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Abstract 30 
 
Drugs that kill tumors through multiple mechanisms have potential for broad clinical benefits, with 
a reduced propensity to resistance. We developed BipotentR, a computational approach to find 
cancer-cell-specific regulators that simultaneously modulate tumor immunity and another 
oncogenic pathway. Using tumor metabolism as proof-of-principle, BipotentR identified 38 35 
candidate immune-metabolic regulators by combining epigenomes with bulk and single-cell tumor 
transcriptomes from patients. Inhibition of top candidate ESRRA (Estrogen Related Receptor 
Alpha) killed tumors by direct effects on energy metabolism and two immune mechanisms: (i) 
cytokine induction, causing proinflammatory macrophage polarization (ii) antigen-presentation 
stimulation, recruiting CD8+T cells into tumors. ESRRA is activated in immune-suppressive and 40 
immunotherapy-resistant tumors of many types, suggesting broad clinical relevance. We also 
applied BipotentR to angiogenesis and growth-suppressor pathways, demonstrating a widely 
applicable approach to identify drug targets that act simultaneously through multiple mechanisms. 
BipotentR is publicly available at http://bipotentr.dfci.harvard.edu/. 
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One-Sentence Summary  
BipotentR identifies targets for bipotent anticancer drugs, as shown by the energy and immune 
effects of ESRRA inhibition. 
  5 
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A data-driven approach to identifying bipotent targets  
Tumors frequently do not respond to drugs, while those that respond often relapse by developing 
drug resistance. To counteract this, treatments have been designed to simultaneously target two 
non-overlapping oncogenic pathways(1). Single drugs that are tolerated yet concurrently affect 
two oncogenic pathways (bipotent drugs) have the potential to provide greater clinical benefits, be 5 
effective in distinct clinical populations (2), and be an effective strategy against drug resistance (3, 
4). Few drugs are known to be bipotent, and the few known examples were discovered 
serendipitously. Most notable are CDK4/6 inhibitors (cell cycle inhibitor and 
immunomodulatory(5)), IMiDs (Immunomodulatory imide drugs; antiangiogenic and 
immunomodulatory(6)), and itaconate (energy metabolism and immunity(7)). Likewise, few 10 
bipotent gene targets have been identified, with examples including HDAC6(8), CDC7(1), and 
PTPN3(9). Bipotent gene targets may be relatively common, yet undiscovered due to the lack of 
systematic approaches to identify them.  
 
We developed a data-driven approach that analyzes bulk tumor transcriptomes, single-cell 15 
transcriptomes, and chromatin accessibility data to predict genes targets that have the potential to 
eliminate tumors in two ways: through stimulating immune-mediated tumor elimination and 
suppressing a second pathway that is essential for tumor development, such as energy metabolism, 
angiogenesis, evasion of growth suppressor, metastases, or replicative immortality(10).  
 20 
Tumors alter their energy metabolism to meet higher bioenergetic needs and sustain rapid 
proliferation (10). As a result, tumors often have increased dependency on oncogenic energy 
metabolism pathways (11, 12), and targeting them metabolism can inhibit tumors (13, 14). 
Oncogenic energy metabolism helps cancer cells to evade immune response (15, 16). For example, 
increased glucose uptake by cancer cells (the Warburg effect) (17) dampens immunity in tumors 25 
(18) because of reduced glucose availability for effector T-cells. Past attempts to target energy 
metabolism have failed to show therapeutic benefits in patients (19–21) due to an inability to target 
energy metabolism without curtailing T-cell function. While energy metabolism is necessary for 
all cells, its upstream transcription factors or chromatin regulators (TFCRs) are often cell-type-
specific, allowing the possibility of effects specific to cancer and immune cells (22, 23). Targeting 30 
energy metabolism has the potential to kill tumors in two ways: directly through cell-intrinsic 
mechanisms (24, 25) and indirectly through immune-mediated mechanisms (26). For these 
reasons, we chose to pair energy metabolism with immunity for initial analysis by BipotentR.  
 
