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Abstract 27 

Streptococcus mutans promotes a tooth-damaging dysbiosis in the oral microbiota because it can 28 

form biofilms and survive acid stress better than most of its ecological competitors, which are 29 

typically health-associated.  Many of these commensals produce hydrogen peroxide, therefore S. 30 

mutans must manage both oxidative stress and acid stress with coordinated and complex 31 

physiological responses.  In this study, the proteome of S. mutans was examined during regulated 32 

growth in acid and oxidative stresses, as well as in deletion mutants with impaired oxidative stress 33 

phenotypes, ∆nox and ∆treR.  607 proteins exhibited significantly different abundance levels 34 

across the conditions tested, and correlation network analysis identified modules of co-expressed 35 

proteins that were responsive to the deletion of nox and/or treR, as well as acid and oxidative 36 

stress.  The data provided evidence explaining the ROS-sensitive and mutacin-deficient 37 

phenotypes exhibited by the ∆treR strain.  SMU.1069-1070, a poorly understood LytTR system, 38 

had elevated abundance in the ∆treR strain. S. mutans LytTR systems regulate mutacin 39 

production and competence, which may explain how TreR affects mutacin 40 

production.  Furthermore, the gene cluster that produces mutanobactin, a lipopeptide important 41 

in ROS tolerance, displayed reduced abundance in the ∆treR strain.  The role of Nox as a 42 

keystone in the oxidative stress response was also emphasized.  Crucially, this dataset provides 43 

oral health researchers with a proteome atlas that will enable a more complete understanding of 44 

the S. mutans stress responses that are required for pathogenesis, and facilitate the development 45 

of new and improved therapeutic approaches for dental caries. 46 
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Importance 48 

Dental caries is the most common chronic infectious disease worldwide, and disproportionally 49 

affects marginalized socioeconomic groups.  Streptococcus mutans is a considered a primary 50 

etiologic agent of caries, with its pathogenicity dependent on coordinated physiologic stress 51 

responses that mitigate the damage caused by the oxidative and acid stress common within 52 

dental plaque.  In this study, the proteome of S. mutans was examined during growth in acidic 53 

and oxidative stresses, as well in nox and treR deletion mutants.  607 proteins were differentially 54 

expressed across the strains/growth conditions, and modules of co-expressed proteins were 55 

identified, which enabled mapping the acid and oxidative stress responses across S. mutans 56 

metabolism. The presence of TreR was linked to mutacin production via LytTR system signaling 57 

and to oxidative stress via mutanobactin production.  The data provided by this study will guide 58 

future research elucidating S. mutans pathogenesis and developing improved preventative and 59 

treatment modalities for dental caries. 60 
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Observation 62 

Dental caries remains the most common chronic infectious disease worldwide, and is caused by 63 

a dysbiotic dental plaque microbiome that demineralizes tooth enamel via the fermentation of 64 

dietary carbohydrates to acid (1).  Streptococcus mutans is considered a primary etiologic agent 65 

of caries due to its exceptional ability to facilitate biofilm formation when provided with sucrose, 66 

and its acidophilic niche (2).  S. mutans employs a robust acid stress response that renders it 67 

more acid-tolerant than many of the health-associated commensals that it competes with 68 

ecologically. A number of these rival Streptococci produce H2O2, therefore S. mutans must also 69 

deal with oxidative stress (3, 4).  Numerous studies have examined the role of various genes in 70 

these overlapping stress responses and the complex regulatory network that governs 71 

them.  Previously, our research group identified that the NADH oxidase, Nox, was a linchpin of 72 

the S. mutans oxidative stress response at the intersection of two oxidative stress regulons 73 

