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ABSTRACT 

The ongoing decline of large marine vertebrates must be urgently mitigated, 

particularly under increasing levels of climate change and other anthropogenic pressures. 

However, characterizing the connectivity among populations remains one of the greatest 

challenges for the effective conservation of an increasing number of endangered species. 

Achieving conservation targets requires an understanding of which seascape features 

influence dispersal and subsequent genetic structure. This is particularly challenging for adult-

disperser species, and when distribution-wide sampling is difficult. Here, we developed a 

two-step modelling framework to investigate how seascape features drive the genetic 

connectivity of marine species without larval dispersal, to better guide the design of marine 

protected area networks and corridors. We applied this framework to the endangered grey reef 

shark, Carcharhinus amblyrhynchos, a reef-associated shark distributed across the tropical 

Indo-Pacific. In the first step, we developed a seascape genomic approach based on isolation-

by-resistance models involving circuit theory applied to 515 shark samples, genotyped for 

4,491 nuclear single-nucleotide polymorphisms, to explore which parameters drive their 

population genetic differentiation. We show that deep oceanic areas act as strong barriers to 

dispersal, while proximity to habitat facilitates dispersal. In the second step, we predicted the 

resulting genetic differentiation across the entire distribution range of the species, providing 

both local and global-scale conservation units for future management guidance. We found 

that grey reef shark populations are more fragmented than expected for such a mobile species, 

raising concerns about the resilience of isolated populations under high anthropogenic 

pressures. We recommend the use of this framework to identify barriers to gene flow and to 

help in the delineation of conservation units at different scales, together with its integration 

across multiple species when considering marine spatial planning. 

Keywords 

Seascape genomics, conservation, gene flow, circuit theory, isolation-by-resistance, reef 

sharks 
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1    |    INTRODUCTION 

Marine ecosystems across the globe are under increasing pressure due to habitat 

fragmentation, overexploitation, and climate change (Albouy et al., 2020; McCauley et al., 

2015; Young et al., 2016). Due to their conservative life-history traits of low reproductive 

rates, high longevity, and slow growth, large marine vertebrates such as marine mammals, 

seabirds, and elasmobranchs are particularly vulnerable to human-induced mortalities: their 

rate of extinction is indeed higher due to fisheries (including bycatch), habitat disturbance, 

and pollution (Estes et al., 2016; MacNeil et al., 2020; McClenachan et al., 2016; Yan et al., 

2021). Their effective protection is an unprecedented challenge that must be addressed in the 

coming decades (Duarte et al., 2020; Sala et al., 2021).  

The implementation of effective conservation measures for large marine vertebrates 

requires that space use by these potentially highly mobile species is taken into account 

(Harrison et al., 2018; Jacoby et al., 2020), and to better understand the factors driving 

connectivity among populations in increasingly fragmented seascapes (Balbar and Metaxas, 

2019; McRae and Beier, 2007). Indeed, through the exchange of genes, connectivity plays a 

vital role in maintaining thriving natural populations (Cowen and Sponaugle, 2009; Dunn et 

al., 2019; Jangjoo et al., 2016), ensuring biodiversity conservation and fisheries sustainability 

(Álvarez-Noriega et al., 2020; Edgar et al., 2014; Gaines et al., 2010; Krueck et al., 2017). 

Population connectivity of most marine animals depends on a dispersive planktonic 

larval phase. This life-history stage can last from days to months, and larval dispersal can be 

modelled using biophysical or genetic frameworks (Bryan-Brown et al., 2017; Harrison et al., 

2020; Manel et al., 2019). Genetic connectivity, a measure of the degree to which gene flow 

affects evolutionary processes among populations, has been widely studied among larval 

dispersers (e.g. Benestan et al., 2021), since gene flow plays a key role in maintaining genetic 

diversity and healthy populations able to adapt to a changing environment (Goetze et al., 

2021; Lowe and Allendorf, 2010; Slatkin, 1987; Song et al., 2013).  

In contrast, investigating the population or genetic connectivity of species whose 

dispersal is realized by adults is more challenging as adult connectivity cannot be modeled 

using the same oceanographic models (e.g. Boissin et al., 2019; Pazmiño et al., 2017; Pirog et 

al., 2019). Yet, the question of which factors drive nektonic adult connectivity has received 

less attention, while its knowledge is just as important for those species relying on dispersal of 
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larger individuals to maintain connectivity (Momigliano et al., 2015). Indeed, little is known 

about which habitat, environmental and biogeographic features drive the connectivity among 

populations for adult dispersers across generations. Investigating these factors can provide 

key information to properly design corridors and networks of marine protected areas (MPA) 

(Almany et al., 2009; Balbar and Metaxas, 2019; Jacoby et al., 2020; Magris et al., 2014, 

2018).  

