for reducing cortical excitability, on cat’s visual 104 

cortex induces an immediate increase of tissue oxygenation followed by a prolonged 105 

reduction of oxygenation lasting approximately 2 minutes. More recently, a study on healthy 106 

rats combining functional Magnetic Resonance Imaging (fMRI) and proton Magnetic 107 

Resonance Spectroscopy (MRS) showed increases in resting-state connectivity (e.g., 108 

Interoceptive/default model network, cortico-striatal-thalamic network and Basal ganglial 109 

network), GABA, glutamine and glutamate levels following high-frequency rTMS (known 110 

for increasing cortical excitability) and reduced connectivity and glutamine levels after low-111 

frequency rTMS stimulations (Seewoo et al., 2019).  112 

In human studies, similar investigations become more challenging which require the 113 

combination of non-invasive neuroimaging and non-invasive brain stimulation approaches. 114 
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For instance, fMRI (Bandettini et al., 1992; Kwong et al., 1992; Glover, 2011) is a widely 115 

used modality to measure the hemodynamic activity and can measure the hemodynamic 116 

fluctuations related to TMS interventions (Navarro De Lara et al., 2015; Tik et al., 2017). 117 

However, simultaneous fMRI/TMS acquisitions require specific MRI coil and fMRI 118 

sequences (Navarro De Lara et al., 2015; Wang et al., 2017). This is the reason why most 119 

studies consisted in fMRI sessions before and after TMS interventions, following a so-called 120 

offline approach (Siebner et al., 2009).  121 

Alternatively, functional Near-InfraRed Spectroscopy (fNIRS) non-invasively measures 122 

fluctuations of both oxygenated- and deoxygenated-hemoglobin (i.e., HbO and HbR) 123 

concentration changes in the human brain with a high temporal resolution (Jöbsis, 1977; 124 

Scholkmann et al., 2014). fNIRS relies on optical absorption which is insensitive to 125 

electromagnetic fields, as opposed to fMRI. Therefore, fNIRS appears as an interesting 126 

alternative offering better compatibility for simultaneous acquisition during TMS (Curtin et 127 

al., 2019). In Cai et al., 2021b, we conducted a simultaneous PAS-fNIRS study to investigate 128 

the relationship between motor task-evoked cortical hemodynamic response and M1 129 

excitability. We opted for PAS rather than rTMS for multiple reasons. A previous 130 

simultaneous TMS/fNIRS study reported that physiological fluctuations of respiration and 131 

heart rate are largely influenced by trains of TMS pulses (Näsi et al., 2011). In other words, 132 

TMS trains may influence both systemic hemodynamic (scalp signal) and cortical 133 

hemodynamic responses. Second, the frequency of stimulation pairs in PAS is 0.1Hz or less 134 

(Suppa et al., 2017), therefore PAS intervention is likely introducing significantly less or 135 

even no systemic physiological fluctuations when compared to rTMS. Third, when several 136 

stimulations with multiple effects are applied (excitatory, inhibitory, sham), PAS offers 137 

stimulations that are similar with respect to duration and frequency across conditions, 138 

allowing a more balanced and cleaned experiment design.  139 

Beyond the technical difficulties of addressing the relationship between excitability and 140 

hemodynamic activity, one main challenge lies in the high intra- and inter-subject variability 141 

of both the effects of brain stimulation and the hemodynamic activity associated with a task. 142 

The ability of PAS in eliciting significant changes in cortical excitability has been replicated 143 

by several studies (Stefan, 2000; Wolters et al., 2005; Tsang et al., 2015; Lee et al., 2017; 144 

Suppa et al., 2017), but some studies have observed that only 39% of subjects showed 145 

expected MEP amplitude increase after conducting PAS25 (López-Alonso et al., 2014) and 146 

similar PAS efficiency (lower than 50%) has been suggested in a review study (Suppa et al., 147 
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2017). Similarly, inter-subject variability of the task-evoked hemodynamic response has also 148 

been reported, whether measured using fMRI (Witt et al., 2008) or fNIRS (Novi et al., 2020). 149 

These variability issues may explain the negative findings on the correlation between cortical 150 

excitability and hemodynamic activities. For instance, Kriváneková et al., (2013) investigated 151 

the relationship between the primary motor cortex (M1) excitability and Blood-Oxygen-152 

Level-Dependent (BOLD) signal using PAS stimulation and “offline” fMRI acquisitions. 153 

They reported no significant correlation between PAS effects on task-related BOLD response 154 

and its effects on M1 excitability. In our previous study (Cai et al., 2021b), using fNIRS and 155 

PAS we first found a significant positive correlation between fluctuations of cortical 156 

excitability (represented by MEP) and the fluctuations of HbO activity. However, when 157 

further investigating the relationship between PAS effects on task-related HbO/HbR changes 158 

(estimated using the HbO ratio,  HbR respectively, calculated as the post- over pre-159 

intervention amplitudes) and its effects on M1 excitability (estimated using the ratio of MEP), 160 

we also found no significant correlation. Therefore, it seems essential to carefully take into 161 

account intrinsic variability of both cortical excitabilities elicited by non-invasive brain 162 

stimulation and hemodynamic responses to tasks, when investigating the correlation between 163 

both effects.  164 

To conduct accurate and robust investigations of PAS elicited cortical excitability (measured 165 

using MEP) and hemodynamic responses to finger tapping task (measured using HbO/HbR), 166 

we propose to study the variability of data within a hierarchical Bayesian model to infer PAS 167 

effects on both cortical excitability and hemodynamic response, as well as their correlation. 168 

Hierarchical Bayesian modeling allows taking into account heterogeneity of the variables of 169 

interest (MEP, HbO/HbR) at every stage (inter-/intra-subject, intervention type) of the 170 

analysis (Papaspiliopoulos et al., 2007; Betancourt and Girolami, 2015). Moreover, when 171 

considering a hierarchical structure, partial pooling can reduce the uncertainty of estimated 172 

parameters (Gelman et al., 2013; McElreath, 2020). This means that the group-level and 173 

individual-level estimations could inform each other to regularize the uncertainty of each 174 

parameter. In this context, Bayesian data analysis allows estimating the statistical expectation 175 

of each parameter of the model by sampling the joint posterior distributions. Thanks to the 176 

developments in Bayesian data analysis workflow during the last decade, Bayesian inferences 177 

have become more accessible and can provide accurate and reliable estimations of the 178 

posterior distribution. For instance, the most recent implementations of the Hamiltonian 179 

Monte Carlo (HMC) algorithm (Duane et al., 1987) called the dynamic HMC (Betancourt, 180 
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2017, 2019) is available as an open-source Bayesian statistical modeling and computation 181 

platform called Stan (Stan Development Team, 2020a). This technique not only accurately 182 

and efficiently samples the joint posterior distribution, but also provides robust estimations 183 

by quantitatively diagnosing pathological behaviors of Markov Chain Monte Carlo (MCMC) 184 

chains that are used to sample the joint posterior distributions (Betancourt and Girolami, 185 

2015; Betancourt, 2017).  186 

Considering the above advantages of the Bayesian approach, in this study, we applied a 187 

Bayesian data analysis workflow (Gabry et al., 2019; Gelman et al., 2020b) on our 188 

TMS/fNIRS dataset rather than the conventional analysis conducted in Cai et al., 2021b, to 189 

further investigate the relationship between the PAS effects task-related hemodynamic 190 

responses and its effects on M1 excitability. We hypothesize that enhanced brain excitability 191 

should be associated with higher hemodynamic activity elicited by a finger tapping task, and 192 

decreased excitability should be associated with a reduced hemodynamic response to the task. 193 

We first summarized the study design and data acquisition. Data preprocessing was then 194 

conducted to prepare the inputs of our Bayesian framework. We evaluated the relevance of 195 

three hierarchical models to investigate: 1) PAS effects on M1 excitability measured using 196 

MEP; 2) PAS effects on the whole-time course of task-related hemodynamic responses 197 

measured using fNIRS, and 3) the correlation between PAS modulated excitability changes 198 

and PAS modulated hemodynamic changes. The variability of each measurement was 199 

carefully considered in each model and at each level (i.e., at the individual and group levels) 200 

to conduct reliable estimations of the intervention effects and correlations. Statistical 201 

inferences were made via posterior predictive simulations (McElreath, 2020). Diagnostic of 202 

the models were conducted to ensure the robustness of the estimated posterior distributions.  203 

2 Material and methods  204 

2.1 Study design and subjects 205 

Nineteen subjects (19 – 35 years old, male and right-handed) with no history of neurological 206 

disorders and no medications acting on the central nervous system were selected to 207 

participate in the study. We only included male participants in order to minimize the 208 

confounding of cortical excitability changes due to the menstrual cycle (Hattemer et al., 209 

2007; Lee et al., 2017). This study was approved by the Central Committee of Research 210 

Ethics of the Minister of Health and Social Services Research Ethics Board (CCER), Québec, 211 

Canada. All subjects signed written informed consent prior to participation. They also 212 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2021. ; https://doi.org/10.1101/2021.10.22.465452doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465452
http://creativecommons.org/licenses/by-nc-nd/4.0/


underwent a screening procedure to confirm no contraindications to MRI or TMS (Rossi et 213 

al., 2009; Suppa et al., 2017). Subjects were instructed to have a regular sleep cycle for the 214 

days and not to take caffeine for at least 90 minutes before the data acquisition.  215 

The experiment paradigm of this study is illustrated in Fig.1.a. To modulate M1 cortical 216 

excitability and for inducing brain plasticity, three different intervention sessions were 217 

performed at least two days apart to minimize carryover effects. Each session consisted of 218 

five time-ordered sections, defined as follows:  219 

1) A block designed finger-tapping task composed of 20 blocks, 10s of finger-tapping 220 

followed by 30s ~ 60s of resting was conducted within each block. Subjects were 221 

informed to tap their left thumb to the other 4 digits sequentially around 2Hz (Fig.1.a1). 222 

This long-range jitter was designed to prevent the task responses from phase locking to 223 

the undergoing physiological hemodynamic oscillations (Aarabi et al., 2017), therefore, 224 

reducing the physiological confounding on the task-related response at the stage of 225 

experiment paradigm design. Tapping onsets/offsets were instructed by auditory cues.  226 

2) An event-related designed single pulse TMS (spTMS) composed of 75 events, jittered 227 

from 5s to 25s (Fig.1.a2). TMS procedures were performed with neuronavigation 228 

(Brainsight neuro-navigation system - Rogue-Research Inc, Canada) and based on 229 

subject specific anatomical MRI. TMS was delivered with a figure-8 coil (Magstim 230 

double 70mm remote control coil) connected to a Magstim 2002 stimulator (Magstim 231 

Company, U.K.). In order to target M1, the coil was placed tangentially to the scalp and 232 

with a 45o angle to the midline of the head (Fig.1.c), so to maximize stimulation 233 

efficiency (Thomson et al., 2013). The individual ‘hot spot’ was defined for each session 234 

as the location with the largest Motor Evoked Potentials (MEPs) amplitude measured on 235 

the left thumb (Abductor Pollicis Brevis, APB) using electromyography (EMG).  236 

Stimulation intensity was set to 120% of the resting motor threshold (RMT), defined 237 

according to the maximum-likelihood parameter estimation by sequential testing 238 

approach (Awiszus et al., 1999; Ah Sen et al., 2017) using MTAT 2.0 239 

(http://www.clinicalresearcher.org/software.html). All TMS procedures followed the 240 

recommendations of the International Federation of Clinical Neurophysiology (Rossi et 241 

al., 2009) and no participants reported any considerable discomfort or side effects. 242 

3) A PAS session attempted to modulate the M1 cortical excitability (Fig.1.a3). PAS 243 

intervention consisted either in PAS25, PAS10 or sham-PAS. PAS was conducted with 244 
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100 pairs of electrical median nerve stimulation (MNS) on the left wrist, followed by 245 

