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Abstract 44 

Protection against severe acute respiratory syndrome coronavirus 2 (SARS-45 

CoV-2) infection and associated clinical sequelae requires well-coordinated 46 

metabolic and immune responses that limit viral spread and promote recovery of 47 

damaged systems. In order to understand potential mechanisms and interactions 48 

that influence coronavirus disease 2019 (COVID-19) outcomes, we performed a 49 

multi-omics analysis on hospitalised COVID-19 patients and compared those with 50 

the most severe outcome (i.e. death) to those with severe non-fatal disease, or 51 

mild/moderate disease, that recovered. A distinct subset of 8 cytokines and 140 52 

metabolites in sera identified those with a fatal outcome to infection. In addition, 53 

elevated levels of multiple pathobionts and lower levels of protective or anti-54 

inflammatory microbes were observed in the faecal microbiome of those with the 55 

poorest clinical outcomes. Weighted gene correlation network analysis (WGCNA) 56 

identified modules that associated severity-associated cytokines with tryptophan 57 

metabolism, coagulation-linked fibrinopeptides, and bile acids with multiple 58 

pathobionts. In contrast, less severe clinical outcomes associated with clusters of 59 

anti-inflammatory microbes such as Bifidobacterium or Ruminococcus, short chain 60 

fatty acids (SCFAs) and IL-17A. Our study uncovered distinct mechanistic modules 61 

that link host and microbiome processes with fatal outcomes to SARS-CoV-2 62 

infection. These features may be useful to identify at risk individuals, but also 63 

highlight a role for the microbiome in modifying hyperinflammatory responses to 64 

SARS-CoV-2 and other infectious agents.  65 
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Introduction 66 

 Infection with SARS-CoV-2 leads to a wide variety of potential outcomes from 67 

asymptomatic responses to acute respiratory distress and death1,2. While certain 68 

demographic factors such as age, male gender and comorbidities that include 69 

obesity, cardiometabolic diseases and diabetes are associated with an increased 70 

risk for more severe disease, the molecular mechanisms that underpin disease 71 

pathophysiology remain poorly understood. Indeed, we still do not know if severe 72 

outcomes are due to direct effects of viral replication within target cells, to a 73 

dysregulated host immune response to the virus, to pre-existing deficits in 74 

mechanisms of host resilience to infection, or to a combination of these factors3,4,5. 75 

 Initially SARS-CoV-2 infects angiotensin-converting enzyme 2 (ACE-2) 76 

expressing epithelial cells of the upper respiratory tract. If the infection remains 77 

limited to the upper respiratory tract then this is usually associated with a mild 78 

disease course and rapid recovery. If the virus is not eliminated and infection 79 

persists then other types of ACE-2 expressing cells can become infected6. In 80 

addition, viral-induced metabolic reprogramming and exaggerated immune 81 

responses generate a wide range of inflammatory mediators that disrupt organ 82 

homeostasis, impact host metabolism, drive a hypercoagulation state, impair 83 

epithelial barrier function and destroy host cells and tissues7,8,9,10,11. However, even 84 

among those who develop this cytokine storm, many can still make a full recovery, 85 

suggesting that additional factors may modulate host susceptibility to the most 86 

severe outcomes associated with COVID-19. One of these resilience factors might 87 

include the microbiome12,13,14,15. 88 

 Human mucosal surfaces and body cavities harbour diverse communities of 89 

commensal microbes that play essential roles in regulation of host metabolic 90 
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responses, epithelial barrier function, immune education and immune 91 

regulation16,17,18,19,20. These effects are partially induced by activation of host pattern 92 

recognition receptors to microbial-derived danger signals, but increasingly the role 93 

for bacterial metabolites in shaping host immune function is being recognised21,22,23. 94 

Immunoregulatory bacterial metabolites can trigger host G protein-coupled receptors 95 

(GPCRs), aryl hydrocarbon receptors (AhRs), nuclear hormone receptors such as 96 

the farnesoid X receptor, or can directly modulate gene expression through 97 

epigenetic mechanisms. Importantly, many immunoregulatory bacterial metabolites 98 

are derived from dietary substrates (e.g. fiber), linking diet and lifestyle to protection 99 

from infection via microbial mechanisms. 100 

In this study, our primary aim was to identify the immune-metabolic-microbial 101 

interactions and biomarkers that predict the most severe outcomes to SARS-CoV-2 102 

infection in a well characterised cohort of patients hospitalised with COVID-19. In 103 

addition, we wished to identify clusters of patient metadata features that might 104 

provide novel mechanistic insights into the disease pathophysiology. Lastly, we 105 

wished to extend our understanding of the molecular processes within the holobiont 106 

that mediate resilience to severe biological challenges, such as viral infection. 107 
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Results 108 

Systemic levels of immune mediators correlate with disease severity 109 

While changes in circulating cytokine levels due to SARS-CoV-2 infection are 110 

already well described, the immune mediators that distinguish survivors from non-111 

survivors in severely ill patients have not been clearly identified. To better 112 

understand the immune processes that might distinguish these patients, we 113 

measured the levels of 54 immune mediators in the earliest serum sample obtained 114 

following study enrolment after admission to the intensive care unit (ICU; severe 115 

COVID-19) or the hospital ward (mild to moderate COVID-19) from 172 hospitalised 116 

patients with PCR-confirmed SARS-CoV-2 causing COVID-19. Patient demographic 117 

details are shown in Table 1.  Those with mild/moderate COVID-19 (n=42) were 118 

younger, more likely to be female, less frequently obese, required fewer medications 119 

and had fewer comorbidities compared to those with severe COVID-19 (n=130). 120 

However, there were no differences in demographics, medication use or 121 

comorbidities in those severely ill patients that survived infection (n=89), compared 122 

to those COVID-19 patients with a fatal outcome (n=41). In contrast, principal 123 

component analysis of serum immune mediators demonstrated a clear separation 124 

between patients with different COVID-19 disease outcomes (Fig. 1a). Compared to 125 

healthy volunteers (n=29), levels of 36 circulating immune mediators were 126 

significantly differed (30 higher and 6 lower) in those hospitalised with COVID-19 127 