One approach to investigate the factors shaping genetic connectivity among 

populations and identify subsequent barriers to gene flow is the use of isolation-by-resistance 

(IBR) models (McRae, 2006). These models, popular in terrestrial ecology (Dickson et al., 

2019), remain largely overlooked in the marine realm (Selkoe et al., 2016). Unlike isolation-

by-distance (IBD) models, IBR models incorporate the effects of heterogeneous habitats on 

gene flow, thus they can account for the effect of seascape features on the genetic 

differentiation among populations and also make predictions for sites that have not been 

sampled (McRae and Beier, 2007). A combination of large empirical genetic datasets and 

modelled genetic differentiation could therefore be used to delineate conservation units 

(groupings of a species which contain sufficient biodiversity for persistence through 

subsequent generations) throughout the entire range of a species. 

Separating a species’ range into conservation units can indeed identify key areas for 

dispersal along with populations under potential threats (Allendorf et al., 2010; Barbosa et al., 

2018; Funk et al., 2012). Although the definition of conservation units has been debated 

(Lowe and Allendorf, 2010; Palsbøll et al., 2007; Waples and Gaggiotti, 2006), the 

hierarchical delineation of population subdivisions, based on genetic connectivity, can 

provide significant clues for both local and global management strategies (Barbosa et al., 

2018; Dilts et al., 2016). Surprisingly, the degree of habitat fragmentation and the subsequent 

delineation of conservation units are poorly investigated in threatened and mobile marine 

species. Advances in genetic tools and computational power (Balkenhol et al., 2017; Barbosa 

et al., 2018; DiBattista et al., 2017; Funk et al., 2012; Schadt et al., 2010) now permit the 

development of models predicting how seascape features shape connectivity over a large scale 

at high spatial resolution (Leonard et al., 2017). 

With no larval stage, the adult dispersion of sharks is of high importance (Hirschfeld 

et al., 2021), and shark conservation remains challenging with many species showing 

extensive geographic ranges spanning several countries (Dulvy et al., 2017, 2021; Pacoureau 
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et al., 2021). Additionally, most shark species are highly vulnerable to fishing pressure given 

their life history traits, e.g. slow growth, late sexual maturity and low fecundity (Dulvy et al., 

2014). Over one-third of chondrichthyans are threatened with extinction (International Union 

for Conservation of Nature Red List ; Dulvy et al., 2021), and some have undergone declines 

greater than 70% in abundance in the last few decades (Pacoureau et al., 2021; Roff et al., 

2018). The size of MPAs is known to be a major driver of their protection effectiveness 

(Bonnin et al., 2021; Dwyer et al., 2020; Juhel et al., 2017, 2019), however these areas often 

only encompass a small proportion of each population’s distribution.  

Here, we focused on the grey reef shark (Carcharhinus amblyrhynchos) as a model 

species to explore the potential offered by seascape genetics for the characterization and 

prediction of genetic connectivity of adult dispersers, the identification of barriers and 

resistance to dispersal, and possible implications for the spatial delineation of conservation 

units for management purposes. This species has strongly declined in non-protected reefs 

close to human habitation (Juhel et al., 2017, 2019; Robbins et al., 2006; Ruppert et al., 2017) 

and is now listed as Endangered on the IUCN Red List. It shows a high level of residency and 

small home range but adults can perform long-range movements (>700 km) along reefs and 

across oceanic waters (Bonnin et al., 2019, 2021; Espinoza et al., 2015a; White et al., 2017). 

We followed a two-step approach to investigate the genetic connectivity of this near-

threatened coral reef-associated predator and delineate hierarchical conservation units based 

on estimates of genetic connectivity. Firstly, we employed IBR modelling and electrical 

circuit theory (CT) (McRae, 2006; McRae et al., 2008) to determine how seascape features 

shape the genetic differentiation of this species, using an extensive genetic dataset of over 500 

sharks collected in 17 locations across the Indian and Pacific oceans. We then used this 

modelling framework to delineate hierarchical conservation units across the whole species 

distribution range (Indo-Pacific), to better inform conservation strategies and identify the 

most vulnerable populations. 

