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Abstract 

The Bunyavirales order of RNA viruses comprises emerging pathogens for which 

approved preventative or therapeutic measures for human use are not available. The genome 

of all Bunyavirales consists of negative-sense RNA segments wrapped by the virus-encoded 

nucleocapsid protein (NP) to form ribonucleoproteins (RNPs). RNPs represent the active 

template for RNA synthesis and the form in which the genome is packaged into virions, 

functions that require inherent flexibility. We present a pseudo-atomic model of a native RNP 

purified from Bunyamwera virus (BUNV), the prototypical Bunyavirales member, based on a 

cryo-electron microscopy (cryo-EM) average at 13 Å resolution with subsequent fitting of the 

BUNV NP crystal structure by molecular dynamics. We show the BUNV RNP possesses 

relaxed helical architecture, with successive helical turns separated by ~18 Å. The model 

shows that adjacent NP monomers in the RNP chain interact laterally through flexible N- and 

C-terminal arms, with no helix-stabilizing interactions along the longitudinal axis. Instead, EM 

analysis of RNase-treated RNPs suggests their chain integrity is dependent on the 

encapsidated genomic RNA, thus providing the molecular basis for RNP flexibility. Overall, 

this work will assist in designing anti-viral compounds targeting the RNP and inform studies 

on bunyaviral RNP assembly, packaging and RNA replication.  
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Significance 

Bunyaviruses are emerging RNA viruses that cause significant disease and economic 

burden and for which vaccines or therapies approved for human use do not exist. The 

bunyavirus genome does not exist as naked RNA; instead it is wrapped up by the 

nucleoprotein (NP) to form a ribonucleoprotein (RNP). Using the prototypical bunyavirus, 

Bunyamwera virus, we determined the 3D structure of the native RNP, revealing a helical 

architecture with NP molecules linked by lateral contacts only, with no helix-stabilizing 

longitudinal contacts. Instead, the RNA genome itself plays a role in maintaining the helical 

architecture, allowing a high degree of flexibility that is critical for several stages of the virus 

replication cycle, such as segment circularization and genome packaging into virions. 
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Introduction 

 The Bunyavirales order of segmented, negative-sense RNA viruses contains over 500 

named isolates divided into twelve families (1), five of which include human and animal 

pathogens. One of these families, Peribunyaviridae, comprises arboviruses and is further 

divided into four genera, with the Orthobunyavirus genus being the largest. Important 

animal-infecting orthobunyaviruses include Schmallenberg virus (SBV) and Akabane virus, 

which both cause stillbirths and deformities in ruminants, with devastating effects on livestock 

(2, 3). Important human-infecting orthobunyaviruses include Oropouche, Jamestown Canyon 

and La Crosse (LACV) viruses, which are associated with acute febrile illnesses with frequent 

central nervous system infiltration; and Ngari virus, which is responsible for fatal hemorrhagic 

fever (4–6). Recent reports of the newly-identified Cristoli orthobunyavirus and the re-

emergence of Umbre orthobunyavirus as agents of fatal encephalitis, confirm the risk posed 

by orthobunyaviruses to human health (7, 8). Whilst vaccines have been developed against 

several animal-infecting orthobunyaviruses, including SBV (2, 9), no FDA-approved vaccines 

or therapies are available for those infecting humans. As insect habitats shift in response to 

climate change, arboviruses pose a growing threat and present a pressing need for new 

strategies in vaccine and anti-viral design. 

 Bunyamwera virus (BUNV) is the prototypic orthobunyavirus that serves as a tractable 

model for the Bunyavirales order as a whole. BUNV virions are pleiomorphic and include a 

host-derived lipid envelope coated in virus-encoded glycoprotein spikes (10) that surrounds 

the tri-segmented RNA genome comprising small (S), medium (M) and large (L) segments. 

Each RNA segment is encapsidated by multiple copies of the nucleocapsid protein (NP) to 

form a ribonucleoprotein (RNP), which associates with the virus-encoded RNA-dependent 

RNA polymerase (RdRp; L). RNPs serve as the active templates for all viral RNA synthesis 

activities and represent the form in which the RNA segments are packaged into virions.  

 The BUNV NP comprises a globular core with N- and C-terminal lobes bisected by a 

positively-charged RNA-binding groove (11–16) that accommodates approximately 11 RNA 
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bases. The N- and C-termini protrude from the core to form ‘arms’ that mediate homotypic 

oligomerisation, and this overall arrangement is shared by NPs from SBV, LACV and Leanyer 

orthobunyaviruses (11–16). Orthobunyavirus NP crystallises as closed, non-physiological, 

tetrameric or hexameric rings (16) and this oligomeric promiscuity is confirmed by mass 

spectrometry and electron microscopy (EM), which reveal oligomers of increasing size from 

trimer to octamer (14, 17, 18). 

 Previous EM analyses of native RNPs released from virions show they are highly 

flexible and have resulted in apparently conflicting models that describe their overall 

architecture (Figure S1). As its name suggests, the ‘beads on a string’ model proposes RNPs 

contain NP monomers interacting with immediately adjacent neighbours through lateral 

contacts only, which is based on EM observations of flexible RNPs with a diameter of single 

NP monomers (13, 14). The alternative model proposes that RNPs adopt a relaxed helical 

architecture, which is supported by EM observations of RNPs that exhibit a staggered 

positioning of monomers with a cross-section of two NPs, which was interpreted as a helix of 

~4 NPs per turn (11, 12); and also by the crystallization of RNA-free LACV NP oligomers in a 

helical array (12).  