BipotentR consists of two modules, “regulation” and “immune” (Fig 1A). The regulation module 35 
predicts regulators of the input pathway(s) chosen by the user, while the “immune” module 
identifies immunomodulatory TFCRs. To identify bipotent regulators of energy metabolism and 
immune response (“immune-metabolic” regulators), we used four energy metabolism pathways 
with a reported role in immunity (27–32) as input for the regulation module of BipotentR: 
glycolysis, oxidative phosphorylation (OXPHOS), tricarboxylic acid cycle (TCA cycle), and fatty 40 
acid metabolism (FA). The regulation module estimates the affinity of ~700 individual TFCRs to 
bind cis-elements near input pathway genes by mining 24,000 ChIP-seq samples (33, 34). For a 
given TFCR, BipotentR derives its core binding sites by combining all ChIP-seq samples, and then 
estimates its binding affinity while controlling for sample-specific confounding effects using a 
linear mixed model (Methods). BipotentR identified previously known and new TFCRs (Fig 1B, 45 
Table S1). Previously known TFs included ESRRA (35–37) and its co-activator BCL3 (38) (both 
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regulators of OXPHOS, glycolysis, and TCA cycle), PPARG (39) (an FA metabolism regulator), 
and CEBPB (a glycolysis regulator) (40). Known chromatin regulators included histone 
demethylase KDM5A, a regulator of OXPHOS and TCA (41), and histone deacetylase SIN3A, a 
mitochondrial gene regulator (42). Newly identified TFCRs included NPAT and DLX1 
(OXPHOS) along with NFIC and CBX1 (TCA cycle). To ensure that ChIP-seq binding data was 5 
linked to expression and that in vitro experiments are relevant in patient samples, we asked how 
well the expression of predicted regulators correlated with the expression of genes in the regulated 
pathway across 5,000 human transcriptome datasets (43). We found a strong correlation for all 
four energy metabolism pathways (Fig S1B-E).  
 10 
BipotentR next identified regulators that can affect multiple energy metabolism pathways (“master 
regulators”) by ranking TFCRs according to their average overall binding affinities across 
pathways. Master regulators were enriched in nuclear receptors (P< 1E-7) (Fig 1C), including 
ESRRA, HNF4A and HNF4G (regulators of liver glycolysis, gluconeogenesis, and FA metabolism 
(44, 45)) and PPARG (a regulator of adipose tissue energy metabolism (46)), along with nuclear 15 
hormone receptors such as androgen receptor and estrogen receptor. 
  
Having identified regulators of energy metabolism, we next used the immune module of BipotentR 
to identify immunomodulatory TFCRs. This module estimates the immunomodulatory potential 
of ~700 individual TFCRs from bulk RNA-seq patient tumor data by associating TFCR expression 20 
in tumors with levels of a proinflammatory signature. The proinflammatory signature combines 
32 key immune response biomarkers, such as mutation burden, neoantigen load, immune 
infiltration, and interferon-gamma response (47) (Methods). TFCR immunomodulatory potential 
was estimated across several cancer types using a linear mixed model that is robust to cancer-type-
specific immune effects (Fig S2A, B) using data from The Cancer Genome Atlas (33 cancer types 25 
from 11,000 patients (47)). Using two-fold cross-validation, we examined the robustness of 
immune-potential estimates in cancer-type data held out during prediction. The results (R = 0.99, 
P < 2.2E-16, Fig S2D) suggest that inferred TFCRs show immunomodulatory properties in several 
cancer types. TFCRs with the highest inferred immune potential were enriched in immune 
ontologies, including T-helper differentiation, inflammatory disorders, and viral infection, in 30 
addition to carcinogenesis and transcriptional misregulation in cancer (Fig 1D, S2C). Top 
BipotentR-predicted immunostimulatory TFCRs included well-known regulators of adaptive and 
innate immunity (e.g., Interferon regulatory factors (48, 49): IRF1, IRF4, and IRF8; and the STAT 
genes STAT1 and STAT4 (48)), while predicted immunosuppressive TFCRs included regulators of 
immunotherapy resistance, for example, NR2F6 (50). As expected, Predicted immunostimulators 35 
were positively co-expressed with immune genes across 5,000 datasets (43) (Fig S2E, Methods), 
while predicted immunosuppressors were negatively co-expressed with immune genes.  
 
The immune module also ensures that suppressing candidate TFCRs specifically block cancer cells 
without adversely affecting CD8+T cells, which are important for anti-tumor immunity (51). We 40 
achieve this by selecting TFCRs that are active in cancer but not in CD8+T cells using single-cell 
RNA-seq (scRNA-seq) and single-cell ATAC-seq data (scATAC-seq) data. Using scRNA-seq 
from 5 cancer cohorts (52–56), TFCRs with significant differential activity in cancer versus CD8+T 
cells across all cohorts are deemed cancer-cell-specific TFCRs (Methods). Using scATAC-seq 
data (57), the module also ensures these TFCRs are functional in cancer cells but not in CD8+T 45 
cells. To this end, we examined if target genes (inferred by ChIP-seq) of predicted TFCRs are 
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epigenetically accessible in cancer cells (Methods). We found that target accessibility differences 
between cancer cells and CD8+T cells were markedly correlated [Pearson Correlation=.63, P< 2E-
59] with scRNA-seq expression differences (Fig S2F), suggesting that predicted TFCRs are active 
and transcriptionally functional in cancer cells relative to CD8+T cells. The top cancer-cell-specific 
TFCRs included SUMO1, SUMO2, and DLX2, genes known to be tumorigenic and highly active 5 
in several cancers (Fig 1E) (58–60).  
 