(Fig. 1b and Supplementary Fig. 1). Of these mediators, levels of 28 were 128 

significantly different between patients with mild/moderate COVID-19 compared to 129 

patients with severe disease (Fig. 1b). Within the severely ill group, the levels of 8 130 

circulating immune mediators (soluble intercellular adhesion molecule-1 (sICAM-1), 131 

monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-8, macrophage-derived 132 
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chemokine (MDC), interferon gamma-induced protein-10 (IP-10), IL-15, IL-1 receptor 133 

antagonist (RA) and thymic stromal lymphopoietin (TSLP)) were significantly 134 

different between those that survived and those that died (Fig. 1b and Fig. 1c). 135 

 136 

Systemic metabolic responses associated with disease severity 137 

In addition to measuring serum cytokines, we quantified and compared 138 

metabolite levels in the first serum sample obtained following study recruitment after 139 

admission to the ICU or hospital ward for COVID-19 patients with mild/moderate 140 

disease (n=25), COVID-19 patients with severe disease that survived (n=75) or 141 

COVID-19 patients with severe disease that succumbed to death  (n=39). Distinct 142 

differences in circulating metabolites were evident between each of the groups (Fig. 143 

2a and Fig. 2b). Metabolic processes were dramatically different in patients during 144 

acute SARS-CoV-2 infection, whereby levels of 377 metabolites were significantly 145 

different (adjusted p<0.05) between healthy volunteers (n=20) and those with 146 

mild/moderate COVID-19 (Fig. 2b). These differences were further exaggerated in 147 

COVID-19 patients with severe disease (583 metabolites, adjusted p<0.05), in 148 

particular those with a fatal outcome (659 metabolites, adjusted p<0.05), when 149 

compared to healthy volunteers. Within the severely ill patients, 140 metabolites 150 

distinguished those that survived versus those that died. The metabolites that 151 

contribute most to the differences between the groups included those involved in 152 

tryptophan metabolism, polyamine metabolism, histidine metabolism, lipid 153 

metabolism, bile acid metabolism and antioxidant responses such as the 154 

plasmalogens (Fig. 2c and Supplementary Fig. 2). Random forest analysis 155 

suggested a good discriminatory power for distinguishing COVID-19 disease severity 156 
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or fatality based solely on a selection of circulating metabolites (Fig. 2c and 157 

Supplementary Fig. 3), underlining the robustness of these differences. 158 

Given the substantial and significant differences in metabolite levels, we 159 

examined in more detail the most significantly impacted pathways that associated 160 

with COVID-19 severity (Fig. 3a). Interestingly, levels of sulphonated bile acids were 161 

particularly disrupted with disease severity. Host tryptophan metabolism was 162 

associated with a heavy depletion of tryptophan, with enhanced generation of 163 

kynurenate, kynurenine and quinolinate, at the expense of serotonin synthesis in 164 

COVID-19 patients (Fig. 3a and Supplementary Fig. 4a). In contrast, microbial 165 

tryptophan metabolites were present at lower levels in the serum of those with the 166 

worst outcome (Fig. 3a and Supplementary Fig. 4b). Changes in circulating microbial 167 

metabolites may be due in part to an impaired gut barrier (as indicated by increased 168 

serum SCFA levels and lower citrulline levels, Supplementary Fig. 4c and 4d), or 169 

may reflect changes in the composition or metabolism of the gut microbiome. 170 

Overall, metabolites associated with microbial metabolism (as described by Bar et 171 

al24) were significantly altered in those with severe disease and those with a fatal 172 

outcome (Supplementary Fig. 4e).  173 

Next, we performed a weighted co-expression network analysis restricted to 174 

the COVID-19 patients, to identify communities of co-abundant metabolites. Positive 175 

correlations between metabolites (Spearman, adjusted p<0.0005) were used to build 176 

the network. The analysis identified six communities (c1-c6) of highly intercorrelated 177 

metabolites based on the Leiden algorithm [2 iterations, ModularityVertexPartition, 178 

weighted network  (Fig. 3b)].  Primary and secondary bile acid metabolism are 179 

contained in c3, SCFA in c5, while tryptophan and histidine metabolism are in c1, c2 180 

and c5 (Fig. 3c). The central community (c1) with the most interconnected 181 
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metabolites, central metabolites, and greatest influence on the global dynamics of 182 

the network includes mannose (Fig. 3d), which is a known inflammatory biomarker 183 

and reported to be associated with COVID-19 severity25. Furthermore, the 184 

metabolites that are significantly different between COVID-19 severe patients with or 185 

without a fatal outcome are primarily found within community c1 (Fig. 3e).  186 

 187 

Differences in the gut microbiome associate with disease severity and death 188 

To investigate the possible involvement of the gut microbiome in these 189 

immune and metabolic changes, we profiled the microbiome by sequencing 16S 190 

rRNA gene amplicons from the first faecal samples collected following study 191 

recruitment after admission to the ICU or hospital ward for COVID-19. From the 99 192 

hospitalised COVID-19 patients with available stool samples for 16S amplicon 193 

sequencing, 32 had mild/moderate disease, 45 had severe disease and survived, 194 

while the remaining 22 patients had severe disease with a fatal outcome. Global 195 

measures of microbiome alpha diversity were not different between clinical groups, 196 

with no significant difference detected in Shannon indices as well as in the number of 197 

detected taxa at the level of Operational Taxonomic Units (OTUs), species or genus 198 

levels between the three disease outcome groups (Supplementary Fig. 5). However, 199 

Envfit-based analysis of the Principal Coordinates revealed a significant difference in 200 

gut microbiome composition (beta diversity) between the three COVID-19 disease 201 

severity groups, irrespective of the distance measures used (Fig. 4a and 202 

Supplementary Fig. 6). We next investigated these differences in microbiome profiles 203 

in an unsupervised manner, i.e. without utilizing the disease outcome information. 204 

Using an iterative enterotyping-based approach applied on the Principal coordinates 205 

(See Methods), the microbiomes could be optimally clustered into two configurations 206 
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(MicrobiomeGroup1 and MicrobiomeGroup2), resolved clearly along the first 207 

