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Abstract 
 

There has been great interest in genetic risk prediction using risk scores in recent years, 

however, the utility of scores developed in European populations and later applied to 

non-European populations has not been successful.  In this study, we used cross-

sectional data from the Hypertension Genetic Epidemiology Network (HyperGEN, 

N=614 African Americans (AA)) and the Genetics of Lipid Lowering Drugs and Diet 

Network (GOLDN, N=995 European Americans (EA)), to create a methylation risk score 

(MRS) for metabolic syndrome (MetS), demonstrating the utility of MRS across race 

groups. To demonstrate this, we first selected cytosine-guanine dinucleotides (CpG) 

sites measured on Illumina Methyl450 arrays previously reported to be significantly 

associated with MetS and/or component conditions (CPT1A cg00574958, PHOSPHO1 

cg02650017, ABCG1 cg06500161, SREBF1 cg11024682, SOCS3 cg18181703, TXNIP 

cg19693031). Second, we calculated the parameter estimates for the 6 CpGs in the 

HyperGEN data and used the beta estimates as weights to construct a MRS in 

HyperGEN, which was validated in GOLDN. We performed association analyses using 

a logistic mixed model to test the association between the MRS and MetS adjusting for 

covariates. Results showed the MRS was significantly associated with MetS in both 

populations. In summary, a MRS for MetS was a strong predictor for the condition 

across two ethnic groups suggesting MRS may be useful to examine metabolic disease 

risk or related complications across ethnic groups. 
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Introduction 
 

Genome wide association studies (GWAS) have examined the cumulative effect 

of novel, single variants on both quantitative trait variance and disease status, by 

summing up the number of risk alleles at each locus weighted by the effect size at each 

locus, otherwise known as a genetic risk score (GRS) [1]. While once limited by small 

sample sizes, GRSs have since benefitted from the growth and development of large-

disease based consortia, along with improved methodology which allow for the 

aggregation of thousands to millions of genetic variants (i.e. polygenic risk scores, 

PRS), which better inform risk prediction [2]. A major limitation of GRS – including PRS 

- is that they have been developed and optimized for European-ancestry populations, 

thus limiting their utility and generalizability in non-European ancestry populations. 

Recognizing these limitations, we aimed to apply statistical approaches common to 

GRS and PRS to epigenome-wide association (EWAS) data to evaluate if MRS may 

further enhance accuracy for complex disease prediction.  To do so, we hypothesized 

that leveraging existing EWAS data and on previously reported associations between 

cytosine-phosphate-guanine (CpG) sites and complex disease traits, like metabolic 

syndrome, can improve prediction capabilities. To date, despite impressive effect sizes, 

strong statistical significance, and successful external replication in the EWAS literature 

(even across race/ethnic groups), few studies have examined the polygenomic effects 

of CpG sites (e.g., methylation risk scores (MRS)) on complex diseases. 

As such, we applied this statistical approach for the prediction of metabolic 

syndrome in a population of African ancestry individuals by constructing an MRS, 

optimizing it and then validating it in a European ancestry population. Metabolic 

syndrome (MetS) is a cluster of conditions that can increase risk for cardiometabolic 

diseases. Early identification of MetS can help prevent onset of cardiometabolic disease 

later in life. A growing body of research has identified a number of CpGs that are 

associated with the multiple components of MetS. In this study, we leverage previously 

reported CpGs that have been significantly associated with conditions comprising the 

metabolic syndrome and/or closely related metabolic traits: body mass index [3, 4], 

waist circumference [4], dyslipedemia [5], fasting blood glucose [6], systolic and 
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diastolic blood pressure [7], and HDL cholesterol [8, 9], to construct the MRS. 

Independent CpGs included were cg00574958 from carnitine palmitoyl transferase 1A 

(CPT1A), cg02650017 from Phosphoethanolamine/Phosphocholine Phosphatase 1 

(PHOSPHO1), cg06500161 from ATP Binding Cassette Subfamily G Member 1 

(ABCG1), cg11024682 from Sterol Regulatory Element Binding Transcription Factor 1 

(SREBF1), cg18181703 from Suppressor Of Cytokine Signaling 3 (SOCS3), and 

cg19693031 from Thioredoxin Interacting Protein (TXNIP). We used a weighted sum 

method to create the score among African Americans from the Hypertension Genetic 

Epidemiology Network (HyperGEN), and validated the score in European Americans 

from Genetics of Lipid Lowering Drugs and Diet Network (GOLDN).  