We next investigated how these cancer-cell activities (predictions from single-cell data) of TFCRs 
relate to their immunomodulatory potentials (predictions from bulk tumor data). Strikingly, 
predicted immunosuppressive TFCRs were preferentially active in cancer cells, while 10 
immunostimulatory TFCRs were active in CD8+T cells, evident from a strong Pearson correlation 
of 0.7 [P<2E-82] between immunomodulatory potential and cancer-cell activity (Fig 1F). Thus, 
inhibiting immunosuppressive TFCRs would be likely to impact cancer cells but less likely to 
impact CD8+T cells adversely. The correlation also shows that prediction from three data types – 
bulk RNA-seq, scRNA-seq, and scATAC-seq – converged onto a set of immunomodulatory 15 
TFCRs, yielding promising targets for anti-tumor immunity. The final set of TFCRs predicted 
from the immune module were enriched for nuclear receptors (P < 1E-2; Methods), similar to the 
result from the regulation module.  
 
Among 38 candidate bipotent immune-metabolic regulator targets, the orphan nuclear 20 
receptor ESRRA is most highly ranked  
With the two modules developed and validated, we integrated their outputs to identify 38 TFCRs 
(30 immunosuppressive and 8 immunostimulatory) with immune-metabolic dual functions (Fig 
1G, Table S2). Among these were known immune-metabolic TFCRs such as CDK7, which 
regulates mitochondrial membrane potential (61, 62) and enhances immune suppression (63), and 25 
NFATC1, which regulates energy consumption and CD8+T cell effector function (64, 65).  
 
First, we compared how well genetic inhibition of the 38 identified immune-metabolic regulators 
suppressed transcription of genes in energy metabolism pathways using a published transcriptome 
dataset comprised of 570 knockdown/knockout experiments for 308 TFCRs(66). We found 30 
inhibition of BipotentR-identified regulators markedly suppressed energy metabolism pathways 
(Fig 2A, P <3.5E-25). Further, inhibition of BipotentR-identified regulators suppressed energy 
genes more strongly than other TFCRs (Fig S3A, P<7.8E-10), indicating preferential regulation of 
energy metabolism by the identified TFCRs.  
 35 
We next confirmed that inhibition of the identified TFCRs also regulates immunity. We examined 
a recently published CRISPR screen(67) in which cancer cells were subjected to selection by 
effector T cells to identify gene knockouts that modulate T cell-mediated killing. CRISPR guide 
RNAs that knockout BipotentR-predicted immunosuppressive TFCRs were depleted (Fig 2B, C; 
P< 8E-10, n=240 and n=79,481), suggesting that their knockouts enhance T-cell mediated killing. 40 
In contrast, guide-RNAs against BipotentR-predicted immunostimulatory TFCRs were enriched, 
indicating their knockout decreases T-cell mediated killing (Fig 2B, C; P< 1.4E-3, n=64 and 
n=79,481). Thus, genetic inhibitions of immune-metabolic regulators elicited both immune and 
metabolic effects. 
 45 
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An orphan nuclear receptor, ESRRA, was predicted to have the highest immune-metabolic 
potential. Targeting ESRRA in immuno-deficient models has been shown to inhibit tumors by 
direct cell-intrinsic mechanisms (37, 68), and we hypothesized that targeting ESRRA would also 
inhibit tumors by immune-mediated mechanisms. To illustrate a proof-of-principle bipotent target, 
we set out to determine the dual potential and clinical relevance of ESRRA in different cancer 5 
types. 
 
Inhibition of ESRRA (ESRRAi) stimulates anti-tumor immunity  
We evaluated inhibiting ESRRA by small interfering RNA (siRNA) and two structurally similar 
diaryl ether based thiazolidinediones, which function as selective ligands against ESRRA 10 
(Compounds 29 and 39 from Johnson and Johnson (69)). We first tested both small-molecule 
inhibitors in vitro by mutating the known compound binding site in the ESRRA ligand-binding 
domain (C229 site) and showing that the mutation rescued the ESRRA inhibition (Fig 2D, S3B). 
Next, we investigated siRNA and compound-39 for on-target and off-target effects through RNA-
seq (Methods). Both approaches selectively suppressed putative ESRRA genes targets (that were 15 
identified from ESRRA ChIP-seq data) (Fig S3C). An unbiased prediction of 700 putative 
regulators of the genes differentially expressed upon the two approaches (70) yielded ESRRA as 
the top regulator of down-regulated genes (topmost for drug inhibition, Fig 2E; second-highest for 
siRNA, Fig S3D). These analyses showed both inhibitions selectively suppress ESRRA and have 
limited off-target effects. We chose to pursue drug inhibition of ESRRA (“ESRRAi”, which refers 20 
to inhibition by Compound 29 or Compound 39) because of its translational potential and 
somewhat superior potency in targeting ESRRA. Compound-29 is known to be more stable 
metabolically in human microsomes than compound-39 (69), and therefore we used compound-29 
for in vivo testing (Methods)..  
 25 
We next tested if ESRRAi could induce anti-tumor immunity in two immunosuppressive murine 
tumor models: 4T1 (triple-negative breast cancer) and B16F10 (melanoma). We treated the 4T1 
mice with ESRRAi or vehicle control and surgically resected their tumors. We performed scRNA-
seq of CD45+ cells sorted from tumors, clustered and annotated cells using classical markers, and 
identified major tumor-infiltrating immune cells in both conditions (Fig 2F, Methods). We initially 30 
studied immune cells of lymphoid lineage for changes in their fraction by ESRRAi treatment and 
found higher CD8+T cell infiltration with the treatment (Fig S3E). A CD8+T cell marker, Cd8a, 
was the topmost upregulated gene in the lymphoid lineage of ESRRAi-treated tumors compared 
to controls (Fig 2G). Markers of activated CD8+T cell (Fig 2G), including perforin and granzymes, 
were also upregulated [P<3E-5], suggesting that infiltrating CD8+T cells in treated tumors were 35 
also activated. We also showed increased infiltration of activated CD8+T cells with ESRRAi in 
tumors [P<2E-3] using fluorescence-activated single-cell sorting (FACS) (Fig 2I).  
 
