1 Title: Structural snapshots of V/A-ATPase reveal a new paradigm for

2 rotary catalysis.

- 3
- 4 Authors: J. Kishikawa^{1,2}[†], A. Nakanishi^{1,3}[†], A. Nakano¹[†], S. Saeki¹, A. Furuta¹, T. Kato²,
- 5 K. Mistuoka³, and K. Yokoyama^{1*}.
- 6 Affiliations: ¹Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-
- 7 Motoyama, Kita-ku, Kyoto 603-8555, Japan;
- ⁸ ²Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871
- 9 Japan;
- ¹⁰ ³Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1,
- 11 Mihogaoka, Ibaraki, Osaka, 567-0047 Japan.
- 12
- 13 [†]J.K, A. Nakanishi., and A. Nakano contributed equally to this work
- 14 *Corresponding author. Email: yokoken@cc.kyoto-su.ac.jp
- 15

1 Abstract

2	V/A-ATPase is a motor protein that shares a common rotary catalytic mechanism with F_0F_1
3	ATP synthase. When powered by ATP hydrolysis, the V_1 moiety rotates the central rotor
4	against the A3B3 hexamer, composed of three catalytic AB dimers adopting different
5	conformations (AB_{open} , AB_{semi} , and AB_{closed}). Here we have determined the atomic models
6	of 18 catalytic intermediates of the V_1 moiety of V/A-ATPase under different reaction
7	conditions by single particle Cryo-EM, which revealed that the rotor does not rotate
8	immediately after binding of ATP to the V1. Instead, three events proceed simultaneously
9	with the 120° rotation of the shaft: hydrolysis of ATP in AB_{semi} , zipper movement in AB_{open}
10	by the binding ATP, and unzipper movement in AB_{closed} with release of both ADP and Pi.
11	This indicates the unidirectional rotation of V/A-ATPase by a ratchet-like mechanism owing
12	to ATP hydrolysis in AB_{semi} , rather than the power stroke model proposed previously for F_1 -
13	ATPase.

1 Main

2	The proton translocation ATPase/synthase family includes F-type enzymes found in
3	eubacteria, mitochondria, and chloroplasts, and the V/A type enzymes found in archaea and
4	some eubacteria ¹⁻⁵ (Fig. 1a). These ATPases produce the majority of cytosolic ATP from
5	ADP and Pi using energy derived from the transmembrane proton motive force generated by
6	cellular respiration ⁶ . These ATPases share a common molecular architecture, consisting of
7	a hydrophilic V_1/F_1 moiety responsible for ATP hydrolysis or synthesis, and a hydrophobic
8	V_o/F_o domain housing a proton translocation channel ⁷⁻⁹ . The chemical reaction (ATP
9	hydrolysis/synthesis) in V_1/F_1 is tightly associated with proton movement through V_o/F_o
10	using a rotary catalytic mechanism, where both reactions are coupled by rotation of the
11	central rotor complex relative to the surrounding stator apparatus, which includes the ATPase
12	active hexamer ^{$6,10,11$} (Fig. 1b).

The V/A-ATPase from the thermophilic bacterium, *Thermus thermophilus (Tth)* is one of the best-characterized ATP synthases^{3,12}. The overall architecture and subunit composition of V/A-ATPase is more similar to that of the eukaryotic V-ATPase, rather than F-type ATPase. However, the *Tth* V/A-ATPase has a simpler subunit structure than eukaryotic V-ATPase and shares the ATP synthase function of F-type ATPase¹³ (Fig. 1a). The V₁ moiety

1	of <i>Tth</i> V/A-ATPase $(A_3B_3D_1F_1)$ is an ATP driven rotary motor where the central DF shaft
2	rotates inside the hexameric A ₃ B ₃ containing three catalytic sites, each composed of an AB
3	dimer. The V _o domain (E ₂ G ₂ $d_1a_1c_{12}$) is composed of stator parts including the <i>a</i> subunit
4	and two EG peripheral stalks and the d_1c_{12} rotor complex, which consists of a central rotor
5	complex with the DF subunits of V_1 ¹⁴⁻¹⁶ . When ATP hydrolysis by A ₃ B ₃ powers the DF
6	shaft, the reverse rotation of the central rotor complex drives proton translocation in the
7	membrane-embedded Vo domain (Fig. 1b).
8	According to the binding change mechanism of ATP synthesis ⁶ , the three catalytic sites
9	in ATP synthases are in different conformations but interconvert sequentially between three
10	different conformations as catalysis proceeds. Indeed, our previous structure demonstrated
11	that the A ₃ B ₃ hexamer in the V/A-ATPase adopts an asymmetrical structure composed of
12	three different AB dimers, termed open (ABopen), semi-closed (ABsemi), and closed
13	$(AB_{closed})^{16,17}$. The asymmetrical structure of the V ₁ implies that sequential interconversion
14	between these three different AB dimers is synchronized with rotation of the central DF shaft.
15	Experimental studies using specific rotational probes attached to DF, revealed that ATP-
16	driven rotation of the central shaft was unidirectionally clockwise when viewed from the V ₁
17	side ¹⁰ . At low ATP concentrations where ATP binding is rate-limiting, rotation proceeds

1	in steps of 120°, commensurate with the three catalytic sites of AB dimers ¹⁸ . When using
2	40 nm gold beads with almost negligible viscous resistance, V_1 also pauses every 120° even
3	at a ATP concentration around K_m without a sign of substeps ¹⁹ . These single-molecule
4	experiments on V_1 suggest that the both catalytic events, ATP hydrolysis and product (ADP
5	and Pi) release occur at an individual ATP binding position, and imply the presence of
6	chemo-mechanically stable catalytic intermediates (Fig. 1c and Supplementary Fig. 1).
7	However, single-molecule observation experiments only allow us to see the motion of the
8	shaft to which the observation probe is bound, and do not tell us what events are occurring at
9	each catalytic site. To elucidate the entire rotational mechanism of V/A-ATPase, we must
10	determine the structures of catalytic intermediates of the rotary ATPase during rotation.
11	There are many reaction intermediates of the enzyme during turnover, and this structural
12	heterogeneity makes successful crystallization of a specific state very challenging.
13	Technological breakthroughs in single particle Cryo-EM, such as the development of
14	direct electron detectors, and advances in image processing and automation ^{20,21} , have
15	triggered a revolution in structural biology, making this the technique of choice for large and
16	dynamic complexes unsuitable for crystallization. In addition, by freezing Cryo-EM grids
17	at different time points or under different reaction conditions, it is possible to trap

1	intermediate states and thus build up a picture of the chemo-mechanical cycle of biological
2	macromolecular complexes step by step. To date, there are few examples of studies that
3	have successfully captured such details of a catalytic cycle at atomic resolution using Cryo-
4	EM ^{22,23} .
5	Here we report several key, and thus far uncharacterized, intermediate states of V/A-
6	ATPase, obtained under different reaction conditions. Comparison of these structures
7	provides insight into a novel cooperativity between the three catalytic sites and demonstrates
8	a rotary catalytic mechanism powered by ATP hydrolysis.