 Native RNPs from the Arenaviridae, Phenuiviridae and Nairoviridae families within the 

Bunyavirales order also possess a flexible architecture (19–21). In contrast, a high-resolution 

cryo-electron microscopy (cryo-EM) model of a rod-like RNP from a member of the 

Hantaviridae family reconstituted from recombinant protein, revealed a compact and rigid 

helical architecture, maintained by both lateral and longitudinal NP-NP interactions through 

the helix (22). However, to date, no high-resolution structural information from native RNPs 

exists for any member of the Bunyavirales order. 

 We present a model of native BUNV RNPs extracted from infectious virions, based on 

a cryo-EM average at 13 Å resolution and subsequent fitting of crystal structures by molecular 

dynamics. The gross structural features of the RNP were determined and our model suggests 

that the helical arrangement is not maintained by longitudinal NP-NP interactions, but is 
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dictated by lateral NP-NP interactions and the encapsidated RNA. This work will aid the design 

of anti-viral compounds specific to the orthobunyaviral RNP and inform future studies into the 

mechanisms of viral processes such as RNP assembly and packaging. 

 

Materials and Methods 

RNP Purification. BUNV was propagated in BHK-21 cells and purified as described 

previously (23, 24) and RNPs were purified based on a previous protocol (11) (SI Materials 

and Methods). Centrifugal concentrators were used for buffer-exchange of pure RNPs to 

facilitate EM analysis. 

Negative staining EM. Purified virions or RNPs were adsorbed to glow-discharged carbon 

coated copper grids, stained with 1% uranyl acetate and imaged in a 120 kV FEI Tecnai 12 

microscope. 

Cryo-EM and Image Processing. Cryo-EM and cryo-electron tomography (cryo-ET) data 

were collected on an FEI Titan Krios EM 300 kV microscope (Astbury Biostructure Laboratory, 

University of Leeds). Collection and on-the-fly data pre-processing was performed as 

previously described (25). Cryo-ET reconstruction and sub-tomogram averaging (STA) were 

performed respectively using IMOD (26) and PEET (27). Cryo-EM data was processed by a 

single particle approach using Relion (28) to produce a final symmetrical reconstruction at 13 

Å (SI Materials and Methods).  

Molecular dynamics. A ‘split-NP’ (an NP monomer containing the N- and C-terminal arms 

from its neighbours) was fitted into the EM average using helical symmetry and molecular 

dynamics were used to refine the fit using MDFF (29) (SI Materials and Methods). 

Mini-genome replication assay. BUNV RNPs were reconstituted as previously described 

(30, 31). Briefly, BSR-T7 cells in 24-well plates were transfected with 0.2 μg each of 

pT7riboBUNL, pT7riboBUNN or mutant derivatives, pT7riboBUN-SREN and 0.1 μg pCMV-

Firefly-Luc as a transfection control. At 24 h post-transfection, luciferase expression was 

measured using the dual-luciferase assay kit (Promega). 
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RNase treatment. Purified BUNV RNPs were diluted in TNE buffer (100 mM Tris-HCl, 

200 mM NaCl, 0.1 mM EDTA, pH 7.4, supplemented with protease inhibitors (Roche)) and 

mixed with indicated amounts of RNase A to a final volume of 20 μL. Samples were incubated 

for 30 minutes at room temperature and visualised by negative staining EM.  

 

Results 

BUNV RNP purification 

 To structurally characterise native BUNV RNPs, virion purification and RNP isolation 

was optimised. BUNV was purified from infected cell supernatants by ultracentrifugation, with 

purity assessed by SDS-PAGE (Figure S2A) and negative staining EM (Figure S2B), which 

revealed intact as well as disrupted virions from which viral RNPs were released. RNPs were 

purified from freeze-thawed virions by ultracentrifugation (adapted from (11)) after testing 

different methods to release RNPs (Figure S3), with RNP-containing fractions detected by 

western blotting (Figure S4A). Peak fractions corresponded to approximately 23% OptiPrep 

and subsequent analysis by negative staining EM revealed abundant, filamentous RNPs 

(Figures 1A and S4B). The width of all RNPs was uniform along their length and corresponded 

to two NP monomers. These monomers adopted a staggered arrangement consistent with a 

helical conformation (Figure 1A, inset), and there was no indication of a ‘beads on a string’ 

morphology that would result from single monomers joined only by lateral contacts. Any 

disruption to the helical conformation was only apparent at the sharpest (≥90o) bends in the 

filament. Of note, almost all observed RNPs were circularized and linear filaments were rare 

(less than one percent of the imaged RNPs). Although the RNA itself might not be resolved 

by negative staining, we expected to visualise a region along the RNP where the NP 

organisation was different, distinguishing the segment ends from non-terminal regions. No 

such region common to all segments was identified. However, some RNPs contained an 

associated density potentially compatible with that of the viral RdRp (Figure S5). These 

densities lack the additional globular domains appended to the ring-like structures reported for 
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RdRps from negative-sense RNA viruses (32, 33) but they do resemble recent images of 

reconstituted polymerase-associated RNPs from an arenavirus (34). Different buffers were 

explored to optimise RNP separation. No discernible difference in the overall helical RNP 

appearance was observed, although we noted that TNE with 25 mM NaCl resulted in the 

straightest RNPs that would be most amenable to EM processing (Figure S6). 