2    |    MATERIALS AND METHODS 

2.1    |    Shark sampling and locations 

We collected fin clips from 515 individual grey reef sharks across 17 locations in the 

Indian and Pacific Oceans (Figure 1). Samples from the Indian Ocean (n=99), Indonesia 

(n=24) and the Great Barrier Reef (n=48) were already described and genotyped in a 
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published study (Momigliano et al., 2017). The remaining samples (n=344) were collected in 

the New Caledonian Archipelago, between June 2015 and November 2016, using barbless 

circle hooks for mouth-hooking and easy release after sampling. Sharks were caught on single 

lines to reduce bycatch and minimize handling and processing times. 

 

Figure 1. Maps of the 17 sampling locations where 515 grey reef shark samples were collected. (A) 
Global sampling locations (B) Detailed sampling at the scale of the New Caledonian archipelago (EEZ 
outlined in grey). The number of individuals sampled for SNP analysis from each location is in 
brackets. 

2.2    |    Population genomics 

We extracted DNA from fin clips using DNEasy Blood and Tissue kit (QIAGEN) for 

the 344 samples from New Caledonia. Each DNA solution was adjusted, after quality control, 

to 12-15 µL at 50 ng.µL-1 prior to DNA sequencing at Diversity Arrays Technology Pty. Ltd 

(Canberra, Australia), using DArTseq protocol (Sansaloni et al., 2011). Post-extraction 

laboratory protocols and SNP calling and filtering procedures used were the same as 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465682doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465682


 7 

described in Momigliano et al. (2017), except for filtration to remove loci with minor allele 

frequencies, where we filtered SNPs for MAF>0.02 instead of 0.05, as sampling was 

extended to numerous additional locations. 

After combining these SNPs with those of a previous study (Momigliano et al., 2017), 

outlier tests were used to filter loci for which genetic differentiation (FST) is higher than 

expected under neutral processes only. We only included individuals from Australian, 

Indonesian, and New Caledonian sampling locations that showed little genetic differentiation 

at nuclear loci. We applied a combination of two methods to identify and exclude from further 

analyses these loci potentially under selection; OutFLANK (Whitlock and Lotterhos, 2015) 

and FLK, i.e. extensions of the Lewontin–Krakauer test that accounts for population co-

ancestry (Bonhomme et al., 2010). 

2.3    |    Population structure 

We applied a Bayesian unsupervised clustering method (fastSTRUCTURE) to 

investigate genetic structure at neutral loci (Raj et al., 2014). fastSTRUCTURE implements 

an efficient algorithm for approximate inference of the admixture model from STRUCTURE 

(Pritchard et al., 2000). We ran fastSTRUCTURE with simple and logistic priors, at multiple 

numbers of clusters, K ranging from 1 to 10. 

We also carried out Discriminant Analysis of Principal Components (DAPC) using the 

R package adegenet, with sampling location of each individual used as prior information 

(Jombart et al., 2010) to investigate patterns of genetic structure at neutral loci. The number of 

principal components (PCs) to retain for DAPC analyses was determined by cross-validation 

using a training set of 80% of the data and we therefore retained the number of PCs for which 

the obtained mean square error was the lowest. 

2.4    |    Isolation-by-distance and isolation-by-resistance models 

The relationship between genetic distance at neutral SNP loci (FST) and geographic 

distance, i.e. isolation-by-distance (IBD) pattern, was investigated using multiple regression 

on distance matrices (MRM ; Lichstein, 2007). Pairwise genetic distances between all 

locations (Weir and Cockerham FST, Weir and Cockerham, 1984) were calculated using the R 

package diveRsity (Keenan et al., 2013), and pairwise shortest geographic distances by sea 

between all locations, with the R package marmap (Pante and Simon-Bouhet, 2013). 
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Isolation-by-resistance (IBR) was then investigated, to check for further effects of some 

seascape features (bathymetry, distance-to-habitat) on the dispersal of grey reef shark 

populations. IBR models assume a linear relationship between pairwise genetic distance and 

pairwise resistance distance, a metric both taking into account geographic distance and 

landscape features between locations (McRae and Beier, 2007). 

Furthermore, we used IBR models implementing electrical Circuit Theory (CT) 

(McRae and Beier, 2007; McRae et al., 2008), and tested their performance in explaining 

genetic differentiation across our sampling locations of grey reef sharks across the Indo-

Pacific. This allowed us to explore different biological hypotheses about gene dispersal for 

this adult-disperser species. Methods based on CT allow the calculation of a resistance 

distance between each pair of sampled locations by simultaneously considering all possible 

pathways connecting these locations, and ascribing resistance values to each pathway. 