9

10 **Results**

11 Sample preparation for Cryo-EM structural analysis

We previously determined the Cryo-EM structures of the wild-type V/A-ATPase containing an ADP in the catalytic site of AB_{closed} ^{16,17}. The V/A-ATPase bound to the inhibitory ADP exhibits no ATPase activity until the ADP is removed^{13,16,24}. Partial ADP removal from AB_{closed} is possible by dialysis against an EDTA-phosphate buffer, but it is difficult to obtain a homogenous nucleotide-free V/A-ATPase after such a treatment, due to the high binding affinity of the ADP to AB_{closed} (Supplementary Table 1). To obtain a homogeneous ATPase

1	active enzyme, mutant V/A-ATPase (A/S232A, T235S) with reduced nucleotide-binding
2	affinity was purified from T. thermophilus membranes ¹⁰ . The mutated V/A-ATPase
3	exhibits higher K_m values for nucleotide in both the ATP hydrolysis and synthesis reactions
4	than the wild-type enzyme, but the enzymatic and rotational properties are almost the same
5	as those of the wild-type enzyme ²⁴ . The mutated V/A-ATPase is fully activated for ATPase
6	activity after EDTA/phosphate dialysis; no ADP or ATP was found in the enzyme by
7	quantitative analysis of nucleotides (Supplementary Fig. 2 and Table 1). We incorporated
8	the nucleotide-free V/A-ATPase into nanodiscs comprising the MSP1E3D1 scaffold protein
9	and DMPC. The resulting V/A-ATPase obeys simple Michaelis-Menten kinetics and exhibits
10	ATPase activity of 22 s ⁻¹ and the K_m of 394 μ M ATP (Supplementary Fig. 2b).
11	The nucleotide-free V/A-ATPase (Nucfree) was used for cryo-grid preparation under
12	different ATPase reaction conditions (Supplementary Fig. 1c). Results of the structural
13	analysis of the protein under each set of reaction conditions are summarized in
14	Supplementary Figs. 3a-d.

15 The structures of V/A-ATPase without nucleotide (Vnucfree)

The flow charts showing image acquisition and reconstitution of the 3D structure of V/AATPase without nucleotide are summarized in Supplementary Fig. 3a. We obtained

1	structures of three rotational states of V/A-ATPase without nucleotide; state1 at 3.1 Å, state2
2	at 4.7 Å, and state 3 at 6.3 Å resolution, with the DF shaft positions differing by 120° in each
3	case (Fig. 2). Using signal subtraction of the V_o domain, we achieved resolution of 3.0 and
4	4.1 Å for the V_1 moiety including half of the EG stalk in state1 and 2, allowing us to build
5	atomic models of the V ₁ domain of these states.
6	The three AB dimers in the V_1 moiety adopted open (AB _{open}), semi-closed (AB _{semi}), and
7	closed (AB _{closed}) states, respectively (Fig. 2b and c). The tip of the C-terminal helix bundle
8	(CHB) of A _{open} is in contact with the C-terminal helix of the D subunit, and the wide part of
9	the CHB of B _{open} is in contact with the N-terminal helix of the D subunit, respectively
10	(Supplementary Fig. 4 a-c). The AB _{semi} and AB _{closed} also interact with the coiled-coil of
11	subunit D in specific regions of the CHB, respectively (Supplementary Fig. 4 d-g).
12	The differences in the structures of the three AB dimers when superimposed on the β
13	barrel domains of both A and B subunits are the result of movement of the N-terminal bulge
14	domain, the nucleotide binding domain (NB) of the A subunit and the CHBs of both the A
15	and B subunits (Fig. 2d). When comparing the structure of AB _{open} and AB _{semi} , both the NB
16	and CHB of the A_{semi} are in closer proximity to B_{semi} than B_{open} , resulting in a closed structure
17	of AB _{semi} (Fig. 2c and d). The structure of B _{open} is very similar to B _{semi} , as shown in Fig.

1	2d. In the AB _{closed} , both the CHB and NB domains of A_{closed} are in closer proximity to B_{closed} ,
2	and the CHB of B_{closed} moves to A_{closed} , resulting in the more closed structure of AB_{closed}
3	compared to AB _{semi} (Fig. 2c and d).
4	In the AB _{closed} and AB _{semi} dimers, densities for the catalytic side chains are well resolved,
5	but no density corresponding to nucleotide was observed (Fig. 3a). Hereafter we refer to
6	the structure as the $V_{nucfree}$. The structure of $V_{nucfree}$ is very similar to the previously reported
7	ADP inhibited structure ^{16,17} . For state1, the <i>rmsd</i> value for the C_{α} chains of A ₃ B ₃ DF of the
8	$V_{nucfree}$ and ADP inhibited structures is 1.98 Å (Supplementary Fig. 5). In addition, the
9	V_{nucfree} is also similar to the structures under saturated-ATP condition determined in this
10	study, with the positions of the catalytic side chains almost identical in both cases
11	(Supplementary Fig. 6). This indicates that the V_1 moiety adopts the same conformation,
12	including the arrangement of the DF shaft in the A ₃ B ₃ and the geometry of the catalytic side
13	chains, irrespective of the presence or absence of bound ATP.
14	In the density maps obtained for state1 of V_{nucfree} , the CHB of the AB dimers were slightly
15	blurred, likely due to structural heterogeneity. To classify the probable substates of state1,
16	we performed focused 3D classification using a mask covering AB _{open} and B _{semi}

17 (Supplementary Fig. 3a). We identified an atomic resolution structure of the original state1

1	from 39,902 particles at 3.1 Å resolution and another substate from 24,101 particles at 3.1 Å
2	resolution. We termed the substates reconstructed from these major particle classes as state1-
3	1 and state1-2, respectively. The atomic model initially constructed as state1 is identical to
4	the atomic model of state1-1. The structures of the sub-states are very similar, with most
5	differences due to the movement of the CHB of the A and B subunits. Therefore, we
6	quantified the difference in the structure of the CHB observed when the structures were
7	superimposed on the N-barrel domain (Supplementary Table 2 and 3). Substates were also
8	obtained under other reaction conditions (see below) and the <i>rmsd</i> values shown in
9	Supplementary Table 2 and 3 are used to discuss which subunits are responsible for the
10	differences in structure of the substates obtained under different reaction conditions.
11	Structures obtained at a saturating ATP concentration
12	Cryo-grids were prepared using a reaction mixture of Nucleotide-free V/A-ATPase,
13	containing the regenerating system and ATP at a saturating concentration of 6 mM. The
14	reaction mixture was incubated for 120 sec at 25 °C, and then loaded onto a holey grid,
15	followed by flash freezing.
16	We determined three rotational states followed by focused refinement using a V_1EG mask

17 for each state (Supplementary Fig. 3b). In the density maps obtained for each state, the

1	amino acid residues of the nucleotide binding sites in both AB_{closed} and AB_{semi} were well
2	resolved, but the CHB domains of the AB dimers were blurred due to structural heterogeneity,
3	as with the $V_{nucfree}$. For state1, we identified an atomic resolution structure of state1-1 from
4	40,831 particles at 3.1 Å resolution and state1-2 from 28,801 particles at 3.2 Å resolution by
5	further 3D classification without alignment (Supplementary Fig. 3b). The same
6	classification analysis was performed for state2 and state3, yielding state 2-1 (3.0 Å
7	resolution) and state 2-2 (3.4 Å resolution), and state 3-1 (3.0 Å resolution) and state 3-2 (3.4
8	Å resolution) respectively. In these structures, nucleotide densities have been identified in
9	the three catalytic sites. Hereafter, we refer to the structures obtained at ATP saturating
10	condition as V _{3nuc} .
11	The structure of AB_{open} of V_{3nuc} state1-1 is almost identical to that of $V_{nucfree}$ state1-1
12	(Supplementary Fig. 6). This is confirmed by the fact that the <i>rmsd</i> values in the CHB of
13	A_{open} and B_{open} for V_{3nuc} state1-1 and $V_{nucfree}$ are less than 1Å (Supplementary Table 2 and 3).
14	The AB _{open} of state1-2 adopts a slightly more closed conformation compared to that of state1-
15	1, which results from a movement of CHB of B_{open} towards the β -barrel domain (Fig. 4c).
16	Nevertheless, the AB_{open} of V_{3nuc} with bound ATP retains the interaction with the DF shaft,
17	indicating that ATP binding to the AB _{open} does not move the DF shaft.