 

BUNV RNPs have a helical NP organisation 

 To gain further insight into the organisation of the BUNV RNPs, we measured their 

lengths. Given the nucleotide lengths of BUNV RNA segments (961 nt for S; 4458 nt for M, 

and 6875 nt for L), and that the orthobunyaviral NP is approximately 5 nm wide and binds 

approximately 11 RNA bases (11–15, 35), the ‘beads on a string’ organization would predict 

their lengths to be around 430, 2020 and 3125 nm, respectively. Approximately 600 discrete, 

circularized RNPs were manually traced and measured (Figure S7A), with the majority falling 

into three distinct species with mean lengths of approximately 160, 650 and 1050 nm, 

suggesting a consistent degree of condensation (Figure S7B). Assuming a helical NP 

arrangement, the helical rise was estimated to be ~1.7 nm, by dividing the RNP lengths by the 

estimated number of NP monomers per segment based on the NP:nucleotide stoichiometry.  

 Alignment and 2D classification of particles picked along the RNP was used to further 

elucidate the architecture of the filament. As RNP filaments exhibited a high degree of 

flexibility, which allowed them to bend up to ~90o angles, particles were picked with a relatively 

small box size of 294 Å (Figure S4B). Alignment and 2D classification of these particles clearly 

showed a pattern of alternating NP monomers along the filament length, consistent with a 

helical structure (Figure 1B). Analysis of straight class averages allowed measurement of the 

width of the filament and of the distance between monomers along the length of the filament, 

which in principle represents an approximation of the helical pitch. Measuring three points 

(centre and each end) along the filament in the ten class averages (Figure 1B) resulted in 

mean values of 9.2 nm for the width and 6.3 nm for the longitudinal distance between 

monomers (Figure 1C). This corresponds to ~3.7 monomers per helical turn (6.3 nm helical 
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pitch over 1.7 nm helical rise, as determined above). We note that the value for the helical 

pitch varied from 4.9 to 8.6 nm, in agreement with the observation that the distances between 

individual monomers can vary to accommodate bends in the filament.  

 

Cryo-electron microscopy produces a 13 Å average of a native BUNV RNP 

 To generate a 3D map of the BUNV RNP, we adopted an approach inspired by that of 

Bharat et al., (36, 37) which combined cryo-ET and cryo-EM to study helical filaments. The 

use of a Volta phase plate during data collection resulted in high-contrast tomograms in which 

clear RNP filaments were apparent (Figure 2A). Additionally, large electron dense particles 

not present in the negative staining preparations were observed that possibly represented 

condensed RNPs within the air-water interface, but did not obstruct the reconstruction of 

tomograms or the sub-tomogram selection along the RNP lengths. STA of RNPs was 

performed using a cylindrical reference and a 20 Å average was produced, which clearly 

displayed the helical nature of the filament, with a width of ~76 Å and helical pitch of ~65 Å 

(Figures 2B and S8). As EM data does not have a definitive handedness, we imaged the RNPs 

using AFM (Figure S9), which can be used to determine the handedness of helical assemblies 

(38). Right-handed RNP sections were imaged in standard and high-resolution AFM (Figures 

S9A inset, and S9B). The handedness of the RNPs was more apparent when averaging RNP 

sections using a right-handed reference (Figure S9C). Of note, the average was also right-

handed when using a reference with an inverted hand (Figure S9D). Therefore, we concluded 

BUNV RNP helices are right-handed. 

 A cryo-EM data set was then collected with Volta phase resulting in ~135,000 straight 

RNP particles (Figure S10). Given the absence of long straight RNP segments, particles were 

selected and processed using a single particle approach. To validate the helical nature of the 

RNP, these particles were first subjected to 3D classification using a cylinder as a reference 

(removing any possible bias towards a helical model). The resulting averages were clearly 

helical (Figure S11), and therefore the particles were taken forwards for image processing 

using the STA-derived model. Following a similar approach as described recently for influenza 
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virus (39), which involved classifying particles into small sets of ~4,000 homogeneous 

particles, we obtained a 14 Å resolution average without symmetry applied (Figures S12A and 

B). When applying helical symmetry to this average, with searches centred on -100o for twist 

and 15 Å for rise, the searches routinely converged on -104.9o twist and 17.7 Å rise. Therefore, 

these numbers were applied for a final reconstruction with local searches, resulting in a 13 Å 

average that converged on -105.26º twist and 18.25 Å rise (Figures 3A and S12C). The final 

symmetrised map is very similar to the non-symmetrised map (cross-correlation of 0.94) and 

to the map generated using a cylindrical reference (cross-correlation of 0.87), suggesting the 

helical parameters we have applied are correct. In this average, the helix appears not to be 

tightly wound and compact, with the distances between neighbouring rungs of the helix 

appearing too large for stabilising contacts, which would facilitate the flexibility observed within 

the filaments. It is also clear in this model that the number of monomers per turn (3.7) is not a 

whole integer.  