 
Methods 
 

Discovery and Validation Study Populations 

 

Data for the discovery phase of this study was obtained from the HyperGEN study. 

HyperGEN is a cross-sectional study including over 1900 African-Americans from 

families, which included at least two siblings with hypertension onset before age 60 [10]. 

The study purpose was to examine possible interactions between genetic and non-

genetic determinants of hypertension. In 2015, an ancillary epigenetic study was 

conducted on stored HyperGEN samples in the upper and lower tertial of 

echocardiography measured left ventricular mass  [11]. After excluding those missing 

relevant phenotype data as previously described [12] a total 614 participants were 

included in the analysis. Both HyperGEN and GOLDN studies were approved by the 

Institutional Review Board at the University of Alabama at Birmingham. 

 

Validation was conducted in GOLDN study [13]. European ancestry families in GOLDN 

were recruited from the Family Heart Study at two centers, Minneapolis, MN and Salt 

Lake City, UT to participate in a diet and/or drug intervention. In each case, only families 

with at least two siblings were recruited and only participants who did not take lipid-

lowering agents (pharmaceuticals or nutraceuticals) for at least 4 weeks prior to the 
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initial visit were included. For the present study, 994 GOLDN participants had available 

methylation data for a validation study of the HyperGEN MRS. Sample characteristics 

as well as clinical and lifestyle factors were considered in HyperGEN and GOLDN, 

including blood pressure, antihypertensive and lipid lowering medications, fasting blood 

glucose, triglycerides, HDL cholesterol, height, weight, and waist circumference have 

been described [7-9].  We used the published joint harmonized criteria to define MetS in 

HyperGEN in both studies [14].  

 

DNA Methylation and Data processing 

 

HyperGEN 

The Illumina HumanMethylation450 array was used to analyze DNA extracted from 

buffy coat at > 480,000 cytosine-phosphate-guanine (CpG) sites. Briefly, 500 ng of buffy 

coat DNA was hybridized to the Methyl450 array after bisulfite conversion with EZ DNA 

kits (Zymo Research, Irvine, CA) prior to standard Illumina amplification, hybridization, 

and imaging steps. The resulting intensity files were analyzed with Illumina’s 

GenomeStudio, which generated beta (β) scores (i.e., the proportion of total signal from 

the methylation-specific probe or color channel) and “detection p values” (probability 

that the total intensity for a given probe falls within the background signal intensity). 

Quality control (QC) measures were conducted by removing samples having more than 

1% of CpG sites with a detection p value > 0.05, removing CpG sites having more than 

5% of samples with a detection p value > 0.01, and individual CpG sites with 

detection p value > 0.01 set as missing. After these QC filters, 484,366 CpG sites were 

eligible for analysis. We normalized the β scores using the Subset-quantile Within Array 

Normalization (SWAN) method in minifi package to correct for differences between 

batches and the type I and type II assay designs within a single 450K array [15]. Cell 

count proportions (CD8 T lymphocytes, CD4 T lymphocytes, natural killer cells, B cells, 

and monocytes) were created using the algorithm developed by Houseman, which 

predicts underlying cellular composition of each sample from DNA methylation patterns 

[16]. 
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GOLDN 

CD4+ T-cells were isolated from frozen buffy coat samples isolated from peripheral 

blood collected at the baseline visit (prior to intervention). DNA was extracted using 

DNeasy kits (Qiagen, Venlo, Netherlands). 500ng of each DNA sample was treated with 

sodium bisulfite (Zymo Research, Irvine, CA). Normalization was performed on random 

subsets of 10,000 CpGs per run, with each array of 12 samples used as a "batch." 

Probes from the Infinium I and II chemistries were separately normalized and β scores 

for Infinium II probes were then adjusted using the equation derived from fitting a 

second order polynomial to the observed methylation values across all pairs of probes 

located <50bp apart (within-chemistry correlations >0.99), where one probe was 

Infinium I and one was Infinium II.  The filtered β scores were normalized using the 

ComBat R-package.  

 

CgG candidate selection 

We identified candidate DNA methylation loci, which have been currently and previously 

identified by large-scale EWAS comparing various ethnicities and cardiometabolic 

clinical characteristics. Based on the literature we chose six robust CpGs to construct 

our MRS: cg00574958 within CPT1A, cg02650017 within PHOSPHO1, cg06500161 

within ABCG1, cg11024682 within SREBF1, cg18181703 within SOCS3, and 

cg19693031 within TXNIP. See Table 1 for references for genes selected. 