The AB_{semi} in state1-2 has a more closed structure than that in state1-1 mainly due to the 1 2 movement of CHB in B_{semi} (Fig. 4b, Supplementary Table 3). In summary, V_{3nuc} state1-2 has a more closed structure than state1-1 due to the movement of the CHB of both A_{semi} and B_{semi}, 3 4 but the slightly closed conformation of state1-2 is independent of ATP binding to the AB_{open}. Structures of the catalytic sites at AB dimers of V3nuc 5 In both state1-1 and state1-2 structures obtained under ATP saturating conditions, a bound 6 7 ATP molecule is clearly observed in the catalytic site of AB_{open} (Fig. 3b and Supplementary The catalytic sites in the AB_{closed} and AB_{semi} in both the state1-1 and state1-2 also Fig. 7c). 8 contained density corresponding to an ATP molecule, and in these cases the associated 9 magnesium ions were visible (Fig. 3b and Supplementary Fig. 7a-b). In the V_{3nuc} structure, 10 11 we did not find density corresponding to nucleotides between the D and A subunits as reported in a previous paper²⁵ (Supplementary Fig. 8). 12 In the catalytic site of AB_{semi} of V_{3nuc}, the density of each nucleotide phosphate atom was 13 easily identifiable (Supplementary Fig. 7b), indicating that the ATP molecule occupies the 14

16 picture of the configuration of the catalytic side chains (Figs. 5a-c). The γ-phosphate of ATP

15

catalytic site in AB_{semi}.

The protein structure is sufficiently clear to also provide a detailed

17 and the magnesium ion are coordinated by the A/K234 and A/S235 residues on the P-loop,

1	which contains the conserved nucleotide-binding motif ^{$7,26$} . The aromatic ring of A/F230,
2	not conserved in F type ATPase, is oriented away from the triphosphate moiety, allowing
3	access of the guanidium group to the arginine finger (Supplementary Fig. 9). Considering
4	clear EM density for the γ -phosphate of the ATP bound in AB _{semi} , hydrolysis of ATP is
5	unlikely to proceed in AB _{semi} .
6	The nucleotide-binding site of the AB_{closed} is shown in Fig. 5b. The geometry of ATP
7	binding in AB_{closed} is very similar to that found in the AB_{semi} , however, the carbonyl group of
8	A/E257 is closer to the $\gamma\text{-phosphate}$ by about 1 Å than AB_{semi}. In state1-2 of $V_{3nuc},$ the $\gamma\text{-}$
9	phosphate of ATP bound to the AB_{closed} appears to be separated from β -phosphate when a
10	relatively high density threshold is used (Supplementary Fig. 10). These findings strongly
11	suggest that ATP bound to AB _{closed} is either already hydrolyzed or in the process of being
12	hydrolyzed. The state of ATP in AB _{closed} is discussed further in Supplementary text.
13	In the nucleotide-binding site of the AB_{open} of V_{3nuc} , the adenosine moiety of ATP is
14	occluded as in the AB_{semi} and AB_{closed} , with A/F415, A/Y500, and A/V236 forming the
15	adenine binding pocket, however, the hydrogen bonding of the ribose moiety to the side chain
16	of B/N363 is lost due to movement of the CHB of A _{open} (Fig. 5c). Unlike in the AB _{closed}
17	and AB _{semi} , the phenyl group of A/230F in the AB _{open} is closer to the tri-phosphate group of

1	ATP due to torsion of the main chain, resulting in formation of a hydrophobic barrier between
2	the catalytic side chains and the triphosphate moiety of ATP (Supplementary Fig. S9).
3	Compared with AB_{semi} , the side chains of catalytic residues A/E257, A/R258, and B/R360 of
4	AB_{open} are much further away from the γ -phosphate of ATP (10.0, 10.0 and 7.1 Å,
5	respectively. Consequently, the configuration of the catalytic residues in the nucleotide-
6	binding site of AB _{open} is not appropriate for hydrolysis of the bound ATP. Instead, the
7	bound ATP has the potential to zipper the AB interface via interaction with the surrounding
8	catalytic residues, which ultimately results in the transition of AB_{open} to a more closed form
9	via a typical zipper conformational change.
10	Structures of V/A-ATPase waiting for ATP to bind
11	To determine the ATP-waiting structure of V/A-ATPase, we prepared a cryo-grid with a
12	reaction mixture containing 4 μM enzyme, 50 μM ATP, and the ATP regeneration system,
13	pre-incubated for 300 sec. We reconstructed three rotational states (state1, 2.7 Å, state2, 3.3
14	Å, and state3 3.6 Å resolution) from the single-particle images of the holo-complex and three
15	rotational states of V_1EG (state1, 2.8 Å, state2, 3.1 Å, and state3, 2.8 Å) by focused masked
16	refinement. For state1, two substates (state1-1, 2.9 Å and state1-2, 3.0 Å) were separated by
17	focused classification using AB _{open} and AB _{semi} masks (Supplementary Fig. 3c).

1	In both AB_{semi} and AB_{closed} of state1-1, apparent density of ATP-magnesium was observed,
2	but the density of the γ -phosphate at the AB _{closed} is weaker than that at the AB _{semi} (Fig. 3c
3	and Supplementary Figs. 7a and b). In contrast, density was not observed in the nucleotide-
4	binding site of AB _{open} . For state1-2, as in state1-1, nucleotides are present in both AB _{semi} and
5	AB_{closed} , while AB_{open} is empty. Hereafter we refer to the structure as V_{2nuc} .
6	The overall structure and geometry of the catalytic residues of state1-1 of V_{2nuc} are largely
7	identical to state1-1 of $V_{nucfree}$ and V_{3nuc} (Supplementary Fig. 11). This structural similarity
8	between V_{2nuc} , $V_{nucfree}$, and V_{3nuc} is confirmed by the low <i>rmsd</i> values when comparing the
9	CHB of the A and B subunits of these structures (Supplementary Table 2 and 3). The
10	similarity of the structures of these substates indicates that the structural polymorphism of V_1
11	moiety is independent of the binding of ATP to AB dimers.
12	Structures obtained at a saturating concentration of ATP γS (V _{prehyd})
13	The V ₁ -ATPase from <i>T. thermophilus</i> is capable of hydrolyzing ATP γ S, however, the
14	turnover rate of ATP γ S is much lower than that of ATP due to the decrease in hydrolysis
15	rate ¹⁸ (Supplementary Fig. 2d). Thus, pre-hydrolysis structures of V/A-ATPase can be
16	obtained at 4 mM ATP _γ S. The cryo-grid was prepared by blotting of the reaction mixture
17	comprising Nucleotide-free V/A-ATPase and 4 mM of ATP γ S in the absence of the

1	regenerating system in order to exclude any effect of regenerated ATP produced from
2	hydrolyzed ATPyS. We reconstructed three rotational states from the acquired EM images
3	using the CRYOARM300 (JEOL). After the focused masked refinement of the V_1EG domain
4	we obtained atomic resolution structures of each state (state1, 2.7 Å, state2, 3.4 Å, and state3,
5	3.6 Å), respectively (Supplementary Fig. 3d). We refer to these structures as V_{prehyd} . For
6	state1, two sub-states, state1-1 and state1-2, were obtained at 2.7 and 2.9 Å resolution
7	respectively, by focused classification using a mask with AB_{open} and AB_{semi} (Supplementary
8	Fig. 3d). For the AB_{open} of V_{prehyd} , bound $ATP\gamma S$ is clearly observed in the catalytic site,
9	which has an almost identical structure to that of the ATP bound state of V_{3nuc} (Fig. 3b).
10	The nucleotide-binding sites of the AB_{closed} and AB_{semi} of V_{prehyd} are almost identical to
11	those of V_{3nuc} , respectively, as shown in Fig. 5. The γ -phosphate group of the bound ATP γ S
12	molecule in the AB_{semi} is well resolved as seen in for ATP in V_{3nuc} and V_{2nuc} (Figs. 3d and
13	Supplementary Fig. 7b). In contrast, the density of γ -phosphate of ATP γ S at the AB _{closed} is
14	faint (Supplementary Fig. 7a), suggesting that the ATP γ S in the AB _{closed} has already been
15	hydrolyzed and the bound nucleotide in the AB _{closed} is ADP. This indicates that the AB _{semi} is
16	in the pre-hydrolysis conformation, waiting for ATP hydrolysis.