Given that helical RNPs have 3.7 NP per turn, 11 bases per NP and a 6.3 nm pitch, 

the lengths of S, M and L segments (nucleotides per segment/(3.7*11))*6.3) were predicted 

as 149, 690 and 1064 nm, respectively, very close to the measured mean lengths of 160, 650 

and 1050 nm (Figure S7A). This calculation validates the correct identification of the S, M and 

L segments, that they are helical and that we have obtained the correct helical parameters.  

 

NP crystal structures and molecular dynamics allow the generation of an atomic model 

for the BUNV RNP 

 The generation of a 3D helical model of a BUNV RNP permitted the fitting of a ‘split’ 

NP crystal structure (Figure S13) to generate a pseudo-atomic model. In all available crystal 

structures of multimeric orthobunyavirus NP the globular core of the protein is highly 

conserved (Figure S14A), as are the binding positions of the N- and C-terminal arms relative 

to their bound neighbour (Figure S14B). To preserve these aspects of the structure we 

produced a model of what we have termed ‘split’ NP (Figure S13C) that contains the core of 
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a single NP monomer and the bound arms of its two neighbours. A limitation of this approach 

is that it prevented us from modelling the viral RNA along the NP arms, and therefore we did 

not include it in our model. The NP structure was symmetrized and molecular dynamics was 

applied restraining the ‘split’ NP. This allowed freedom of movement of the linker region of 

each terminal arm, which has already been shown to be flexible, while minimising alterations 

to the globular core of the protein or to the binding regions of the arms (Figure S14A). As a 

result, we obtained a helical NP model for BUNV RNP (Figures 3B and 4A). Displaying the 

surface coulombic potential of the helical model confirms that the positively-charged RNA-

binding groove of each monomer is aligned in a way that maintains an RNA-binding channel 

along the interior of the entire helical filament (Figure S15A). Studying the surface coulombic 

potential also ruled out the possibility of longitudinal interactions between charged areas on 

the surface of monomers, as the surfaces of the protein that face each other longitudinally 

contain mainly negatively charged residues (Figure S15B). Furthermore, these rungs are too 

far apart (approximately 18 Å) to permit intermolecular interactions of any kind between NP 

monomers along the longitudinal axis (Figure 3B).  

 

The contribution of RNA to maintaining the helical RNP architecture 

 The generation of our helical NP model allowed investigation of the mechanism of 

native RNP assembly, in terms of formation of both the NP-NP multimer chain, and its helical 

architecture. The comparison of our crystallographic model of the closed-ring BUNV NP 

tetramer with that of the native helical RNP allowed the identification of 7 additional residues 

with sidechains potentially involved in weak H-bond or salt bridge NP-NP interactions within 

the RNP (Supplementary Tables S1-S3). As the resolution of our map prevented us from 

refining the side chains of NP, to test their involvement in helical RNP formation, each of these 

7 residues were individually substituted for alanine in reconstituted RNPs, and their resulting 

function tested by mini-genome analysis, using reporter gene expression as a measurement 

of active RNP assembly (Figures 4B and C). First, we tested if the mutations perturbed NP 

expression. All mutants tested except E173A resulted in a level of expression comparable to 
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that of wild-type NP (Figure S16). We then tested the mutations that did not affect NP 

expression using a mini-genome assay, and all of these resulted in a significant reduction of 

mini-genome reporter activity (Figure 4B). This finding establishes important roles for these 

residues in the formation of an active RNP and thus further validated our helical NP model. 

The location of all these residues at the interface between laterally-adjacent NP monomers, 

and the distance between the helix rungs suggests they are solely involved in lateral NP 

multimerization, although, we cannot rule out the possibility that they contribute to RNP helical 

architecture by imposing torsion within the NP chain. They could also be involved in RNA 

binding and/or RNP packaging. Additionally, the fact that none of the mutations completely 

abolishes the expression of the mini-genome system, suggests several residues might be 

involved in helical NP-NP interactions. 

 However, by a process of elimination, our RNP model implicates the only other 

component of the RNP, namely the RNA, as a possible contributor to maintaining the helical 

RNP architecture. To test this possibility, purified BUNV RNPs were incubated with RNase A 

at concentrations known to degrade BUNV NP-encapsidated RNA (35), and then visualized 

by negative staining EM. Characteristic BUNV RNPs were abundant in untreated samples 

(Figures 4D and S17A), whereas following RNase treatment, no RNPs were detected (Figures 

4E, S17B and C). Instead, a diffuse background staining was apparent, most likely comprising 

dissociated NP monomers, not observed in untreated samples. Of note, intact NP monomers 

were present in all these samples, as assessed by western blot (Figure S17D), suggesting 

NP-NP dissociation and not protein degradation was responsible for the loss of intact RNPs. 

Taken together, these findings suggest that both the encapsidated RNA and the NP-NP lateral 

interactions are important for the integrity of the flexible orthobunyaviral RNP. 

 

 

Discussion 
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 We present the first 3D model of a native orthobunyaviral RNP, derived using a 

combination of EM approaches and molecular dynamics modelling. The model shows that the 

BUNV RNP exhibits clear helical architecture, and reveals key information about its assembly, 

structure and function. 