Next, we asked if ESRRAi-induced infiltration of activated CD8+T cells exerts an anti-tumor 
effect. ESRRAi treatment markedly reduced tumor growth (Fig 2K). Two lines of evidence linked 40 
this tumor elimination with CD8+T cells. First, among ESRRAi-treated mice, those with higher 
CD8+T infiltration showed superior tumor elimination [Spearman correlation = -0.62](Fig S3I). 
Second, CD8+T cell depletion abrogated the anti-tumor effect of ESRRAi (Fig 2L). Another 
ESRRAi-induced change in the lymphoid lineage was downregulated markers of regulatory T cells 
(Tregs) (Fig 2H). Correspondingly, lower Treg infiltration in the ESRRAi condition was observed 45 
in single-cell data (Fig S3E), which was further confirmed using FACS [P<9E-4] (Fig 2J), 
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indicating that ESRRAi treatment suppressed Treg infiltration into tumors. These analyses 
revealed the specific roles of different T-cell populations in ESRRAi anti-tumor immunity.  
 
ESRRA deficient mice in a non-cancer context have shown macrophage-mediated inflammation 
(71). Therefore, we postulated that ESRRAi might affect tumor macrophages. Indeed, 5 
monocytes/macrophages were polarized toward proinflammatory M1 (Fig 2M, S3F) in the 
ESRRAi-treated tumors. In contrast, macrophages were polarized toward pro-tumorigenic M2 in 
controls (Fig S3G). Moreover, monocytes/macrophages of treated tumor expressed M1 markers 
(Tnf, Ccl5, Nos2, and Il1a) (72) and downregulated M2 markers (Fig S3H).  
 10 
Next, we tested the effect of ESRRAi treatment on tumor relapse from minimal residual disease. 
After surgically removing 4T1 tumors (Fig 2N), ESRRAi treated mice experienced significantly 
fewer tumor relapses (Fig 2N); moreover, their relapsed tumors had significantly attenuated 
growth (Fig S3J). We examined incised lungs from treated mice and observed fewer lung 
metastatic deposits than the control group (Fig 2O). We also cultured the circulating tumor cells 15 
from the blood of treated mice and observed a significant decrease in the number of colonies 
relative to the control group (Fig 2P). These data suggest that ESRRAi can prevent relapse of 
surgically resected tumors.  
 
Similar ESRRAi anti-tumor responses were observed in an additional immune-cold tumor B16F10 20 
mouse model and two formulations (Solutol and PEG) (Fig S4, Methods). Thus, our data indicate 
that ESRRAi induces anti-tumor effects that depend on T-cells and polarizes macrophages toward 
a more proinflammatory state.  
 
Immune signaling pathways link ESRRAi to immune response 25 
We next asked what cell-autonomous immune-metabolic pathways underlie ESRRAi anti-tumor 
immunity. We treated a human breast cancer cell line (SKBR3) with ESRRAi and measured 
transcriptomic changes at three timepoints. ESRRAi suppressed metabolic genes at all time points, 
particularly energy metabolic pathway genes (Fig 3A, B; S5A). ESRRA suppressed using siRNA 
also inhibited energy metabolism pathways (Fig S5B, C), confirming this observation.  30 
 