TMS pulse delivered over the right M1, with a fixed interval of 10s between paired 246 

stimulations, for a total intervention of 18 minutes, as suggested in Suppa et al., (2017). 247 

MNS was delivered with a Digitimer (Digitimer DS7A, U.K) at the left median nerve 248 

and with the intensity equals 300% of the subject-specific perceptual threshold. TMS 249 

intensity was the same as the spTMS - 120% of RMT. After estimating subject-specific 250 

N20 response to electrical MNS using bipolar electroencephalogram (EEG) (BrainAmp 251 

ExG, Brain Products GmbH, Germany) on CP3 and CP4 electrodes, the interstimulus 252 

intervals (ISI) between MNS and TMS were determined to be pre-measured individual 253 

N20+5ms for PAS25 and N20-5ms for PAS10 (Carson and Kennedy, 2013). Sham 254 

parameters (e.g., MNS intensity, coil position, ISI) were the same as PAS25, but TMS 255 

was not delivered, and instead, its sound (‘TMS click’) was played via a stereo speaker. 256 

4) Repetition of the event-related designed spTMS (Fig.1.a4) after the intervention. By 257 

comparing the MEPs measured during pre-intervention and post-intervention sessions, 258 

PAS intervention effects on M1 cortical excitability could be assessed.  259 

5) Repetition of the block designed finger tapping task (Fig.1.a5) after the intervention. 260 

Similarly, the corresponding effects on task-evoked hemodynamic responses could be 261 

estimated by comparing HbO/HbR concentration changes measured during pre-262 

intervention and post-intervention sessions.   263 

2.2 Data acquisitions  264 

2.2.1 Anatomical MRI  265 

Individual anatomical MRI was acquired to guide TMS and to calculate the head model 266 

required for fNIRS acquisition planning and fNIRS reconstructions. A General Electric 267 

Discovery MR750 3T scanner at the PERFORM Center of Concordia University, Montréal, 268 

Canada, was used to scan: 1) T1-weighted images using the 3D BRAVO sequence (1 � 1 � 1 269 

mm3, 192 axial slices, 256 � 256 matrix) and 2) T2-weighted images using the 3D Cube T2 270 

sequence (1 � 1 � 1 mm3 voxels, 168 sagittal slices, 256 � 256 matrix). 271 

2.2.2 Motor Evoked Potentials  272 

MEPs induced by spTMS pulses were measured to assess the M1 cortical excitability. A 273 

BrainAmp ExG bipolar system (BrainAmp ExG, Brain Products GmbH, Germany) was used 274 

to record EMG of the right abductor pollicis brevis (APB) muscle, with 2 TECA disposable 275 
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20mm disk electromyography (EMG) electrodes attached with a standard belly-tendon 276 

montage (Fig1.c).  277 

2.2.3 Functional Near-Infrared Spectroscopy  278 

fNIRS data were acquired to estimate the finger-tapping evoked hemodynamic responses 279 

(i.e., HbO/HbR). fNIRS data were acquired at 10Hz using a Brainsight fNIRS system 280 

(Rogue-Research Inc, Canada), which consists of two wavelengths – 685nm and 830nm. 281 

fNIRS optodes were placed to the subject’s scalp using a clinical adhesive called collodion 282 

(Fig.1.c) to reduce motion artifacts (Yücel et al., 2014; Pellegrino et al., 2016; Machado et 283 

al., 2018) and to ensure a better contact with the skin when compared to standard fNIRS caps. 284 

A personalized optimal montage developed by our group (Machado et al., 2014, 2018; 285 

Pellegrino et al., 2016; Cai et al., 2021c) was used to maximize the sensitivity of fNIRS 286 

channels to a predefined region of interest (ROI) - the individual ‘hand knob’ region (see 287 

Fig.1.b) manually defined along the right M1 cortical surface which controls the left hand 288 

movement (Raffin et al., 2015). The resulted personalized optimal montage consisted of 3 289 

sources and 15 detectors (see Fig.1.b). The distance between each source-detector pair was 290 

constrained to range from 2.0 cm to 4.5 cm. Each source was positioned to construct at least 291 

13 channels among the 15 detectors ensuring a high spatial overlap between channels, to 292 

allow accurate local reconstruction along the cortical surface. A proximity detector was 293 

added at the center of 3 sources to record the physiological hemodynamics fluctuations 294 

within the scalp. Brainsight neuro-navigation system coregistered with subject specific T1 295 

MRI was used to guide the installation and to digitize the position of fNIRS sources and 296 

detectors glued at their optimal positions. Additional 150 points were digitized on the head 297 

surface to allow accurate montage registration with the anatomical MRI, as a prerequisite for 298 

computing the fNIRS forward model. fNIRS data were acquired continuously during the 299 

whole experimental session, as described in Fig.1.a.    300 

From the nineteen subjects selected for this study, one was excluded due to low sensitivity to 301 

TMS and two were excluded because they exhibited poor fNIRS signal qualities. Four 302 

subjects dropped out after the first session due to personal reasons, resulting in 16 PAS25, 12 303 

PAS10 and 12 sham sessions. Please note that starting from here, we will denote 1) 304 

“Session” as one specific acquisition, consisted in any PAS intervention type, of one subject 305 

including experiments 1 to 5 as illustrated in Fig.1.a (e.g., PAS25 for Sub01); “Run” as one 306 

specific experiment (spTMS or finger tapping), before or after any PAS intervention type, of 307 

one subject (e.g., pre-PAS25 spTMS for Sub01); and “Time” to differentiate whether one 308 
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specific experiment was conducted before or after the intervention (e.g., pre-PAS25 vs. post-309 

PAS25).  310 

 311 

Fig.1. Experimental paradigm and set-up.  a) experiment paradigm ordered by time: 1) is a block 312 

designed finger-tapping task consisted of 20 blocks, each contained 10s task and 30s to 60s rest; 313 

subjects were informed to tapping their left thumb to the other 4 digits sequentially at around 2Hz; 2) 314 

is an event-related designed single pulse TMS (spTMS) run consisted of 75 events jittered from 5s to 315 

25s. 3) PAS25/PAS10/sham-PAS consisted of 100 pairs of stimulations, interleaved by 10s; 4) and 5) 316 

repeated 2) and 1), respectively, after the PAS intervention. b) personalized optimal montage for 317 

fNIRS acquisition. 3 sources (red dots) and 15 detectors (green dots) were selected to optimize the 318 

sensitivity of fNIRS montage to a predefined ROI, the right M1 hand knob (outlined using a black 319 

profile) along the cortical surface. c) an overview of the experimental set-up, the personalized optimal 320 

montage was glued on the scalp using clinical adhesive – collodion; TMS coil was placed on top of 321 

the fNIRS optodes to target the ‘hot spot’ which corresponded to subject’s left thumb, note that the 322 

low-profile feature of the fNIRS optodes allowed less TMS intensity decreases when departing from 323 

the scalp surface; a neuro-navigation system was used to guild the placement of the TMS coil and the 324 

digitization of the fNIRS optodes.      325 

2.3 Data preprocessing  326 

2.3.1 EMG data processing 327 

EMG data collected during spTMS runs were processed using Brainstorm software (Tadel et 328 

al., 2011) (https://neuroimage.usc.edu/brainstorm/) to extract MEP amplitudes. Raw EMG 329 

data were first band-pass filtered between 3 and 2000Hz.  A time window from -10ms to 330 

100ms around the stimulation onset was defined to extract MEP trials. These trials were then 331 
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baseline corrected (-10ms to 0ms), and the peak-to-peak amplitude of each MEP trial was 332 

calculated. Note that throughout the analysis reported in this study, none of the single MEP 333 

trials was excluded to preserve the intrinsic variability of MEP peak-to-peak amplitude 334 

measures. Hereby, for convenience, we will denote as “MEP”, the actual MEP peak-to-peak 335 

amplitude, as often considered in TMS literature.  336 

The output of the whole EMG data preprocessing section was a set of 75 MEPs estimated for 337 

each participant (specified by subject ID from 1 to 16), each intervention (PAS25, PAS10 or 338 

sham) and time (pre-PAS or post-PAS).  339 

2.3.2 fNIRS data processing 340 

fNIRS data processing was performed using the open-source fNIRS processing plugin - 341 

NIRSTORM (https://github.com/Nirstorm/nirstorm) implemented in our lab in Brainstorm 342 

software (Tadel et al., 2011) (https://neuroimage.usc.edu/brainstorm/). Raw fNIRS data were 343 

first preprocessed following standard recommendations (Yücel et al., 2020) and then 344 

converted to optical density changes (i.e., ∆OD). For each task run, 20 ∆OD epochs were 345 

extracted within a time window ranging from -10s to 30s around task onsets. To reduce 346 

motion artifacts and obtain the distribution of averaged ∆OD epochs for each run, we sub-347 

averaged 16 out of 20 ∆OD epochs for all possible unique combinations (i.e., ���
�� � 4845 348 

possibilities) and selected 50 of these sub-averaged ∆OD epochs below and above the median 349 

of the signal to noise ratio (SNR). To obtain the distribution of spatiotemporal map of 350 

HbO/HbR responses for each finger-tapping run along the cortical surface, we applied 3D 351 

fNIRS reconstruction workflow (Cai et al., 2021c) using personalized optimal montage and 352 

maximum entropy on the mean (MEM) to these 101 sub-averaged ∆ODs. HbO/HbR 353 

spatiotemporal maps of each subject during each finger-tapping run (e.g., 101 HbO maps for 354 

Sub01 during pre-PAS25 finger-tapping) were co-registered to the mid-surface of the MNI 355 

ICBM152 template (Fonov et al., 2009, 2011), using FreeSurfer spherical transformation. An 356 

ROI was defined along the template surface as the “hand knob”, to cover the cortical regions 357 

that control finger tapping. Finally, reconstructed HbO/HbR time courses (0s to 30s) within 358 

this “hand knob” ROI were averaged to represent the hemodynamic responses of each 359 

specific finger-tapping run. The output of the whole fNIRS data preprocessing section was a 360 

set of 80 runs (i.e., 40 sessions (16 PAS25+12 PAS10+12 sham) × 2 times) of 101 361 

reconstructed HbO/HbR time course, for each run specified by subject (ID 1 to 16), 362 

intervention (PAS25, PAS10 or sham) and time (pre-PAS or post-PAS). Please see further 363 

details of fNIRS data processing in Appendix 1 and our previous study (Cai et al., 2021b).  364 
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2.4 Hierarchical Bayesian Modeling 365 

To clarify the notation used in the following model equations, we used small letters to denote 366 

a scalar variable (e.g., 
 for the mean of a Gaussian distribution) and capital letters to denote 367 

a matrix (e.g., Σ for the covariance matrix of a multivariate Gaussian distribution). A list of 368 

scalar values from one specific variable is represented by a small letter along with a subscript 369 

letter, for instance, a symbol 
� refers to a list of means, and the subscript � represents each 370 

individual element of this list (mean for the ���  session). The dimensionality of each list is 371 

given by the range of �  (e.g., � � 1, 2, 3, … 40, ��� ���  ������� ). If subscript letter(s) is 372 

contained in square brackets, it means that the individual element of this list variable is 373 

differentiated by the model using index variables. Such as, � in ����������	
�,�,�  indicates 374 

our model differentiates the intercept parameter for each intervention type by index variable 375 

� � 1,2,3, 1 for PAS25, 2 for PAS10 and 3 for sham.  376 

2.4.1 Hierarchical Bayesian Model #1: Assessment of PAS effects on cortical excitability 377 

We proposed a hierarchical Bayesian model to assess PAS effects on M1 cortical excitability, 378 

which was evaluated using the MEPs measured during spTMS runs before (pre-) and after 379 

(post-) each PAS intervention. This model consists of two parts: 1) a measurement error 380 

model taking into account the variability of MEPs within each spTMS run and 2) a 381 

multivariate hierarchical model describing post-intervention MEP as a linear function of pre-382 

intervention MEP.  383 

1) A model of measurement error  384 

We assume the “empirical” mean of the observed MEP in each run to be drawn from a 385 

