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1 Abstract

2 Large-scale gut microbiome sequencing has revealed key links between microbiome 

3 dysfunction and metabolic diseases such as T2D. To date, these efforts have largely focused on 

4 Western populations, with few studies assessing T2D microbiota associations in Middle Eastern 

5 communities where T2D prevalence is now over 20%. We analyzed the composition of stool 16S 

6 rRNA from 461 T2D and 119 non-T2Dparticipants from the Eastern Province of Saudi Arabia. 

7 We quantified the abundance of microbial communities to examine any significant differences 

8 between subpopulations of samples based on diabetes status and glucose level. We observed 

9 overall positive enrichment within diabetics compared to healthy individuals and amongst diabetic 

10 participants; those with high glucose levels exhibited slightly more positive enrichment compared 

11 to those at lower risk of fasting hyperglycemia. In particular, the genus Firmicutes was upregulated 

12 in diabetic participants compared to non-diabetic participants, and T2D was associated with an 

13 elevated Firmicutes/Bacteroidetes ratio, consistent with previous findings. Based on diabetes 

14 status and glucose levels of Saudi participants, relatively stable differences in stool composition 

15 were perceived by differential abundance and alpha diversity measures. 

16

17 Author summary

18 The rates of Type 2 diabetes (T2D) in Saudi Arabia have risen dramatically in the last 

19 several decades due to socio-economic changes resulting in changes in dietary and sedentary 

20 lifestyles. This emergence has grown more rapidly and affects larger proportions of the population 

21 with estimates of T2D prevalence impacting 25% of the population. There is a paucity of 

22 microbiome data from Middle Eastern populations, and previous studies have been conducted on 
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23 small sample sizes. Here we report on the first-ever characterization of gut microbiota T2D versus 

24 non-T2D and largest microbiome study ever conducted in a Middle Eastern country. The datasets 

25 from this study are important to create a regional reference T2D-microbiome catalogue which will 

26 propel the understanding of regional gut flora which are associated with T2D development. Based 

27 on T2D status and quantified glucose levels of Middle Eastern participants, relatively stable 

28 differences in stool composition were observed by differential abundance and alpha diversity 

29 measures. Comparing overlapping and varying patterns in gut microbiota with other studies is 

30 critical to assessing novel treatment options in light of a rapidly growing T2D health epidemic.

31

32 Introduction

33 The human gut hosts 100 trillion microorganisms, encompassing thousands of species 

34 collectively, weighing an average 1.5 kg per person [1,2]. The human microbiota is important 

35 because of its metagenomic repertoire, which is estimated to be 100 times larger than the human 

36 genome and encodes a vast array of functionality critical for host physiology and metabolism [2]. 

37 The bacterial components responsible for triggering theses physiological functions are currently 

38 the subject of intensive research. Differences in human gut microbiome composition have been 

39 linked to metabolic diseases such as T2D and obesity [3-7]. Identifying specific bacterial 

40 biomarkers within the microbiome could help predict the occurrence of T2D or tailor treatments 

41 in high-risk subjects to prevent or delay the onset of metabolic diseases. The molecular 

42 mechanisms through which the intestinal microbiota play a key role in metabolic diseases are 

43 linked to an increased energy harvesting and the triggering of the low-grade inflammatory status 

44 characterizing insulin resistance and obesity [8-9]. 
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45 The prevalence of T2D is increasing worldwide, with current data indicating that at least 

46 8.5% of the world’s population is affected, with the worldwide prevalence expected to reach 12% 

47 by 2025 [10-11]. T2D is mainly caused by insulin resistance and relative insulin deficiency [12]. 

48 Saudi Arabia, with a total population of over 20 million, has an estimated T2D constituting 25% 

49 of the total population [13]. The rapid rate of increase of T2D disease in some areas of Saudi 

50 Arabia, which increased from 16% in 2005 to over 25% in 2011, is thought to be due to rapid 

51 lifestyle changes such as diet and sedentary lifestyle, as we;; as adverse environmental factors [13]. 