In contrast, the effect on immune pathways showed a striking temporal trend: the treatment 
upregulated innate immune signaling at 24h, while at 72h, it upregulated adaptive immune 
signaling (Fig 3A, B). Twenty-four hours after the treatment, the treatment upregulated signaling 
of toll-like receptor (TLR), which is known to stimulate antigen presentation(73). At this time 35 
point, the treatment also upregulated signaling of Fc-epsilon-RI, Rig-I-like, and NOD−like 
receptors, which along with TLR signaling, are known to promote inflammatory cytokine 
secretion(74). Accordingly, the ESRRAi treatment upregulated genes involved in antigen 
presentation (Fig S5D; 3B) and cytokine-cytokine receptor interactions – especially cytokines that 
polarize macrophages towards M1 (Fig S5E; 3B) – at the 72h time point. This ESRRAi-induced 40 
upregulation of macrophage-polarizing cytokines is consistent with macrophage polarization by 
ESRRAi observed in our in vivo single-cell experiments (Fig 2M). The ESRRAi treatment also 
upregulated 20 immunomodulatory TFCRs identified by BipotentR (Fig S5F, Enrichment P < 
4.7E-12), suggesting that ESRRA is an upstream regulator of other immune regulators.  
 45 
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We next examined if the knockout of ESRRA in cancer cells induces antigen presentation by 
analyzing data from CRISPR knockout screens (75–78) designed to identify regulators of type-I 
antigen presentation genes (MHC-I). These screens sort cancer cells transduced with gRNA into 
low or high MHC-I groups based on their MHC-I protein expression (Fig S6E). gRNAs that 
knockout (KO) ESRRA were enriched in high MHC-I and depleted in low MHC-I groups (Fig 5 
S6E), confirming that ESRRA knockout increases MHC-I antigen presentation.  

Since increased MHC-I antigen presentation in tumors enhances the ability of T-cells to kill cancer 
cells (67, 79), we hypothesized that ESRRAi would enhance tumor killing by T cells. We tested 
this using published CRISPR screens that co-culture cancer cells with T-cells to identify which 
gene knockouts in cancer cells enhance their T-cell–mediated killing (67, 80–83). ESRRA KO 10 
potentiated the killing of cancer cells by both patient-derived and engineered effector T-cells in 
various experimental and cell-line contexts (Fig 3C). Because T-cell-mediated killing has 
previously been shown to be enhanced by OXPHOS suppression (27, 67), we asked if OXPHOS 
targets of ESRRA (derived from ESRRA ChIP-seq (Methods)) can explain this effect. Indeed, 
knockout of COX10, ATP51B, NDUFA6 alone not only potentiated T-cell-mediated killing (Table 15 
S3), but also increased protein levels of antigen presentation genes (Table S4). Thus, OXPHOS 
suppression by ESRRAi can explain the activation of antigen presentation and T-cell-mediated 
immunity by ESRRAi.  

Finally, we generated a signature based on differential expression upon ESRRAi. Using this 
signature, we divided the cell lines in the 1,000 Cancer Cell Line Encyclopedia data (84) by high 20 
and low ESRRA activity. ESRRA activity was correlated with cell-autonomous immune-
metabolic effects broadly across cancer types represented in the Cancer Cell Line Encyclopedia, 
such that cell lines with low ESRRA activity exhibited decreased energy metabolism and 
upregulated immune pathways (Fig S6A-D; see Supplementary Text).  
 25 
ESRRA activity in patient tumors correlates with antigen presentation, immune cell 
infiltration, and macrophage polarization 
Unlike experimental screens, BipotentR derives immune-metabolic targets directly from patient 
data, which captures the patient tumor immune microenvironment, increasing the potential clinical 
relevance for candidate targets. To evaluate the potential clinical relevance of ESRRA, we 30 
compiled an additional set of patient tumor transcriptomes from more than 200 bulk and 78 single-
cell cohorts and investigated the correlation between ESRRA activity and the immune effects that 
were observed in vivo after ESRRAi treatment. 
 
First, we analyzed 33,000 tumor transcriptomes compiled from several cohorts (85), including 35 
TCGA and PRECOG datasets (86). ESRRA activity in tumors was quantified as the weighted sum 
of expression of ESRRA targets (derived using gene signatures induced by ESRRA inhibition 
(Methods)). In tumors with low ESRRA activity, tumor energy metabolism was significantly 
downregulated across several cancer types in TCGA (Fig S7A; Methods). In these tumors, 
cytokine interaction pathways were upregulated (Fig S7B), consistent with the in vitro induction 40 
of macrophage-polarizing cytokines upon ESRRAi. We, therefore, asked whether macrophage 
polarity was also shifted in such tumors. We analyzed how macrophage polarity (estimated using 
gene expression signature (87)) relates to ESRRA activity in tumors, and found that macrophage 
polarity was markedly correlated with ESRRA activity within tumors across most cancer types 
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(Fig 4A), strongly suggesting that M1 macrophage polarization upon ESRRAi seen in vivo in mice 
may be clinically relevant in most cancer types. 
 