Gaussian distribution with the mean equals to the ‘true’ MEP amplitude and the scale equals 386 

to the standard error of all MEPs trials. The ‘true’ and observed (‘obs’) MEP of the pre-PAS 387 

spTMS run can be expressed as follows,  388 

 ������,���� � ����	
������	�,���� ,  �����,����� 

�����	�,���� � ����	
�0.5, 1� 

� � 1, 2, 3, … 40, ��� ��
�������  
(1) 

where �������,�
���  is the ‘true’ value of the pre-PAS mean MEP for session �. ������,�

���  is the 389 

“empirical” mean of the observed MEP from the same run expressed as,  390 
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 ������,���� � ∑ ����,�����
��   

! � 1, 2, 3, … 75, ��� !�
 #��	
  (2) 

where ����,�
���  represents the pre-PAS MEP of the ���  trial from a total of N=75 trials in 391 

session �. The corresponding measurement error �����,�
���  is then represented by the standard 392 

error of the MEP among all 75 trials, estimated by, 393 

 �����,���� � $∑ �����,���� % ������,���� ���
��  � % 1�  (3) 

Finally, substituting (2) and (3) into (1), both empirical mean and variance estimated over the 394 

75 observed pre-PAS MEPs of a specific session were modeled to estimate the ‘true’ 395 

corresponding amplitude. For the prior distribution of �������,�
��� , we applied a weakly 396 

informed prior (Gelman et al., 2008, 2017; Gabry et al., 2019) consisting in a Gaussian 397 

distribution ��� !"#0.5, 1%. Note that all observed MEPs ( ������,�
���,����  and �����,�

���,����  , 398 

for 40 &������� �  2 '� �� #��� (/���� ( �*&%  �  80) were normalized by the global 399 

maximum value of ������,�
���,���� to ensure a +0, 1, range. Then, 0.5 appears as an appropriate 400 

prior of the mean when nothing is known about the MEP amplitude, but only the range (i.e., 401 

#0 - 1% 2⁄  �  0.5).  402 

The ‘true’ MEP in the post-PAS spTMS run was then modeled as follows, 403 

 ������,����� � ����	
������	�,����� , �����,������      
������,����� � ∑ ����,������

��   

�����,����� � $∑ ����
�,�

���� % ���
���,�

�������
��  � % 1�  

 

(4) 

Note that the prior distribution of the parameter �������,�
����  is defined in the next section, 404 

within the context of hierarchical multivariate linear regression.  405 

2) Hierarchical multivariate linear regression 406 
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PAS effects on M1 cortical excitability were then modeled using a multivariate linear 407 

regression model, in which �������,�
����  and �������,�

���  were considered as the dependent and 408 

predictor variables, respectively.  409 

 �����	�,����� � ����	
�&� , σ� 

&� � ��#��(�)#��� * �+��,)��� * 	(#����,��� - �����	�,����  

� � 1, 2 	�. 3, ��� ��
 ��#��/��#��� 

	 � 1, 2, 3, …  16, ��� 	�
  �,12�(# 

� � 1, 2, 3, … 40, ��� ��
 ������� 

(5) 

where 
� is the mean of �������,�
���� , predicted by �������,�

���  using the following linear model:  410 


� � ����������	 - /0��1��	 - !������,	2 3 �������,�
��� , and σ  is the error of the linear 411 

regression (i.e., the scale of the normal distribution). We added the following index variables 412 

to differentiate subject, intervention (PAS25/PAS10/sham) and time (pre-/post-PAS) in the 413 

model. ����������	  is the intercept of the linear regression, for the ���  �����5������ , in 414 

which � �  1, 2 !�6 3 refers to PAS25, PAS10 and sham, respectively. The slope parameter 415 

is modeled using two parts, a group-level slope parameter 0��1��	 , specific for each 416 

intervention �, and a parameter modeling inter-subject variability, denoted as !������,	, for 417 

each intervention � and each subject !, associated with the following prior model:  418 

 3	(#����,���	(#����,���	(#����,���4 � 5,
#�����	
 670008 , Σ : 

Σ �  Σ����� - ;<� - Σ����� 

 �  6=� 0 00 =� 00 0 =�: 6 1 >�� >��>�� 1 >��>�� >�� 1 : 6=� 0 00 =� 00 0 =�: 

(6) 

where 71"����� !"#·% is a multivariate Gaussian distribution to model the interaction, 419 

which allows the effects of each specific intervention to vary for each subject, meaning each 420 

subject can respond to each intervention differently. We defined this multivariate Gaussian 421 

prior distribution to have zero means (3 elements vector) therefore assuming all the subjects 422 

to have zero mean deviation around the group-level slope parameter 0��1��	 . 9:�  and 423 

Σ�����  denote respectively the correlation matrix and the scale matrix of the covariance 424 

matrix Σ of the multivariate Gaussian distribution. ;�,�,� is the scale among all subjects within 425 
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each intervention group, for example, ;� is the scale of the vector !������,	
� for sham. < is 426 

the correlation between pair-wised interventions, for instance, <�� represents the correlation 427 

between !������,	
� for PAS25 and !������,	
� for PAS10. 428 

Weakly informed priors were assigned to the parameters in (5) and (6) as follows, 429 

 ��#��(�)#��� � ����	
�0, 0.1� 

+��,)��� � 
�+����	
�
�+�1�, 0.5� 

> � ?@A(����2� 

σ � B	
�����	
�0, 1� 

(7) 

��� !"#0, 0.1% was chosen for ����������	  considering that when  �������,�
���  �  0, the 430 

corresponding �������,�
����  should not be too much apart from 0. "�0��� !"#"�0#1%, 0.5% 431 

was selected for the group-level slope to ensure it is a positive value with a median of 1. 432 

Therefore, without knowing any intervention type, the slope should be equal to 1, assuming 433 

there is no averaged PAS effect among subjects when the intervention type is not known. 434 

=>?����#@ � 2% , the Lewandowski-Kurowicka-Joe distribution (Lewandowski et al., 435 

2009), is a weakly informative prior for the correlation parameter < that does not prioritize 436 

extreme correlation values such as A1 , where @  is a positive parameter. @ � 1  denotes 437 

uniform density of <. The larger @  is (when compared to 1), the least likely the extreme 438 

correlation values to occur (sharper probability density distribution). We selected @ � 2 as a 439 

weakly informed prior commonly considered in Bayesian data analysis (McElreath, 2020). 440 

Finally, B!"���� !"#0,1% was used for variance parameters to ensure a positive value, 441 

whereas its likelihood decreased following the positive half of a ��� !"#0, 1% distribution, 442 

when variance increases. As denoted previously, we normalized all data ����,�
���  and 443 

����,�
���� within the range [0,1], therefore ��� !"#0, 1%  is considered as a conservative 444 

(“flat”) enough prior, not reducing the variance.   445 
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 446 

Fig.2. The hierarchical model of PAS effects on either cortical excitability (MEP) or hemodynamic 447 

responses (Hb). From bottom to top, 1) a measurement error model assuming the mean of the 448 

variable of interest (either the observed MEPs, e.g.,  �����,�
���

; or a spline weight of HbO/HbR time 449 

course, e.g., C���,�,�
���

 of each run at a different time (pre-/post-) is drawn from a Gaussian 450 

distribution. The mean of this Gaussian distribution is the ‘true’ value of the variable of interest, and 451 

the scale is the corresponding standard error; 2) each subject and intervention were differentiated 452 

using index variables; 3) PAS effects were modeled by linear regression in which the ‘true’ post- 453 

variable of interest was predicted by the ‘true’ pre- variable of interest. Solving this hierarchical 454 

model by Bayesian allows partial pooling on each parameter to reduce the uncertainty.  455 

2.4.2 Hierarchical Bayesian Model #2: Assessment of PAS effects on task-related 456 

HbO/HbR 457 

A similar hierarchical multivariate linear regression model is proposed to assess PAS effects 458 

on task-related fNIRS hemodynamic responses. This model is very similar to previous 459 

Model#1, the main difference being that the input variables to the model are now ‘features’ 460 

representing hemodynamic responses during the finger-tapping task. Instead of extracting 461 

amplitudes at a particular time sample of HbO/HbR time courses, for instance, the 462 

hemodynamic peak amplitude, or performing a local average within a specific time window, 463 

in this Model #2, we conducted a procedure to model the PAS effects over the whole time 464 

course of HbO/HbR responses to finger tapping.  465 

To do so, after 3D reconstruction using MEM of all 101 sub-averaged of the fNIRS 466 

responses, HbO/HbR time courses were first averaged within the selected M1 ROI in the 467 
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selected time range [0s, 30s]. To lower the dimension of the input to the model, resulting time 468 

courses were then projected on B-splines temporal basis functions (Boor, 2001; Gelman et 469 

al., 2013; Hastie, 2017). Therefore, hemodynamic responses were expressed as a weighted 470 

linear combination of those basis functions, considering the hierarchical model summarized 471 

in Fig.3. Please note that Hb refers to either HbO or HbR in the model, which was fitted 472 

separately for each chromophore,  473 

   C1���,���� �#� � ����	
�&�����#�,  C1��,�����#�� 

&�����#� � D���,�,�
��� E F��#� 

D���,�,�
��� � ����	
�0,10�

 

C1���,����� �#� � ����	
�&������#�,  C1��,������#�� 

&������#� � D���,�,�
���� E F��#� 

D���,�,�
���� � ����	
�0,10�

 

� � 1, 2, 3, …  10, ��� ��
 D��+<#  # � 0� #� 30� D�#< 	 �#�) �� 0.5�  � � 1, 2, 3, … 40, ��� ��
 ������� 

(8) 

where DE���,�
��� #�% is the observed empirical mean of pre-PAS HbO/HbR responses among all 474 

101 sub-averaged time courses, for a specific finger-tapping run (e.g., finger-tapping run in 475 

pre-PAS25 of Sub01) of a specific session � at a specific time point �. DE���,�
��� #�% is assumed 476 

to follow a Gaussian distribution with a mean of 
�
���#�% and a scale of DE��,�

���#�%, where 477 

DE��,�
���#�% is the corresponding standard deviation estimated among all 101 sub-averaged time 478 

courses. Note that all pre- and post-PAS HbO/HbR time courses in one session were 479 

normalized by the global maximum amplitude to be within the range [-1,1]. Then, 
�
���#�% 480 

representing the mean time course of the true pre-PAS HbR/HbO for time sample �  and 481 

session s , was defined as a linear combination of � � 10 B-spline basis functions 482 

G�#�%  using the corresponding weight C���,�,�
��� . Each basis function G�#�% was defined as a 483 

3rd order polynomial function. A similar model structure was applied to data and parameters 484 

corresponding to the post-PAS finger-tapping run. To model the temporal response using B-485 

spline, we selected 10 knots pivoted at the percentiles of time sequence � � 0� �� 30� with a 486 

step of 0.5�; therefore, 10 corresponding weights and basis functions, as illustrated in the 487 

second column of Fig.3. Using this Bayesian spline model, not only the averaged time course 488 

of HbO/HbR, but also their corresponding standard deviation over the 101 sub-averaged, for 489 
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each time point, were projected in the ‘spline space’. This means the averaged time course of 490 

HbO/HbR can be recovered by the linear combination of the mean of each weight (over 101 491 

sub-averaged) and basis functions G�#�%, whereas the standard deviation of HbO/HbR time 492 

course is reflected by the linear combination of the standard deviation of each weight (over 493 

101 sub-averaged) and G�#�%. Note that the use of spline basis functions in this study was 494 

mainly to reduce the dimensionality of the HbO/HbR time course from 60 sampling points to 495 