52 We analyzed the composition of 16S rRNA from the stool samples collected from Saudi 

53 Arabian participants residing in the Eastern Province and quantified the abundance of microbial 

54 communities to determine significant differences between subpopulations of samples based on 

55 diabetes status and glucose level. We assessed alpha diversity between the subpopulations to 

56 measure species richness and evenness among samples noting that an increased 

57 Firmicutes:Bacteriodetes ratio has previously been observed in the microbiota of obese/diabetic 

58 individuals compared to the microbiota of healthy individuals. Furthermore, individuals with 

59 diabetes were tracked for high glucose level (>126 mg/dL) as it is an indicator of fasting 

60 hyperglycemia, which could potentially lead to severe long-term complications including 

61 cardiovascular disease, neuropathy and kidney failure.

62

63 RESULTS

64 Principal coordinate analysis (PCoA) of the generated 16S datasets is shown in Fig S2. The first 

65 and second principal coordinated explained 25% and 7%; 29% and 7% and 34% and 6% of the 

66 Diabetes Status and Gender variance, respectively. Levels of the 150 most abundance microbial 
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67 genera within T2D and non-T2D participants were observed to differ significantly in stool 

68 microbiota abundance derived from 16S sequencing (Figures S3a and S3b). 

69 Fig 1 (a and b) shows the rank abundant curve and Permutational Multivariate Analysis of 

70 Variance (PERMANOVA) cloud, respectively for Saudi T2D and control 16S stool microbiota 

71 datasets. These show that the microbiome communities differ globally between T2D and non-T2D 

72 subjects at statistical significance, p = 0.01. The abundance of Taxonomic Composition in males 

73 and females is clearly evident in both females (Figures S4a and S4b) and in males (Figures S5a 

74 and S5b). We also compared Saudi T2D participants with higher glucose >126 mg/dL versus lower 

75 glucose strata <=126 mg/dL glucose using the top 150 genera. Amongst the 298 samples with 

76 glucose data, n=193 were in the higher glucose strata and n=105 were in the lower strata (Figure 

77 S6). Unlike previous studies conducted on Western populations, the Saudi participants with T2D 

78 and higher glucose levels showed a trend toward increased diversity, a result that is similar to 

79 another recently reported study from a United Arab Emirates (UAE) cohort [14]. 

80 Figure 1: Rank abundant curve (a) and permutational multivariate analysis of variance 
81 cloud (b) for Saudi T2D and control 16S stool microbiota datasets. This figure shows the rank 
82 abundant curve and Permutational Multivariate Analysis of Variance (PERMANOVA) cloud 
83 respectively for Saudi T2D and control 16S stool microbiota datasets. These show that the 
84 microbiome communities differ globally between T2D and non-T2D subjects at statistical 
85 significance, p = 0.01.  

86

87 Alpha diversity was compared in males versus females (n = 204 and 226, respectively) 

88 with no significant differences observed using various different classifications: ACE (Abundance-

89 based Coverage Estimator) and Chao1 indices to estimate richness (measurement of OTUs 

90 expected in samples given all the bacterial species identified in the samples); Shannon-Weaver, 

91 Simpson and Inverse Simpson to define different levels of resolution (phylum, class, order, family, 
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92 genus, and species); and Fisher (Fig S7). Alpha diversity of T2D versus non-T2D participants 

93 revealed statistically significant enrichment of the Shannon-Weaver and Simpson metrics (Figure 

94 S8) (p < 2.26 x 10-10 (CI: -0.392 to -0.718)) and p < 4.63 x 10-7 (CI: -0.049 to -0.108) for Shannon 

95 and Simpson diversity, respectively. Saudi T2D cases versus controls showed an association with 

96 an elevated Bacteroidetes/Firmicutes ratio, p = 2.2 x 10-5 t-test (Fig S9).

97 We observed an overall positive enrichment of microbiota genus/families for diabetics 

98 compared to healthy individuals. In addition, among T2D patients, those with high glucose levels 

99 exhibited slightly more positive enrichment compared to those at lower risk of fasting 

100 hyperglycemia (Fig 2a and 2b and Table S1). In particular, the Akkermansia, Acidaminococcus, 

101 Megamonas, Dialister, Lactobacillus and Paraprevotella genus were enriched at p < 1 x 10-9 in 

102 T2D versus non-T2D. The Fusobacterium, Dialister, Akkermansia and Prevotella genus were 

103 enriched in low versus high-risk T2D using a fasting glucose cutoff of 126 mg/dL. 