Principal Coordinate (Fig. 4b and 4c). Notably, there were significant differences in 208 

the proportions of the two distinct microbiome configurations in the clinical outcome 209 

groups (Chi-square test estimate=11.23, p-value = 0.0036, Fig. 4d). 210 

MicrobiomeGroup1 was over-represented in severe COVID-19 patients with a fatal 211 

outcome, while Microbiome Group2 was associated with those with mild/moderate 212 

symptoms. Strikingly, within the severe outcome group, individuals who were 213 

classified into the high-risk MicrobiomeGroup1 had significantly higher levels of 214 

cytokines associated with both fatality and severity (P = 0.02; Mann-Whitney Test), 215 

with higher (albeit not statistically significant) levels of cytokines associated only with 216 

disease severity (P = 0.12, Mann-Whitney Test) (Supplementary Fig. 7). 217 

We next investigated the genus-level composition differences across the two 218 

microbiome configurations by performing ordinary-least square (OLS)-based 219 

regression analysis to measure the association between abundance of microbial 220 

genera and the PCo1 axis values after adjusting for confounders. A total of 9 genera 221 

showed significant associations with PCo1 with FDR ≤ 0.15 (Benjamini-Hochberg 222 

corrected), even after confounder adjustment. While two genus-level groups 223 

(Enterococcus and an unclassified member of the Enterococcaceae) were 224 

associated negatively with PCo1 (high relative abundance in the high risk 225 

MicrobiomeGroup1), the other 7 (comprising Christensenellaceae-R7, Dorea, 226 

Fusicatenibacter and multiple Ruminococcus species) showed the opposite trend 227 

(Fig. 4e). Relaxing the thresholds identified 19 more genera that showed nominally 228 

significant association with PCo1 (P ≤ 0.05). The high risk MicrobiomeGroup1 was 229 

characterized by higher levels of multiple pathobionts (as operationally defined in our 230 

previous work26,27) including Enterococcus, Eggerthella, Lachnoclostridium, 231 
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Erysipelatoclostridium, Streptococcus, Flavonifractor and lower levels of multiple 232 

taxa known to be associated with anti-inflammatory or protective immune responses 233 

(including Faecalibacterium, Agathobacter, Dorea, Coprococcus, Lachnospiraceae, 234 

Christensenellaceae) (Fig. 4e). Many of the observed differences in the microbiome 235 

were significantly associated with changes in levels of circulating immune mediators 236 

(Supplementary Fig. 8). 237 

 238 

Immune-metabolite-microbiome modules correlate with COVID-19 disease outcomes 239 

 Correlation network analysis is a powerful tool for revealing associations of 240 

diverse features within patient datasets. Feature-association networks were 241 

computed using the Weighted gene correlation network analysis (WGCNA) approach 242 

(see Methods) performed on 1,469 features (54 cytokines, 1,146 metabolites and 243 

269 microbial genera) using signed Spearman correlations with a soft-power 244 

threshold of 7 (Supplementary Figure 9a) from the 70 hospitalised COVID-19 245 

patients with complete data for all three data layers. A total of 14 modules (annotated 246 

as different colors) were identified, 5 of which had a significant association with 247 

disease outcome (Benjamini-Hochberg FDR ≤ 0.05) and 2 modules showed nominal 248 

associations (P ≤ 0.05 and FDR ≤ 0.1) (Supplementary Fig. 9b-c) . The module 249 

(annotated as ‘turquoise’) that showed significant positive association with disease 250 

severity and death contained most of the severity associated cytokines (as identified 251 

in Fig. 1), metabolites (Supplementary Fig. 3) and microbial genera identified above 252 

(Fig. 4e), combined with kynurenine associated metabolism products and 253 

coagulation linked fibrinopeptides (Fig. 5a). Two modules (annotated as ‘brown’ and 254 

‘tan’) were nominally positively associated with a poor outcome. Of these, the brown 255 

module contained a triad of pathobionts linked to urobilinogen (Supplementary Fig. 256 
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10a), while the tan module was enriched for sulfonated bile acids (Supplementary 257 

Fig. 10b). In contrast, 4 modules, annotated as ‘red’, ‘blue’, ‘black’ and ‘yellow’, were 258 

significantly negatively associated with COVID-19 severity and death. The first 259 

module (red) contained the anti-inflammatory Ruminococcus_2 clade, linked with 260 

tryptophan, alanine and the SCFAs butyrate/isobutyrate and valerate (Fig. 5b; 261 

Supplementary Fig. 11). The second module (blue) that negatively associated with 262 

disease severity contains a cluster of beneficial microbial taxa (including 263 

Bifidobacterium), bilirubin degradation products, TARC and IL-17A (Supplementary 264 

Fig. 12). The third module (black) exclusively contains metabolites, in particular fatty 265 

acid derivatives (Supplementary Fig. 13), while the final significant module (yellow) 266 

contains Roseburia, Fusicatenibacter, Romboutsia linked with sphingomyelin and 267 

carnitine-derived products (Supplementary Fig. 14).  268 
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Discussion 269 

Despite the substantial literature published on SARS-CoV-2, the molecular 270 

mechanisms underpinning positive versus negative clinical outcomes remain poorly 271 

defined. In this study, we examined the differences in circulating inflammatory 272 

markers and metabolites in sera, and the composition of the gut microbiota, in a 273 

large group of hospitalised patients with COVID-19. We have identified several 274 

potential regulatory nodes whereby integrated immune, metabolic and microbiome 275 

processes contribute to susceptibility or resilience to SARS-CoV-2 infection 276 

associated damage.  277 

Our identification of circulating inflammatory mediators that associate with 278 

COVID-19 disease severity such as CRP and IL-6 are consistent with previous 279 

reports and support the hypothesis that an overly aggressive immune response 280 

contributes to immunopathology and severity28,29. In addition to severity associated 281 

factors, we have identified a subset of eight cytokines that are further dysregulated in 282 

severe patients with a fatal outcome. Higher levels of IP-10 and IL-15 indicate 283 

greater activation of a T helper 1 (Th1)-associated innate anti-viral response, while a 284 

significant reduction in MDC levels may reflect the inhibitory effect of a Th1 285 