 

Methylation Risk Score Model Building 

 

A logistic mixed model was used to test the association between methylation at each 

candidate CpG site and MetS in HyperGEN. We adjusted for age, sex, study site, and 

estimated blood cell counts as fixed effects, and family structure as a random effect.  

Parallel models were implemented in GOLDN except methylation principal components 

replaced the estimated blood cell counts to adjust for cell type impurity (GOLDN was of 

a single cell type).  To calculate the MRS, Z-values from the candidate CpG HyperGEN 

models described above (shown in Table 2) were utilized as weights and multiplied by 

the CpG-values and the product was summed to generate a risk score for each sample 
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((Z1* cpg1 beta score) + (Z2* cpg2 beta score)+ … (Z6* cpg6 beta score)).  The mean and standard 

deviation of the score in HyperGEN was calculated. Each participants MRS was then 

standardized by subtracting the mean and dividing by the standard deviation. We used 

a parallel approach to calculate the standardized MRS in GOLDN by using GOLDN 

CpG values weighted by the HyperGEN Z-values.  

 

Methylation Risk Score Model Performance Testing 

 

We compared both HyperGEN and GOLDN characteristics between individuals with 

(MetS+) and without (MetS-) metabolic syndrome. Significance of these characteristics 

were calculated using a simple t test for continuous traits and a chi-square test for 

binary traits. We then tested the association between the standardized MRS and MetS 

(outcome) using a logistic mixed model in HyperGEN adjusting for age, sex, study site, 

4 ancestry principal components, estimated blood cell counts as fixed effects, and 

family id as a random effect. We conducted a 100,000-permutation test to evaluate 

statistical significance of the relationship between the MRS and MetS in HyperGEN. In 

GOLDN we used a logistic mixed model to test the association between the GOLDN 

standardized MRS and MetS adjusting for age, sex, study site, and methylation PCs as 

fixed effects, and family id as a random effect. Finally, to evaluate model fit we 

compared the Akaike information criterion (AIC) and the Bayesian information criterion 

(BIC) between a basic model (age, sex, center and random effect of family) and the 

basic model plus the MRS within GOLDN. All statistical tests were conducted in R [12].  

 

Results 
 

Study Population Characteristics 

 

Demographic characteristics of the HyperGEN (N=614) and GOLDN (N=995) 

populations - with and without MetS - are presented in Table 2. The majority of 

participants were female in both HyperGEN (66.61%) and GOLDN (52.26%), with an 

overall mean age of 49 and 50 years, respectively. Participants with MetS (MetS+) were 
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older compared to those without (MetS-) (HyperGEN: 52 ± 10 years and 46 ±11 years, 

and GOLDN: 56 ±13 and 44 ±16, respectively) and more likely to be male in GOLDN 

and female in HyperGEN, respectively. In HyperGEN 56.2% of participants with MetS 

had 3 of the 5 (i.e. WC, BP, TG, HDL and FG) possible components (N=149) and fewer 

had 4 (N=77, 28.7%) and 5 (N=42, 15.7%) components, while in GOLDN, 47.5% of 

individuals met 3 out of 5 components (N=187), 35.1% had 4 of 5 (N=138) and 17.3% 

had 5 of 5 (N=68) components.  

 

Table 3 shows the 6 candidate CpG association results for MetS in HyperGEN and 

GOLDN. With the exception of cg02650017 in PHOSPHO1, which was not significant in 

either study, the direction of association of the CpG with MetS was consistent between 

GOLDN and HyperGEN with at least marginal significance. Only cg18181703 in SOC3S 

was not associated with MetS in GOLDN.  Both CPT1A cg00574958 and ABCG1 

cg06500161 were strongly associated with MetS in both studies (P<0.0001).  Finally, 

the direction of association for CPT1A, ABCG1, SOCS3, TXNIP and SREBF1 was 

consistent with that reported in the literature for MetS and/or related traits (Table 1).     

 

Risk Score Discovery and Validation  

 

Figure 1 shows the normal distribution of the standardized MRS in the GOLDN cohort.  