104 Figure 2: Fold Change plots of enriched OTUs for: T2D versus controls (a) and glucose levels 
105 for high versus low T2D status (b). An overall positive enrichment of microbiota genus/families 
106 for diabetics compared to healthy individuals and amongst diabetic participants was observed. 
107 Those with high glucose levels exhibited slightly more positive enrichment compared to those at 
108 lower risk of fasting hyperglycemia.

109

110 Discussion 

111 In this study we performed the largest microbiome study ever conducted in Saudi Arabia, 

112 as well as the first-ever characterization of gut microbiota T2D versus non-T2D in this population. 

113 We used shotgun metagenomic sequencing to obtain 16S rRNA reads identifiable down to genus 

114 level from the stool samples of 461 T2D and 119 non-T2D Saudi participants from the Eastern 

115 Province of Saudi Arabia, a region particularly affected by T2D [15]. We assessed the microbiota 
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116 abundance based on diabetes status and glucose levels, and examined community diversity patterns 

117 to compare with other T2D microbiota studies from around the globe. These efforts are important 

118 and warranted given the scarcity of microbiome data in Middle Eastern populations, and these 

119 results provide a useful addition to the global microbiome reference dataset in an under-examined 

120 community. Saudi Arabian T2D costs have risen over 500% in two decades with 10 million 

121 individuals estimated to be diabetic or pre-diabetic, therefore comparing overlapping and varying 

122 patterns in gut microbiota with other studies is critical to assessing novel treatment options in light 

123 of a rapidly growing T2D health epidemic [15-16]. 

124 Community level differences are evident in the Saudi population between T2D and non-

125 T2D individuals, and diversity patterns appear to vary from well-characterized microbiota from 

126 Western cohorts. Indeed, in contrast to Western cohorts that often show associations between 

127 decreased gut microbiota diversity and insulin resistance, here we show that Saudi participants 

128 with T2D exhibited higher relative diversity in comparison to normal metabolic counterparts [17]. 

129 These results are similar to a recent report from Al Bataineh and colleagues who characterized 

130 microbiomes in a cohort of 50 T2D and non-T2D individuals from the United Arab Emirates, 

131 though higher diversity in that smaller T2D cohort was determined to be insignificant when 

132 controlling for age [14]. Sex was not found to play a role in community structural differences, and 

133 results were independently validated between females and males. The role of overall community 

134 diversity decreasing in T2D populations has been widely cited in early studies on Western 

135 populations, yet larger meta-analyses involving global populations have distorted this pattern and 

136 highlight the importance of locally representative studies [18]. 

137 We observe significant differences between T2D and non-T2D individuals for many 

138 microbial taxa, as well as between T2D individuals with high and low fasting blood glucose levels. 
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139 Concordant with studies conducted on Western populations is the association of increasing 

140 Bacteroidetes/Firmicutes ratio with T2D and in our overweight and obese T2D cohort, increased 

141 Bacteroidetes may be functionally related to metabolism of branched chain amino acids which has 

142 been linked to obesity-related metabolic phenotypes [3, 19]. Among OTUs assigned at the genus 

143 taxonomic level, Prevotella and Bacteroides OTUs showed some of the most significant log-fold 

144 increases in abundance for diabetics (over four-fold increases in abundance), species of which 

145 have been functionally associated with the development of insulin resistance and glucose 

146 intolerance [20]. Among Firmicutes however, levels of Acidaminococcus and Megasphaera were 

147 positively correlated with T2D, as has been previously observed, and could functionally relate with 

148 increases to Bacteroidetes through complementary amino acid metabolism [21-22]. We observed 

149 higher levels of Akkermansia in the Saudi T2D group, despite potential protective effects for 

150 obesity and metabolic disease. Associations of levels of Akkermansia, a mucus-consuming taxon, 

151 have been observed to be associated with health and with ethnicity in Western populations and 

152 may represent an impact of dietary and lifestyle effects on microbiota composition, as this microbe 

153 is rarely observed in more traditional cultures across large geographic regions [23]. It should be 

154 noted however that Akkermansia levels are also often increased in response to metformin intake 

155 in T2D subjects (metformin use metadata is not known for the current cohort) [24]. Taxonomic 

156 differences associated with T2D likely reflect shared or complementary functional and metabolic 

157 traits but may be regionally specific based on dietary and environmental variations known to 

158 influence the microbiome [23-25]. 