2.5    |    Resistance maps 

Resistance maps were generated in Python (gdal) with 10 km cells, based on different 

hypotheses. The spatial resolution of 10 km was arbitrarily chosen to allow a reasonable 

computation time, and because grey reef sharks have shown a high residency and relatively 

small home range of the same order of magnitude (Bonnin et al., 2021; Espinoza et al., 2015a; 

White et al., 2017). First, we produced a map with homogeneous resistance values across 

every cell to be used in a ‘CT null model’, corresponding to CT in a homogeneous seascape. 

Then, bathymetry (GEBCO, gebco.net) and distance-to-habitat resistance maps were drawn 

separately and in combination as seascape features potentially driving gene flow. We included 

coral reefs (data.unep-wcmc.org; Spalding et al., 2001) and island nearshores as suitable 

habitats for grey reef sharks (earthworks.stanford.edu/catalog/harvard-glb-volc). Distance-to-

habitat maps were calculated with or without the inclusion of shallow seamounts as suitable 

habitats (Yesson et al., 2011), selected at a threshold of 280 m corresponding to the reported 

preferential depth for this species (Last and Stevens, 2009). Different types of relationships 

between seascape features and resistance were then explored. The grey reef shark being a 

shallow reef-associated species, we hypothesized that resistance to gene flow was likely to 

increase with distance-to-habitat and depth, and thus tested multiple values of parameters for 

linear, logarithmic, and exponential relationships with minimum and maximum thresholds. 

Different maximum resistance values were also used to calculate the set of resistance maps to 
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run through CT. Full details on resistance maps parametrization are reported in Table S1 and 

Figure S1. 

2.6    |    Pairwise distances using Circuit Theory 

The set of obtained resistance maps was then used as input for IBR models using 

GFLOW (Leonard et al., 2017), an optimized version of the Circuitscape software, estimating 

pairwise resistance distances between sampling locations using Circuit Theory (McRae, 2006; 

McRae and Beier, 2007). This batch of obtained pairwise resistance distances between all 

locations and for every resistance map was then correlated to pairwise genetic distances 

(pairwise FST estimates linearized using the formula FST/(1-FST); Figure 2). As a result, in 

addition to the IBD and CT null models, one IBR model was obtained for each resistance map 

previously obtained. 

Models were compared and the best model was chosen by looking at a combination of 

R2 values from multiple regression matrices (MRMs), Mantel tests (Mantel, 1967) and AICc 

(R package AICcmodavg). Because of the high correlation between bathymetry and distance-

to-habitat, tests like partial Mantel (Smouse et al., 1986) and MRMs ran independently on the 

two variables are not optimal (Legendre and Fortin, 2010; Peterman and Pope, 2021). 

Univariate models were optimized on one hand, representing the best correlations between 

seascape features independently and genetic distances. On the other hand, multivariate models 

accounting for both bathymetry and distance-to-habitat cumulated in single resistance maps 

were also tested with multiple combinations of maximum resistance, relationship shapes and 

associated parameters. More details on the general framework, parametrization and model 

optimization are available in Figure 2, Figure S1 and Table S1. 
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Figure 2. Conceptual framework of the two-step procedure of isolation-by-resistance models to 
produce conservation units based on simulated locations. In Step 1, numerous resistance maps are 
produced via the parametrization step described in Figure S1 and Table S1, then used as input in 
GFLOW, resulting in one matrix of resistance distance per resistance map. For each map 
corresponding to one parameter set, resistance values are then linked by dyad to genetic distance 
values (linearized FST), and model robustness evaluated with the regression coefficient (R2) obtained 
from a multiple regression on distance matrices (MRM). In Step 2, GFLOW is run on simulated 
locations for grey reef sharks (Figure S3) with the resistance map corresponding to the best IBR model 
selected in Step 1. The output, a matrix of resistance distance between all simulated locations, is then 
converted to genetic distances based on the best IBR linear model. The subsequent matrix of simulated 
genetic distance is then submitted to a density peaks clustering method described in Rodriguez & Laio 
(2014). 
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2.7    |    Simulations 

Locations with possible presence of grey reef sharks were identified following the 

same criteria described before as suitable habitat (excluding seamounts) and subsampled at 

different scales (Froese et al., 2010). The first scale was at the extent of our sampling 

locations, from the Cocos Keeling Islands to the Eastern New Caledonian volcanic islands. 