1 Discussion

2 V/A-ATPase has a very similar structure irrespective of the nucleotide binding status. We have obtained catalytic intermediates of V1 moiety, Vnucfree, V3nuc, V2nuc, and Vprehyd, with 3 4 different nucleotide occupancy. Despite the different nucleotide occupancy of these structures, their overall conformations are very similar. For instance, the *rmsd* of the C_{α} 5 chains of A₃B₃ in V_{nucfree} and V_{3nuc} state1-1 is 1.98Å. In addition, the relative position of the 6 central DF shaft within the asymmetric A3B3 is almost the same in the V_{nucfree} and V_{3nuc} 7 structures. These findings demonstrate that the configuration between the DF shaft and 8 individual AB dimers is independent of the state of nucleotide occupancy of each AB dimer. 9 In other words, the structure of the V₁ moiety adopts three rotational states, 1, 2, and 3, during 10 11 continuous ATP hydrolysis, with the conformational changes in the A_3B_3 hexamer driven by 12 ATP hydrolysis, being discrete rather than continuous. 13 Chemo-mechanical cycle of the V/A-ATPase powered by ATP hydrolysis

The V_{3nuc} structure, obtained under ATP saturation conditions shows all three catalytic sites occupied by ATP or the products of hydrolysis (ADP + P*i*). Since the hydrolyzed P*i* is clearly visible in the AB_{closed} of V_{3nuc} (Supplementary Fig. 10), it is assumed that V_{3nuc} is the structure before dissociation of P*i* from the catalytic site in AB_{closed}. We also obtained the

1	V_{2nuc} structure in which ATP and product(s) are bound to AB_{semi} and AB_{closed} , respectively,
2	but AB_{open} is empty. The V_{2nuc} is therefore assumed to be the structure of the protein awaiting
3	ATP binding to AB_{open} . When using ATP γ S as a substrate, which has a very slow hydrolysis
4	rate, the high-resolution atomic structure of the V_1 moiety allowed visualization of ATP γS
5	molecules bound to the catalytic sites of AB _{open} and AB _{semi} , as well as identification of the
6	hydrolyzed ATP γ S at the AB _{closed} . The V _{prehyd} reveals both that the AB _{closed} adopts the post-
7	hydrolysis state where the product of phosphate (Pi) is dissociated, and that the AB _{semi} is
8	awaiting ATP hydrolysis.
9	The structures provide important insights into the chemo-mechanical cycle of V/A-
10	ATPase. The V/A-ATPase undergoes a unidirectional conformational change from state1 to
11	state2 to state3 when powered by ATP. Thus, V_{3nuc} of state1, in which three catalytic sites
12	are already occupied by nucleotides, should change to state2 of V_{2nuc} , following ATP
13	hydrolysis at AB _{semi} , and the subsequent or simultaneously dissociation of ADP and Pi by
14	the discrete structural transition of AB_{closed} to AB_{open} (Fig. 6). This demonstrate that rotation
15	of the rotary ATPase proceeds via the tri-site model with the protein progressing through a
16	two nucleotide bound state and a three nucleotide bound state, settling the long-standing

debate on whether the bi-site model or tri-site model is appropriate for rotary ATPases^{5,6,27-}

2 ³⁰.

3	Based on previous single molecular observation experiments for both F ₁ - and V ₁ -ATPase,
4	ATP binding onto the enzyme directly triggers the first 120° rotation step of the DF
5	shaft ^{18,19,30} (Supplementary Fig. 1a). In light of our findings presented here, this scheme
6	needs to be redrawn; the rotor does not immediately travel 120° as a result of ATP binding
7	to enzyme.
8	The next catalytic event after ATP binding is ATP hydrolysis in AB_{semi} . Each
9	conformational change, from AB _{open} to AB _{semi} , AB _{semi} to AB _{closed} , and AB _{closed} to AB _{open}
10	occurs simultaneously, with the rotation of the shaft, and with the hydrolysis of ATP in the
11	AB _{semi} and release of products (ADP and Pi) from the AB _{closed} (Fig. 6 and Supplementary
12	Movie 1). This is in marked contrast to the classical rotary model, where catalytic events
13	occur in sequence at the three catalytic sites, until now the broadly accepted mechanism of
14	action of the F_1 -ATPase ^{6,27,31,32} .
15	In the V _{2nue} and V _{3nue} , two sub-states, state1-1 and state1-2 were identified. These

15 In the V_{2nuc} and V_{3nuc} , two sub-states, state1-1 and state1-2 were identified. These 16 substates were also identified in $V_{nucfree}$, thus the conformational dynamics of the V_1 moiety 17 are independent of ATP binding. In other words, state1-1 and state1-2 are in thermally

1	equilibrium state, irrespective of nucleotide occupancy in each catalytic site. Both AB_{semi} and
2	AB _{open} in state1-2 adopt more closed structures than those in state1-1, suggesting that state1-
3	2 of V_{3nuc} is likely an intermediate structure just prior to the 120° rotation step of the DF shaft.
4	Compared to state1-2 of V_{3nuc} , state1-2 of V_{prehyd} exhibits slightly more closed structures of
5	AB _{open} and AB _{semi} (Supplementary Fig. 13), likely to be associated with the progress of the
6	catalytic reaction in AB_{closed} , i.e., the dissociation of the phosphate. In this respect, state1-2
7	of V_{prehyd} may be another reaction intermediate structure in which the Pi in the AB _{closed} is
8	released prior to the 120° step (Supplementary Fig. 14).
9	Rotation Mechanism of the V/A-ATPase
9 10	Rotation Mechanism of the V/A-ATPase Based on the catalytic intermediates of the V ₁ moiety of V/A-ATPases obtained under four
9 10 11	Rotation Mechanism of the V/A-ATPase Based on the catalytic intermediates of the V ₁ moiety of V/A-ATPases obtained under four different reaction conditions, we propose a model for the ATP-driven rotation mechanism of
9 10 11 12	Rotation Mechanism of the V/A-ATPase Based on the catalytic intermediates of the V ₁ moiety of V/A-ATPases obtained under four different reaction conditions, we propose a model for the ATP-driven rotation mechanism of V/A-ATPases.
 9 10 11 12 13 	Rotation Mechanism of the V/A-ATPase Based on the catalytic intermediates of the V1 moiety of V/A-ATPases obtained under four different reaction conditions, we propose a model for the ATP-driven rotation mechanism of V/A-ATPases. When ATP binds to Vnucfree, which is in a stable initial state (ground state), the enzyme
 9 10 11 12 13 14 	Rotation Mechanism of the V/A-ATPase Based on the catalytic intermediates of the V1 moiety of V/A-ATPases obtained under four different reaction conditions, we propose a model for the ATP-driven rotation mechanism of V/A-ATPases. When ATP binds to Vnucfree, which is in a stable initial state (ground state), the enzyme transits into the steady state for ATP hydrolysis (Fig. 7, upper row). The V3nuc structure is
 9 10 11 12 13 14 15 	Rotation Mechanism of the V/A-ATPase Based on the catalytic intermediates of the V1 moiety of V/A-ATPases obtained under four different reaction conditions, we propose a model for the ATP-driven rotation mechanism of V/A-ATPases. When ATP binds to Vnucfree, which is in a stable initial state (ground state), the enzyme transits into the steady state for ATP hydrolysis (Fig. 7, upper row). The V3nuc structure is formed by binding of ATP to the ABopen of V2nuc but the binding of ATP itself does not cause