(4).  Furthermore, the transcriptional regulator of the trehalose utilization operon, TreR, had an 74 

unexpected role in oxidative stress and toxin production (5).  In this study, mass spectrometry 75 

was used to elucidate changes in the S. mutans proteome during growth in acid or oxidative 76 

stresses, and upon deletion of nox or treR. 77 

The archetype S. mutans strain, UA159 (6), along with the ∆nox and ∆treR mutant strains 78 

were analyzed during tightly-controlled steady-state growth conditions enabled by chemostats set 79 

at neutral pH (7), acidic pH (5) and/or sparged with air to maintain an 8.4% dissolved oxygen 80 

concentration (i.e. oxidative stress, as described in (4)).  Text S1 contains a full description of the 81 

materials and methods used in this study.  Liquid chromatography-tandem mass spectrometry 82 

was performed to examine the proteome of these strains and growth conditions.  1,384 unique 83 

proteins were detected across the 8 strains/growth conditions (Table S1).  PCA analysis indicated 84 

three main clusters of samples: all pH 5 samples, regardless of oxidative stress or genotype; the 85 

pH 7 samples without oxidative stress (UA159 and ∆treR); and the pH 7 samples under oxidative 86 

stress (UA159 + air and ∆nox) (Figure 1A).  The proteins that were the largest drivers in ordination 87 
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space towards the pH 5 samples were SpaP, GtfC, GtfD, SMU_63c, while GbpB and AdhE were 88 

associated with the pH 7 samples, and Pfl and AtlA were associated with the pH 7 samples under 89 

oxidative stress (Figure 1A).  Differential expression analyses between pairwise strains/growth 90 

conditions is provided in File S1. 91 

Correlation network analysis was performed to observe modules of co-expressed proteins 92 

under the various conditions (Figure 1B).  This analysis revealed two large clusters of proteins 93 

associated with elevated abundance at either pH 5 or pH 7 (Figure 1D and H).  Several smaller 94 

sub-clusters were associated with other discrete expression profiles such as oxidative stress or 95 

deletion of the TreR regulator (Figure 1CEFGIJK).  A cluster associated with oxidative stress, 96 

either through addition of air or deletion of nox, included many of the well-established proteins of 97 

the oxidative stress tolerance response, including Tpx, GshR, Sod, SloR, and VicR (Figure 98 

1K).  An adjacent cluster of proteins, including the Adh operon, as well as Dpr, AlsS, and much 99 

of the purine biosynthesis gene cluster, had elevated abundance at pH 7 with air, but not in ∆nox 100 

(Figure 1C).   101 

Intriguingly, two sub-clusters displayed expression profiles specifically affected by the 102 

presence of the TreR regulator. DivIC and MurD, involved in cell wall synthesis and cell division, 103 

as well as the autoregulatory LytTR system, SMU.1069-1070, had increased expression in the 104 

∆treR strain (Figure 1E).  SMU.1069-1070 exhibits crosstalk with the more well-characterized 105 

LytTR systems, HdrRM and BrsRM, known to regulate competence and bacteriocin production 106 

(7, 8).  Since TreR and trehalose operon expression play a role in competence (9), and the 107 

production of mutacins IV, V, and VI (5), through unknown mechanisms, signaling through 108 

SMU.1069-1070 is an attractive hypothesis.  Although the mutacin IV, V, and VI NRPS products 109 

themselves are too small to be detected by the proteomics analysis employed here, further 110 

evidence linking TreR to mutacin production was observed. Several proteins within mutacin 111 

biosynthetic gene clusters (BGCs) did have significantly decreased abundance in the ∆treR strain, 112 
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including CopYAZ (mutacin VI BGC) and SMU.1904 and SMU.1910 (mutacin V/CipB BGC) (File 113 

S1).   114 

Meanwhile, the proteins from the trehalose operon itself, as well as the large mutanobactin 115 

BGC (SMU.1334-1349) were  reduced in the ∆treR strain (Figure 1F). This further confirmed that 116 

in S. mutans, TreR serves as an activator of tre operon expression, rather than as a repressor, 117 

as seen in other species (5).  Mutanobactin, a non-ribosomal lipopeptide, appears to have a role 118 

in helping S. mutans deal with oxidative stress (10).  Therefore, it is possible that reduced 119 

abundance of the mutanobactin BGC may explain the impaired ROS tolerance in the ∆treR 120 

strain.  Interestingly, Nox and TreR did not appear in the correlation network, likely due to their 121 

absence in deletion mutant strains obscuring correlations.  In repeated correlation analysis with 122 

the deletion mutant samples removed, Nox expression was tightly-correlated with 33 co-123 

expressed proteins, mainly from the clusters of genes associated with oxidative stress, further 124 

confirming its role as a keystone protein in the S. mutans oxidative stress response (Figure 125 