environment on Th2 cytokines such as MDC. We were particularly interested in 286 

TSLP as this cytokine is an epithelial cell-derived alarmin, which is released by 287 

injured stromal cells to recruit and activate innate immune cells, and its blockade is 288 

currently being investigated in asthma clinical studies30,31,32. In combination with the 289 

chemokines MCP-1 and IL-8, and sICAM-1 (which modulates leukocyte adhesion 290 

and migration across endothelial cells), elevated TSLP levels indicate a greater 291 

amount of epithelial tissue damage and inflammatory cell recruitment to the 292 

damaged sites in patients who do not recover from SARS-CoV-2 infection. As 293 
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SARS-CoV-2 is a lytic virus, it is possible that viral replication in epithelial cells may 294 

directly drive TSLP levels in sera, although indirect effects on epithelial cells within 295 

the respiratory tract or gut might also induce TSLP release. Importantly, TSLP levels 296 

were previously shown to be elevated in patients with long COVID, suggesting that 297 

long term impacts of SARS-CoV-2 on epithelial cells should be examined in more 298 

detail, potentially guiding future therapeutic interventions33. 299 

Significant metabolic reprogramming and compensatory responses are 300 

evident in COVID-19 patients with severe disease and particularly in those with a 301 

fatal outcome. Decreased serum levels of plasmalogens suggest a significant level 302 

of systemic oxidative stress as these sacrificial phospholipids are preferentially 303 

oxidised to protect more vulnerable membrane lipids such as polyunsaturated fatty 304 

acids34. Altered tryptophan metabolism was particularly interesting to observe as the 305 

profound shutdown in serotonin production coupled with accumulation of quinolinic 306 

acid indicated a shift from production of neuroprotective compounds to production of 307 

neurotoxic compounds, which might be clinically relevant35. An imbalance between 308 

host and microbial tryptophan metabolism was also evident as serum kynurenine 309 

levels increased, while products of bacterial tryptophan metabolism such as 310 

indoleacetic acid were significantly decreased in those with severe and fatal 311 

disease36. These are important AhR ligands that can contribute to immune regulatory 312 

responses, can drive an “exhaustion” phenotype in immune effector cells, and are 313 

important for maintenance of the gut epithelial barrier by induction of IL-2237,38. Other 314 

significantly different metabolites such as the polyamines putrescine and spermidine 315 

play important roles in protecting against inflammatory responses within the 316 

airways39. In addition, changes in secondary bile acid serum levels indicate 317 

significant disruption of microbial metabolism and/or changes in the gut barrier. 318 
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Secondary bile acids significantly impact regulatory and effector immune responses, 319 

which may be relevant for the development of severe COVID-1940,41. Increased 320 

levels of sulfonated bile acids in serum also indicates significant disruption of bile 321 

acid metabolism in severely ill COVID-19 patients as sulfonation is an important 322 

detoxification mechanism that prevents reabsorption of bile acids from the gut and 323 

promotes their elimination in faeces42. 324 

We identified a high-risk gut microbiome configuration associated with an 325 

inflamed host phenotype and increased risk of the worst disease outcomes. Several 326 

pathobionts including Enterococcus were enriched in severe disease, while well 327 

described immune regulatory microbes such as Bifidobacterium and Ruminococcus 328 

were enriched in those who survived43,44. Similar microbiome configurations have 329 

been described in other settings such as increasing age, whereby a decrease of the 330 

core protective microbiome accompanied by an increase of pathobionts was 331 

observed45. In addition, acquisition of this subset of disease-associated taxa have 332 

been shown to shift the metabolic state to a disease-like state27. These changes in 333 

the microbiome may have happened gradually over time and could potentially make 334 

the host less resilient to SARS-CoV-2 infection.  335 

The hyper-inflammatory state observed in COVID-19 patients with a fatal 336 

outcome implies a failure in the negative feedback mechanisms that should restrain 337 

the devastating overproduction of inflammatory cytokines and soluble mediators, 338 

which lead to multiorgan failure. Our integrated analysis of microbiome features, 339 

cytokines and metabolites suggests that important microbial-derived 340 

immunoregulatory processes that contribute to negative feedback mechanisms may 341 

be lacking in those with the most severe outcomes to SARS-CoV-2 infection. 342 

Alternatively, increased levels of proinflammatory pathobionts may drive excessive 343 
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proinflammatory responses that cannot be contained by the regular feedback 344 

mechanisms. While further studies will be required to determine causal interactions, 345 

this study supports the hypothesis that successful responses to infectious agents 346 

such as SARS-CoV-2 involve the gut microbiome mediated by effects on metabolism 347 

and host inflammatory processes.    348 
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Methods 349 

Study Cohort 350 

We performed an investigator-initiated, prospective multicentre cohort study of adult 351 

(≥18 years) patients who were admitted with Severe Acute Respiratory Syndrome 352 

Coronavirus 2 (SARS-CoV-2) to four different hospitals in Switzerland and Ireland. 353 

Infection was confirmed by SARS-CoV-2 polymerase-chain reaction (PCR) from an 354 

upper or lower respiratory specimen. Exclusion criteria included COVID-19 diagnosis 355 

after discharge from the ICU. Recruitment started in August 2020 and in total we 356 

recruited 172 hospitalised patients from St. Gallen, Switzerland (n=37), Geneva, 357 

Switzerland (n=50), Ticino, Switzerland (n=77) and Cork, Ireland (n=8).  All patients 358 

or patient representatives signed a patient informed consent. The study was 359 

approved by local ethics committees (EKOS 20/058 for the three Swiss sites and 360 

The Clinical Research Ethics Committee of the Cork Teaching Hospitals for Cork 361 

University Hospital). Patients were enrolled typically within 24-48 h after admission to 362 

the intensive care unit (ICU) or a hospital ward. Baseline characteristics, underlying 363 

comorbidities and medication use at the time of sampling were collected and are 364 

summarised in Table 1. All medical procedures and treatments were left at the 365 

discretion of the treating physicians but documented in the database such as 366 

complications during ICU stay and outcomes until hospital discharge. Patients were 367 

categorised to have mild disease when there were no radiographic indications of 368 

pneumonia and moderate disease if pneumonia with fever and respiratory tract 369 

symptoms were present. Severe disease was defined as a respiratory rate ≥30 370 

breaths per minute, oxygen saturation ≤93% when breathing ambient air or 371 

PaO2/FiO2 ≤300mm Hg, or anyone that required mechanical ventilation. Only those 372 

that died during their hospital stay were recorded as a SARS-CoV-2-related death in 373 
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this study. Serum and faecal samples were collected as soon as possible following 374 

enrolment into the study and immediately stored frozen at -80C at the clinical site. 375 