10 weights, while preserving the variability structure to be modeled. Therefore, selecting 10 496 

spline knots was a trade-off between: 1) choosing fewer knots that would result in eventual 497 

distortion of the HbO/HbR time courses, involving too much temporal smoothness; 2) adding 498 

more knots that would increase the dimensionality of the data after projection. Hence, our 499 

empirical choice ensured accurate representation of the whole HbO/HbR time courses with a 500 

minimum dimensionality span. Importantly, projecting to spline space also preserved the 501 

autocorrelation of the HbO/HbR time courses per se, which could not be achieved when 502 

simply applying the same hierarchical model on each of 60 data points independently. 503 

Finally, ��� !"#0,10%  is considered as a weakly informative prior for spline weight 504 

considering the HbO/HbR time course was normalized within the range [-1,1]. 505 

We then embedded this spline model of the hemodynamic response within the same 506 

hierarchical model proposed in the previous section (Model#1), for instance, replacing the 507 

������,�
���  with the spline weights C���,�,�

���  as follows, also illustrated in the third column of 508 

Fig.3.  509 

 D���,�,�
���� � ����	
�D��	�,�,�

���� , D��,�,�
���� � 

D���,�,�
��� � ����	
�D��	�,�,�

��� , D��,�,�
��� � 

D��	�,�,�
���� � ����	
�&�, =�

 

&� � ��#��(�)#��� * �+��,)��� * 	(#����,��� - D��	�,�,�
���  

D��	�,�,�
��� � ����	
�0,10� 

(9) 

where C���,�,�
����  C���,�,�

���  , C��,�,�
���� and  C��,�,�

���   were all calculated from the corresponding 510 

posterior of spline weights estimated from equation (8). In total, 10 models were considered 511 

for 10 pairs of weights (pre- and post-PAS) to encode the PAS effects for either HbO or HbR 512 

separately. C���,�,�
����  and C���,�,�

���  are referring to the empirical mean of each spline weight for 513 

either pre- or post-PAS HbO/HbR for session �, estimated from the corresponding posterior 514 

of spline weights in equation (8). The scale of Gaussian distribution in the measurement error 515 
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model was then C��,�,�
����  and C��,�,�

��� , respectively. Note that equation (8) resulted in the 516 

estimated posterior distribution of C���,�,�
����  and C���,�,�

���  after projecting HbO or HbR time 517 

course to the spline space, then scales of Gaussian distributions used for the measurement 518 

error model in (9) were directly reflected by the standard deviation of the posterior 519 

distribution (denoted as �6 in subscript). Finally, the intervention, subject index variables, 520 

and priors to be considered for this model, were similar to those previously introduced for 521 

Model#1, so the PAS effects on HbO/HbR whole time course were then encapsulated in the 522 

hierarchical model of spline weights. 523 

 524 

Fig.3. The hierarchical model for PAS effects on the whole HbO/HbR time course. HbO/HbR time 525 

courses, from 0s to 30s, before and after each intervention session were selected as the inputs of the 526 

model. They were projected into the spline space which is composed of 10 predefined basis functions 527 

(3rd order polynomial with 10 knots). The linear combination of basis function using 10 528 

corresponding weights D�~��  can fully recover the HbO/HbR time course. The resulting pre- and 529 

post-PAS spline weights were then fed into the hierarchical model, similar to model #1 to estimate the 530 

PAS effects on each weight. Therefore, the associations between each pair of weights encapsulated 531 

the PAS effects on the whole time course of HbO/HbR.  532 

2.4.3 Hierarchical Bayesian Model #3: Relationship between PAS effects on task-533 

related M1 hemodynamic activity and PAS effects on M1 excitability  534 

In this third model, we propose to investigate the interactions between 1) PAS effects on M1 535 

excitability (PAS effects on MEP, represented by the slope parameter in Model#1), and 2) 536 

PAS effects on reconstructed hemodynamic finger tapping responses (PAS effects on 537 

HbO/HbR, represented by the slope parameter in Model#2 for a specific weight C�). We 538 
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assumed the relationship between task-related M1 hemodynamic activity and M1 excitability 539 

was not intervention specific, then the previous hierarchical models (i.e., Model#1 and 540 

Model#2) were modified to be only session specific, i.e., only index variable of session � was 541 

used, whereas intervention and subject index � and ! were ignored.  542 

 G�
�)��������
�)������ H � 5,
#�����	
 IJ00K , L�����  M 

L����� �  L������� - ;<������ - L������� 

 �  N=��� 00 =��O N 1 >������>������ 1 O N=��� 00 =��O 

� � 1, 2, 3, … 40, ��� ��
  ������� 

(10) 

The interactions were modeled using a multinormal distribution, in which the parameter 543 

<������  in the 9:������ matrix denotes the correlation between the two slopes (representing 544 

the PAS effects in both linear models). The same model was fitted separately when 545 

investigating either the relationship between MEP and HbO or between MEP and HbR. 546 

�"�����
��� is the session specific slope parameter in Model#1. Similarly, �"�����

�� (either HbO 547 

or HbR) is the session specific slope parameter in Model#2 for one of the corresponding 548 

spline weights C�~�� . ;���  and ;��  are the standard deviations of �"�����
���  or �"�����

�� , 549 

respectively. Note that this model was fitted for each spline weight separately - 10 correlation 550 

investigations between MEP and each spline weight were conducted. Therefore, the posterior 551 

distribution <������  inferred for a specific spline weight  can be interpreted as the 552 

correlation between brain excitability and task-related cortical hemodynamic activity at a 553 

specific period (e.g., C  reflecting HbO/HbR fluctuations around the peak time point of the 554 

hemodynamic response). For the parameters of the Multinormal distribution, we considered 555 

the same weakly informed priors as those proposed in Model#1 and Model#2.  556 
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 557 

Fig.4. Modeling the relationship of task-related M1 hemodynamic activity and M1 excitability. For 558 

MEP, which represented the M1 excitability, the previous Model #1 was modified to be session-559 

specific only. For spline weights, which represented the features of task-related HbO/HbR time 560 

course, the previous ‘Model #2 was also modified to be session-specific only. The association between 561 

the �
�)���� in MEP model and �
�)��� represented by any of the spline weight of the HbO/HbR 562 

time course model were described by a multinormal distribution.     563 

2.5 Prior predictive simulation 564 

To justify the choices of ‘weakly informed’ prior, a prior predictive simulation was 565 

conducted in Fig.3. The prior predictive simulation consists in a generative process simply 566 

checking what kind of data we would expect to generate from our hierarchical models, when 567 

applying all possible values of the parameters considering the proposed prior distributions of 568 

the model. Then by comparing the distribution of data generated by our model, to the domain 569 

knowledge, one can assess whether the proposed priors could be overregulating or not 570 

objective (e.g., too strongly informed). In our study, PAS effects were modeled using linear 571 

regression. To perform prior predictive simulation, we considered prior predictive simulation 572 

to draw 1000 lines following the prior distributions of the intercept and slope in the 573 
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normalized pre-MEP vs. post-MEP amplitude plane. Then the distribution of generated 574 

regression lines was compared to three reference lines summarizing our knowledge of the 575 

problem. In detail, these three reference lines were featuring a slope of 0.2, 1 and 3, 576 

respectively and an intercept of 0. When the intercept is set to 0, the slope just refers to the 577 

ratio of post- over pre-PAS MEP amplitude, which was used in conventional analysis to 578 

represent the PAS effects. Whereas a slope of 1 would then correspond to no effect (post-579 

/pre-PAS ratio of 1), the reference slopes of 0.2 and 3 represented the thresholds for outliers 580 

of extremely small or large MEP ratios reported in Kriváneková et al., 2013. 581 

2.6 Hierarchical Bayesian model fitting 582 

In this study, we used the R Version 4.0.3 (R Core Team, 2020) distribution of the Stan 583 

Probabilistic programming languages (Stan Development Team, 2020a) - RStan package 584 

Version 2.21.2 (Stan Development Team, 2020b) to implement and solve the proposed 585 

Bayesian models. Specifically, the joint posterior distribution was sampled using the 586 

implementation of dynamic HMC in Stan (Betancourt, 2017, 2019), as an improved version 587 

of HMC algorithm (Neal, 2010; Betancourt and Girolami, 2015). In total, 4 MCMC chains 588 

were used to sample each model and they were initialized randomly to ensure a better 589 

exploration of the joint posterior distribution, while allowing diagnostic of the convergence. 590 

Each chain consisted of 2000 samples, including a first half warm-up phase (1000 samples) 591 

for the adaptation of the HMC parameters. Therefore, when combining all 4 chains, we 592 

obtained 4000 samples of each parameter of the models mentioned above, drawn respectively 593 

to estimate the corresponding posterior distributions. Regarding computation time, using an 594 

Intel 10750H laptop CPU and parallel computation (one core per chain), dynamic HMC took 595 

66s for sampling once Model#1, 59s for Model#2 and 53s for Model#3 (including compiling 596 

time and calculation of the diagnostics).  597 

Diagnosing the HMC sampling process is a crucial step when evaluating the accuracy and 598 

biases of the estimated posterior distributions. This is also known as a unique and advanced 599 

feature of HMC when compared to other MCMC algorithms (Roberts and Rosenthal, 2004). 600 

In this study, we considered the diagnostic approach recommended by Stan to evaluate 601 

pathological behaviors of HMC sampling (Betancourt, 2017; Gabry et al., 2019; Gelman et 602 

al., 2020b), 603 

1) Divergent transitions for real samples drawn after the warm-up phase. This diagnostic 604 

statistic is specific for the HMC sampler, mainly invigilating the miss-match between the 605 
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step size of the MCMC chain and the target distribution geometries (Betancourt et al., 606 

2017). While sampling a ‘high curvature’ region of the target distribution, an 607 

inappropriate large step size may miss-sample it, therefore biasing the resulted posterior 608 

distribution. MCMC chains will approach infinite energy immediately – called divergent 609 

transitions – when approaching such regions (Neal, 2010; Betancourt, 2017). These 610 

divergences are recorded and reported by Stan. Note that divergence is usually related to 611 

the parameterization of the model, especially when involving multivariate and 612 

hierarchical structures. Parameters may usually be dependent on each other in these 613 

models, therefore, creating a ‘high curvature’ distribution landscape, also denoted as 614 

Neal’s Funnel (Neal, 2003), which is difficult to sample. In order to reduce the chances 615 

of such divergences, in our study, we considered reparameterization of the model into 616 

non-centered forms when sampling with HMC.  617 

2) The Energy-Bayesian Fraction of Missing Information (E-BFMI) is a specific 618 

diagnostic statistic for HMC sampler, evaluating the efficiency of the sampling process 619 

(Betancourt, 2016). Poorly chosen parameters of the HMC can decrease the efficiency of 620 

the sampling process or even result in incomplete exploration of the target distribution, 621 

especially when considering distributions with heavy tails. Such a behavior can be 622 

diagnosed by taking advantage of the physics feature of HMC, by comparing the 623 

marginal energy density (denoted as H�) and energy transition density (denoted as H∆�) 624 

of the chain. When superimposing the histograms of H�  and H∆� , the higher the 625 

efficiency, the more overlap between the two distributions. The Energy Bayesian 626 

Fraction of Missing Information (E-BFMI) (Rubin, 2004) is used in Stan to quantify such 627 

comparison, by calculating the statistical expectation of the variance of H∆�  over the 628 

variance of H� . Empirically, an E-BFMI value below 0.3 is considered as problematic 629 

(Betancourt, 2016, 2017).  630 

3) IJ  as a general and primary diagnostic statistic when evaluating convergence of 631 

MCMC chains (Gelman and Rubin, 1992; Brooks and Gelman, 1998). IJ is estimated for 632 

each parameter of the model as the ratio of between-chains variance over the within-633 

chain variance. In detail, the between-chains variance is calculated as the standard 634 

deviation among all chains, whereas the within-chain variance is calculated as the 635 

weighted sum of the root mean square of the standard deviation within each single chain. 636 