 Our current and previous EM observations show that the orthobunyavirus RNP exhibits 

a high degree of flexibility and thus heterogeneity, which has hampered the application of 

single particle techniques to derive high-resolution structural models of RNPs from this group 

of viruses. To overcome this hurdle, here we combined different EM approaches. Negative 

staining allowed us to conclude that the width and length of the RNPs, and the distances 

between NPs, were compatible with a helical RNP. AFM allowed the determination of the 

helical handedness. Sub-tomogram averaging and cryo-EM single particle using a cylinder as 

an initial reference further confirmed the helical arrangement of the RNP; however, the 

flexibility of the RNP prevented the selection of straight segments, and application of 

computational helical reconstruction techniques. Therefore, we followed a single particle 

approach using the helical sub-tomogram average as a reference, and only at the last stages 

of the process searched for and applied helical symmetry. The resulting average at 13 Å, 

combined with restraints derived from crystallographic analysis of deposited orthobunyavirus 

NP oligomers, allowed us to apply molecular dynamics to obtain a helical NP model for BUNV 

RNPs. The buffer in which our RNPs were visualised was selected for the ease of finding 

straight sections of filament to analyse, and we acknowledge that this is not necessarily 

physiologically relevant. However, during the testing of a range of buffers the overall 

architecture of the RNPs did not change (Figure S6).  

As suggested by crystallographic models of orthobunyavirus NP tetramers with bound 

RNA, our helical BUNV RNP model shows the genomic RNA to be sequestered on the inner 

face of the helix, where it lies within an RNA-binding cleft that forms a continuous tract within 

the rising helical arrangement of NP monomers. The NP oligomerisation arms also appear to 

partially shield the RNA from the solvent at lateral NP-NP interfaces, as was observed in an 

NP crystal structure from SBV (15) and together this encapsidation strategy would prevent the 
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RNA from extruding out of the RNP helix. This has significant ramifications in relation to the 

bunyaviral replication cycle. For instance, it seemingly rules out RNA-RNA intersegment 

interactions that may contribute towards a selective orthobunyavirus segment packaging 

mechanism, in contrast with influenza virus, for which extensive inter-segment interactions are 

proposed to drive selective packaging of all 8 genome segments during assembly (40). The 

almost complete coverage of BUNV RNA within the RNP is consistent with the current model 

for Bunyavirales segment packaging, for which no evidence of segment selection has been 

found (41). 

The flexibility of BUNV RNPs contrasts sharply with the more rigid RNPs belonging to 

members of the Mononegavirales order of non-segmented negative-sense RNA viruses, 

exemplified by measles and Ebola viruses (42–46), or the more closely-related 

Orthomyxoviridae family of segmented negative-stranded RNA viruses, such as influenza 

virus (39, 47, 48). Our 3D model shows the molecular basis for its flexibility lies in the lack of 

NP-NP interactions along the longitudinal RNP axis, dictated by the distance between NP 

monomers on adjacent rungs along the helix. Instead, the NP-NP chain in the RNP helix is 

maintained by lateral interactions involving the N- and C-terminal arms (11–16), as well as 

additional residues that we identify here, which engage in weak H-bond or salt bridge 

interactions. Furthermore, our results suggest the maintenance of the architecture of the RNP 

is dependent on the presence of encapsidated RNA.  

 The level of flexibility observed in the native helical BUNV RNPs permits a large degree 

of bending (up to 90o; e.g. Figure 1A) while still apparently preserving the integrity of the 

filament, which is likely of great benefit for several stages of the replication cycle. Flexibility 

will facilitate segment packaging during virion assembly, as it will allow the genomic segments 

to contort within the virion interior. BUNV particles are pleiomorphic, with diameters of around 

108 nm (10), and so BUNV S, M and L segments, with lengths of 150, 650 and 1050 nm, 

respectively, clearly could not be packaged if their RNPs were rigid rod-like structures. 

Interestingly, the virion diameter of 108 nm suggests an internal volume of around 6.7 x 105 

nm3, and by treating the three BUNV RNPs as a single cylindrical volume with a radius of 
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4.6 nm (Figure 1B) and combined length of 1850 nm, the volume that the three segments 

would occupy according to our model is 1.2 x 105 nm3, approximately one fifth of the capacity 

of the virion. Thus, it is entirely plausible that BUNV segments are packaged within virions 

without the need for further condensation. 

 RNP flexibility also allows the BUNV segments to adopt their characteristic circular 

RNP conformation in which their 3’ and 5’ ends interact, and this ability is particularly important 

for the S segment, for which circularization would require the shortest radius of curvature due 

to its short nucleotide length. Segment circularization is important for BUNV gene expression, 

and appears critical for recognition of the RNPs by the RdRp (32, 49), thus RNP flexibility is a 

critical requirement for virus viability. 

 The current model for how bunyaviral RNPs circularize is unclear, with possible 

contributions from inter-terminal Watson-Crick base-pairing interactions, and interactions with 

sequence-specific binding sites on the RdRp surface. Our negative staining EM observations 

revealed BUNV RNPs to be almost exclusively circular molecules, with less than 1% 

appearing in a linear form. Interestingly, close inspection of the circular RNPs revealed no 

evidence of where the joins between the RNA 3’ and 5’ termini might be. This finding was 

unexpected, as the inter-terminal interactions shown to be important for BUNV RNA synthesis 

(50–52) would be predicted to result in the formation of a partial duplex by Watson-Crick 

pairings, distinct from all other segment sequences that are single stranded. As the NP 

RNA-binding groove cannot accommodate double stranded RNA (11–15), this terminal hairpin 

would be expected to be displaced from the oligomeric NP chain, resulting in a region of the 

RNP with a distinctive structure. We were unable to detect any such regions, although this 

may reflect the relatively low resolution of negative staining EM. 