 376 

Cytokine Analysis 377 

We examined the levels of 54 cytokines and growth factors (using MSD 378 

multiplex kits according to manufacturer’s instructions) in the serum of 172 379 

hospitalised COVID-19 patients. Serum from patients was typically obtained within 380 

24 hours after study enrolment. Sera obtained prior to the pandemic from 29 healthy 381 

volunteers were analysed in parallel. The mediators measured included IL-1α, IL-1β, 382 

IL-1RA, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12/23p40, IL-12p70, IL-383 

13, IL-15, IL-16, IL-17A, IL-17A/F, IL-17B, IL-17C, IL-21, IL-22, IL-23, IL-27, IL-31, 384 

TNF-α, TNF-β, IFN-γ, IP-10, MIP-1α, MIP-1β, MIP-3α, MCP-1, MCP-4, Eotaxin, 385 

Eotaxin-3, TARC, MDC, TSLP, CRP, SAA, VEGF-A, VEGF-C, VEGF-D, sTie-2, Flt-386 

1, sICAM-1, sVCAM-1, bFGF, PIGF and GM-CSF. 387 

 388 

Metabolomics 389 

Untargeted metabolomics on patient sera was performed by MetabolonTM 390 

using the HD4 platform. Briefly, all methods utilized a Waters ACQUITY ultra-391 

performance liquid chromatography (UPLC) and a Thermo Scientific Q-Exactive high 392 

resolution/accurate mass spectrometer interfaced with a heated electrospray 393 

ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass 394 

resolution.  The sample extract was dried then reconstituted in solvents compatible 395 

to each of the four methods. One aliquot was analyzed using acidic positive ion 396 

conditions, chromatographically optimized for more hydrophilic compounds. Another 397 

aliquot was also analyzed using acidic positive ion conditions, however it was 398 
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chromatographically optimized for more hydrophobic compounds.  Another aliquot 399 

was analyzed using basic negative ion optimized conditions using a separate 400 

dedicated C18 column. The fourth aliquot was analyzed via negative ionization 401 

following elution from a HILIC column (Waters UPLC BEH Amide 2.1x150 mm, 1.7 402 

µm) using a gradient consisting of water and acetonitrile with 10mM Ammonium 403 

Formate, pH 10.8. The MS analysis alternated between MS and data-dependent 404 

MSn scans using dynamic exclusion.  The scan range varied slighted between 405 

methods but covered 70-1000 m/z. 406 

 407 

16S sequencing 408 

Fecal samples were obtained as soon as possible following hospitalisation. 409 

Total community DNA was extracted from fecal samples by a combined Repeat 410 

Bead Beating - Qiagen DNA extraction method, and the V3 dash V4 region of the 411 

16S gene was amplified and sequenced as previously described46. The uniquely 412 

barcoded amplicons were sequenced on an Illumina MiSeq platform (Illumina, 413 

California, USA) utilizing 2×300�bp chemistry. 414 

 415 

Bioinformatic analysis 416 

From the Log2 transformed metabolomics data obtained from Metabolon, any 417 

metabolite with no variance among samples was removed. Pairwise differential 418 

abundance analysis was performed between conditions using R package LIMMA. 419 

Benjamini-Hochberg correction (BH) was applied for each comparison. R packages 420 

Boruta was applied for feature and tree number selection before random forest 421 

analysis. Random forest classifiers were built with the most important features, 1000 422 

trees, mtry of 1 and 10-fold cross-validation using R packages caret and 423 
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randomForest. They were evaluated using confusion matrices/roc curves. For 424 

association analysis, significant positive correlations (Spearman, FDR<0.0005) were 425 

extracted and used to build the network using python igraph 426 

(https://igraph.org/python/). The strength of the connections and relevance of the 427 

network was evaluated by plotting distribution of correlation coefficients and 428 

comparison of the network to a random network with similar dimensions. Community 429 

detection was performed using the Leiden algorithm from the python module 430 

leidenalg (https://leidenalg.readthedocs.io/en/stable/index.html). For each community 431 

large enough (N>30), metabolite set enrichment analysis (MSEA) was performed. 432 

For metabolite set enrichment analysis (MSEA), all MetabolonTM terms were 433 

extracted with their corresponding metabolites as reference. Python 3 gseapy 434 

package was used to perform a hypergeometric test between list of significant 435 

metabolites and reference. Importance plots, dot plots, bar plots, pca plots were 436 

produced with R package ggplot2. Heatmaps were designed with the R package 437 

ComplexeHeatmap. Networks were represented using Cytoscape 3.6.1 and 438 

metabolites of interest highlighted. 439 

For the microbiome analysis, the raw Illumina reads obtained for each sample 440 

were quality-filtered using the trimmomatic program, using the default parameters47. 441 

The quality filtered reads were then taxonomically classified using both DADA248 (for 442 

read-level genus classification and identification of amplicon sequence variants or 443 

ASVs within each sample) and Spingo49 (for species level classification). Amplicon 444 

Sequence Variants obtained using DADA2 for all the samples were then further 445 

merged by performing into Operational Taxonomic Units (OTUs) using the denovo-446 

sequence-based clustering using the qiime50 package.  447 
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 Subsequent downstream analyses of the taxonomic profiles (at all three 448 

levels, namely genus, species and OTU) as well as integrated analysis of taxonomic 449 

profiles with cytokine profiles and the metabolome were performed using various 450 

modules/packages of the R programming interface (v 4.0.3; R Core Team 2020). 451 

Estimates of alpha diversity were computed using the diversity function of the vegan 452 

package of R. Principal Coordinate Analyses (PCoA) were computed using the ade4 453 

package. The envfit function of the vegan package was used to perform the envfit-454 

based analysis using the three top Principal Coordinates. Enterotyping of the gut 455 

microbiome profiles was performed as described in a previous study from our 456 

group51. Two group comparison of microbiome abundances were performed using 457 

the Mann-Whitney tests (using the wilcox.test function of R stats package. For more 458 

than two-group comparisons, pairwise comparisons within groups were computed 459 

using Mann-Whitney tests. The p-values were corrected using Benjamini-Hochberg 460 