2L).  Contrarily, in the reanalysis, TreR only had one protein correlation with ρ ≥ 0.8, 126 

SMU_690.  Since TreR did not exhibit strong correlation with other proteins, but its absence had 127 

a major effect on the abundance of a number of proteins, it seems modulation of transcriptional 128 

regulatory activity for TreR, rather than just TreR expression level, is likely to be key in its role as 129 

a regulator. 130 

Differential rankings (11) were utilized to determine the proteins most associated with acid 131 

and oxidative stress.  KOs from the sub-clusters associated with pH 5 and pH 7 (Figures 1D and 132 

1H) made up the majority of the proteins associated with the cognate pH (Figure 2A), while 133 

proteins from the sub-clusters associated with oxidative stress (Figures 1C and 1K) were in fact 134 

correlated with the associated growth condition, based on supervised methods (Figure 2B).  To 135 

further examine the impact of the genotypes and growth conditions on S. mutans metabolism, 136 

proteins with associated KO numbers from the sub-clusters in Figure 1C-J were overlaid onto a 137 

map of the metabolism of S. mutans UA159 using KEGG Mapper (https://www.genome.jp/kegg/) 138 
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(Figure 2).  Table S3 provides a table of KO numbers and colors to be used by the reader to 139 

generate an interactive version of the metabolic map shown in Figure 2C using KEGG Mapper 140 

Color.  Many of the large-scale trends observed were in-line with previous, transcriptomic and 141 

proteomic observations (3, 12).  These included increased abundance of proteins involved in fatty 142 

acid biosynthesis, the partial TCA cycle and pyrimidine metabolism at pH 7, and increased 143 

abundance of proteins involved in arginine deiminase, BCAA biosynthesis, purine metabolism, 144 

and the F1F0 ATPase at pH 5.  Overall, this updated perspective of the S. mutans proteome 145 

provides a comprehensive interpretation of how this organism deals with acid and oxidative 146 

stress, permitting its key role in the dysbiosis that leads to caries pathogenesis.  This study also 147 

highlights several principal avenues for future research, including the importance of the TreR 148 

regulator. 149 
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Data Availability 151 

The raw mass spectrometry output files are available in the MassIVE Repository 152 

(massive.ucsd.edu) with the accession number MSV000088252. 153 
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Figure Legends 155 

 156 

Figure 1:  The proteome of S. mutans during acid and oxidative stress.  (A) PCoA biplot of 157 

the Bray-Curtis dissimilarity between samples of the indicated strain and growth condition, 158 

represented by the colored spheres.  Feature loadings (i.e. proteins driving distances in ordination 159 

space) are illustrated by the vectors, which are labeled with the cognate feature name and colored 160 

based on that feature’s cluster in Panel B.  (B) Clustering of S. mutans proteins into co-expression 161 

clusters.  Protein association network illustrating co-expressed proteins.  Prior to clustering, 162 

proteins were filtered for significant differences using an uncorrected ANOVA p < 0.01 (607 163 

proteins).  Correlations (edges) with a Spearman’s ρ > 0.8 are shown and only positive 164 

correlations were considered.  Edge width is representative of Spearman’s ρ.  Clusters were 165 

manually selected as indicated by the node color.  (C-K) Sub-clusters are annotated with a 166 

heatmap indicating protein abundance across the 8 strains/growth conditions.  Heatmap rows are 167 

clustered by Spearman’s ρ.  A version of the full network with each node labeled is available in 168 