Locations with at least 50 km separation were randomly chosen based on a Matérn process 

maximizing the number of chosen points (Kiderlen and Hörig, 2013). Next, at the scale of the 

entire distribution range of the species (tropical Indo-Pacific), including hypothetical 

presences only based on habitat suitability (ranging between 32°E-130°W longitude and 

30°S-30°N latitude), further locations separated by a distance of at least 100 km were 

randomly chosen using the same method. Such distances between locations were chosen to 

keep computation time reasonable. The extent to which locations were randomly chosen was 

narrower than the extent of the resistance maps used as input from GFLOW. Indeed, the 

artificial boundaries created by the edges of a map can have a non-negligible impact on the 

calculations of landscape resistance to gene flow (Koen et al., 2010). 

The best CT model obtained with our optimization framework, and thus the resistance 

map best explaining genetic differentiation between the sampling locations, was further used 

to run GFLOW on the randomly chosen locations (Figure 2). It allowed computation of 

pairwise resistance distances between all possible locations for grey reef shark presence 

previously selected with the Matérn process. Such pairwise resistance distances were then 

converted to pairwise genetic distances (predicted Weir and Cockerham FST), using the best 

relationship between distance matrices obtained in the optimization step (i.e. from empirical 

data). 

2.8    |    Clustering of subpopulations  

The  obtained dissimilarity matrices of genetic distances were then subjected to the 

clustering procedure developed by Rodriguez and Laio (2014) to delineate conservation units 

(CUs) at both scales. Based on the automatic identification of local density peaks, this method 

allows the detection of clusters and outliers based on the distance between data points. It is 

similar to density-based algorithms such as DBSCAN (Ester et al., 1996), however it 

delineates clusters without introducing a noise-signal cutoff, thus decreasing the probability of 

low-density clusters being classified as noise (Rodriguez and Laio, 2014). The only variable 
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parameter dc was fixed so that the average number of neighbors represents 5% of the total 

number of points in the dataset (Du et al., 2016; Rodriguez and Laio, 2014). Results produced 

by this clustering method are very robust across variation of this parameter, particularly on 

large-scale datasets (Xu et al., 2020). 

3    |    RESULTS 

OutFLANK and FLK tests identified 8 shared outlier loci, that we excluded before 

further analyses, leaving a total of 4,983 SNPs considered as neutral. 

The discriminant analysis (DAPC) indicated that grey reef shark populations could be 

split into four distinct clusters (Figure 3A-C), also identified by fastSTRUCTURE (K=4 

genetic clusters, Figure 3D). This clustering revealed greater differentiation between areas 

separated by large distances or deep waters (Figure 3A-C). Sharks sampled at the far remote 

Chagos showed greater genetic differentiation compared to other sampling locations (Figure 

3A). This effect was also observed in populations from the oceanic island of Matthew on the 

New Hebrides Plate, and the Cocos Keeling Islands, which are both isolated coral reef islands 

separated by deep oceanic waters (Figure 3B). The DAPC also suggested that sharks from the 

remote reefs of Chesterfield were more related to sharks from the Great Barrier Reef (GBR) 

than to sharks from the rest of the New Caledonian archipelago (Figure 3C). Pairwise genetic 

distances (Weir and Cockerham FST values) confirmed the patterns of differentiation observed 

by DAPC and fastSTRUCTURE (Table S2). 
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Figure 3. Results from Discriminant Analysis of Principal Components (DAPC) performed on the set 
of 4,983 filtered neutral SNP data (excluding outliers) from all locations (A), all locations except 
Chagos (B), and locations in the Pacific Ocean including Eastern Australia and New Caledonia except 
Matthew (C). Colors and inertia ellipses correspond to sampling locations. (D) Results from 
fastSTRUCTURE using simple prior and 4 clusters. Samples from Chagos were included in this 
analysis. 

During model optimization, 618 resistance maps were obtained when testing single 

parameter hypotheses (bathymetry or distance-to-habitat; with or without including 

seamounts as suitable habitat). Likewise, a total of 93,632 resistance maps combining both 

seascape features in every possible combination were obtained and used as input for GFLOW. 
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Figure 4. Results of the optimization framework showing (A) the best resistance maps associated with 
different hypotheses: ‘GFLOW Null Model’, distance-to-habitat alone, bathymetry alone, and the best 
combined model (distance-to-habitat and bathymetry, without including seamounts in the distance-to-
habitat layer); (B) the associated GFLOW maps representing current flowing between every pair of 
locations for the given resistance map. Brighter colors indicate higher current flow; (C) the subsequent 
linear relationships between pairwise resistance distances obtained with GFLOW and linearized FST 
for every pair of locations. R2, Mantel statistic and AICc are indicated for each model. 