 An alternative mechanism for segment circularization is that it is mediated by the 

RdRp, based on the observation that the 3’ and 5’ terminal sequences bind to separate sites 

on the RdRp surface (32, 49). However, most of the RNPs we imaged lacked a putative RdRp, 

suggesting that RNP circularization is not dependent on a resident RdRp to tether their 

segment termini. Circularization independent of the presence of an RdRp raises the possibility 
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that interactions between adjacent NP molecules alone may drive segment circularization, 

leading to the formation of a continuous NP chain without distinctive ends; however, 

complementary ends are critical for the viral life cycle therefore the genome ends must interact 

at some point in the infectious cycle. It is of note that native RdRp has never been observed 

in association with orthobunyaviral RNPs, in contrast to that of influenza virus for which the 

RdRp readily co-purifies as part of the RNP complex (39, 48). This might suggest weak RdRp 

interactions within bunyavirus RNPs. 

 Our RNP model (Figure 3) shares some similarities with the previously described 

helical array of crystallised LACV NP (12) such as the helical pitch and the general 

arrangement of the NP molecules. However, the crystal structure has a regular four monomers 

per turn of the helix and very closely resembles the tetrameric crystal structure, while our 

model has 3.7 monomers per turn. Therefore, the crystal structure could be affected by 

crystallographic packing artefacts. We also note that the crystal structure is derived from apo 

NP, and this may have important structural consequences, as our results suggest that the 

encapsidated RNA plays an important role in helix maintenance. Interestingly, the recently 

solved structure of an in vitro reconstituted Hantaan virus (HTNV) RNP is similar to our model 

in terms of its helical pitch and number of subunits per turn (Figure S18A) (22). However, in 

contrast to our model, the HTNV RNP model shows a clear role for longitudinal NP-NP 

interactions in helix maintenance, with each NP monomer contacting six others across multiple 

rungs of the helix. This results in a structurally-homogeneous, rod-like RNP distinct from the 

highly flexible native BUNV RNP we characterise here. Many of the residues within the HTNV 

NP which the authors ascribe to these longitudinal NP-NP interactions (22) have no equivalent 

in the NP of BUNV, which is structurally distinct (Figure S18). It is likely that this marked 

difference in the capacity to form NP-NP interactions leads to differences in NP 

oligomerisation, which in turn result in the very different RNP structures of the two viruses. 

This finding, along with significant differences in NP structure and multimerization strategies 

across the five animal and human infecting families that make up the Bunyavirales order 

suggests their corresponding RNPs may also show significant differences in overall 
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architecture, with potential implications for the design of therapeutics that target this order of 

viruses. 

 

Data Availability 

The asymmetrical and symmetrical averages and pseudo-atomic model are deposited under 
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Supplementary Materials and Methods 

Virus Propagation and Purification 

Baby hamster kidney (BHK-21) cells at 80 – 90% confluency were infected with BUNV at a 

multiplicity of infection (MOI) of 0.01 and maintained in serum free DMEM at 32oC. After 96 

hours supernatant was collected and clarified by centrifugation at 3700 g for 20 minutes. Virus 

particles were then purified and concentrated by centrifuging at 100000 g for three hours in an 

SW32 rotor (Beckman-Coulter) with an underlay of 30% D-sucrose prepared in TNE buffer 

(100 mM Tris-HCl, 200 mM NaCl, 0.1 mM EDTA, pH 7.4) supplemented with protease 

inhibitors (Roche). Pellets were resuspended in 100 μl of TNE buffer at 4oC overnight and 

pooled together the following day.  

RNP Purification 

Virions were disrupted by a single freeze/thaw cycle, 30 minute incubation in 1% Triton X-100 

(Sigma-Aldrich) and 0.1% NP-40 alternative (Calbiochem) or 30 minute incubation in 30% D-

sucrose in TNE buffer. Disrupted virions were applied to the top of a 10-25% OptiPrep gradient 

prepared in TNE buffer and centrifuged in an SW60 rotor (Beckman-Coulter) at 250000 g for 

90 minutes. Fractions were collected and analysed for the presence of BUNV NP by western 

blotting using specific antisera (produced in-house), and those with the strongest NP signal 

were buffer-exchanged to remove OptiPrep. A range of buffers was tested (Figure S6) and a 

reduced-salt variant of TNE containing only 25 mM NaCl was used for all further analysis by 

EM. 

Negative-staining Electron Microscopy 

Immediately following buffer-exchange, 5 µL aliquots of RNPs were adsorbed to glow-

discharged, carbon-coated copper grids for three minutes. Following two water washes, grids 

were stained for 30 seconds with 1% uranyl acetate. Images were collected on a 120 kV FEI 

Tecnai G2-Spirit microscope at a nominal magnification of 45000X. 
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RNPs were subject to autopicking in Relion 3.0 (1) and a total of 175,583 particles were 

extracted. Rounds of 2D classification were used to discard the most heterogeneous particles 

and a final set of 14,899 particles was used to generate 2D class averages. To estimate the 

RNP length, 609 discrete RNP filaments were manually traced in Fiji (2) using the line tool and 

the length of the line was determined and used as an estimation of RNP length. In a similar 

manner, the line tool was also used to measure filament diameters and the distance between 

neighbouring subunits from within class averages. 