Results from association analyses of the MRS with MetS after adjustment for covariates 

in HyperGEN and GOLDN are presented in Table 4. In HyperGEN, the MRS was 

significantly associated with MetS (permutation test p<0.0001), with each standard 

deviation (SD) increase in the score associated with 2.25 higher odds of having MetS 

(OR= 2.25; 95% CI: 1.79 -2.86). The MetS and MRS relationship was also significant in 

GOLDN where similarly, a 1 SD increase in the score was associated with 2.45 higher 

odds of having MetS (OR= 2.45; 95% CI: 2.02 -3.00). Lastly, we tested the fitness of a 

basic MetS model (Model 1: MetS = Age+Sex+Center+random family effect) and the 

basic model plus the MRS score (Model 2: MetS = Age+MRS+Sex+Center+random 

family effect) in GOLDN. Between Model 1 and Model 2 both AIC and BIC calculations 

indicate Model 2 as the best model (Table 5). 
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Discussion 
 
Signatures of DNA methylation associated with cardiometabolic diseases have not been 

widely tested for their utility in generating genomic risk scores. With better replication 

results across external groups and even by race these CpGs may prove useful for 

evaluating disease risk. Here, we introduce a six-CpG methylation risk scrore estimate 

for MetS that was consistent in two independent populations (HyperGEN and GOLDN). 

Overall, the successful performance of this MRS in two different racial populations, 

provides promise for future exploration of MRSs for complex disease prediction. 

 

A substantial number of studies support the role of DNA methylation in MetS and its 

components.  However, unlike studies of single nucleotide polymorphisms (SNPs) that 

have extensively considered the utility of GRS and PRS (noting many limitations, 

especially with respect to race), relatively few  publications have included MRS [17, 18]. 

For instance, Hamilton et al, reported a positive association between an epigenetic BMI 

risk score and higher BMI (R2=0.1) in the Lothian Birth Cohort [19]. MRS for arterial 

stiffness measurements have been reported using data from the REGICOR and 

Framingham studies. In that study, two different MRS (based on alternate analytical 

approaches) were directly associated with arterial distensibility coefficient and inversely 

with pulse wave velocity [20]. Braun and others constructed a MRS in the Rotterdam 

study for HDL and triglycerides, finding that HDL-C levels decreased as quartiles of 

MRS increase, while triglyceride levels increased from the first quartile to the second 

quartile but remained similar for the third quartile and the fourth quartile of the MRS [21]. 

In another EWAS for BMI, a MRS constructed from the findings predicted future 

development of type 2 diabetes [22]. Finally, in a study of type 2 diabetes (~2000 Asian 

Indians and ~1000 Europeans)  a score created from methylation markers at five loci 

(ABCG1, PHOSPHO1, SOCS3, SREBF1, and TXNIP) was associated with developing 

type 2 diabetes (RR of type 2 diabetes incidence 1·41 per 1 SD change in methylation 

score; p=1·3 × 10-26) [23].  Along with our study these findings suggest promise in the 

use of methylation scores for metabolic disease risk prediction.   
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MetS is strongly associated with risk for developing future diabetes and atherosclerotic 

and nonatherosclerotic cardiovascular disease (CVD).  Though beyond the scope of this 

cross-sectional work, CpG sites associated with MetS may be the cause or 

consequence of the condition (or features of the condition). Therefore, a MetS MRS 

score may capture information about cumulative exposure to risk trait features.  

Importantly, this information could improve upon existing risk algorithms (constructed 

from clinical, demographic and lifestyle factors) used to predict future cardiometabolic 

disease. For instance, in a study set in the Bogalusa Heart Study five well-documented 

diabetes risk scores (non-genomic) were tested, and all showed significant associations 

with development of incident diabetes.  These five unique risk scores differed slightly by 

make-up of 5–10 traditional risk factors (e.g. hypertension, smoking, family history of 

diabetes, age, and waist circumference), but, in general, showed good specificity but 

poor sensitivity.  Because of the low sensitivity, the authors concluded that an 

opportunity remains to develop a new, more sensitive diabetes prediction tools for black 

and white young adults [24]. The field is similar with respect to CVD risk prediction 

where an excess of models and different recommendations limit algorithm use [25, 26]. 

Given the importance of MetS to the cardiometabolic disease landscape, and that MRS 

may help refine risk metrics in diverse populations for important clinical sequelae, 

further evaluation of these scores should be considered for disease prediction.    

 

While there are limitations to basing a MRS for MetS from blood-based DNA 

methylation (due to the proxy nature of blood as a surrogate tissue for organs involved 

in MetS) [27, 28], the utility of blood-based DNA methylation has been proven to be 

highly feasible and replicable for population studies of glycemic, lipid, and other 

metabolic traits (Table 1). The cross-sectional nature of this study, and lack of gold 

standard definition for MetS are potential limitations that should be considered in future 

MRS assessments. However, this study strengthened by the availability of CpGs paired 

metabolic data in two well characterized populations enabling both discovery and 

validation.    
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In summary, we developeda MRS for MetS using existing EWAS data from two 

population studies of different race groups. Addition of the calculated MRS variable to a 

basic model of MetS further improved model fit in the study used for score validation.   