The recommended criteria for convergence is 9K L  1.05 (Gabry et al., 2019; Vehtari et 637 

al., 2020).  638 
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Finally, we used tidyverse package (Wickham et al., 2019) in R (R Core Team, 2020) for 639 

general data wrangling and visualization. Tidybayes package (Kay, 2020) was used for 640 

visualizing the posterior distributions whereas bayesplot package (Gabry et al., 2019; Gabry 641 

and Mahr, 2020) was used for visualizing the diagnostics of HMC chains.  642 

2.7 Statistical inferences 643 

In general, two types of statistical inferences were made in this study. To infer PAS effects on 644 

MEP and HbO/HbR time course, we applied the posterior predictive simulation technique in 645 

which the distribution of MEP after each intervention type was estimated by feeding the fitted 646 

model (e.g., Model#1 and Model#2) with specific pre-intervention MEP values (the same 647 

approach was applied to HbO or HbR time course, respectively). Then the distribution of 648 

percentage change of post-intervention MEP relative to pre-intervention MEP was used to 649 

infer the PAS effects on MEP (the same approach was applied to HbO or HbR time course, 650 

respectively). To infer the correlation between PAS effects on MEP and its effects on 651 

HbO/HbR, we directly considered the posterior distribution of the correlation parameter in 652 

Model#3. Please find further details as follows.  653 

1) When investigating the effect of PAS on MEP, we first made inferences by answering 654 

the question - what will be the distribution of MEP after a certain PAS intervention when 655 

giving a specific pre-PAS MEP? This approach is more direct and convenient comparing 656 

the process checking the posterior distribution of each parameter of the model one by 657 

one. This technique is referred to as the posterior predictive simulation (Gabry et al., 658 

2019; Gelman et al., 2020b). For instance, to infer the PAS effects on the M1 cortical 659 

excitability, we used the averaged MEP (i.e., equals to 1.0mV, in the original data scale 660 

before normalizing) among all pre-PAS runs to represent the group-level pre-PAS M1 661 

cortical excitability. This amplitude was then substituted into the fitted Model#1 along 662 

with all posterior distributions of parameters (e.g., intervention-specific intercepts and 663 

slopes) to estimate a group-level post-PAS MEP distribution. By comparing the 664 

distributions of the percentage change of this post-PAS MEP distribution relative to the 665 

pre-PAS MEP amplitude, the effects of each intervention can be inferred. We also 666 

performed this inference using a set of different pre-PAS MEPs values, such as 0.2mV, 667 

0.6mV, 1.2mV, 2.2mV and 2.8mV according to the observed range of all individual pre-668 

PAS MEP (i.e., ranging from 0.1mV to 3.0mV), to investigate how PAS effects could be 669 

related to the pre-PAS MEP amplitude. Note that these pre-PAS MEP amplitudes were 670 
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also scaled by dividing the global maximum value of ������,�
���,����  before being feed into 671 

the model, and posterior predicted post-PAS MEP amplitudes were rescaled back to the 672 

original data scale.  673 

Similarly, the PAS effects on task-related hemodynamic were statistically inferred using 674 

the following steps: 1) select any preferred pre-PAS HbO/HbR time course (e.g., the 675 

averaged HbO/HbR of all pre-PAS runs demonstrated in the results); 2) calculate the 10 676 

weights (variable) corresponding to this specific time courses; 3) inferring the 10 post-677 

weights along with their variance by posterior predictive simulations of the fitted 678 

hierarchical Model#2; 4) apply a linear combination of 10 post-weight and basis 679 

functions to obtain the distribution of post-PAS HbO/HbR time course. Note that we also 680 

calculated the PAS effects on HbO/HbR by contrasting post-PAS25 or post-PAS10 681 

hemodynamic response to the one obtained in post-sham condition. To do so, we 682 

subtracted from the posterior predicted distributions of post-PAS25 HbO/HbR time 683 

courses (or post-PAS10) the posterior predicted post-sham HbO/HbR time courses.  684 

2) The correlation between M1 cortical excitability and task-related hemodynamic 685 

response can be inferred directly from the posterior distribution of the correlation 686 

parameter <������  per se. Note that this correlation distribution was estimated for each 687 

spline weight separately, therefore, the resulted posteriors can be used to infer the 688 

excitability association for each specific time point of the HbO/HbR time course. For 689 

instance, the posterior distribution of the correlation between �"�����
��� and �"�����

��"#�$ 690 

indicated the relationship between the peak period (e.g., few seconds around the 691 

expected peak timing of the response) of task-related HbO/HbR and M1 cortical 692 

excitability. We also conducted typical frequentist inferences of this relationship using 693 

the linear fit and Pearson’s correlation over all 40 sessions on the resulted mean of 694 

�"�����
��� and �"�����

��"#�$, for both HbO and HbR.  695 

Note that for quantified statistics, we reported median and the median absolute deviation (i.e., 696 

 !6��), which was suggested by Gelman et al., 2020a and estimated as follows:  !6�� �697 

 1.483 ·  �6�!�	
�
� |N	 ( �|, where N	  is a certain value of a set of values N	
�,�,�...� and � is 698 

the median of all N	 . The  !6��  is a more universal representation of the variance, which is 699 

comparable to the standard deviation, without considering the parametric/nonparametric 700 

distribution of N	  and is more computationally stable.  701 
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2. 8 Data and code availability statements 702 

The original raw data supporting the findings of this study are available upon reasonable 703 

request to the corresponding authors. fNIRS and TMS data were processed via Brainstorm 704 

software (Tadel et al., 2011) available at https://neuroimage.usc.edu/brainstorm/ and the 705 

fNIRS processing plugin - NIRSTORM (https://github.com/Nirstorm/nirstorm) in 706 

Brainstorm. R code for Bayesian models is available upon reasonable request to the 707 

corresponding authors. 708 

3. Results  709 

3.1 Prior predictive simulation 710 

As illustrated in Fig.5, the resulting prior predictive simulation lines were distributed 711 

symmetrically around the control line suggesting no PAS effect (i.e., intercept = 0, slope =1). 712 

This means our priors exhibited no preference towards a slope < 1 or >1. Moreover, within 713 

the post-PAS MEP versus pre-PAS MEP plane, the area spanned by all simulated lines 714 

covered a larger area than the area enfolded by the reference lines (0 intercepts, a slope 715 

spanning from 0.2 to 3.0). These results are confirming that priors in our hierarchical model 716 

are not biased to the expected PAS effect and are more conservative than the conventional 717 

MEP ratio thresholding approach. This prior predictive simulation result also applies to PAS 718 

effects on HbO/HbR, since fNIRS data were normalized similarly as MEP values and the 719 

priors in the multivariate linear regression models were the same.   720 

 721 
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Fig.5. Prior predictive simulations for the hierarchical model of PAS effects on cortical excitability. 722 

Each blue line represents one prior predictive simulation obtained by drawing simultaneously the 723 

intercept and the slope parameters when considering only the priors proposed in Model#1. For 724 

comparison purposes, as a reference, we first represented a control line suggesting no PAS effect 725 

(intercept of 0, slope of 1), then two lines referring to MEP ratio outliers (intercept of 0 and slope of 726 

0.2 and 3 respectively.  727 

3.2 Diagnosis of HMC  728 

All of the models resulted in 0 divergences reported by Stan, indicating they were well 729 

parameterized, and HMC chains explored sufficiently well the target distribution. Fig.6 730 

reports the evaluation of diagnostic statistics for the two metrics 9K  and E-BFMI. In each 731 

column of Fig.6, a specific model sampling process for a specific model is being diagnosed 732 

(see further details in Fig.6 caption). The first row illustrates the histogram of 9K  for all 733 

parameters in each corresponding model. No parameters resulted 9K O 1.05 indicating the 734 

corresponding HMC chains indeed well converge. The second row demonstrated the 735 

superimposed histograms of H�  (i.e., marginal energy density) and H∆� (i.e., energy transition 736 

density), which overlapped well for all models. This evaluation was also quantified by 737 

reporting E-BFMI values for each model, which were all smaller than 0.3. Therefore, we can 738 

conclude that the HMC chains used to sample the parameters of the key models involved in 739 

this study were robust and reliable according to these reported diagnostic statistics.  740 

 741 

Fig.6. Diagnostic statistics of key features of the models considered in this study. Diagnostic 742 

statistics for a) Model#1 - PAS effects on MEP amplitude, b) Model#2 - PAS effects on D  of task-743 

evoked HbO, c) Model#2 - PAS effects on D  of task-evoked HbR, d) Model#3 - correlation between 744 
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PAS effects on MEP and PAS effects on D  of task-evoked HbO and e) Model#3 - correlation between 745 

PAS effects on MEP and PAS effects on D  of task-evoked HbR. The first row presents the histogram 746 

of ;P  values for all parameters among all chains of each model. No ;P  value was above 1.05, 747 

suggesting that all chains converged well. The second row presents the superimposed distributions of 748 

the marginal energy density Q�  and the energy transition density Q∆� for all HMC chains sampled for 749 

each model. The corresponding quantification metric E-BFMI was smaller than 0.3, indicating a 750 

good overlapping between the two distributions.  751 

3.3 PAS effects on cortical excitability 752 

When considering Model#1, the estimated regression lines (using the averaged intercept and 753 

slope parameters calculated from their posterior distributions) linking pre- and post-PAS 754 

MEPs for each intervention are reported in Fig.7a. The regression line estimated for sham 755 

intervention (black line) was found as expected - between the regression lines estimated for 756 

PAS25 (red line) and PAS10 (blue line), and it was almost identical to the reference line 757 

reporting no effect (intercept=0, slope=1). Observed pairs of post-PAS MEP and pre-PAS 758 

MEP mean amplitude over all trials are presented as solid pints (observed data), whereas 759 

corresponding estimated ‘true’ amplitudes are presented as empty points. The black lines 760 

connecting each pair of solid (observed mean) and empty (estimated ‘true’ mean) points 761 

illustrate the shrinkage process, also known as the result of partial pooling obtained when 762 

considering hierarchical Bayesian modeling. This demonstrated the regularization property of 763 

the model, where the estimated ‘true’ MEPs corresponding to each intervention group shrank 764 

toward the corresponding regression line. Moreover, when considering the variance of the 765 

MEPs, the larger the MEP variability of a certain run, the more shrinkage there was. Results 766 

of posterior predictive simulation at the group-level, when considering a pre-PAS MEP 767 

amplitude of 1.0mV is illustrated in Fig.7b, as the posterior distribution of relative changes of 768 

post-PAS MEP amplitudes (in %) after each intervention. PAS25 intervention resulted in a 769 

substantial relative increase of post-PAS MEP amplitude (median A !6��  = 30.6% A770 

14.6%), consisting of a posterior probability of 0.97 for obtaining an increase in MEP 771 

amplitude. The posterior distribution of sham post-PAS MEP amplitude exhibits a nice 772 

symmetric pattern around a 0% increase (an increase of 2.3% A 14.5%). The effects of 773 

PAS10 were subtle, showing a slight shift towards the negative side consisting in a relative 774 

decrease of (1.80% A 11.0%, and a probability of 0.57 of obtaining a decrease in MEP 775 

amplitude. Individual-level inferences are presented in Fig.S1, where both PAS25 and PAS10 776 

effects are showing a large between-subject variability, as addressed in the introduction. 777 
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When reporting individual level results, posterior predictive simulations were obtained by 778 

considering the same averaged pre-PAS MEP amplitude over 40 sessions as the input for all 779 

subjects, taking full benefit of hierarchical modeling, allowing to compare individual-level 780 

results within the appropriate framework.  781 

 782 

Fig.7. PAS effects on cortical excitability. a) the regression lines of each intervention estimated by 783 

the mean of intercept and slope from the corresponding posterior distribution, PAS25 (red), PAS10 784 