Cryo-electron Microscopy  

Carbon-coated quantifoil grids were prepared by plunge-freezing in liquid ethane using an FEI 

Vitrobot IV. Cryo-ET tilt-series were collected on an FEI Titan Krios microscope operating at 

300 kV and equipped with an energy filtered Gatan K2 XP Summit and Volta phase plate. Tilt-

series were collected at 2o intervals from -60o to 60o at a nominal magnification of 71000X for 

a pixel size of 2.7 Å. During tilt series and single particle data collection, on-the-fly motion 

correction and CTF estimation were set up in Relion 3.0 as previously described (3). 

Tomograms were reconstructed within the eTomo pipeline for fiducial-less alignment using 

weighted back projection from the IMOD software package (4). Sub-tomogram averaging 

(STA) was carried out with and within PEET (5). Sub-tomograms were manually picked using 

3dmod and STA was performed by alignment and averaging of these sub-volumes in PEET, 

using absolute value of cross-correlation and strict search limit checking. For the first iterations 

only the orientation of the RNP (without rotation) was included in the angular search range, 

starting with a maximum of 24o and a step of 8o and halving with each iteration, to produce a 

straight cylindrical model. In later iterations when the RNPs were orientated down to 6o, the 

rotation search was included.  

Single particle data was collected on an FEI Titan Krios microscope operating at 300 kV and 

equipped with a Falcon 3EC. Micrographs were collected at a nominal magnification of 

130000X for a pixel size of 1.07 Å. 
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Data were processed in Relion 3.0 (1). Approximately 1000 particles were picked for reference-

free classification and the resulting classes were used as templates for autopicking. 1.47 

million particles were selected by autopicking and extracted with a box size of 274 Å, binning 

particles 4 times (resulting in pixel size 4.28 Å). Two rounds of 2D classification selected the 

most homogenous 135102 particles. To validate the helical nature of the RNP, these particles 

were first subjected to 3D classification using a cylinder as a reference (removing any possible 

bias towards a helical model). The resulting averages were clearly helical, and therefore the 

particles were taken forwards for image processing using the STA-derived model. The selected 

particles were 3D classified against the STA model and two further rounds of 3D classification 

left the 5077 most homogenous particles. These particles were re-extracted with a smaller box 

size of 214 Å to increase homogeneity and were subject to two more rounds of 3D 

classification. In the final round of 3D classification the particles were divided into classes of 

approximately 4000 particles, as was recently done for IAV (6), and the top class was subject 

to helical reconstruction without symmetry. The same 5077 particles were then re-extracted 

with the increased box size of 274 Å to aid in alignment and a final refinement was carried out 

with helical symmetry applied. Local searches were applied that centred on values of 100o for 

twist and 15 Å for rise, as determined by viewing an XYZ projection of the non-symmetrical 

model. These always converged on the same values of -104.9o for twist and 17.7 Å for rise so 

these numbers were used for searches for the final refinement with helical symmetry imposed, 

which converged on -105.26º twist and 18.25 Å rise. The asymmetric and symmetric 

reconstructions are highly similar (their cross-correlation value is 0.94, when using chimera fit 

in map tool), suggesting we found the correct helical parameters. 

Atomic modelling of BUNV RNPs 

To generate an atomic model of BUNV RNPs, we used the coordinates of BUNV NP as a 

starting point (PDB: 3ZLA (7)). First, a trimer of NP was rigid-body fitted into the cryo-EM 

average using Chimera (8). Of the two possible orientations, one of them (which we term ‘beta-

strand up’) fit slightly better into the non-helically symmetrised average (it had an average map 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 27, 2021. ; https://doi.org/10.1101/2021.10.27.466080doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.27.466080
http://creativecommons.org/licenses/by/4.0/


 27 

value at fit atom positions of 0.09 vs. 0.081 for the alternative orientation); however, both 

orientations were taken forward to allow comparison of the final result. As has been previously 

reported, the core domain of all atomic coordinates from orthobunyavirus NP is constant, while 

the N- and C-terminal arms are flexible (Figure S14 and (9)). However, when comparing the 

NP core with the arms of the adjacent subunits (which we term ‘split’ NP), the interactions 

between the arms and the core domain remain constant across the structures of all 

orthobunyavirus NP oligomers (Figure S14). Therefore, we next fitted a ‘split’ NP into the 

central monomer of the rigid-body fitted trimers, and manually added the missing amino acids 

of the coordinates of BUNV NP in COOT (10) (corresponding to the linker regions between the 

arms and the core domain), to prevent the movement of the terminal ends of the protein to 

positions that are not physically possible during flexible-fitting. The resulting NP monomer was 

helically symmetrised in Chimera, and the NP helix was flexible-fitted into the cryo-EM average 

using MDFF (11), following the program’s guidelines. The ‘split’ NP domains were kept as rigid 

domains by applying domain restraints, and symmetry restraints were also employed. Of the 

two possible orientations of the NP, the ‘beta-strand up’ resulted in a better model, in terms of 

positive electrostatic charges for interactions with the RNA. 