Isolation-by-distance (IBD) calculated with linear geographic shortest distances 

between sampling locations explained an important part of genetic differentiation (R2 = 

0.493), as well as IBD calculated with Circuit Theory (GFLOW null model, pixels of value 1, 

R2 = 0.284), but uncertainty and many outliers remained (Figure 4). The distance-to-habitat- 

and bathymetry-based univariate models, respectively a model with high resistance value 

when at more than 200 km from any suitable habitat and a model with low resistance at 

depths shallower than 2000 m, attaining very high resistance values at depths below 4000 m, 

were highly predictive (R2 = 0.952; Mantel = 0.976; AICc = -904 and R2 = 0.985; Mantel = 
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0.992; AICc = -1041, respectively). The best model combining both bathymetry and distance-

to-habitat was even more predictive (R2 = 0.988; Mantel = 0.994; AICc = -1070). This best 

model did not include seamounts as suitable habitat and suggests that deep oceanic waters 

represent a strong barrier to dispersal. It also suggests that habitat proximity of less than 50 

km promotes gene flow (Figure S2).  

At the scale of the entire distribution range, the GFLOW run using the best resistance 

map produced a matrix of 480,690 pairwise resistance distances between the 981 simulated 

locations that were randomly selected across the Indo-Pacific, separated by 100 km (Figure 

S3). Density peaks clustering revealed a total of 38 conservation units comprising ³ 2 

locations, along with 202 isolated locations (Figure 5A). The widest unit was comprised of 

reefs and oceanic islands in the eastern part of the Indo-Australian plate, along with the 

southeastern part of the Eurasian plate (Sunda plate), while the western frontier of the unit 

delineated by the Java Trench. Another wide unit connected reefs from the Solomon and 

Bismarck plates, while remote islands in the southern part of the Solomon Islands were 

connected to Vanuatu. Interestingly, Tonga, Fiji, Wallis and Futuna, as well as the southern 

islands of Tuvalu formed a major unit in the Western Pacific Ocean. Five distinct units 

encompassed reefs from the Red Sea and the Oman Sea/Persian Gulf, while the western coast 

of Madagascar and the Comoros, including Mayotte, in the Mozambique Channel were part 

of a single unit together with a wide section of the eastern coast of Africa. The Seychelles 

formed a single unit, which was also the case of Chagos. Another unit in the Indian plate was 

composed of surrounding reefs in India and Sri Lanka, the Laccadive Islands and the 

Maldives. Lastly, except from some wide units comprised of archipelagos like for instance the 

western part of Micronesia, or the Tuamotu archipelago in French Polynesia which formed 

single units, reefs and oceanic islands from the Pacific plate were much fragmented, with the 

largest proportion of small units and completely isolated patches of habitat (e.g. Cocos 

Keeling Islands). 

At the smaller scale of our sampling extent, GFLOW similarly produced a matrix of 

402,753 pairwise resistance distances between the 898 simulated locations separated by 50 

km, randomly selected during the Matérn process (Figure S3). Density peaks clustering 

revealed a total of 21 units (³ 2 locations) at the scale of our sampling extent, along with 81 

isolated locations (Figure 5B). At this scale, the single unit comprising mostly reefs from the 

Indo-Australian plate was fragmented into several conservation units. Noticeable ones in 
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terms of conservation comprised a western Australian unit, a separate unit constituting the 

Rowley Shoals, while western Indonesia and northwestern Australia were grouped into a 

single unit, joined together by Scott Reef and Ashmore and Cartier Islands. Eastern Indonesia 

and northern Australia off the Northern Territory constituted another very close unit with the 

east Timor Sea and Arafura Sea acting as corridors. The GBR, along with reefs from the 

Coral Sea, was connected to Papua New Guinea via the Torres Strait. Reefs from the 

Bismarck Sea (northern Papua New Guinea) formed a single unit, as well as most Solomon 

Islands reefs. Interestingly, the Chesterfield Reefs, belonging to New Caledonia, formed a 

unit by themselves. The rest of the New Caledonian archipelago also formed a single unit, 

except Matthew and Hunter Islands that were isolated on the far east side of the archipelago, 

and the Petrie atoll, isolated in the north-east of the main island. Further east, Vanuatu was 

separated from New Caledonia by the New Hebrides Trench. Among the 81 isolated locations 

identified by the clustering algorithm, Cocos Keeling and Christmas Islands in the Indian 

ocean, reefs in the Banda Sea (southeast Asia), Nauru, Tuvalu, Kiribati and other remote 

islands of the Pacific, as well as remote reefs in the Coral Sea were identified. 
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Figure 5. Resistance maps showing the delineation of conservation units (same color), and buffers of 
radius equal to (A) 100 km at the scale of the whole distribution range of the grey reef shark and (B) 
50 km at the scale of our sampling extent. Isolated units comprised of a single location are shown in 
black with a smaller radius. The grey rectangle on (B) corresponds to the extent on which locations 
were simulated. Color scale in the background corresponds to resistance values from Figure S2, red 
corresponding to high values, blue to low values. 