(blue) and sham (black). Pre- and post-PAS MEP amplitudes were normalized by dividing by the 785 

global maximum amplitude of all 80 MEP values. Shadow areas represent the 50% interval estimated 786 

from the posterior distribution of the regression parameters. Solid points correspond to pairs of 787 

averaged pre-/post-PAS MEP amplitudes over all trials of each specific run. Empty points represent 788 

the ‘true’ amplitude of the corresponding pre-/post-PAS MEP pair estimated using the proposed 789 

hierarchical Bayesian Model#1. The black bar connecting each solid point to the corresponding 790 

empty point illustrates the shrinkage process of Bayesian inference of the hierarchical model; b) 791 

Posterior predictive simulations of post-PAS MEP amplitudes obtained when considering a given pre-792 

PAS MEP amplitude of 1mV as input, corresponding to the averaged pre-PAS MEP amplitude over 793 

all 40 sessions. The blue area represents the probability of obtaining a relative increase (in %) for the 794 

post-PAS MEP amplitude when compared to the pre-PAS MEP amplitude, whereas the pink area 795 

represents the probability of obtaining a relative decrease (in %). The black dot represents the 796 

median of each posterior distribution, and the surrounding bars show the corresponding 50% and 797 

90% credibility intervals.      798 
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 799 

Fig.8. Effects of spTMS intensity on PAS assessment. We used posterior predicting simulations 800 

applied to five levels of pre-PAS MEP amplitudes, to evaluate the impact of five levels spTMS 801 

intensities. Posterior distributions of the corresponding relative changes in post-PAS MEP amplitude 802 

relative to pre-PAS MEP amplitudes are presented in each row. The expected effects of PAS25 803 

(positive % increase) and PAS10 (negative % decrease) became clearer when increasing the spTMS 804 

intensity. On the other hand, when considering the sham intervention, we found no effect of relative 805 

changes in post-PAS MEP amplitude, exhibited at all intensity levels, as well as symmetric 806 

distributions around 0%.   807 

Fig.8 presents the effects of simulating different pre-PAS MEP amplitudes as inputs, on the 808 

relative change of post-PAS MEP amplitude for each intervention, at the group level. For 809 

both PAS25 and PAS10, the higher the pre-PAS MEP amplitude was, the higher the relative 810 

change in MEP amplitude was. In further details, PAS25 resulted in an increase of post-PAS 811 

MEP amplitude of  ( ),  ( ), 812 

 ( ) and  ( ) when considering 813 
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an input pre-PAS MEP amplitude of 0.6mV, 1.2mV, 2.2mV and 2.8mV, respectively. 814 

Similarly, PAS10 resulted in an increase of post-PAS MEP amplitude of -4.2% A 18.9% 815 

(���E �  0.59%, when considering an input pre-PAS MEP amplitude of 0.6mV, followed 816 

respectively by decreases of (3.1% A 10.5% (���E �  0.62), (6.5% A 12.6% (���E �817 

 0.70) and (7.51% A 13.8%  (���E �  0.71) when considering an input pre-PAS MEP 818 

amplitude of 1.2mV, 2.2mV and 2.8mV. This important finding of our proposed Bayesian 819 

Model#1 suggests that even without increasing the TMS stimulation intensity during PAS, 820 

simply increasing the spTMS intensity considered to measure changes in excitability can 821 

reveal the expected PAS effects more clearly, while reducing some variability in the data. On 822 

the other hand, when assessing this effect on sham, we obtained similar distributions of 823 

relative changes in post-PAS MEP amplitude, all symmetric around 0%, consisting in relative 824 

changes of 4.6%, 2.0%, 0.6% and 0.2% , when considering a pre-PAS MEP amplitude of 825 

0.6mV, 1.2mV, 2.2mV and 2.8mV, respectively. Importantly, the higher the pre-PAS MEP 826 

amplitude was, the closer to 0% the median of relative change in post-PAS MEP amplitude 827 

was. Overall, when considering pre-PAS MEP amplitude of 0.2mV for each intervention, we 828 

found a large level of uncertainty in spTMS responses, suggesting that small MEP amplitude 829 

induced by spTMS should be avoided when assessing the level of brain excitability.  830 

3.4 PAS effects on task-related HbO/HbR responses  831 

Fig.9 showed the PAS effects on the whole time course HbO/HbR, as a contrast (i.e., 832 

subtraction of posterior distributions) between the intervention of interest (PAS25 or PAS10) 833 

and sham condition. When considering the group level averaged pre-PAS HbO/HbR 834 

responses (normalized to [-1, 1]) as input for posterior predictive simulations (dashed red and 835 

blue curves for HbO and HbR), we observed that PAS25 (Fig.9a) resulted in a relative 836 

increase of HbO amplitude (solid red curve) and HbR amplitude (solid blue curve), mainly 837 

around the expected peak of the hemodynamic response (from 8s to 16s). When comparing 838 

absolute peak amplitudes, the probability of increasing the hemodynamic response after 839 

PAS25 was 0.80 for HbO response and 0.82 for HbR response. After PAS10 (Fig.9b), our 840 

results are suggesting at the group level a subtle relative decrease of HbO and HbR absolute 841 

amplitudes around the peak of the hemodynamic response. The probability of obtaining a 842 

relative decrease in absolute peak amplitudes after PAS10 was 0.66 for HbO response and 843 

0.48 for HbR response. Interestingly, PAS10 demonstrated a clear absolute amplitude 844 

decrease within a period ranging from the peak to the end of the response (11s to 25s) for 845 

both HbO and HbR.   846 
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 847 

Fig.9. PAS effects on the whole time course of HbO/HbR. Posterior predictive simulations of post-848 

PAS HbO/HbR time course (solid curves: HbO in red and HbR in blue) when considering pre-PAS 849 

HbO/HbR template input defined as the group-level averaged pre-PAS HbO/HbR response 850 

(normalized to [-1,1]) over all 40 sessions (dash curves). The shadow area represents the 89% 851 

credibility interval of resulted post-PAS HbO/HbR responses. Note that sham effects were subtracted 852 

from the PAS25 and PAS10 to obtain so-called ‘unbiased’ effects. The overlappings of lines in the 853 

sham panel are shown as a sanity check of the contrast.    854 

3.5 Relationship between PAS effects on task-related cortical hemodynamic 855 

activity and PAS effects on M1 excitability 856 

Fig.10a presents inferences on the relationship between PAS effects on task-related cortical 857 

hemodynamic activity and PAS effects on M1 excitability, represented by the posterior 858 

distribution of correlations between the slope of MEP amplitudes (post-PAS versus pre-PAS) 859 

and the slope of spline weight C  (post-PAS versus pre-PAS) for either HbO or HbR task-860 

related responses. Since our previous observations of the PAS effects were conducted for the 861 

whole HbO/HbR time course (Fig.9), we selected C  as the spline weight of interest 862 

considering it corresponded to the spline basis function exhibiting a peak at 12.5s, therefore 863 

consisting in the closest temporal pattern when compared to the expected hemodynamic 864 

response. The probability of obtaining a positive correlation between PAS effects on MEP 865 

amplitude and PAS effects on HbO response was 0.77; and 0.79 for a positive correlation 866 

between PAS effects on MEP amplitude and PAS effects on HbR response. The 867 

corresponding 89% highest posterior density interval (HPDI) of this correlation was [-0.26, 868 

0.89] for HbO; and [-0.20, 0.84] for HbR. Fig.10b presents the linear fits between the 869 

averaged �"�����
��� and the averaged �"�����

��"#�$ obtained for each session � among all 40 870 
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sessions. The corresponding estimated Pearson’s correlation was 0.58 for MEP vs. HbO (p< 871 

.0001, CI95% = [0.33, 0.75]) and 0.56 for MEP vs. HbR (p< .001, CI95% = [0.30, 0.74]).     872 

 873 

Fig.10. The relationship between task-related cortical hemodynamic activity and M1 excitability. a) 874 

the posterior distribution of the correlation between �
�)������� and �
�)������"#�$  for HbO (top) and 875 

HbR (bottom). The blue area represents the probability of observing a positive correlation (>>0). The 876 

black dot represents the median of each posterior distribution, and the surrounding bars show the 877 

corresponding 50% and 90% credibility intervals. b) Linear fit (blue line) between the averaged 878 

�
�)�������  and the averaged �
�)������"#�$ obtained for all 40 sessions (each represented by a grey 879 

dot). The grey area indicates the 95% confidence interval of the regression. Estimated Pearson’s 880 

correlation between�
�)������� and �
�)������"#�$ over the 40 sessions together with corresponding p-881 

values and 95% confident intervals are shown on top of each panel. The marginal histograms and 882 

fitted density functions are shown on the side of each corresponding marginal axis.    883 

Fig.11 illustrates the posterior distribution of the correlation between �"�����
���  and  884 

�"�����
��"#�$, when considering each spline weight for � � 2,3,4,5,6,7 !�6 8. The closer the 885 

corresponding peak of the spline basis function associated with the weight C� was to the 886 
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expected peak of the HbO/HbR response, the higher the correlation between  and 887 

 was. In further details, the median of these correlation values was respectively -888 

0.05, 0.13, 0.28, 0.31, 0.13, -0.10 and 0.01 when considering  for HbO; and a 889 

median value of 0.06, 0.17, 0.31, 0.32, 0.15, -0.06 and 0.03 when considering  890 

for HbR, therefore confirming this trend. Our results are suggesting that the expected positive 891 

correlation between PAS effects on task-related hemodynamic response and PAS effects on 892 

M1 excitability appeared mostly around the peak of HbO/HbR time course (e.g., ), in 893 

agreement with PAS effects reported previously in Fig.9. On the other hand, for the earliest 894 

aspects of the hemodynamic response (modeled using ) as well as for the end of the 895 

response (modeled using ), we found a posterior correlation with a median close to zero, 896 

suggesting no relationship between  and  for the corresponding time 897 

periods.      898 

 899 

Fig.11. Posterior distributions of the correlations between  and several selected 900 

. The posterior distribution of the correlation between  and  , 901 

when considering each spline weights for  for HbO (left) and for HbR (right).  902 

The prior distribution of the correlation (i.e., LKJ(2)) on the first row demonstrates a perfect 903 

symmetric to the 0 correlation. There was a trend showing the closer the corresponding peak of the 904 

spline basis function associated with the weight  was to the expected peak of the HbO/HbR 905 

response, the higher the correlation between  and  was.  showed the highest 906 

correlation values for both HbO and HbR as it corresponded to the spline basis function exhibiting 907 

the peak at 12.5s, therefore the closest temporal pattern when compared to the expected 908 
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hemodynamic response.  In contrast, the earliest aspects of the hemodynamic response (modeled 909 

using D�,�) and the end of the response (modeled using D%,&), showed almost identical distributions 910 

when comparing to the prior.  911 

4. Discussion  912 

4.1 PAS effects on cortical excitability  913 

Using hierarchical Bayesian modeling, we first investigated PAS effects on cortical 914 

excitability, which was measured using MEP amplitude induced by spTMS. Probability 915 

distributions of the relative changes (in %) of post-PAS MEP amplitudes, when compared to 916 

pre-PAS MEP amplitudes, were estimated using posterior predictive simulations. Our results 917 

showed a substantial increase of MEP amplitude after PAS25, a subtle decrease after PAS10 918 

and no changes after control (sham). These results are consistent with previous PAS studies 919 

(Stefan, 2000; Wolters et al., 2005; Tsang et al., 2015; Lee et al., 2017; Suppa et al., 2017). 920 

These studies considered conventional MEP analysis, calculating the ratio between the 921 

averaged MEP amplitude after PAS over the one before PAS. Therefore, when MEP ratio 922 

was larger than 1, it indicated an excitability increase and vice versa. In contrast, here we 923 

applied a full Bayesian workflow using an advanced sampling algorithm. The benefits of this 924 

procedure are: 1) multivariate linear regression allowed the differentiation of interventions 925 

and subjects, hence modeling the heterogeneity of intervention effects exhibited in different 926 

groups of data; 2) involving intercept in linear regression reduced the influences of low MEP 927 

amplitudes runs when compared to the conventional ratio calculation of post- over pre-PAS 928 