1	In the V_{3nuc} structure, where nucleotides are bound to all three AB dimers, three distinct
2	but associated catalytic events occur at the three AB dimers simultaneously and these events
3	are coupled to the first 120° rotation step of the DF shaft. One of the driving events for this
4	transition is the conformational change from the ATP-bound AB _{open} to the more closed
5	AB _{semi} , which can be explained by a zipper motion of AB _{open} occurring upon ATP binding.
6	From our structures, a comparison between AB _{open} and AB _{semi} implies that new hydrogen
7	bonds form between the triphosphate moiety of ATP and the surrounding side chain groups
8	of B/R360, A/258R, A/257E, and A/K234. (Fig. 5).
9	The V_{prehyd} structures indicate that the ATP bound to AB_{semi} is awaiting hydrolysis. The
10	conformational change from AB_{semi} to AB_{closed} should occur spontaneously because it
11	involves ATP hydrolysis, an exergonic reaction. In contrast, ADP bound to AB _{closed} hampers
12	the unzipper motion in AB_{closed} , thereby preventing the overall structural transition of the V_1
13	moiety. This is supported by the fact that V/A-ATPase adopts the ADP inhibited state in
14	which ADP is entrapped in AB _{closed} (Fig. 7, upper line). The enzyme in the ADP-inhibited
15	state does not show ATP hydrolysis activity even at saturated ATP concentration ^{13, 16} .
16	In summary, the ATP-driven unidirectional rotation of V/A-ATPase proceeds by a
17	discrete structural transition between the three rotational states, i.e., the potential barrier to

1	the structural transition of AB_{closed} to AB_{open} , accompanied by release of ADP and Pi, is
2	overcome by both a zipper motion of AB_{open} by the bound ATP and ATP hydrolysis in AB_{semi} .
3	Since the ATP hydrolysis reaction is a heat dissipation process, the structural transition of
4	AB_{semi} to AB_{closed} associated with the ATP hydrolysis occurs spontaneously and irreversibly,
5	resulting in a unidirectionality of the 120° steps of rotor. In other words, our model explains
6	the unidirectional rotation by a ratchet-like mechanism driven by ATP hydrolysis, rather than
7	the power stroke model proposed previously for F_1 -ATPase ^{5,33} .
8	V/A -ATPase and F_0F_1 are molecular machines based on the same construction principle,
9	and thus are likely to share the same rotary mechanism. Importantly, for the thermophilic F_1 ,
10	the first 120° rotation step also includes $\sim 80^{\circ}$ and $\sim 40^{\circ}$ substeps, suggesting the existence of
11	at least one additional catalytic intermediate of $F_1^{5,27,34}$. A recent structural study of
12	thermophilic F ₁ -ATPase indicated a possible intermediate structure responsible for the
13	substeps ³² . In the V/A-ATPase, any intermediate structure containing phosphate after ADP
14	or Pi release is likely to be an unstable state, and therefore studies on the ATP driven rotation
15	of V/A-ATPase have failed to reveal the presence of any substep ¹⁹ .

1 Online Methods

2	Preparation of <i>Tth</i> V/A-ATPase for Biochemical assay and Cryo-EM imaging.
3	The Tth V/A-ATPase containing His3 tags on the C-terminus of each c subunit and
4	the TSSA mutation (S232A and T235S) on the A subunit was isolated from Thermus
5	thermophilus membranes as previously described ²⁴ with the following modifications. The
6	enzyme, solubilized from the membranes with 10 % Triton X-100 was purified by Ni^{2+} -NTA
7	affinity with 0.03 % dodecyl- β -D-maltoside (DDM). For bound nucleotide removal, the
8	eluted fractions containing Tth V/A-ATPase were dialyzed against 200 mM Sodium
9	phosphate, pH 8.0, 10 mM EDTA, and 0.03% DDM over night at 25°C with three buffer
10	changes, followed by dialysis against 20 mM Tris-Cl, pH 8.0, 1 mM EDTA, and 0.03% DDM
11	(TE buffer) prior to anion exchange chromatography using a 6 ml Resource Q column (GE
12	healthcare). The Tth V/A-ATPase was eluted by a linear NaCl gradient using a TE buffer (0-
13	500 mM NaCl, 0.03% DDM). The eluted fractions containing holo-Tth V/A-ATPase were
14	concentrated to ~ 10 mg/ml using Amicon 100 k molecular weight cut-off fulters (Millipore).
15	For nanodisc incorporation, the 1,2-Dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC,
16	Avanti) was used to form lipid bilayers in reconstruction as previously described ¹⁶ . Purified
17	Tth V/A-ATPase solubilized in 0.03 % n-Dodecyl-β-D-maltoside (DDM) was mixed with

1	the lipid stock and membrane scaffold protein MSP1E3D1 (Sigma) at a specific molar ratio
2	V_oV_1 : MSP: DMPC lipid = 1: 4: 520 and incubated on ice for 0.5 h. Then, 200 µL of Bio
3	Beads SM-2 equilibrated with a wash buffer (20 mM Tris-HCl, pH8.0, 150 mM NaCl) was
4	added to the 500 μL mixture. After 2 hours incubation at 4°C with gentle stirring, an
5	additional 300 μL of Bio Beads was added and the mixture incubated overnight at 4°C to
6	form the nanodiscs. The supernatant of the mixture containing nanodisc-Tth V/A-ATPase
7	(nd-V/A-ATPase) was loaded onto the Superdex 200 Increase 10/300 column equilibrated
8	with wash buffer. The peak fractions were collected, analyzed by SDS-PAGE and
9	concentrated to ~4 mg/mL. The prepared nd-V/A-ATPase was immediately used for
10	biochemical assay or cryo-grid preparation, since <i>nd</i> -V/A-ATPase aggregates within a few
11	days.

12 Biochemical assay

13 The quantitative analysis of bound nucleotides of *Tth* V/A-ATPase was carried out 14 using anion exchange high performance liquid chromatography¹³. Bound nucleotides were 15 released from the enzyme by addition of 5 μ l of 60% perchloric acid to 50 μ l of the enzyme 16 solution. Thereafter, the mixture was incubated on ice for 10 min. Then, 5 μ l of 5 17 M K₂CO₃ solution was added and the mixture incubated on ice for 10 min. The resulting

1	pellet was removed by centrifugation at 4°C. The supernatant was applied to a Cosmopak-
2	200 column equilibrated with 0.1 M sodium-phosphate buffer (pH 7.0). The column was
3	eluted isocratically with the same buffer at a flow rate of 0.8 ml/min. The nucleotide was
4	monitored at 258 nm. The peak area was determined by automatic integration.
5	ATPase activity was measured at 25°C with an enzyme-coupled ATP-regenerating
6	system, as described previously ¹³ . The reaction mixture contained 50 mM Tris-HCl (pH 8.0),
7	100 mM KCl, different concentrations of ATP-Mg, 2.5 mM phosphoenolpyruvate (PEP), 50
8	μ g/ml pyruvate kinase (PK), 50 μ g/ml lactate dehydrogenase, and 0.2 mM NADH in a final
9	volume of 2 ml. The reaction was started by addition of 20 pmol <i>nd</i> V/A-ATPase to 2 ml
10	of the assay mixture, and the rate of ATP hydrolysis monitored as the rate of oxidation of
11	NADH determined by the absorbance decrease at 340 nm.
12	Cryo-EM imaging of <i>Tth</i> V/A-ATPase.
13	Sample vitrification was performed using a semi-automated vitrification device
14	(Vitrobot, FEI). For <i>nd</i> -V/A-ATPase that underwent nucleotide removal, hereafter referred

15 as nucfree *nd*-V/A-ATPase, 2.4 μ l of sample solution at a concentration of 3 mg/ml (2 μ M)

- 16 was applied to glow discharged Quantifoil R1.2/1.3 molybdenum grid discharged by Ion
- 17 Bombarder (Vacuum Device) for 1 min. The grid was then automatically blotted once from

both sides with filter paper for 6 s blot time. The grid was then plunged into a liquid ethane
with no delay time.