FDR correction (p.adjust function of the stats package). Ordinary Least Squares 461 

(OLS) regression after adjusting for confounders were performed using the glm 462 

function of the stats package.  463 

 Correlation analysis of associations amongst features in three data layers 464 

(genus-level microbiome, metabolome and cytokine profiles) were performed using 465 

the Weighted Gene-Coexpression Network Analysis (WGCNA)52. While originally 466 

devised for computing gene co-expression networks, WGCNA is now being used in 467 

studies to integrate data from multiple OMICs layers53,54. In this study, the WGCNA 468 

was performed using an optimal soft-power threshold of 7 for scale-free topology. 469 

Using hierarchical clustering and topology overlap measures (TOM), we identified 470 

that the features from the three data layers could be optimally grouped into 14 471 

modules, which were then investigated for association with disease symptoms using 472 
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OLS models. The association networks within each module were then computed 473 

using the ReBoot approach as implemented in the ccrepe workflow55.  474 
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Table 1. Patient Demographics 494 

         Healthy Controls            Mild/Moderate               Severe - Survivors  Severe-Fatal     495 
n=                                           29                                  42                                      89                                    41 496 
Age (S.D.)1,2                    45.3 (10.1)                     58.0 (15.7)                       65.0 (11.2)                        69.1 (8.7)         497 
Male/Female2                      16/13                             16/26                                 72/17                                32/9               498 
BMI (S.D.)2                     26.9 (5.7)                       24.4 (4.1)                         28.2 (5.6)                          27.6 (5.5)          499 
Obese (BMI > 30)2  20%                           14%            35%         34% 500 
 501 
Medications at First Sampling Timepoint 502 
PPI2                                  0%                                 20%                                  55%                               62%              503 
Antibiotics2                           0%                                  16%                                 37%                               40%           504 
Immunosuppressives2           0%                    20%                          61%                     65% 505 
 506 
Pre-existing Comorbidities 507 
Hypertension                 34%           49%           45% 508 
Dyslipidemia2                  9%           24%         30% 509 
Diabetes                  17%           22%         25% 510 
Respiratory – COPD/Asthma               20%            8%         15% 511 
Chronic Kidney Disease                 3%            4%         8% 512 
Previous Neoplasia                20%          15%        22% 513 
 514 
================================================================================515 
========== 516 
1p<0.05 Healthy Controls versus all COVID-19 Patients 517 
2p<0.05 Mild/Moderate versus Severe COVID-19 518 
PPI – Pantoprazole; Omeprazole 519 
Antibiotics – Amoxicillin; Azithromycin; Sulfamethoxazole; Clarithromycin 520 
Immunosuppressives – Dexamethasone; Methylprednisolone; Prednisolone 521 
 522 
  523 
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Figure Legends. 524 

Fig.1 Circulating immune mediators in COVID-19 patients. 525 

a) PCA plot illustrating the differences in serum cytokine and inflammatory mediator 526 

levels in COVID-19 patients with different levels of severity. b) Heatmap illustrates 527 

the serum immune mediators that are significantly increased (red), significantly 528 

decreased (blue), or remain unchanged (green). c) Levels of the cytokines that are 529 

significantly different in patients with severe COVID-19 that survive (labelled 530 

“Severe”), compared to those with severe COVID-19 that have a fatal outcome 531 

(labelled “Fatal”). Differences between groups are calculated using the Kruskal-532 

Wallis test and Dunn’s multiple comparison test (*p<0.05, **p<0.01, ***p<0.001, 533 

****p<0.0001). 534 

 535 

Fig. 2. Serum metabolites in COVID-19 patients. 536 

a) PCA plot for the four conditions: control, mild/moderate, severe, fatal; b) Barplot 537 

representing super pathways of the significant metabolites (LIMMA, FDR<0.05) 538 

between each comparison of conditions; c) Importance plot and confusion matrix 539 

from the random forest classifier between the four conditions.  540 

 541 

Fig. 3. Serum metabolites in COVID-19 patients. 542 

a) Heatmap representing metabolites from pathways of interest, listed at the bottom 543 

of the figure, divided according to group. Log fold change (LFC) for significant 544 

pairwise comparisons (LIMMA, FDR<0.05) are included. Sulphonated bile acids and 545 

metabolites of microbial origin are indicated.  b) Weighted co-expression network 546 

labelled for metabolites from pathways of interest. c) Pathway enrichment analysis 547 

using Metabolon terms for communities 1, 3 and 5 (significant terms are displayed, 548 
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gseapy, FDR<0.2). d) Subset of metabolites of targeted pathways from co-549 

expression network analysis. e) Weighted co-expression network labelled for those 550 

metabolites that were significantly different between severe COVID-19 patients that 551 

survived versus those that died (LIMMA, FDR<0.05).  552 

 553 

Fig. 4. Gut microbiome composition in COVID-19 patients. 554 

(a) Principal coordinate analysis of the genus-level microbiome composition of the 555 

three outcome groups of patients obtained using the Canberra distance measure. (b) 556 

Variation of the silhouette-Scores obtained, across for cluster sizes (k), for 50 557 

iterations of k-means clustering of the first three dominant Principal coordinates of 558 

the genus-level microbiome profiles. The principal coordinates of these two 559 

microbiome groups are demarcated in (c). The two microbiome groups exhibited 560 

distinct patterns of association with three COVID-19 disease severity outcome 561 

groups (d). Volcano plot illustrates genera showing either significant (FDR≤0.15, 562 

shown in blue) or nominally significant (P≤0.05, shown in cyan) associations with 563 