MEPs; 3) the variability of MEP amplitudes were considered in the estimation of the PAS 929 

effects rather than only using the averaged amplitudes of each run and ignore the variance; 4) 930 

parameters of the model were estimated by Bayesian inferences using dynamic HMC 931 

algorithm sampling posterior distributions using a hierarchical structure and weakly informed 932 

priors, therefore, allowing partial pooling to reduce the estimation uncertainty; 5) flexible and 933 

intuitive statistical inferences of the modeled PAS effects were obtained by conducting 934 

posterior predictive simulations from the model learned from the data. This means by giving 935 

any pre-PAS MEP amplitude and intervention index, the distribution of the corresponding 936 

group-level post-PAS MEP amplitude could be estimated; Finally, 6) the estimated PAS 937 

effects were reliable and informative, as suggested by their posterior probability distributions, 938 

rather than considering only a statistical significance test providing a dichotomous output.   939 
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Moreover, our model also allowed inferring the effects of MEP amplitude itself on the effect 940 

size of the resulted excitability changes modulated by PAS. In Fig.8, we reported a pattern 941 

suggesting that the higher the MEP amplitude was, the larger was the effect size of both 942 

PAS25 and PAS10. This pattern was not biased when comparing to the sham session, which 943 

showed no effects for different pre-PAS MEP amplitudes. It is important to mention that 944 

when considering posterior predictive simulation, the intensity of the TMS pulse during the 945 

intervention session (PAS25 or PAS10 or sham) did not change. This means the underlying 946 

intervention effects did not change. Then considering spTMS as the assessment procedure to 947 

measure brain excitability, our results are suggesting that a high enough spTMS intensity 948 

might help to measure more accurately PAS effects. Please also note that the pre-PAS MEP 949 

amplitudes (0.2mV, 0.6mV, 1.2mV, 2.2mV and 2.8mV) used in this posterior predictive 950 

simulation were selected based on the observed range (0.1mV to 3.0mV) of all individual 951 

pre-PAS MEP. This observed range of MEP from our data is also consistent with the spTMS 952 

evoked MEP distribution estimated by a recent meta-analysis study in which 687 health 953 

subjects’ data were considered among 35 studies (Corp et al., 2021). More importantly, this 954 

meta-analysis study also investigated the relationship between the baseline MEP (referred to 955 

as the test stimulation) amplitude and the short interval intracortical inhibition (SICI) by 956 

polling data from 15 studies consisted of 295 healthy subjects. They showed a significant 957 

negative relationship between the baseline MEP amplitude and SICI, suggesting that “SICI is 958 

best probed by high relative test stimulation intensities” (Corp et al., 2021). This result is also 959 

concordant with our finding on PAS10, in which the higher the pre-PAS MEP (test 960 

stimulation) is, the more PAS10’s inhibitory effects (decreased post-PAS MEP comparing to 961 

the pre-PAS MEP) are pronounced. This consistency demonstrated the power of our 962 

Bayesian analysis to infer similar findings from relatively small sample-sized data when 963 

comparing with meta-analysis results consisting of a much larger sample size. 964 

4.2 PAS effects on the whole HbO/HbR time course of finger tapping responses 965 

To our best knowledge, our study demonstrated for the first time PAS effects on the whole 966 

time course of task-related HbO/HbR time courses. In contrast, few time segments along 967 

selected time windows were considered in previous studies, then HbO or HbR amplitudes 968 

were just averaged within each time segment and compared before and after interventions 969 

(Chiang et al., 2007; Yamanaka et al., 2010). In our previous study (Cai et al., 2021b) we also 970 

simply averaged the HbO/HbR amplitude within a 5s long time window centered around the 971 

peak of the hemodynamic response to represent the total amount of hemoglobin delivered to 972 
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the region of interest. The Bayesian approach proposed in this study brings more insight into 973 

the investigation of PAS effects on hemodynamics, considering not only the peak amplitude 974 

before and after interventions, but whole HbO/HbR time courses. For instance, visual 975 

inspections of results presented in Fig.9 are suggesting that PAS effects are indeed more 976 

pronounced around the peak of the expected hemodynamic response. This is expected if we 977 

can assume that the hemodynamic response function (HRF) is not much affected by 978 

interventions, then the expected task-related hemodynamic response would result from  a 979 

convolution with a higher or lower amplitude boxcar function representing excited or 980 

inhibited neuronal activity patterns (Sotero and Trujillo-Barreto, 2007). Therefore, the effect 981 

of intervention should appear mostly around the peak, and the closer to the peak the higher 982 

the effect size. Consequently, averaging HbO or HbR amplitude within a certain time 983 

window would ‘dilute’ the estimation of the effect of interest, especially when considering 984 

the effect size was not large, for instance around 25% increase for HbO after PAS25 is shown 985 

in Fig.9.  986 

The fact that PAS intervention effects could be observed mainly around the peak of 987 

hemodynamic time courses may also explain the difficulty of investigating similar questions 988 

using fMRI. Indeed, a typical BOLD signal is sampled around 0.5Hz using standard fMRI 989 

sequences. Such low temporal resolution may not be sufficient to sample well the effects 990 

around the peak and could possibly explain why no PAS effects were found on BOLD signal 991 

changes in the PAS and fMRI study reported by Kriváneková et al., 2013. Besides, depending 992 

on how well fMRI BOLD samples and the actual peak of the hemodynamic response are 993 

phased-locked, the mismatch between the time of BOLD signal sampling and the actual peak 994 

of the response may introduce some confounds, when comparing BOLD signal changes 995 

before and after PAS interventions. Another benefit of modeling accurately the whole 996 

HbO/HbR time course is the possibility to offer alternative interpretations of PAS effects. For 997 

instance, our results in Fig.9 showed a slight time shift for HbO after PAS25 and a larger one 998 

after PAS10 (e.g., the peak time of HbO shifted from 12s to 10s after PAS10). The decrease 999 

of HbO amplitudes after PAS10 was also mainly exhibited from 11s to 25s of the response 1000 

time courses. These observations may suggest a more complex mechanism of the effect of 1001 

neuronal plasticity on neurovascular coupling. Further analysis using the deconvolution 1002 

technique (Machado et al., 2021) to estimate HRFs that are related to these hemodynamic 1003 

responses may help us to better investigate such a potential mechanism but it is beyond the 1004 

scope of this study.   1005 
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It is important to mention that we did not perform a specific analysis for every time sample of 1006 

the hemodynamic response. We regularized and reduced the dimensionality of the problem 1007 

by projecting HbO/HbR responses on B-splines as temporal basis functions. Therefore, PAS 1008 

effects on hemodynamic were modeled by only 10 weights instead of 60 data points, whereas 1009 

the actual post-PAS HbO/HbR time courses could then be fully retrieved from the estimated 1010 

weights and the spline basis functions. The choice of the number and locations of knots might 1011 

have limited the ‘resolution’ of our proposed correlation analysis. There are more advanced 1012 

Bayesian spline approaches, such as the penalized spline (P-spline) (Eilers and Marx, 2010; 1013 

Ventrucci and Rue, 2016), which introduces an extra prior to regularize the number of 1014 

effective knots. This approach was mainly designed to smooth a time course and prevent 1015 

overfitting rather than considering an accurate representation of the time course. Non-1016 

parametric time series modeling techniques were also proposed in this context, without 1017 

assuming the location of the knots along the time course. For instance, Gaussian process 1018 

regression (Neal, 1998) characterizes the time course, such as the hemodynamic response, as 1019 

an unknown function. Samples of the time course are then drawn from a multinormal 1020 

distribution providing a full covariance matrix of all time samples. Our analysis could benefit 1021 

from these non-parametric approaches to avoid eventual limitations associated with the 1022 

choice of the knots, but this was beyond the scope of this study.  1023 

It is also worth noting that these results of PAS effects on the whole HbO/HbR time courses 1024 

were also benefiting from accurate time courses estimated by our previously proposed fNIRS 1025 

reconstruction workflow (Cai et al., 2021c). In this workflow, the fNIRS acquisition montage 1026 

was personalized and the detection sensitivity of it was maximized to the individual ROI. 1027 

Meanwhile, the MEM framework adapted from our previous works in the context of electro-1028 

/magneto-encephalogram source imaging (Chowdhury et al., 2013, 2016; Grova et al., 2016; 1029 

Heers et al., 2016; Hedrich et al., 2017; Pellegrino et al., 2020) for conducting fNIRS 1030 

reconstruction (Cai et al., 2021a) also ensured accurate estimation of HbO/HbR time courses 1031 

from reconstructed spatiotemporal maps. For instance, delays between HbO and HbR peak 1032 

times were around 1s shown in Fig.9, which is consistent with our previous finding (Cai et 1033 

al., 2021c) and fNIRS literature (Jasdzewski et al., 2003; Steinbrink et al., 2006).  1034 

4.3 Relationship between PAS effects on task-related hemodynamic and PAS 1035 

effects on M1 excitability 1036 

We also investigated the relationship between PAS effects on task-related hemodynamic 1037 

activity and PAS effects on cortical excitability along the whole HbO/HbR time course. 1038 
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When compared to standard frequentist analysis of the correlation between ��������
���  and 1039 

��������
��	
�� reported in Fig.10b, our proposed Bayesian analysis was more informative since 1040 

we could estimate the whole posterior distribution of such a correlation, instead of providing 1041 

a single correlation value estimated from the mean effects while ignoring the variance. Even 1042 

if the sample size was not large and we acknowledge the influences from large variability of 1043 

PAS effects and variability of task-evoked hemodynamic responses, our proposed 1044 

hierarchical Bayesian models were able to demonstrate a high probability of positive 1045 

correlations between MEP and hemodynamic slopes (representing the PAS effects), around 1046 

the peak of HbO and HbR responses. This finding is consistent with previous results reported 1047 

in animal studies, suggesting a positive correlation between hemodynamic responses and 1048 

cortical excitability. For instance, Allen et al., 2007 demonstrated decreased oxygenations in 1049 

anesthetized cat’s visual cortex after applying inhibitory rTMS; increased fMRI resting-state 1050 

connectivity, GABA, glutamine and glutamate levels after performing excitatory rTMS. 1051 

Reduced connectivity and glutamine levels after applying inhibitory rTMS on healthy rat’s 1052 

right hemisphere were reported by Seewoo et al., 2019. The reliability of our proposed model 1053 

was further confirmed by the fact that no correlation was found between PAS effects on MEP 1054 

and hemodynamic responses, when considering other time windows, such as the initial 1055 

aspects and the end of the hemodynamic response. The further the analyzed time period was 1056 

to the expected hemodynamic peak, the closer to the prior was to the posterior distribution of 1057 

the correlation, with no preference on either positive or negative correlations.  1058 

4.4 HMC sampling and diagnostic 1059 

Taking advantage of dynamic HMC to sample the hierarchical Bayesian models in this study, 1060 

we were able to carefully diagnose the pathological behavior of MCMC sampling chains 1061 

(Betancourt, 2017, 2019). This diagnostic procedure is an essential step when applying 1062 

Bayesian data analysis (Gelman et al., 2020b). To allow accurate and reliable inferences, 1063 