Figure S1, and versions of the Acid Stress and Neutral pH heatmaps with each row labeled are 169 

available in Figure S2.  A pairwise correlation table of all proteins is provided in Table S2.  A 170 

heatmap illustrating expression of the 54 proteins that were differentially expressed based on 171 

ANOVA, but did not have significant correlations with other proteins, is provided in Figure S3.  (L) 172 

Proteins that correlate with Nox when the ∆nox samples are not included in the network 173 

analyses.  The ∆nox strain data likely obscured proteins that correlate with Nox, therefore the 174 

correlation network analysis was repeated without the ∆nox data.  The network shown here is a 175 

sub-cluster of all 33 proteins significantly correlating with Nox expression.  Nox is represented by 176 

the yellow diamond, all other nodes are colored by the sub-cluster determined in Figure 1B-177 

K.  Edge is representative of Spearman’s ρ.  Only positive correlations with ρ > 0.8 are shown. 178 

 179 
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Figure 2:  Metabolic modules of the S. mutans acid and oxidative stress responses.  (A) 181 

Differential ranking of proteins associated with pH 5 vs pH 7.  Songbird was used to rank proteins 182 

with respect to pH, and Qurro (13) was used to visualize the resulting ranks (only the top and 183 

bottom 150 proteins are shown).  Proteins with known KOs in the sub-clusters shown in Figures 184 

1D and 1H are highlighted in orange and dark green, respectively.  (B) Differential ranking of 185 

proteins associated with high O2 (UA159 + air and ∆nox) vs. low O2 (UA159 and ∆treR).  Songbird 186 

was used to rank proteins with respect to high vs low O2, and Qurro (13) was used to visualize the 187 

resulting ranks (only the top and bottom 150 proteins are shown).  Proteins with known KOs in 188 

the sub-clusters shown in Figures 1C and 1K are highlighted in yellow and light green, 189 

respectively.  (C) Metabolism of S. mutans during acid and oxidative stress.  All proteins from the 190 

sub-clusters shown in Figure 1C-K with known KOs were overlaid on to a map of the known 191 

metabolism of S. mutans using KEGG Mapper (https://www.genome.jp/kegg).  Colors of each 192 

sub-cluster from Figure 1 are maintained, as described in the Key. 193 
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Supplemental Figure and File Legends 195 

 196 

Figure S1:  Correlation network of the S. mutans proteome.  The complete Figure 1B network, 197 

with each node is labeled with the cognate protein name. Clustering of S. mutans proteins into 198 

co-expression clusters.  Protein association network illustrating co-expressed proteins.  Prior to 199 

clustering, proteins were filtered for significant differences using an uncorrected ANOVA p < 0.01 200 

(607 proteins).  Correlations (edges) with a Spearman’s ρ > 0.8 are shown and only positive 201 

correlations were considered.  Edge width is representative of Spearman’s ρ.  Clusters were 202 

manually selected as indicated by the node color. 203 

 204 

Figure S2:  Expression profiles of proteins associated with pH 5 (A) or pH 7 (B).  These are 205 

expanded versions of the heatmaps appearing in Figure 1 panels D and H, with each row 206 

labeled.  Rows are clustered by Spearman’s ρ.   207 

 208 

Figure S3:  Expression profile of differentially-expressed genes that had no significant 209 

correlations.  Heatmap showing the expression of proteins that made the differential expression 210 

ANOVA p ≥ 0.5 cutoff, but did not have any correlations with other proteins with a Spearman’s ρ 211 

≥ 0.8.  Rows are clustered by Spearman’s ρ.   212 

 213 

Table S1:  Normalized abundances of detected proteins 214 

 215 

Table S2:  Spearman’s Rank correlations between differentially-expressed proteins. 216 

 217 

Table S3:  KO and color list to generate interactive S. mutans metabolism map using KEGG 218 

Mapper – Color (https://www.genome.jp/kegg/mapper/color.html) 219 

 220 

File S1:  Excel file containing pairwise log2 fold-changes and p-values for each protein 221 

between all 8 strain/growth conditions 222 

 223 
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Text S1:  Supplemental Materials and Methods 224 
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