4    |    DISCUSSION 

Common approaches in landscape or seascape genetics usually focus on genetic 

connectivity per se and propose ad hoc explanations based on coincident landscape features 

(Hirschfeld et al., 2021; McRae and Beier, 2007), therefore hindering the potential of genetic 

studies to inform conservation planning. Conversely, this study is the first to date linking fine-

scale seascape and genetic connectivity of a species with a priori testing of hypotheses, 

followed by predictions at the entire range of a species. Here, with the development of an 

analytical framework using a custom pipeline that could be applied to a variety of different 

species and ecosystems, we show its potential for the delineation of hierarchical conservation 
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units at various scales for more targeted protection measures. Applying this methodology for 

multiple species could provide key information for high resolution management scenarios, 

particularly for the implementation of MPAs and MPA networks of improved effectiveness 

(Momigliano et al., 2015). It provides a complementary approach to other modelling 

frameworks based on movement data from individuals (Martín et al., 2020), and represents an 

efficient means to predict large-scale conservation units. 

Our results reveal that geographic distance is a poor predictor of the genetic structure 

of grey reef sharks. While genetic and geographic distance are correlated (R2 = 0.493), the 

explanatory power of this null model is low compared to IBR models accounting for seascape 

features (best model R2 = 0.988). This is not surprising as two underlying assumptions of IBD 

are clearly unrealistic. The first and most important assumption of IBD is that dispersal occurs 

through a homogeneous seascape. Grey reef sharks are habitat specialists, being associated 

almost exclusively with coral reefs (particularly exposed outer slopes) and rocky shoals (Chin 

et al., 2010; Espinoza et al., 2014; White et al., 2017). Therefore, their dispersal is likely 

constrained by the availability of suitable habitats (Espinoza et al., 2015b, 2015a). This is 

further supported by the distribution of clusters along the first two axes of the DAPC (Figure 

3), displaying a hierarchical islands structure, typical of a stepping stone model of dispersal 

(Jombart et al., 2010). Another assumption of IBD and more specifically of Least Cost Path 

(LCP) is that sharks use direct pathways between locations. This assumption has been shown 

to bias inference in many organisms (McRae and Beier, 2007), and in the case of grey reef 

sharks, there is scarce evidence of direct long-distance migration pathways (Bonnin et al., 

2019, 2021). 

We show that the best model explaining the genetic differentiation of grey reef sharks 

is one supported by CT and with a very low resistance associated to waters at less than 50 km 

from optimal habitats, but with very high resistance associated with deep oceanic waters 

acting as barriers to dispersal. Although the majority of grey reef sharks have been found to 

be highly resident, some individuals are known to travel large distances across the open ocean 

(Espinoza et al., 2015a; White et al., 2017). Altogether, our results are congruent with 

previous studies highlighting that large MPAs (> 50 km) could be effective for a substantive 

proportion of individuals (Bonnin et al., 2021; Dwyer et al., 2020; Edgar et al., 2014; 

MacNeil et al., 2020), even though a small number of individuals may disperse further using 

contiguous habitat patches as travel routes to avoid high resistance barriers such as deep 

oceanic waters (Bonnin et al., 2019, 2021). We recognize that expanding our modelling wider 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465682doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465682


 19 

than the sampling extent (i.e., the central Pacific) can be problematic, and we call for 

extensive genetic sampling at a wider scale to confirm these findings. Nevertheless, studies 

have yet to demonstrate that sharks from unsampled regions have different dispersal 

behaviors than the Indo-West-Pacific sharks sampled here.  