3	The reaction basal buffer (RB buffer) containing 50 mM Tris-Cl, pH 8.0, 100 mM
4	KCl, and 2 mM MgCl ₂ was used for different reaction conditions. For saturated ATP or
5	ATP waiting condition, 4 μ M of nucfree <i>nd</i> -V/A-ATPase was mixed with same volume of
6	x2 RB buffer containing 10 mM PEP, 200 μ g/ml of PK, 12 mM or 100 μ M of ATP-Mg. Then
7	the mixtures were incubated for 120 sec or 300 sec at 25 °C, followed by blotting and
8	vitrification, respectively. For the ATP γ S saturated condition, 4 μ M of nucfree <i>nd</i> -V/A-
9	ATPase was mixed with the same volume of x2 RB buffer containing 8 mM ATPγS-Mg,
10	then incubated for 300 sec at 25 °C, followed by the blotting and vitrification.
11	With the exception of the saturated ATP γ S condition, cryo-EM imaging was
12	performed with a Titan Krios (FEI/Thermo Fisher) operating at 300kV acceleration voltage
13	and equipped with a direct K3 (Gatan) electron detector in electron counting mode (CDS).
14	Data collection was carried out using SerialEM software ³⁵ at a calibrated magnification of
15	0.88 Å pixel ⁻¹ (x 81,000) and total dose of 50.0 e^{-} Å ⁻² (or 1.0 e^{-} Å ⁻² per frame) (where e^{-}
16	specifies electrons) with total 5 s exposure time. The defocus range was -0.8 to -2.0 μ m. The
17	data were collected as 50 movie frames.

1	For the saturated ATP _γ S condition, Cryo-EM movie collection was performed with a
2	CRYOARM 300 (JEOL) operating at 300 keV accelerating voltage and equipped with a K3
3	(Gatan) direct electron detector, in electron counting mode (CDS) using the data collection
4	software serialEM. The pixel size was 1.1 Å/pix (x60,000) and a total dose of 50.0 e ⁻ Å ⁻²
5	(1.0 e ⁻ Å ⁻² per frame) with a total 3.0 s exposure time (50 frames) with a defocus range of -
6	1.0 to -3.5 μm.

7 Image processing.

Image processing steps for each reaction condition are summarized in Figure S3 A-8 D. Image analysis software, Relion 3.1 and Cryosparc 3.2, were used^{36,37}. CTFFIND 4.1 9 and MotionCor2 were used for CTF estimation and movie correction in Relion^{38,39}. Topaz 10 software was used for machine-learning based particle picking⁴⁰. We started with 15,317 11 movies for the nucleotide free enzyme (nucfree nd-V/A-ATPase), 13,164 movies for 12 saturated ATP condition, 15,711 movies for saturated ATP condition, and 17,522 movies for 13 14 ATPyS condition. The software used in the steps is indicated in the figure. Autopicking based on template matching or based on Topaz machine-learning resulted in 4,354,341 particles for 15 the nucfree nd-V/A-ATPase, 2,300,834 particles for the ATP saturated condition, 1,671,397 16 particles for the ATP waiting condition, and 4,677.284 particles for the ATPyS waiting 17

1	condition. Particles were extracted at 5x the physical pixel size from the movie-corrected
2	micrographs and selected using 2D or 3D classification (nucfree nd-V/A-ATPase; 132,904
3	particles, saturated ATP; 188,673 particles, ATP waiting; 186,928 particles, ATP _γ S; 197,960
4	particles). The selected particles were extracted at full pixel size and subjected to 3D auto-
5	refinement refollowed by CTF refinement by Bayesian polishing. Another round of 3D auto-
6	refine, CTF refinement, and a final round of masked auto-refinement gave holo-V/A-ATPase
7	maps at between 2.7 \sim 6.3 Å resolution. The membrane domain was visible but not
8	particularly clear compared to the hydrophilic V_1 domain in a holo-enzyme map. This
9	seemed to be due to the structural flexibility between the membrane domain and V_1 in the
10	holo-enzyme. Focused refinement with signal subtraction targeting the V1EG region
11	improved the map quality of the V_1EG region (Figure S3A-D). The refinements provided the
12	density maps for V_1EG under each condition at 2.8 - 4.1 Å resolution. After the focused
13	refinement, masked classification on A_{open} and B_{semi} subunits was carried out to classify the
14	conformational differences. Resolution was based on the gold standard Fourier shell
15	correlation = 0.142 criterion.

16 Model building and refinement.

1	To generate the atomic model for the V_1EG region of V/A-ATPase, the individual subunits
2	of the V_1EG model from the previous structure of V/A-ATPase (PDBID: 6QUM) were fitted
3	into the density map as rigid bodies ²⁵ with particular focus on the N terminal region of EG
4	stalk (E; 1-77 aa., G; 2-33 aa.). The rough initial model was refined against the map with
5	Phenix suite phenix.real_space_refine program ⁴¹ . The initial model was extensively
6	manually corrected residue by residue in COOT ⁴¹ in terms of side-chain conformations.
7	Peripheral stalks were removed due to low resolution in this region. The corrected model was
8	again refined by the phenix.real_space_refine program with secondary structure and
9	Ramachandran restraints, then the resulting model was manually checked by COOT. This
10	iterative process was performed for several rounds to correct remaining errors until the model
11	was in good agreement with geometry, as reflected by the MolProbity score of 1.08~1.74 and
12	EMRinger score of 1.59 \sim 3.94 ^{42,43} . For model validation against over-fitting, the built
13	models were used for calculation of FSC curves against both half maps, and compared with
14	the FSC of the final model against the final density map used for model building by
15	phenix.refine program. The statistics of the obtained maps and the atomic model were
16	summarized in Table S4. RMSD values between the atomic models were calculated using
17	UCSF chimera ⁴⁴ . All the figures were rendered using UCSF chimeraX ⁴⁵ .

1 References

2	1.	Kuhlbrandt, W. Structure and Mechanisms of F-Type ATP Synthases. Annu Rev
3		<i>Biochem</i> 88 , 515-549 (2019).
4	2.	Forgac, M. Vacuolar ATPases: rotary proton pumps in physiology and
5		pathophysiology. Nat Rev Mol Cell Biol 8, 917-29 (2007).
6	3.	Yokoyama, K. & Imamura, H. Rotation, structure, and classification of prokaryotic
7		V-ATPase. J Bioenerg Biomembr 37, 405-10 (2005).
8	4.	Guo, H. & Rubinstein, J.L. Cryo-EM of ATP synthases. Curr Opin Struct Biol 52,
9		71-79 (2018).
10	5.	Yoshida, M., Muneyuki, E. & Hisabori, T. ATP synthase - A marvellous rotary
11		engine of the cell. Nature Reviews Molecular Cell Biology 2, 669-677 (2001).
12	6.	Boyer, P.D. The ATP synthasea splendid molecular machine. Annu Rev Biochem
13		66 , 717-49 (1997).
14	7.	Abrahams, J.P., Leslie, A.G., Lutter, R. & Walker, J.E. Structure at 2.8 A resolution
15		of F1-ATPase from bovine heart mitochondria. Nature 370, 621-8 (1994).
16	8.	Allegretti, M. et al. Horizontal membrane-intrinsic α -helices in the stator a-subunit
17		of an F-type ATP synthase. Nature 521, 237-40 (2015).