PCo1. The x-axis shows the estimate of the linear-regression models (direction 564 

indicating the pattern of association) and y-axis shows the -logarithm of the p-value 565 

to the base 10. The genera associating with the high-risk MicrobiomeGroup1 are on 566 

the negative axis and those associating with low-risk MicrobiomeGroup2 are on the 567 

positive axis. Only those genera showing associations with P≤0.05 are shown. 568 

 569 

Fig. 5. Modules that positively correlate with severe and fatal COVID-19. 570 

Feature-to-feature positive association networks obtained using the ccrepe approach 571 

(Spearman correlations, 1000 iterations) for modules (or Module groups) that show 572 

(a) significantly positive (‘turquoise’) and (b) significantly negative (‘red’, ‘blue’, 573 
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‘yellow’, and ‘black’) associations with severe and fatal COVID-19. In (b) given the 574 

presence of features from four different modules, the location of the features 575 

belonging to the different modules are indicated in the smaller network 576 

representation in the lower left-hand corner. Microbiome, cytokine and metabolite 577 

features that are associated with severity and death are highlighted in different 578 

colours.   579 
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Supplementary Figure Legends 580 

Supplementary Fig. 1. Serum cytokine levels. 581 

Differences between groups are calculated using the Kruskal-Wallis test and Dunn’s 582 

multiple comparison test (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). 583 

 584 

Supplementary Fig. 2. Metabolite set enrichment analysis. 585 

Using Metabolon terms (gseapy, FDR < 0.2), bubble size represents the number of 586 

metabolites found in each pathway. Color is specific to each comparison. 587 

 588 

Supplementary Fig. 3. Random forest analysis of serum metabolites. 589 

The metabolite features and AUC curves for random forest analysis of COVID-19 590 

patients with mild/moderate disease compared to those with severe disease (a); 591 

COVID-19 patients with a fatal outcome compared to those with mild/moderate 592 

disease (b); COVID-19 patients that survive following severe disease compared to 593 

those that don’t survive following severe disease (c).  594 

 595 

Supplementary Fig. 4. Serum microbial metabolites. 596 

Representative examples of metabolites generated by host metabolism of tryptophan 597 

(a). Selected examples of serum levels of microbial metabolites due to tryptophan 598 

metabolism (b) or SCFAs (c). Serum citrulline levels (d). PCA plot illustrates the 599 

differences in serum metabolites associated with microbial metabolism (e). 600 

Differences between groups are calculated using the Kruskal-Wallis test and Dunn’s 601 

multiple comparison test (*p<0.05, **p<0.01, ****p<0.0001). 602 

 603 

Supplementary Fig. 5. Gut microbiome alpha diversity. 604 
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Boxplots showing the variation of the Shannon Diversity and Detected taxa for the 605 

gut microbiome profiles for the three outcome groups at OTU (a and d), Species (b 606 

and e) and Genus (c and f) levels. 607 

 608 

Supplementary Fig. 6. Gut microbiome beta diversity. 609 

Principal coordinate analysis showing the resolution of the gut microbiome profiles 610 

from the 99 patients belonging to the three outcome groups at (a) OTU and (b) 611 

Species level, obtained using four different distance measures. (c) Principal 612 

coordinate analysis showing the resolution of the gut microbiome profiles from the 99 613 

patients belonging to the three outcome groups at the genus level obtained using the 614 

Spearman, Bray-Curtis and Jaccard distance measures. 615 

 616 

Supplementary Fig. 7. Cytokine levels associated with Microbiome Groups. 617 

Boxplot showing the differences in the cumulated range-scaled levels of the three 618 

groups of elevated cytokines between surviving patients with severe symptoms who 619 

had a high-risk MicrobiomeGroup1 and those patients with severe symptoms who 620 

were classified to the low-risk MicrobiomeGroup2. The p-values of the Mann-621 

Whitney tests obtained for the comparisons within the three groups of cytokines are 622 

indicated. Each cytokine level was range-scaled across patients to a value between 623 

0 and 1. For each patient, the range-scaled values of all cytokines within the same 624 

group were then cumulated by adding the corresponding range-scaled values 625 

obtained for the given patient. 626 

 627 

Supplementary Fig. 8. Bacterial genera correlate with circulating inflammatory 628 

mediators. 629 
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Heatmap showing the Spearman correlations between the 73 genus-level markers 630 

(detected in at least 5 of the 99 patients and showing association with FDR≤0.15 631 

with at least one of the severity/fatality-associated cytokines) and 28 severity/fatality-632 

associated cytokines. The groups of the different cytokines and their direction of 633 

change (elevated or reduced) with severity/fatality are also indicated in specific 634 

colors. Also indicated are the patterns of the various genus-level markers with PCo1 635 

that resolves the two microbiome groups (positive PCo1 with MicrobiomeGroup2). 636 

The genera whose associations are indicated in red boxes are those that did not 637 

show any associations with either of the two Microbiome configurations (or groups) 638 

in terms of their association with PCo1, but independently show association with an 639 

inflamed host phenotype. The genera in green boxes show the opposite trends with 640 

the inflamed phenotype. 641 

 642 

Supplementary Figure 9. Overview of the steps and the results of combined WGCNA 643 

from the three data layers.  644 

(A) shows the Scaled-Independence plot and the Scale-free topology fit and 645 

highlights the selection of the soft-power of 7 as it has the maximum scale-free 646 

nature for the network. (B) Shows the regression coefficients of the 14 modules 647 

obtained using Ordinary Least-square Regression for worse outcome (where in the 648 

outcomes were ranked as 1 for mild and moderate; 2 for severe and 3 for death). 649 