MCMC chains must explore well the typical set of the posterior distributions, in which most 1064 

of the probability density is contained. For instance, the convergence of MCMC chains needs 1065 

to be confirmed and quantified to ensure such full explorations. When inappropriate 1066 

parameters of the chain are chosen (e.g., the step size), abnormalities such as divergences 1067 

should be detected to avoid eventual sampling biases. In our study, we reported several 1068 

diagnostic statistics for all key components of three models using both visualization and 1069 

quantified metrics, following the recommendations of the Stan team (Gelman et al., 2013; 1070 
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Gabry et al., 2019; Stan Development Team, 2020a). The proposed diagnostic statistics 1071 

considered here also constitute a unique feature of HMC sampling, when compared to 1072 

conventional MCMC algorithms such as Gibbs sampling (Geman and Geman, 1984; Gelfand 1073 

and Smith, 1990). HMC is also considered to be more accurate by taking advantage of 1074 

sampling all parameters at the same time, comparing to Gibbs that often samples parameters 1075 

alternatively one after the other which may bias the resulted posterior distribution due to the 1076 

inherent correlations between parameters. Overall, the diagnostic analysis of the sampling 1077 

process in this study is suggesting that our inferences are built upon well-sampled posterior 1078 

distributions, reasonably accurate and unbiased. Similar HMC sampling and diagnostic 1079 

approaches were also reported in several recent studies, such as a Bayesian virtual epileptic 1080 

patient to model the spread of epileptic activity (Hashemi et al., 2020); a Bayesian latent 1081 

spatial model for mapping biomarkers of the progression of Alzheimer’s disease (Dai et al., 1082 

2021);  the Bayesian multilevel modeling to improve statistical inferences in fMRI analysis 1083 

(Chen et al., 2019b, 2019a, 2021) and a hierarchical Bayesian model to investigate 1084 

mechanisms of reinforcement learning and decision-making (Ahn et al., 2017). 1085 

4.5 Limitations and perspectives  1086 

While the Bayesian approach is known to improve the uncertainty of statistical inferences 1087 

when dealing with small samples data set, as illustrated by our results, there is no doubt that 1088 

this study would benefit from a larger sampling size. Conventional frequentist power 1089 

analyses (Bhalerao and Kadam, 2010) could estimate the minimum number of samples 1090 

required to obtain a significant effect for a statistical power such as 80%. When considering 1091 

the standard deviation of MEP amplitudes and fMRI BOLD signals reported in PAS (López-1092 

Alonso et al., 2014) and in fMRI literature (Kriváneková et al., 2013), we estimated that 1093 

when assuming random sampling, at least 50 subjects would be required for MEP analysis 1094 

and more than 100 subjects would be required for hemodynamic analysis using fMRI BOLD. 1095 

Despite the inherent limitation of power analysis which may underestimate the sample size 1096 

(Gelman and Carlin, 2014), in practice, it is challenging to conduct acquisitions with this 1097 

amount of subjects especially considering all three different interventions.   1098 

We only involved one model for each investigation in this study. It is indeed recommended to 1099 

construct multiple models based on different hypotheses of the same question and then 1100 

quantitatively compare these models using techniques such as cross-validation to choose the 1101 

most reliable one,  providing a trade-off between overfitting and underfitting (Gelman et al., 1102 

2020b). For instance, we proposed a linear relationship between cortical excitability and 1103 
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hemodynamic responses evoked by a finger-tapping task. However, such association might 1104 

reach a plateau when excitability changes are either too low or too high, suggesting some 1105 

non-linear models. Moreover, the neurovascular system includes different aspects like 1106 

excitatory and inhibitory neurons, glial cells, the vasculature components like pericytes 1107 

(Populations, 2017). The interaction between inhibitory and excitatory neurons, the glial cell 1108 

mediated signaling pathways, and their role in neurovascular coupling have been simplified 1109 

in this linear model. A more detailed metabolism model involving blood flow dynamics 1110 

(Buxton, 2021) may improve our inferences by comparing it with the model proposed in this 1111 

study. Considering such advanced model comparisons, applied within a Bayesian framework, 1112 

could be of great interest but was out of the scope of this study. Moreover, we conducted 1113 

TMS following the recommendations of the International Federation of Clinical 1114 

Neurophysiology (Rossi et al., 2009), which means our data set should not explore extreme 1115 

conditions between excitability and hemodynamic response, which are more likely to exhibit 1116 

eventual nonlinear relationships.  1117 

Another limitation of our study was that the M1 excitability was not assessed at the same 1118 

time as the finger-tapping task, but sequentially, hence we did not propose a fusion model to 1119 

pool the relationship between cortical excitability and hemodynamic responses at the single-1120 

trial level. We considered the mean and variance of MEP amplitudes and HbO/HbR time 1121 

courses within the whole session as the input for the correlation analysis. This might reduce 1122 

the resulted correlation values considering additional fluctuations of the baseline excitability 1123 

and hemodynamic responses. However, since it has been shown that PAS modulated 1124 

excitability changes could last for more than 30 minutes (Stefan, 2000; Lee et al., 2017), we 1125 

are confident that our investigation of cortical excitability using MEP after spTMS and 1126 

hemodynamic responses elicited by finger tapping was indeed still within this PAS effective 1127 

duration window.  1128 

As perspectives for this study, it would be of great interest to investigate the relationship 1129 

between spTMS evoked HbO/HbR and the corresponding MEP amplitude, when occurring 1130 

exactly at the same time, therefore, preventing confounds introduced by fluctuations of 1131 

excitability and hemodynamic responses along the time. Such an investigation may help us in 1132 

understanding the integrity of neurovascular coupling during the transit cortical excitability 1133 

change induced by spTMS. Furthermore, the effect of stable cortical excitability changes 1134 

(induced by PAS) on this integrity can be explored by comparing the spTMS evoked 1135 

hemodynamic responses before and after PAS interventions. Additionally, since fNIRS data 1136 
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were recorded during the whole experiments (i.e., also during spTMS and PAS intervention), 1137 

our data would allow assessing dynamically the evolution of MEP and hemodynamic 1138 

responses during PAS. However, such analysis would require modeling fNIRS response 1139 

using advanced deconvolution techniques to handle the overlapping of TMS pulses induced 1140 

hemodynamic responses (Machado et al., 2021), and will be considered in our future 1141 

investigations. 1142 

5. Conclusion 1143 

In this study, we proposed hierarchical Bayesian modeling to investigate the relationship 1144 

between motor task-related hemodynamic responses and M1 excitability. When compared 1145 

with a sham control condition, a substantial M1 excitability increase was found after PAS25, 1146 

and a subtle reduction of M1 excitability was found after PAS10. PAS effects on motor task-1147 

related hemodynamic responses were observed mainly around the peak of HbO/HbR time 1148 

courses. We showed a large probability of positive correlations between PAS effects on MEP 1149 

amplitudes and hemodynamic responses. Such correlations were also mainly exhibited 1150 

around the peak of HbO/HbR time courses. Diagnostics of sampling MCMC chains showed 1151 

no pathological behavior, ensuring the reliability of our results. Finally, this study also 1152 

demonstrated the power of the Bayesian data analysis when dealing with relatively high 1153 

variability and small sample size data while providing informative inferences.  1154 
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Appendices 1550 

Appendix 1 fNIRS data processing 1551 

Raw fNIRS data were first preprocessed following standard recommendations (Yücel et al., 1552 

2020): a) bad channel rejections of channels exhibiting either a negative raw amplitude 1553 

during the whole time course and a coefficient of variation (CV) larger than 8% (Schmitz et 1554 

al., 2005; Schneider et al., 2011; Eggebrecht et al., 2012; Piper et al., 2014): b) linear 1555 

regression of superficial physiological fluctuations using the average of all proximity 1556 

channels (Zeff et al., 2007); c) band-pass filtering (i.e., 0.01Hz to 0.1Hz) using a 3rd order 1557 

Butterworth filter (zero-phase); d) conversion in optical density changes (i.e., ∆OD) using 1558 

logarithm conversion; e) ∆OD epochs extraction within a time window ranging from -10s to 1559 

30s around task onsets. Instead of the conventional process averaging extracted ∆OD epochs, 1560 

we then conducted a resampling process to estimate not one but a set of ‘possible’ averaged 1561 

∆ODs (Cai et al., 2021b). Our rationale was to propose an evaluation preserving the intrinsic 1562 

variance of averaged ∆OD related to the underlying physiological fluctuations and eventual 1563 

measurement errors such as motion artifacts. To do so, we first averaged 16 out of 20 1564 

preprocessed ∆OD epochs for all possible unique combinations (i.e., ��
�� � 4845 1565 

possibilities). Then, the averaged signal to noise ratio (SNR) of the resulting averaged ∆ODs, 1566 

for each wavelength, was estimated as the peak amplitude over the averaged standard 1567 

deviation of baseline (within -10s to 0s) among all channels. Lastly, we selected 101 of these 1568 

resampled averaged ∆ODs, distributed around the median SNR (50 averaged below and 50 1569 

averaged above the median SNR), to obtain a distribution of ‘possible’ responses evoked by 1570 

one finger-tapping run. The selection of 16 blocks out of 20 trials and 101 resampled 1571 

averaged ∆ODs maintained a good coverage of the data distribution. This number was 1572 

empirically defined according to the observation that usually there were less than four blocks 1573 

contaminated with artifacts in one finger-tapping run. Selecting sub-averaged trials around 1574 

the median SNR ensured a good representation of fNIRS responses while discarding artifacts 1575 

in the meantime. Indeed, in artifacts contaminated data, large motion artifacts would result in 1576 

high SNR of corresponding sub-averaged trials.  1577 

We then applied 3D fNIRS reconstruction workflow using personalized optimal montage and 1578 

maximum entropy on the mean (MEM), as further described and validated in our earlier work 1579 

(Cai et al., 2021c), to the 101 sub-averaged ∆ODs. Therefore, ‘all possible’ HbO/HbR 1580 

responses for each finger-tapping run were reconstructed as spatiotemporal maps along the 1581 
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cortical surface. To do so, the subject-specific fNIRS forward model was first estimated 1582 

according to the following steps: a) 5 tissues head segmentation (e.g., scalp, skull, 1583 

Cerebrospinal fluid, grey matter and white matter) calculated using FreeSurfer6.0 (Fischl et 1584 

al., 2002) (https://surfer.nmr.mgh.harvard.edu) and SPM12 (Penny et al., 2011) 1585 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/); b) light fluences at each optode 1586 

location, and for each wavelength (i.e., 685nm and 830nm), were calculated by simulating 1587 

10� photons, using MCXLAB toolbox - a Monte Carlo photon simulator for modeling light 1588 

transport in 3D turbid media, developed by Fang and Boas, 2009 and Yu et al., 2018; c) 1589 

sensitivity of each voxel was computed using the adjoint formulation and was normalized by 1590 

Rytov approximation (Arridge, 1999); d) surface space sensitivity was finally obtained by 1591 

projecting volumetric sensitivity map to subject’s cortical surface (i.e., mid-surface, a middle 1592 

layer of the gray matter, between pia mater and gray-white matter interface, 25,000 vertices) 1593 

using the Voronoi based method proposed by Grova et al., 2006. Finally, each of 101 1594 

averaged ∆OD epoch was down-sampled to 2Hz and MEM method proposed previously by 1595 

our group for fNIRS reconstruction (Cai et al., 2021a, 2021c) was applied to estimate the 1596 

HbO/HbR spatiotemporal maps (0s to 30s) along the subject-specific cortical surface.  1597 

  1598 
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Supplementary material 1599 

 1600 

Fig.S1. PAS effects on M1 excitability at the individual level. Each column presents the individual 1601 

level posterior distribution of the intervention effect from PAS10, sham and PAS25, respectively. 1602 

Posterior predictive simulations of post-PAS MEP amplitudes were conducted by assuming the same 1603 

pre-PAS MEP amplitude for all subjects, i.e., the averaged pre-PAS MEP amplitude obtained for all 1604 

subjects over all 40 sessions. The blue area represents the probability of obtaining a relative increase 1605 

(in%) for the post-PAS MEP amplitude when compared to the pre-PAS MEP amplitude, whereas the 1606 

pink area represents the probability of obtaining a relative decrease (in %). The black dot represents 1607 

the median of each posterior distribution, and the surrounding bars show the corresponding 50% and 1608 

90% credibility intervals. Overall, large between-subject variability can be observed for both 1609 

interventions. Note that missing sessions were also included using posterior predictive simulations 1610 

within the model, based on prior distributions and partial pooled information from other sessions. * 1611 

indicate the missing runs that were imputed by the model.      1612 
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