Given the strength of association observed in the current study and the strong body of 

literature surrounding the CpG loci contributing to the methylation risk score, future 

studies should further consider the usefulness of this metric for evaluating risk of 

metabolic syndrome. 
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Tables and Figures 
Table 1. CPG Selection Literature Review 
Gene Trait(s) Function  Race/Ethnicity groups 

ATP Binding 
Cassette sub-
family G member 1 
(ABCG1) 

Lipids [29], [9], [30], [31],[32], 
diabetes-related [6], [29], 
[33]), adiposity [4], 
Daye[29], incident CHD 
[32] 

Macrophage, 
cholesterol, and 
phospholipid 
transport 

Europeans [29], [30], [31], [32], 

[6], [23], African 
Americans [4], Asians [23] 

Carnitine Palmatoyl 
Transferase 1A 
(CPT1A) 

Lipids [9], [34], [30], [31], 
Blood pressure [7], 
adiposity [35], [4], 
metabolic syndrome 
[36], adiponectin [37] 

Fatty acid oxidation 

Europeans [38], [30], [31], [7], 

[35], [36], [39], African 
Americans [7], [4], [37], 
Hispanic/Latino [7] 

Phosphatase, 
orphan 1 
(PHOSPHO1) 

Lipids [31], [29], diabetes-
related [29], [33], 
adiposity [29] 

Glycerophospholipid 
biosynthesis and 
metabolism 

Europeans [31], [29], [23]), 
Asians [23] 

Suppressor of 
cytokine signaling 3 
(SOCS3) 

Lipids [29], diabetes-
related [29], [23], 
adiposity [40], [29], 
metabolic syndrome 
[41] 

Regulates cytokine 
or hormone 
signaling, inhibits 
STAT3 activation 

Europeans [29],  [23], [40], [41], 
Asians [23] 

Sterol regulatory 
element binding 
transcription factor 
1  
(SREBF-1) 

Lipids [29], [9], [30], [31]), 
diabetes-related [29], 
[33]), adiposity [42], [29]),  

Lipid metabolism and 
homeostasis 

Europeans [29], [30], [31], [23], 

[42], Asians [23] 

Thioredoxin-
interacting protein 
(TXNIP) 

Lipids [31], [29]), 
diabetes-related [29], 
[23]), adiposity [29]) 

Required for the 
maturation of natural 
killer cells, 
suppresses tumor 
growth 

Europeans [31], [29], [23], 
Asians [23] 
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Table 2. Baseline Characteristics of HyperGEN and GOLDN Study Participants  
 

 HyperGEN N=614 GOLDN N=995 
 MetS - 

n=346 
MetS + 
n=268 

P* MetS - 
n=602 

MetS+ 
n=393 

P* 

Sex 
Female (%) 

 
61.85 

 
72.76 

 
0.014 

 

 
56.81 

 
45.29 

 
<0.001 

Age 45.67 ±11.02 51.66 ±10.35 <0.0001 44.01 ±16.03 56.16 ±13.88 <0.0001 
High WC  
WC (cm) 

 
96.56 ±16.91 

 
112.40 ±16.55 

 
<0.0001 

 
89.35 ±13.35 

 
107.57 ±13.89 

 
<0.0001 

Elevated BP 
SBP (mmHg) 
DBP (mmHg) 

 
127.59 ±23.72 
75.48 ±13.25 

 
136.03 ±22.83 
75.25±11.84 

 
<0.0001 
<0.0001 

 
110.65 ±14.17 
66.09 ±8.46 

 
123.21 ±17.54 
71.39 ±9.78 

 
<0.001 
<0.0001 

Elevated 
Triglycerides  

 
 

77.00 ±35.82 

 
 

125.50 ±134.61 

 
 

<0.0001 

 
 

91.44 ±61.22 

 
 

176.92 ±107.2 

 
 

<0.0001 
Reduced 
HDL 
Cholesterol 

 
 

58.75 ±15.52 

 
 

46.93 ±12.45 

 
 

<0.0001 

 
 

49.54   ±13.22 

 
 

39.22 ±11.44 

 
 

<0.0001 
Elevated FG 
FG 

 
89.00 ±31.22 

 
110.00 ±69.88 

 
<0.0001 

 
94.0 ±10.34 

 
105.0 ±18.91 

 
<0.0001 

MetS MRS  -0.38 ±0.95 0.31 ±0.94 <0.0001 -0.30 ±0.93 0.47 ±0.92 <0.0001 
Metabolic 
Components*
*  