The modules with significant (Benjamini-Hochberg corrected FDR ≤ 0.05) and 650 

nominal associations (P ≤ 0.05) are also indicated. (C) Shows the sizes of the 651 

different modules in terms of the feature 652 

 653 
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Supplementary Fig. 10. Modules showing nominal positive associations with severity 654 

and death.  655 

Positive association networks obtained for the features affiliated to (a) brown and (b) 656 

the tan module, using the ccrepe approach (Spearman correlation, iterations = 1000, 657 

p ≤ 0.01). Key taxa and metabolites are highlighted. 658 

 659 

Supplementary Fig. 11. Association patterns within the ‘red’ module.  660 

Positive association networks obtained for the features affiliated to the red module, 661 

using the ccrepe approach (Spearman correlation, iterations = 1000, p <= 0.01). Key 662 

taxa and metabolites are highlighted. 663 

 664 

Supplementary Fig. 12. Association patterns within the ‘blue module.  665 

Positive association networks obtained for the features affiliated to the blue module, 666 

using the ccrepe approach (Spearman correlation, iterations = 1000, p <= 0.01). Key 667 

taxa and metabolites are highlighted. 668 

 669 

Supplementary Fig. 13. Association patterns within the ‘black’ module.  670 

Positive association networks obtained for the features affiliated to the black module, 671 

using the ccrepe approach (Spearman correlation, iterations = 1000, p <= 0.01). Key 672 

taxa and metabolites are highlighted. 673 

 674 

Supplementary Fig. 14. Association patterns within the ‘yellow module.  675 

Positive association networks obtained for the features affiliated to the yellow 676 

module, using the ccrepe approach (Spearman correlation, iterations = 1000, p <= 677 

0.01). Key taxa and metabolites are highlighted.  678 
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Co
nt
ro
l

M
ild
/M
od
er
at
e

Se
ve
re

Fa
ta
l

0.1

1

10

100

1000

10000

����

����

���

Co
nt
ro
l

M
ild
/M
od
er
at
e

Se
ve
re

Fa
ta
l

0.001

0.01

0.1

1

10

100

1000

���

����

��

Co
nt
ro
l

M
ild
/M
od
er
at
e

Se
ve
re

Fa
ta
l

0.1

1

10

100

����

����

����

Co
nt
ro
l

M
ild
/M
od
er
at
e

Se
ve
re

Fa
ta
l

M
IP
-1
α
 [
p
g
/m
l]

����

����

����

Co
nt
ro
l

M
ild
/M
od
er
at
e

Se
ve
re

Fa
ta
l

0.1

1

10

100

1000

b
F
G
F
 [
p
g
/m
l]

����

����

����

Co
nt
ro
l

M
ild
/M
od
er
at
e

Se
ve
re

Fa
ta
l

���

��

�

Co
nt
ro
l

M
ild
/M
od
er
at
e

Se
ve
re

Fa
ta
l

0.0001

0.001

0.01

0.1

1

10

100

����

���

����

Co
nt
ro
l

M
ild
/M
od
er
at
e

Se
ve
re

Fa
ta
l

����

����

��

C
on
tr
ol

M
ild
/M
od
er
at
e

S
ev
er
e

Fa
ta
l

C
R
P
 [
m
g
/L
]

���

����

����

����

����

C
on
tr
ol

M
ild
/M
od
er
at
e

Se
ve
re

Fa
ta
l

S
A
A
 [
m
g
/L
]

����

����

����

���

���

C
on
tr
ol

M
ild
/M
od
er
at
e

S
ev
er
e

Fa
ta
l

IL
-6
 [
p
g
/m
l]

����

����

���� ��

����

C
on
tr
ol

M
ild
/M
od
er
at
e

Se
ve
re

Fa
ta
l

����

����

���� �

���

C
on
tr
ol

M
ild
/M
od
er
at
e

S
ev
er
e

Fa
ta
l

���

����

��

C
on
tr
ol

M
ild
/M
od
er
at
e

Se
ve
re

Fa
ta
l

���

����

�

C
on
tr
ol

M
ild
/M
od
er
at
e

S
ev
er
e

Fa
ta
l

10

100

1000

10000
����

����

�� ��

����

C
on
tr
ol

M
ild
/M
od
er
at
e

Se
ve
re

Fa
ta
l

10

100

1000

10000

����

����

C
on
tr
ol

M
ild
/M
od
er
at
e

S
ev
er
e

Fa
ta
l

IL
-2
7
 [
p
g
/m
l]

����

����

����

����

C
on
tr
ol

M
ild
/M
od
er
at
e

S
ev
er
e

Fa
ta
l

s
F
lt
1
 [
p
g
/m
l]

����

����

����

����

C
on
tr
ol

M
ild
/M
od
er
at
e

Se
ve
re

Fa
ta
l

10

100

1000

10000

����

����

���

�

C
on
tr
ol

M
ild
/M
od
er
at
e

S
ev
er
e

Fa
ta
l

V
E
G
F
-D
 [
p
g
/m
l]

� �

��

C
on
tr
ol

M
ild
/M
od
er
at
e

S
ev
er
e

Fa
ta
l

����

����

�

C
on
tr
ol

M
ild
/M
od
er
at
e

S
ev
er
e

Fa
ta
l

0.001

0.01

0.1

1

10

100
�

��

C
on
tr
o
l

M
ild
/M
od
er
at
e

S
ev
er
e

F
at
al

10 5

10 6

10 7

����

����

�

C
on
tr
ol

M
ild
/M
od
er
at
e

Se
ve
re

Fa
ta
l

����

��

����

���

C
on
tr
o
l

M
ild
/M
od
er
at
e

S
ev
er
e

Fa
ta
l

����

����

��

C
on
tr
ol

M
ild
/M
od
er
at
e

S
ev
er
e

Fa
ta
l

1

10

100

1000

����

����

�� ��

����

C
on
tr
ol

M
ild
/M
od
er
at
e

S
ev
er
e

Fa
ta
l

���

����

�

C
on
tr
ol

M
ild
/M
od
er
at
e

S
ev
er
e

Fa
ta
l

���

����

����

����

C
on
tr
ol

M
ild
/M
od
er
at
e

Se
ve
re

Fa
ta
l

0.1

1

10

100

��

�

��

�

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.26.465865doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.26.465865
http://creativecommons.org/licenses/by/4.0/


Supplementary Fig. 2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.26.465865doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.26.465865
http://creativecommons.org/licenses/by/4.0/


Supplementary Fig. 3

Random forest analysis of Mild/Moderate compared to Severe

Random forest analysis of fatal compared to Mild/Moderate
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Supplementary Fig. 4
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Supplementary Fig. 7
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Supplementary Fig. 8
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Supplementary Fig. 11 
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Supplementary Fig. 12 
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Supplementary Fig. 13
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Supplementary Fig. 14
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