Antigen presentation promotes immune infiltration into tumors. Antigen presentation genes were 
upregulated in tumors with low ESRRA activity across several cancer types (Fig S7C). If antigen 5 
presentation simulated by ESRRAi is clinically relevant, tumors deficient in ESRRA activity 
should have elevated immune infiltration. Indeed, tumors with low ESRRA expression had high 
immune infiltrations, including CD8+T cell infiltration, across most cancer types (Fig 4B, P < 2E-
16 controlled for cancer types, Fig S7D). We evaluated high CD8+T infiltration in low-ESRRA 
activity tumors in a cohort of more than 300 bladder cancer patients where tumor CD8+T cell 10 
infiltration was measured by immunohistochemistry (88). Tumors with the highest levels of 
CD8+T cell infiltration (Immune-inflamed tumors) had the lowest ESRRA activity, followed by 
immune-excluded tumors (which have CD8+T cell infiltration, but not proximal to tumor cells) 
with intermediate-levels of ESRRA activity, while CD8+T cell deficient tumors showed the highest 
ESRRA activity (Fig 4C; Fig S8A, B). Dramatic upregulation of M1-polarizing cytokines and 15 
antigen presentation genes (Fig S8C, D) were also seen in tumors with low ESRRA activity from 
this cohort (see Supplementary Text). Finally, we found that low ESRRA activity in tumors is 
associated positively with proinflammatory factors, and negatively with anti-inflammatory factors 
in both TCGA (Fig S8E) and PRECOG data (Fig 4D). Together, the patient tumor data 
demonstrate the potential clinical relevance of ESRRAi in enhancing antigen presentation, 20 
immune cell infiltration, and macrophage polarization in multiple cancer cohorts and cancer types. 
 
ESRRA activation in immunotherapy-resistant tumors  
Targeting tumor energy metabolism by ESRRAi would be detrimental if it also affects T-cell 
metabolism (27, 89). To validate BipotentR’s prediction of cancer-cell specificity for ESRRA 25 
inhibition and to further investigate the effect of ESRRAi on T-cells and cancer cells, we compiled 
and analyzed 78 single-cell transcriptome datasets from patients with 27 different major cancer 
types (90) (Methods). We found that ESRRA was expressed at the highest levels in cancer cells, 
but that it was also expressed at lower levels in macrophages and T-cells (Fig S9A). Since the 
functional activity of a nuclear receptor depends not only on its expression but also on its ligands, 30 
cofactors, and stimulation, we reasoned that despite being expressed in T cells, ESRRA might have 
low functional activity in T cells. Indeed, ESRRA activity levels, quantified as the expression of 
ESRRA targets, were lowest in T cells (Fig 4E, Methods). In contrast, the highest and second-
highest levels of ESRRA activity were observed in cancer cells and M2 macrophages (Fig 4E, 
S9B-D). 35 
 
Next, we examined ESRRA cell-specific function by comparing accessibility of its target genes 
(inferred from ESRRA ChIP-seq, Methods) in different cell types using scATAC-seq data from 
non-melanoma skin cancer patients (57). ESRRA target gene accessibility was highest in cancer 
cells, second highest in macrophages, and lowest in CD8+T cells (Fig 4F), consistent with ESRRA 40 
activity distribution in scRNA datasets. The data support a model in which ESRRA has a higher 
level of activity in cancer cells relative to CD8+T cells as measured by gene expression, target 
transcription, and chromatin accessibility. Thus, ESRRAi likely has a lower impact on the energy 
metabolism of CD8+T cells.  
 45 
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To specifically test whether ESRRAi treatment impacts energy metabolism of CD8+T cells, we 
analyzed scRNA data from CD45+ cells from our in vivo 4T1 mouse model, in which the anti-
tumor effect of ESRRAi was clearly measurable. ESRRA activity in CD8+T cells was unchanged 
in ESRRAi treated mice relative to control (Fig S10A), whereas macrophages/monocytes were the 
only CD45+ cells that showed a decrease in ESRRA activity post-treatment. We also evaluated our 5 
scRNA data using Augur (91), a method that identifies cell types affected by treatments, which 
also found no significant cell-intrinsic changes in CD8+T cells post-ESRRAi (Fig S10B). ESRRAi 
treatment in 4T1 mice did not significantly change body weights or health parameters (Fig S10C), 
which we further confirmed in the B16F10 mouse model (Fig S10D), suggesting that ESRRAi 
treatment was not nonspecifically toxic. These data strongly suggest that ESRRAi has a little 10 
adverse impact on CD8+T cells. 
 
Next, we studied the effect of immunotherapy on ESRRA activity. Analysis of a cohort of 
immunotherapy-resistant melanoma patients (92) revealed an intriguing trend: cancer cells from 
post-immunotherapy tumors had markedly higher ESRRA activity than those from pretreatment 15 
tumors (Fig S10E). As the cohort only contained immunotherapy-resistant patients, we asked 
whether the trend is specific to resistant patients or is also present in responders. To that end, we 
analyzed a non-melanoma skin cancer scRNA-seq cohort (93) containing both immunotherapy 
responder and resistant patients. Indeed, the trend of immunotherapy-induced ESRRA activity 
increase was specific to immunotherapy-resistant tumors (Fig 4G). In fact, in responders, ESRRA 20 
activity decreased in cancer cells upon immunotherapy (Fig 4G). This data is consistent with the 
hypothesis that immunotherapy-resistant tumors achieve high levels of immune suppression via 
ESRRA. 
 