      

0 57 0  174 0  
1 115 0  214 0  
2 169 0  214 0  
3 0 149  0 187  
4 0 77  0 138  
5 0 42  0 68  
Abbreviations: MetS=Metabolic Syndrome, WC=Waist Circumference, BP=Blood Pressure, SBP=systolic 
blood pressure, DBP=diastolic blood pressure, HDL=high-density lipoprotein, FG=Fasting glucose.  
Thresholds: (1) Waist circumference (≥ 88 cm for women and ≥ 102 cm for men), (2) elevated triglycerides 
(≥ 150 mg/dL) or on treatment for dyslipidemia (statin and/or fibric acid derivative), (3) reduced high-density 
lipoprotein (HDL) cholesterol (< 40 mg/dL in men and < 50 mg/dL in women) or on treatment for dyslipidemia 
(statin and/or fibric acid derivative), (4) elevated blood pressure (systolic ≥ 130 and/or diastolic ≥ 85 mmHg) 
or antihypertensive drug treatment in a patient with a history of hypertension), and (5) elevated fasting 
glucose (≥ 100 mg/dL) or drug treatment for elevated glucose. 
*Significance determined using chi-square test for categorical, t-test for continuous, or kruskal test for non-
parametric continuous variables with 95% CI. 
**Metabolic components are high waist circumference, elevated triglycerides, reduced HDL cholesterol, 
elevated blood pressure, and elevated fasting glucose.  
***There are 5 individuals with NA for 1-2 components making the total 341 rather than 346 for MetS- in 
HyperGEN.  
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Table 3. Single CPG, association results for GOLDN and HyperGEN 
 
 Genes CpG site Estimate SE Z-score P-value 
HyperGEN* 
Participants 

(N=614) 

CPT1A 
 

cg00574958 -0.495 0.113 -4.396 1.10E-05 

PHOSPHO1 
 

cg02650017 -0.133 0.101 -1.312 0.189 

ABCG1 
 

cg06500161 0.550 0.113 4.865 1.15E-06 

SREBF1 
 

cg11024682 0.570 0.119 4.777 1.78E-06 

SOCS3 
 

cg18181703 -0.204 0.095 -2.153 0.031 

TXNIP 
 

cg19693031 -0.402 0.102 -3.939 8.18E-05 

GOLDN** 
Participants 

(N=994) 

CPT1A 
 

cg00574958 -0.852 0.113 -7.539 4.72E-14 

PHOSPHO1 
 

cg02650017 0.062 0.097 0.632 0.527 

ABCG1 
 

cg06500161 0.394 0.099 3.966 7.31E-05 

SREBF1 
 

cg11024682 0.270 0.119 2.269 0.023 

SOCS3 
 

cg18181703 -0.059 0.095 -0.623 0.533 

TXNIP 
 

cg19693031 -0.267 0.092 -2.915 0.004 

*HyperGEN model adjusted for age, sex, study site, 4 ancestry principle components, estimated blood 
cell counts (CD8T cells, CD4T cells, Natural Killer cells, B-cells, Monocyte cells) as fixed effects, and 
family id as a random effect  
**GOLDN model adjusted for age, sex, study site, 4 methylation principle components, and family id as a 
random effect. 
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Table 4. Cohort-specific Association of the Methylation Risk Score (MRS) with 
MetS 
 

MRS OR P 95% CI 
HyperGEN* 2.254 6.36E-10 1.80 - 2.86 
GOLDN** 2.458 <2.0E-16 2.03 - 3.0 

*HyperGEN model adjusted for age, sex, study site, 4 ancestry principle components, estimated blood 
cell counts (CD8T cells, CD4T cells, Natural Killer cells, B-cells, Monocyte cells) as fixed effects, and 
family id as a random effect.  
**GOLDN model adjusted for age, sex, study site, 4 methylation principle components, and family id as a 
random effect. 
 
 
 
 
 
Table 5. GOLDN MetS and MetS-scAIC & BIC from Model 1 & 2  
 
 AIC BIC 
Model 1a 1173.99 1198.50 
Model 2b 1112.61 1142.02 

a) Model 1: MetS = Age + Sex + Center + Family (random effect) 
b) Model 2: MetS = Methylation Risk Score + Age + Sex + Center + Family (random 
effect) 
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Figure 1. GOLDN MetS-score Distribution, N=994 

 
 
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 25, 2021. ; https://doi.org/10.1101/2021.10.22.465467doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465467


 17 

References 
 

1. Dayan, N. and Y. Weili, [The application of genetic risk score in genetic studies of 
complex human diseases]. Yi Chuan, 2015. 37(12): p. 1204-10. 