Based on empirical evidence provided by genetic data, our results prove that at a time 

scale of several generations, a small number of sharks dispersing genes via migration (Bonnin 

et al., 2021) may have a significant impact on the global genetic structure of the species, and 

consequently in maintaining standing genetic variation and inbreeding connectivity (sufficient 

gene flow to avoid harmful effects of local inbreeding, Lowe and Allendorf, 2010) among and 

between conservation units (CUs). There is, however, an important consideration to be made: 

FST is a proxy of migration only when populations are at migration-drift equilibrium.  Given 

the long generation time of grey reef sharks (16.4 years, see Robbins, 2006), the young age of 

some of the sampled habitats (like the GBR), and the evidence of recent population 

expansions in other coral reef associated requiem sharks (Maisano Delser et al., 2016, 2018), 

this assumption could be considered as invalid. Assuming all populations have a recent 

history, as in the closely related C. melanopterus (Maisano Delser et al., 2016, 2018), FST is 

still expected to be correlated to Nem, but defining CUs using a cut-off based on FST may be 

misleading: if populations are not at migration-drift equilibrium, FST may be much lower than 

expected for a given Nem. A possible solution to such limitation would be to estimate 

migration rates without assuming equilibrium using the coalescent, or approximations of the 

coalescent, within an approximate Bayesian computation or composite likelihood approach 

for parameter estimation (Beaumont et al., 2002; Excoffier et al., 2013, 2021; Gutenkunst et 

al., 2009; Jouganous et al., 2017). A framework that incorporates IBR models and direct 

estimates of migration rates based on coalescent simulations would be a significant step 

forward in seascape genetics, potentially enabling the estimation of much higher migration 

rates than FST-based methods, while taking into account the demographic history of all 

populations. There are however potential issues to consider. As Momigliano et al. (2021) 

recently demonstrated, unaccounted demographic events may cause strong biases in 

parameter estimation, although migration rates are among the least affected demographic 

parameters.  

Protecting threatened mobile species requires a better knowledge of habitat 

fragmentation and physical barriers in the seascape (Hirschfeld et al., 2021). While the 

concept of ‘populations’ is used to guide management policy, it covers multiple definitions 
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(Waples and Gaggiotti, 2006) but is often approached by the identification of CUs (Funk et 

al., 2012). There are also various definitions of CUs in the scientific literature, with a major 

distinction between Evolutionary Significant Units (ESUs) and Management Units (MUs), 

but there is a consensus on the fact that identifying CUs is a crucial first step for the 

conservation of wild populations (Barbosa et al., 2018; Funk et al., 2012). CUs are also 

recognized as being hierarchical, with units at wider scale comprising multiple smaller units 

(Barbosa et al., 2018; Funk et al., 2012; Weckworth et al., 2018). The investigation of local 

genetic and demographic additional clues (i.e. genetic diversity, Ne, relative abundance) might 

help to better delineate units and take more appropriate management measures (Barbosa et al., 

2018; Domingues et al., 2017). 

One of the important aspects of our results is that the defined CUs, even at local scale, 

generally encompass the Exclusive Economic Zones (EEZs) of multiple countries. As such, 

conservative spatial planning would require coordinated international efforts (Harrison et al., 

2018; Mackelworth et al., 2019). Moreover, slowing the ongoing decline of natural 

populations of mobile species like sharks requires not only scientific collaborations, but also 

support from managers and policy-makers across borders (Dunn et al., 2019; Sequeira et al., 

2019). A further issue impacting mobile predators such as the grey reef shark is the 

fragmentation of populations observed through a high proportion of putative conservation 

units represented only by a single location of suitable habitat. This highly fragmented pattern 

holds true for the two hierarchical scales (81 of 103 units at the scale of our sampling extent, 

202 of 240 at the entire distribution range of the species), knowing that the clustering 

algorithm used is conservative in the number of detected outliers (Rodriguez and Laio, 2014). 

Special attention should thus be given by managers to such isolated locations that deserve 

high conservation priority, hosting populations potentially vulnerable to anthropogenic 

pressures such as harvesting, with a low capacity of rebuilding populations via migration and 

subject to inbreeding depression for depleted populations (Kardos et al., 2018; Ralls et al., 

2018). 

5    |    CONCLUSIONS 

 We developed and used a predictive modelling framework to infer barriers to gene 

flow and map the connectivity of grey reef sharks across the Indo-Pacific. We provide novel 

insight on the conservation of this marine predator by estimating connectivity beyond 
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sampled locations and by delineating hierarchical conservation units. We conclude that the 

distribution and movement of grey reef sharks are reliant on more than just geographical 

availability and demonstrate the importance of using this framework for the integration of 

genetic connectivity in the field of marine spatial planning. Our findings are not limited to 

grey reef sharks, and this framework can be applied to any adult disperser species. Hence, we 

call for the use of this approach to better understand dispersal patterns of other marine species 

at different scales. We recommend including such information alongside ecological data, 

habitat use, and governance of areas used when considering management strategies, and even 

applying this framework on multiple species as part of a systematic and integrated 

conservation planning approach (Sala et al., 2021).  
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