To experimentally test the trend of increased ESRRA activity and resulting immune-suppression 25 
upon immunotherapy, we chose a syngeneic mouse model of colorectal cancer (CT26) known for 
its heterogeneous immunotherapy (anti-PD1) response (94). CT26 mice were treated with anti-
PD1, and bulk tumor RNA-seq was conducted in responding and immunotherapy-resistant mice 
to assess treatment effects on ESRRA target genes. Target genes of ESRRA were enriched in genes 
upregulated in immunotherapy-resistant mice (Fig 4H) but not in responders (Fig S10F), 30 
suggesting that ESRRA activity increases in immunotherapy-resistant tumors post-anti-PD1 
treatment. Increased ESRRA activity was also correlated with decreased CD8+T infiltration and 
increased M2 macrophages in tumors (Fig S10G). 
 
This in vivo experiment supports a model in which immune checkpoint blockade increases ESRRA 35 
activity, specifically in immunotherapy-resistant tumors. While increased ESRRA activity 
elevates immune suppression, it may also increase the vulnerability of immunotherapy-resistant 
tumors to ESRRA inhibition. The potential vulnerability is also supported by our in vivo 
experiment showing ESRRAi effectiveness in 4T1 and B16F10 models – both of which respond 
poorly to ICB. Future clinical investigations are required to reveal whether immunotherapy-40 
resistant tumors benefit from the immunostimulatory effect of ESRRA inhibition. Overall, our 
studies show targeting ESRRA induces proinflammatory cytokines, which in turn polarize 
macrophages toward proinflammatory states. Inhibition of ESRRA by CRISPR or drugs stimulates 
antigen presentation genes, which in turn recruit effector CD8+T cells to tumors and enhance tumor 
elimination by T-cells (Fig S10H).  45 
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Application of BipotentR to other pathways 
We also identified 14 bipotent TFCRs that simultaneously regulate angiogenesis and immune 
response (Table S5) and 14 TFCRs that regulate evasion of growth suppressors and immune 
response (Table S6), using these pathways as inputs to BipotentR (Methods). Using existing 
CRISPR datasets (67), we tested if genetic inhibitions of these 28 identified TFCRs can elicit dual 5 
anti-tumor efficacy. CRISPR knockouts of these TFCRs markedly improved the killing of cancer 
cells by T-cells (Fig S11A, P<1.3E-6). Knockdown or knockout of the identified TFCRs 
suppressed genes involved in angiogenesis or evasion of growth suppressors (Fig S11B, P<8.1E-
24), and the suppressed genes were preferentially regulated by the bipotent TFCRs (Fig S11C, P< 
9E-10).  10 
 
Conclusion 
We show that BipotentR identified ESRRA as a candidate target for a bipotent drug that affects 
both tumor immunity and energy metabolism. ESRRA inhibition affected energy metabolism, 
including OXPHOS, in cancer cells without curtailing CD8+T cell activity. In cancers, targeting 15 
ESRRA induced cytokines, which in turn polarized macrophages toward proinflammatory states. 
CRISPR or drug targeting of ESRRA stimulates antigen presentation genes (Fig S6E, S5D), which 
in turn recruits effector CD8+T cells to tumors (Fig 2G, I) and enhances tumor elimination by T-
cells (Fig 2K, L, and 3C). These findings are strongly supported by recent studies showing that 
OXPHOS suppression can alter both T cells (27, 67) and macrophages (95–97). High ESRRA 20 
activity was observed in immunosuppressive and immunoresistant tumors across several cancer 
types (Fig 4A-D), strongly suggesting clinical relevance in patient tumors. We show that 
BipotentR is generalizable to other biological pathways. These data demonstrate the advantages 
of suppressing energy metabolism in selected cell types while simultaneously stimulating an 
immune response with a single drug and provide proof-of-concept for BipotentR in bipotent drug 25 
discovery. 
 
 
Code, website, and data availability 
The BipotentR is available at http://bipotentr.dfci.harvard.edu/. The R-package BipotentR is 30 
available at (https://github.com/vinash85/TRIM). Upon publication, a user-friendly website will 
be created that will identify bipotent regulators that simultaneously modulate immune response 
and any given input pathway or pathway list. Bulk and single RNA-seq data generated from the 
current study are available at 
(https://www.dropbox.com/sh/qoqlx9724k0k869/AADZe7oZp0vs4gKzqeRwTUjaa?dl=0) and 35 
will be submitted to a public repository upon publication.  
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FIGURES 
 
 