2. Musunuru, K. and S. Kathiresan, Genetics of Common, Complex Coronary Artery Disease. 
Cell, 2019. 177(1): p. 132-145. 

3. Aslibekyan, S., et al., A genome-wide association study of inflammatory biomarker 
changes in response to. Pharmacogenet Genomics, 2012. 22(3): p. 191-7. 

4. Demerath, E.W., et al., Epigenome-wide Association Study (EWAS) of BMI, BMI Change, 
and Waist Circumference in African American Adults Identifies Multiple Replicated Loci. 
Hum Mol Genet, 2015. 

5. Irvin, M.R., et al., Epigenome-wide association study of fasting blood lipids in the 
Genetics of Lipid-lowering Drugs and Diet Network study. Circulation, 2014. 130(7): p. 
565-72. 

6. Hidalgo, B., et al., Epigenome-wide association study of fasting measures of glucose, 
insulin, and HOMA-IR in the Genetics of Lipid Lowering Drugs and Diet Network study. 
Diabetes, 2014. 63(2): p. 801-7. 

7. Richard, M.A., et al., DNA Methylation Analysis Identifies Loci for Blood Pressure 
Regulation. Am J Hum Genet, 2017. 101(6): p. 888-902. 

8. Pfeiffer, L., et al., DNA methylation of lipid-related genes affects blood lipid levels, in Circ 
Cardiovasc Genet. 2015, 2015 American Heart Association, Inc.: United States. p. 334-
42. 

9. KF, D., et al., Blood lipids influence DNA methylation in circulating cells. Genome biology, 
2016. 17(1). 

10. Williams, R.R., et al., NHLBI family blood pressure program: methodology and 
recruitment in the HyperGEN network. Hypertension genetic epidemiology network. Ann 
Epidemiol, 2000. 10(6): p. 389-400. 

11. Palmieri, V., et al., Effect of type 2 diabetes mellitus on left ventricular geometry and 
systolic function in hypertensive subjects: Hypertension Genetic Epidemiology Network 
(HyperGEN) study. Circulation, 2001. 103(1): p. 102-7. 

12. Akinyemiju, T., et al., Epigenome-wide association study of metabolic syndrome in 
African-American adults. Clin Epigenetics, 2018. 10: p. 49. 

13. Irvin, M.R., et al., Genomics of post-prandial lipidomic phenotypes in the Genetics of 
Lipid lowering Drugs and Diet Network (GOLDN) study. PLoS One, 2014. 9(6): p. e99509. 

14. KG, A., et al., Harmonizing the metabolic syndrome: a joint interim statement of the 
International Diabetes Federation Task Force on Epidemiology and Prevention; National 
Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; 
International Atherosclerosis Society; and International Association for the Study of 
Obesity. Circulation, 2009. 120(16). 

15. Maksimovic, J., L. Gordon, and A. Oshlack, SWAN: Subset-quantile within array 
normalization for illumina infinium HumanMethylation450 BeadChips. Genome Biol, 
2012. 13(6): p. R44. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 25, 2021. ; https://doi.org/10.1101/2021.10.22.465467doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465467


 18 

16. Houseman, E.A., et al., DNA methylation arrays as surrogate measures of cell mixture 
distribution. BMC Bioinformatics, 2012. 13: p. 86. 

17. AR, M., et al., Publisher Correction: Clinical use of current polygenic risk scores may 
exacerbate health disparities. Nature genetics, 2021. 

18. AR, M., et al., Human Demographic History Impacts Genetic Risk Prediction across 
Diverse Populations. American journal of human genetics, 2017. 100(4). 

19. Hamilton, O.K.L., et al., An epigenetic score for BMI based on DNA methylation 
correlates with poor physical health and major disease in the Lothian Birth Cohort. Int J 
Obes (Lond), 2019. 43(9): p. 1795-1802. 

20. Fernandez-Sanles, A., et al., DNA Methylation and Age-Independent Cardiovascular Risk, 
an Epigenome-Wide Approach: The REGICOR Study (REgistre GIroni del COR). 
Arterioscler Thromb Vasc Biol, 2018. 38(3): p. 645-652. 

21. Braun, K.V.E., et al., Epigenome-wide association study (EWAS) on lipids: the Rotterdam 
Study. Clin Epigenetics, 2017. 9. 