1	9.	Mazhab-Jafari, M.T. et al. Atomic model for the membrane-embedded VO motor of
2		a eukaryotic V-ATPase. Nature 539, 118-122 (2016).
3	10.	Imamura, H. et al. Evidence for rotation of V1-ATPase. Proc Natl Acad Sci USA
4		100, 2312-5 (2003).
5	11.	Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K., Jr. Direct observation of the
6		rotation of F1-ATPase. Nature 386, 299-302 (1997).
7	12.	Yokoyama, K., Oshima, T. & Yoshida, M. Thermus thermophilus membrane-
8		associated ATPase. Indication of a eubacterial V-type ATPase. J Biol Chem 265,
9		21946-50 (1990).
10	13.	Yokoyama, K. et al. V-ATPase of Thermus thermophilus is inactivated during ATP
11		hydrolysis but can synthesize ATP. J Biol Chem 273, 20504-10 (1998).
12	14.	Toei, M. et al. Dodecamer rotor ring defines H+/ATP ratio for ATP synthesis of
13		prokaryotic V-ATPase from Thermus thermophilus. Proc Natl Acad Sci USA 104,
14		20256-61 (2007).
15	15.	Yokoyama, K., Nakano, M., Imamura, H., Yoshida, M. & Tamakoshi, M. Rotation
16		of the proteolipid ring in the V-ATPase. J Biol Chem 278, 24255-8 (2003).

1	16.	Kishikawa, J.I. et al. Mechanical inhibition of isolated V(o) from V/A-ATPase for
2		proton conductance. <i>Elife</i> 9(2020).
3	17.	Nakanishi, A., Kishikawa, J.I., Tamakoshi, M., Mitsuoka, K. & Yokoyama, K. Cryo
4		EM structure of intact rotary H(+)-ATPase/synthase from Thermus thermophilus.
5		Nat Commun 9, 89 (2018).
6	18.	Imamura, H. et al. Rotation scheme of V1-motor is different from that of F1-motor.
7		<i>Proc Natl Acad Sci U S A</i> 102 , 17929-33 (2005).
8	19.	Furuike, S. et al. Resolving stepping rotation in Thermus thermophilus H(+)-
9		ATPase/synthase with an essentially drag-free probe. Nat Commun 2, 233 (2011).
10	20.	Bai, X.C., McMullan, G. & Scheres, S.H. How cryo-EM is revolutionizing
11		structural biology. Trends Biochem Sci 40, 49-57 (2015).
12	21.	Cheng, Y. Single-particle cryo-EM-How did it get here and where will it go.
13		Science 361 , 876-880 (2018).
14	22.	Sobti, M. et al. Cryo-EM reveals distinct conformations of E. coli ATP synthase on
15		exposure to ATP. Elife 8(2019).

1	23.	Hiraizumi, M., Yamashita, K., Nishizawa, T. & Nureki, O. Cryo-EM structures
2		capture the transport cycle of the P4-ATPase flippase. Science 365, 1149-1155
3		(2019).
4	24.	Nakano, M. et al. ATP hydrolysis and synthesis of a rotary motor V-ATPase from
5		Thermus thermophilus. <i>J Biol Chem</i> 283 , 20789-96 (2008).
6	25.	Zhou, L. & Sazanov, L.A. Structure and conformational plasticity of the intact
7		Thermus thermophilus V/A-type ATPase. Science 365(2019).
8	26.	Menz, R.I., Walker, J.E. & Leslie, A.G. Structure of bovine mitochondrial F(1)-
9		ATPase with nucleotide bound to all three catalytic sites: implications for the
10		mechanism of rotary catalysis. Cell 106, 331-41 (2001).
11	27.	Adachi, K. et al. Coupling of rotation and catalysis in F(1)-ATPase revealed by
12		single-molecule imaging and manipulation. Cell 130, 309-21 (2007).
13	28.	Löbau, S., Weber, J. & Senior, A.E. Nucleotide occupancy of F1-ATPase catalytic
14		sites under crystallization conditions. FEBS Lett 404, 15-8 (1997).
15	29.	Boyer, P.D. Catalytic site forms and controls in ATP synthase catalysis. <i>Biochim</i>
16		Biophys Acta 1458, 252-62 (2000).

1	30.	Watanabe, R. & Noji, H. Timing of inorganic phosphate release modulates the
2		catalytic activity of ATP-driven rotary motor protein. Nat Commun 5, 3486 (2014).
3	31.	Watanabe, R., Iino, R. & Noji, H. Phosphate release in F1-ATPase catalytic cycle
4		follows ADP release. Nat Chem Biol 6, 814-20 (2010).
5	32.	Sobti, M., Ueno, H., Noji, H. & Stewart, A.G. The six steps of the complete F(1)-
6		ATPase rotary catalytic cycle. Nat Commun 12, 4690 (2021).
7	33.	Wang, H. & Oster, G. Energy transduction in the F1 motor of ATP synthase. Nature
8		396 , 279-82 (1998).
9	34.	Yasuda, R., Noji, H., Yoshida, M., Kinosita, K., Jr. & Itoh, H. Resolution of distinct
10		rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410,
11		898-904 (2001).
12	35.	Mastronarde, D.N. Automated electron microscope tomography using robust
13		prediction of specimen movements. J Struct Biol 152, 36-51 (2005).
14	36.	Punjani, A., Rubinstein, J.L., Fleet, D.J. & Brubaker, M.A. cryoSPARC: algorithms
15		for rapid unsupervised cryo-EM structure determination. Nat Methods 14, 290-296
16		(2017).

1	37.	Scheres, S.H. RELION: implementation of a Bayesian approach to cryo-EM
2		structure determination. J Struct Biol 180, 519-30 (2012).
3	38.	Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from
4		electron micrographs. J Struct Biol 192, 216-21 (2015).
5	39.	Zheng, S.Q. et al. MotionCor2: anisotropic correction of beam-induced motion for
6		improved cryo-electron microscopy. Nat Methods 14, 331-332 (2017).
7	40.	Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle
8		picking in cryo-electron micrographs. Nat Methods 16, 1153-1160 (2019).
9	41.	Liebschner, D. et al. Macromolecular structure determination using X-rays,
10		neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct
11		<i>Biol</i> 75 , 861-877 (2019).
12	42.	Barad, B.A. et al. EMRinger: side chain-directed model and map validation for 3D
13		cryo-electron microscopy. Nat Methods 12, 943-6 (2015).
14	43.	Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular
15		crystallography. Acta Crystallogr D Biol Crystallogr 66, 12-21 (2010).
16	44.	Pettersen, E.F. et al. UCSF Chimeraa visualization system for exploratory research
17		and analysis. J Comput Chem 25, 1605-12 (2004).

1 45. Pettersen, E.F. et al. UCSF ChimeraX: Structure visualization for researchers,

2	educators, and developers. Protein Sci 30, 70-82 (2021).
3	

1 Acknowledgements

2	We are grateful to all the members of the Yokoyama Lab for their continuous support and
3	technical assistance. Our research was supported by Grant-in-Aid for Scientific Research
4	(JSPS KAKENHI) Grant Number 20H03231 to K.Y., 20K06514 to J.K., and Grant-in-Aid
5	for JSPS Fellows Grant Number 20J00162 to A.Nakanishi, and Takeda Science foundation
6	to K.Y. Our research was also supported by Platform Project for Supporting Drug
7	Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and
8	Life Science Research (BINDS)) from AMED under Grant Number JP17am0101001
9	(support number 1312), Grants-in-Aid from "Nanotechnology Platform" of the Ministry of
10	Education, Culture, Sports, Science and Technology (MEXT) to K.M. (Project Number.
11	12024046), and the Research Program for Next Generation Young Scientists of "Five-star
12	Alliance" in "NJRC Mater. & Dev." under Grant Number 20215008 to A. Nakano.