 5 
Figure 1. Identification of immune-metabolic regulators:  
Abbreviations: TFCR, transcription factor and chromatin regulator; RP, regulatory potential of 
TFCR; TCA, tricarboxylic acid cycle; OXPHOS, oxidative phosphorylation 
(A) Overall schematic of regulation and immune modules of BipotentR. The regulation module 
identifies regulators of an input pathway using ChIP-seq data. The immune module distinguishes 10 
between putative immunostimulatory vs. immunosuppressive TFCRs using bulk tumor 
transcriptomes, and identifies TFCRs preferentially active in cancer cells using single-cell tumor 
transcriptomes. (B) Output of BipotentR regulation module. Affinity and significance of regulators 
to bind cis-regulatory elements of genes in four energy metabolism pathways. Each dot indicates 
a regulator, colored by individual pathways. (C) Integrated affinity to bind energy metabolism 15 
genes of top predicted master regulators. Nuclear receptors are displayed in red. (D) TFCRs with 
positive (or negative) associations with proinflammatory signatures are predicted 
immunostimulators (purple) (or immunosuppressors (orange)). (E) Top TFCRs predicted to be 
preferentially active in cancer cells (orange) (or CD8+T cells (purple)) and their differential activity 
(estimated from single-cell data). (F) Output of BipotentR immune module: combined association 20 
with proinflammatory signatures (D, estimate from bulk RNA-seq) and differential activity in 
cancer cells (E, estimate from single-cell data) are displayed for each TFCR. (G) Immune-
metabolic regulators identified by BipotentR. Energy regulatory potentials (estimated by 
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regulation module) and immune-modulatory potentials (estimated by immune module) of TFCRs. 
Highlighted TFCRs are significant and among the top 15% in both modules. Immunostimulators 
(purple) and immunosuppressors (orange) are colored. 
 
 5 
 

Figure 2. ESRRA inhibition activates anti-tumor immunity in 4T1 mice 
P-values using Wilcoxon rank-sum test unless stated otherwise. Tregs, regulatory T-cells; 
ESRRAi, ESRRA inhibitor. 10 
(A-C) Validation of BipotentR-identified bipotent targets. Effect of knockout/knockdown of target 
identified by BipotentR on (A) expression of genes in energy metabolism pathways, (B, C) T-cell 
mediated killing of cancer cells. (D) Effect of ESRRAi(Compound-29) concentration on proximity 
(Alphascreen signal) of the compound to the ligand-binding domain of WT /mutated ESRRA. (E) 
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Transcription regulator analysis (LISA) of up-and down-regulated gene sets by ESRRAi. (F) 
UMAP display of scRNA-seq of tumor-infiltrating CD45+ cells from ESRRAi and vehicle-treated 
mice. (G, H) Markers of activated CD8+T cells (G) and Tregs (H) in genes differential expressed 
by ESRRAi in lymphoid cells. Significance of up/down-regulation of marker sets estimated using 
permutation tests. (I, J) Fractions of CD8+T cells and Treg cells identified by flow cytometry. (K, 5 
L) Tumor volume comparisons between ESRRAi and control (K), and between ESRRAi with and 
without CD8 antibody (L). (M) Densities of macrophage polarization toward M1 (i.e., for each 
macrophage cell: average expression of M1 markers - average expression M2 markers), also see 
Fig S3F, G. (N-P) Measurements done after tumors were surgically removed in ESRRAi or 
vehicle-treated mice comparing: tumor relapse rate (N), lung metastasis deposits (O), circulating 10 
tumor cells in the blood (P).  
 
 
 

15 
Figure 3. Signaling induced by ESRRAi in vitro  
Abbreviations: GSVA, Gene Set Variation Analysis 
(A) Differentially expressed genes between ESRRAi and control in the SKBR3 cell line at three 
time points. Genes were clustered by K-means. (B) Pathway enrichment scores corresponding to 
clusters of differentially expressed genes shown in (A). (C) ESRRA knockout potentiates T-cell 20 
killing as observed in CRISPR knockout screens in cancer cells co-cultured with T-cells. The black 
line represents the relative position of ESRRA knockout among all gene knockouts ranked from 
most depleted to least depleted. The significance of ESRRA knockout in screens is also displayed. 
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Figure 4. Clinical significance of ESRRAi  5 
CTL, cytotoxic T cell; MDSC, Myeloid-derived suppressor cells; TAM, Tumor-associated 
macrophages. 
P-values estimated by Wilcoxon rank-sum test. MHC, major histocompatibility complex  
(A) Correlation of ESRRA activity with macrophage polarization towards M2 across TCGA 
cancer types. Correlation coefficient and standard error are displayed (B) Immune infiltration in 10 
low and high ESRRA activity tumors across cancer types in TCGA. (C) ESRRA activity in patient 
tumors with inflamed, excluded, and desert immunophenotypes ( based on CD8+T infiltration 
levels: inflamed > excluded > desert) in bladder cancer cohort. P-value was estimated using 
Kruskal-Wallis test. (D) Correlation between ESRRA activity and immune biomarkers in 
PRECOG collection of patient cohorts. (E) ESRRA activity in cancer and immune cells of 30 15 
scRNA-seq cohorts. (F) The chromatin accessibility of ESRRA targets in different cell types from 
scATAC-seq data of a skin cancer cohort. (G) Cancer cell ESRRA activity in patient (skin cancer) 
tumors pre- and post- anti-PD1 treatment for responders and non-responders. (H) Enrichment 
analysis of ESRRA-regulated gene set in non-responding CT26 mice after anti-PD1 treatment.  
  20 
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