22. Wahl, S., et al., Epigenome-wide association study of body mass index, and the adverse 
outcomes of adiposity. Nature, 2017. 541(7635): p. 81-86. 

23. Chambers, J.C., et al., Epigenome-wide association of DNA methylation markers in 
peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a 
nested case-control study. Lancet Diabetes Endocrinol, 2015. 3(7): p. 526-534. 

24. BD, P., et al., Utility of existing diabetes risk prediction tools for young black and white 
adults: Evidence from the Bogalusa Heart Study. Journal of diabetes and its 
complications, 2017. 31(1). 

25. L, P., et al., Equalization of four cardiovascular risk algorithms after systematic 
recalibration: individual-participant meta-analysis of 86 prospective studies. European 
heart journal, 2019. 40(7). 

26. JA, D., et al., Prediction models for cardiovascular disease risk in the general population: 
systematic review. BMJ (Clinical research ed.), 2016. 353. 

27. C, K., et al., Critical evaluation of the DNA-methylation markers ABCG1 and SREBF1 for 
Type 2 diabetes stratification. Epigenomics, 2019. 11(8). 

28. Cortright, D., et al., C5a, but not C3a, increases VEGF secretion in ARPE-19 human retinal 
pigment epithelial cells. Curr Eye Res, 2009. 34(1): p. 57-61. 

29. Dayeh, T., et al., DNA methylation of loci within ABCG1 and PHOSPHO1 in blood DNA is 
associated with future type 2 diabetes risk, in Epigenetics. 2016. p. 482-8. 

30. Lai, C.Q., et al., Epigenome-wide association study of triglyceride postprandial responses 
to a high-fat dietary challenge. J Lipid Res, 2016. 57(12): p. 2200-2207. 

31. Sayols-Baixeras, S., et al., Identification and validation of seven new loci showing 
differential DNA methylation related to serum lipid profile: an epigenome-wide 
approach. The REGICOR study. Hum Mol Genet, 2016. 25(20): p. 4556-65. 

32. Hedman, A.K., et al., Epigenetic Patterns in Blood Associated With Lipid Traits Predict 
Incident Coronary Heart Disease Events and Are Enriched for Results From Genome-Wide 
Association Studies. Circ Cardiovasc Genet, 2017. 10(1). 

33. Chambers, J.C., et al., Epigenome-wide association of DNA methylation markers in 
peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a 
nested case-control study. Lancet Diabetes Endocrinol, 2015. 3(7): p. 526-34. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 25, 2021. ; https://doi.org/10.1101/2021.10.22.465467doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465467


 19 

34. Frazier-Wood, A.C., et al., Methylation at CPT1A locus is associated with lipoprotein 
subfraction profiles. J Lipid Res, 2014. 

35. Aslibekyan, S., et al., Epigenome-wide study identifies novel methylation loci associated 
with body mass index and waist circumference. Obesity (Silver Spring), 2015. 23(7): p. 
1493-501. 

36. Das, M., et al., Association of DNA Methylation at CPT1A Locus with Metabolic Syndrome 
in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) Study. PLoS One, 
2016. 11(1). 

37. Aslibekyan, S., et al., CPT1A methylation is associated with plasma adiponectin. Nutr 
Metab Cardiovasc Dis, 2017. 27(3): p. 225-33. 

38. Frazier-Wood, A.C., et al., Methylation at CPT1A locus is associated with lipoprotein 
subfraction profiles. J Lipid Res, 2014. 55(7): p. 1324-30. 

39. Aslibekyan, S., et al., A genome-wide association study of inflammatory biomarker 
changes in response to fenofibrate treatment in the Genetics of Lipid Lowering Drug and 
Diet Network. Pharmacogenet Genomics, 2012. 22(3): p. 191-7. 

40. Xu, K., et al., Epigenome-wide association analysis revealed that SOCS3 methylation 
influences the effect of cumulative stress on obesity. Biol Psychol, 2018. 131: p. 63-71. 

41. Ali, O., et al., Methylation of SOCS3 is inversely associated with metabolic syndrome in 
an epigenome-wide association study of obesity. Epigenetics, 2016. 11(9): p. 699-707. 

42. Mendelson, M.M., et al., Association of Body Mass Index with DNA Methylation and 
Gene Expression in Blood Cells and Relations to Cardiometabolic Disease: A Mendelian 
Randomization Approach. PLoS Med, 2017. 14(1). 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 25, 2021. ; https://doi.org/10.1101/2021.10.22.465467doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465467