159 Based on diabetes status and quantified glucose levels of Middle Eastern participants, 

160 relatively stable differences in stool composition were observed by differential abundance and 

161 alpha diversity measures. Many studies have examined T2D associations with gut microbiota in 
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162 populations around the globe, and while some patterns generally validate across studies such as 

163 individual taxon abundance variation, others such as overall community diversity do not replicate 

164 consistently. Obesity, diet, lifestyle and ancestry are all factors that influence T2D and each varies 

165 significantly from culture to culture around the globe, meaning that the patterns in T2D 

166 development and roles of the microbiome likely vary as well. As a rapidly emerging chronic 

167 condition in Saudi Arabia and the Middle East, T2D burdens have grown more quickly and affect 

168 larger proportions of the population than any other global region, making a regional reference 

169 T2D-microbiome dataset critical to understanding the nuances of disease development on a global 

170 scale. 

171

172 Materials and Methods

173 Study Populations

174 Between 2015-2019, stool samples and data were collected from 461 consecutive diabetic patients 

175 attending the Diabetic Clinics, King Fahd Hospital of the University, Al-Khobar, Saudi Arabia 

176 and from 119 healthy controls. Participants ranged in age from 30-75 years and had a body mass 

177 index (BMI) ranging from 27 to 40 kg/m2. The T2D patients had a minimum disease duration of 

178 5 years. Table 1 outlines the patient demographics and clinical characteristics. Baseline 

179 measurements included anthropometric measurements, physical examinations and in-person 

180 surveys. Participants who had been treated with antibiotics in the previous three months, were 

181 pregnant or lactating, or had inflammatory bowel disease were excluded from the study. Blood 

182 and stool samples were collected from participants and were stored immediately after collection 

183 at −80 °C. Ethical approval of the study was obtained from the local Institutional Review Board 
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184 (IRB) committee and the study was conducted according to the ethical principles of the Declaration 

185 of Helsinki and Good Clinical Practice guidelines (IRB-2019-01-112). All participants provided 

186 written informed consent. 

187 Table 1. Clinical and demographic characteristics for Saudi Arabian T2D cases (n-461) and 

188 controls (n=119).

189
190
191 Methods for DNA library preparation and sequencing

192 Sample collection and microbial DNA extraction were standardized to minimize confounding 

193 effects of the technical procedure. Stool samples were taken from T2D (n=461) and from healthy 

194 (n=119) participants. Fecal samples were provided by the patients whilst attending the outpatient 

195 clinic and immediately stored at −20°C. The samples were subsequently transported on dry ice to 

196 the research laboratory where they were stored at −80°C. Bacterial DNA extraction from stool 

197 samples was performed using QIAamp Fast DNA Stool Mini Kit (Qiagen, Hilden, Germany) 

198 according to the manufacturer’s instructions. In brief, approximately 200 mg of stool was placed 

199 in a 2 ml microcentrifuge tube and kept on ice. InhibitEX Buffer (1 ml) was added to each stool 

 Ratio Male Female

Gender 1: 0.83 54.50% 45.50%

Mean ± SD 
Total Male Female

Age (Years) 52.6±8.83 51.82±9.28 53.5±8.25
Glucose(mg/dl) 165.7±68.89 161.45±57.71 166.8±74.09

HBA1c (%) 8.55±1.76 8.45±1.65 8.65±1.85

Duration (Years) 3-25 4-25 3-22
BMI (kg/m2) 27-40 27-37 30-40
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200 sample, homogenized thoroughly by vortexing and incubated at 70°C for 5 minutes. Each sample 

201 was centrifuged (20,000 g) for minute and 200 µl supernatant was pipetted into 1.5 ml 

202 microcentrifuge tube containing 15 µl proteinase K and 200 µl lysis buffer and incubated at 70°C 

203 for 10 minutes. This was followed by the addition of 200 µl of ethanol and mixed by vortexing. 

204 The lysate (600 µl) was transferred to the QIAamp spin column and centrifuged (20,000 g) for 1 

205 minute. Finally, the QIAamp spin column was opened and washed twice with two different 

206 washing buffers. The DNA was eluted into a new 1.5 ml microcentrifuge tube by adding 200 µl 

207 elution buffer. DNA samples were checked for purity using the Nanodrop 2000 Spectrophotometer 

208 (ThermoFisher Scientific). Three independent extractions were performed from each sample to 

209 ensure robust representation of all microbial content. DNA was stored at −80 °C till the time of 

210 processing.