13

14 Author contributions

15 KY, JK, A.Nakanishi and A.Nakano designed, performed and analyzed the experiments.

16 JK, A.Nakanishi, KY, A.Nakano, AF, and SS analyzed the data and contributed to the

17 preparation of the samples. TK and KM provided technical support and conceptual advice.

1 KY designed and supervised the experiments and wrote the manuscript. All authors

2 discussed the results and commented on the manuscript.

3

4 **Declaration of interests**

5 The authors declare no conflicts of interest associated with this manuscript.

6

1 Figure legends

2	Fig. 1: Schematic representation of rotary ATPases and the conventional rotary
3	mechanism. a, Illustration of subunit composition of different types of rotary ATPases;
4	prokaryotic V/A-ATPase (<i>left</i>), eukaryotic V-ATPase (<i>middle</i>), prokaryotic F-ATPase
5	(<i>right</i>). The stators are represented in various colors and the rotors are represented in grey.
6	b , A schematic model of the rotary catalytic mechanism of the V/A-ATPase. When
7	powered by ATP, the central rotor composed of $D_1F_1d_1c_{10}$ (grey) rotates against a
8	surrounding stator composed of A ₃ B ₃ E ₂ G ₂ a ₁ (white), coupled with proton translocation
9	across the membrane. \mathbf{c} , The conventional catalytic cycle of V/A-ATPase. At low ATP
10	concentration, the ATP binding dwell time is increased. ATP γ S also prolongs the ATP
11	hydrolysis dwell.
12	
13	Fig. 2: Cryo-EM density map and the atomic model for nucleotide free V/A-ATPase.
14	a, Cryo-EM density map of whole V/A-ATPase of state1 in the absence of nucleotide
15	($V_{nucfree}$ structure). b , Cryo-EM density map of V_1EG of state1 without nucleotide (<i>left</i>).
16	Cross sections of the nucleotide binding sites (right upper) and A3B3 C-terminal region
17	(<i>right lower</i>) viewed from top. \mathbf{c} , Comparison of the AB dimer structures in V _{nucfree} . AB

1	dimers are shown as space filling models and superimposed on the $\boldsymbol{\beta}$ barrel domain (A
2	subunit 1-70 a.a.). Left; ABopen (solid) vs ABsemi (semi-transparent), middle; ABopen (solid)
3	vs AB_{closed} (semi-transparent), and AB_{semi} (solid) vs AB_{closed} (semi-transparent). d,
4	Comparison between each AB subunit in $V_{nucfree}$. The subunits are shown as wire
5	representation. A and B subunits are superimposed on the β barrel domain.
6	
7	Fig. 3: Structures of nucleotide binding sites obtained in each condition. upper panels:
8	$V_{nucfree}$ (a), V_{prehyd} (b), V_{3nuc} (c), and V_{2nuc} (d) viewed from the cytosolic side. Scale bar is
9	20 Å. Magnified views of the three nucleotide binding sites (AB _{open} , AB _{semi} , and AB _{closed})
10	in each structure are shown in the rows below. Cryo-EMmaps are represented as semi-
11	translucent. Bound nucleotides and Mg ions are shown in ball-and-stick and sphere
12	representation, respectively. Scale bar is 4 Å
13	
14	Fig. 4: Comparison between state1-1 and 1-2 in each subunit of V3nuc. The subunits of
15	state1-1 and 1-2 were superimposed on the β barrel domain (A: 1-70 a.a., B: 1-70 a.a.).
16	Ribbon models are colored by the <i>rmsd</i> values calculated for the atoms of the main chain;
17	gray (small changes) to red (large changes). Magnified views of the CHBs are represented

in the lower panels as wire models. The models of state1-1 are represented in gray, and 1 2 state1-2 are represented in the different colors. **a**, subunits in AB_{closed}, **b**, subunits in AB_{semi}, c, subunits in AB_{open}. 3 4 Fig. 5: Coordination of nucleotides in the binding sites of V_{3nuc} and V_{prehvd}. Left 5 panels; Comparison of the three nucleotide binding sites (AB_{open} (a), AB_{semi} (b), and 6 7 AB_{closed} (c)) of state 1-1 of V_{3nuc} shown with colored (green, blue and pink) atoms and bonds, and main chain, and state1-1 of V_{prehvd} shown with grey atoms, bonds and main 8 *Right panels;* Schematic representations of the coordination of the ATP group in 9 chain. the three binding sites of V_{3nuc} and V_{prehyd} in parentheses. The distances between the atoms 10 are shown in dotted lines. All distances are in Å. 11 12 13 Fig. 6: Chemo-Mechanical cycle of V/A-ATPase driven by ATP hydrolysis. The structures of V/A-ATPase viewed from the cytosolic side are shown as ribbon models. The 14 coiled coil of the DF subunits is shown in grey. The bound ATP molecules are 15 highlighted in sphere representations. State1-1 and 1-2 of V_{2nuc} are in equilibrium and are 16

17 fluctuating. These structures transit to state 1-1 and 1-2 of V_{3nuc} by ATP binding to AB_{open},

1	without a 120° rotation step of the DF rotor. V_{3nuc} in state1-1 and state1-2 are also in
2	equilibrium. ATP hydrolysis at AB _{semi} and zipper motion at AB _{open} occur simultaneously.
3	This triggers the transition of V_{3nuc} in state1-2 to V_{2nuc} state2-2 together with the
4	120° rotation step and simultaneous release of ADP and P <i>i</i> . State2 of V_{2nuc} returns to
5	state1 via state3 of V_{2nuc} by the same process. Asterisks indicate the structures which were
6	not identified in this study.
7	
8	Fig. 7: The rotary mechanism of V/A-ATPase powered by ATP hydrolysis. The
9	schematic models of AB_{open} , AB_{semi} , and AB_{closed} are shown in green, pink, and blue,
10	respectively. The coiled coil region of the D subunit in contact with A ₃ B ₃ is shown in
11	grey. In the ADP inhibited state, the entrapped ADP in AB_{closed} hampers structural
12	transition of AB_{open} to AB_{semi} by binding of ATP to AB_{open} . The $V_{nucfree}$ in ground state is
13	activated by the binding of ATP to the catalytic sites. In V_{2nuc} awaiting ATP binding,
14	binding of ATP to AB_{open} does not induce the 120° rotation step. In V_{3nuc} , both zipper
15	motion of AB_{open} and ATP hydrolysis in AB_{semi} induce unzipper motion of AB_{closed}
16	accompanying with the release of ADP and Pi. The catalytic events in the three AB

- 1 dimers occurs simultaneously with the 120° step of the DF shaft, resulting in structural
- 2 transition of state1 of V_{3nuc} to state2 of V_{2nuc} .

1 Figures

- 3 Fig. 1: Schematic representation of rotary ATPases and the conventional rotary
- 4 mechanism.
- 5

2 Fig. 2: Cryo-EM density map and the atomic model for nucleotide free V/A-ATPase.

2 Fig. 3: Structures of nucleotide binding sites obtained in each condition.

- 2 Fig. 4: Comparison between state1-1 and 1-2 in each subunit of V_{3nuc}.
- 3

2 Fig. 5: Coordination of nucleotides in the binding sites of V_{3nuc} and V_{prehyd}.

2 Fig. 6: Chemo-Mechanical cycle of V/A-ATPase driven by ATP hydrolysis.

2 Fig. 7: The rotary mechanism of V/A-ATPase powered by ATP hydrolysis.

3