211 Sequencing was performed using either the Swift Amplicon 16S panel (Swift Biosciences) 

212 or a custom protocol. For the Swift protocol, 20 ng of stool-derived DNA was used for 16S 

213 sequencing library preparation using the 16S Primer Panel v2, the Swift Normalase Amplicon 

214 Panels (SNAP) Core Kit, and the SNAP Combinatorial Dual Index Primer Kit (Sets 1A and 1B) 

215 (Swift Biosciences, CA).  The indexed libraries were on average 620 base pairs (bp) in length, and 

216 individual DNA libraries were diluted to 2.5 nM, pooled in equimolar proportion, and sequenced 

217 on a NovaSeq 6000 SP flow cell (Illumina, CA) using 250 bp paired-end reads. For the custom 

218 approach, PCR was performed on each sample using the 515F primer (forward primer) and one of 

219 the 100 806rcbc primers (reverse primer). These primers contained: sequence homologous to 

220 region V4 of the 16S rRNA in forward and reverse; Illumina adaptors; and the reverse primers 

221 contained indexing sequences. Taq PCR Master Mix from Qiagen was used to prepare the PCR 

222 master mix. A PCR reaction was performed on each extracted DNA sample, i.e. each stool sample 
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223 had three PCR reactions. The PCR product was run on 1% agarose gel. The band of expected size 

224 (381bp) was excised from gel and purified with gel purification kit from Qiagen. The three PCR 

225 products from each sample were pooled together. The pooled and purified PCR product was 

226 quantified with NanoDrop 2000 (Thermo Sciences, USA).

227 Equal concentrations of DNA from each sample (5ng of DNA) were pooled together. For 

228 each sequencing run, DNA from 50 samples was pooled to make the DNA library for each batch.

229 The final concentration of the DNA library was quantified with real time PCR using the Kapa 

230 library quantification kit (Roche, USA) according to the manufacturer’s instructions. The DNA 

231 library of each batch was sequenced using the MiSeq platform from Illumina (Illumina, USA) 

232 using the MiSeq reagent V2 500cycles Kit from Illumina and the custom read1 

233 (TATGGTAATTGTGTGCCAGCMGCCGCGGTAA), read2 (AGTCAGTCAGCCGGACTACH 

234 VGGGTWTCTAAT) and index (ATTAGAWACCCBDGTAGTCCGGCTGACTGACT) 

235 sequencing primers. PhiX DNA (Illumina, USA) was used as a control library.  

236

237 Analyses

238 Figure S1 overviews the analytical pipeline and workflow employed for these analyses. 16S rRNA 

239 (V4 region) sequences were used in this study and sequenced with Illumina software which 

240 handled the initial primer and barcode processing of all raw sequences. Raw sequences were 

241 demultiplexed with Illumina’s bcl2fastq2 v2.20 [26]. FastQC was then used for further processing 

242 to remove samples with low quality scores across the majority of bases [27]. After de-multiplexing 

243 the raw sequences and screening via FastQC, the majority of data processing was executed in 

244 QIIME2 with custom scripts. Paired-end reads were joined using VSEARCH. Chimera amplicon 

245 removal and abundance filtering were processed using Deblur [28]. Amplicon sequences were 
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246 clustered and assembled into Operational Taxonomical Units (OTUs) using closed reference 

247 clustering against the Greengenes 13_8 database via VESEARCH. Taxonomic assignment was 

248 performed using a pre-trained Naïve Bayes classifier with Greengenes OTU database. The 

249 abundance tables and data obtained from QIIME2 were combined into a Phyloseq object and 

250 further analyzed in R with custom scripts [29].

251
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341 Fig S4a: Heatmap of top 150 gut microbiota 16S genus for (a) T2D and (b) T2D in Saudi females 

342 (OTU abundance based on BrayCurtis dissimilarity.

343 Fig S4b: Abundance of gut microbiota 16s taxonomic composition of: a) non-T2D vs (b) T2D in 
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347 Fig S5b: Abundance of gut microbiota 16S taxonomic composition of: (a) non-T2D versus (b) 
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