PISA 

PDBePISA (Protein Interfaces, Surfaces, and Assemblies: http://pdbe.org/pisa/) and Chimera 

(8) were used to predict inter-chain interface contact residues, including H-bonds and salt-

bridges, involved in the interaction between BUNV NPs within the previously published BUNV 

NP tetramer (PDB: 3ZLA (7)) and within the helical RNP model. 

BUNV Replicon Plasmids and Mutagenesis  

Previously described plasmids were used for the BUNV replicon system assay (12). Briefly, 

the replicon system is constituted by BUNV L and NP support plasmids (pT7riboBUNL, 

pT7riboBUNN) which express BUNV L and NP downstream of the T7 pol promoter and the 

internal ribosome entry site (IRES) of encephalomyocarditis virus (ECMV), the minigenome 
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pT7riboBUN-SREN, which contains the Renilla luciferase gene in the negative sense flanked 

by the BUNV S segment UTRs, and the control plasmid pCMV-Firefly-Luc, which expresses 

firefly luciferase under a cytomegalovirus (CMV) promoter. Mutagenesis of the NP open 

reading frame (ORF) was achieved using pT7riboBUNN plasmid as template for site-directed 

mutagenesis (SDM). SDM primers were designed using NEBaseChanger and SDM reactions 

were performed using a Q5 SDM Kit (NEB) according to the manufacturer’s instructions. 

Corresponding DNA clones were transformed into competent bacterial cells, purified using 

Miniprep kits (Qiagen) and mutations were confirmed using Sanger sequencing. 

BUNV Replicon Transfection and Luciferase Activity Assay 

BSR-T7 cells were seeded in 24-well plates 1 day prior to transfection at a density of 5x104 

cells per well. Cells were transfected with 0.2 μg each of pT7riboBUNL, pT7riboBUNN or one 

of the mutated NP clones, the minireplicon plasmid pT7riboBUN-SREN and 0.1 μg pCMV-

Firefly-Luc (internal transfection control). TransIT-LT1 Transfection Reagent (Mirus Bio) was 

used as transfection reagent in a 2.5:1 ratio of TransIT-LT1 (μl):DNA (μg) according to the 

manufacturer’s instructions. At 24 h post-transfection, Renilla and firefly luciferase activities 

were measured using the dual-luciferase assay kit (Promega). Statistical analyses were 

performed using one-way ANOVA, followed by Dunnett's multiple comparisons test to 

determine significant differences in replicon activity between NP mutants and WT BUNV NP. 

AFM sample preparation and imaging 

The handedness of fibrils was determined using AFM. 18 µL of RNPs was deposited on freshly 

cleaved mica in an imaging buffer of 10mM NiCl2, 10 mM HEPES pH 7.5. All AFM imaging 

was carried out at room temperature with the RNPs in solution and hydrated in the imaging 

buffer. AFM observations were performed in tapping mode using a Dimension FastScan Bio 

with FastScan-D-SS probes (Bruker). The force applied by the tip on the sample was 

minimized by maximizing the set point whilst maintaining tracking of the surface. Images were 

processed using first-order line-by-line flattening to remove the sample tilt and background 
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using Nanoscope Analysis (Bruker). Correlation averaging was performed using self-written 

code in MATLAB. RNPs were first skeletonized to trace the profile before profile smoothing 

and digitally straightening. A reference section within the digitally straighten image containing 

1 full helical repeat of the RNP was then cross correlated along the entire length of protein 

to search for similar features. Correlation averages were created using the 80 of 120 sections 

with the highest cross correlation coefficient. Cross-correlation was also performed with 

a vertically flipped reference image to search for possible left-handedness. The code 

employed for AFM image analysis has been deposited in https://github.com/George-R-

Heath/Correlate-Filaments. 
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Figure 1

Figure 1. Negative staining EM analysis of purified BUNV RNPs. (A) Negative staining EM 
confirmed the abundance and purity of RNP filaments, and regions of apparent helical 
organisation were apparent (inset). Scale bar: 100 nm in main and 50 nm in inset. (B)
Alignment and classification clearly showed helix-like architecture within filaments. Scale bar: 
10 nm. (C) Preliminary estimation of the RNP width and helical pitch. Scale bar: 10 nm.
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Figure 2

Figure 2. Cryo-ET derived model of a BUNV RNP. (A) Reconstructed tilt-series revealed clear 
RNPs and numerous electron dense particles. Insets 1 to 4 show slices 13.5 Å apart from within 
an area containing RNP(s). Scale bar: 50 nm. (B) Sub-tomogram averaging produced a 20 Å 
reconstruction of a helical BUNV RNP. Scale bar: 5 nm.



Figure 3

Figure 3. Cryo-EM model of the BUNV RNP. (A) Cryo-EM average with helical symmetry generated a 13 Å
model of a BUNV RNP filament. (B) Flexible fitting a ‘split’ NP model with appropriate restraints produced a
pseudo-atomic model of the BUNV RNP. Distance between rungs of the helix indicated. Scale bar: 5 nm.
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Figure 4

Figure 4. The BUNV RNP helix is maintained by the RNA. (A) Orientation of NP within the 
BUNV RNP model. (B) Histogram showing gene expression activity of mini-genome RNPs 
reconstituted using WT and mutant NPs, alongside transfections in which the BUNV 
polymerase was omitted (noL). *: p ≤ 0.05, **: p ≤0.01, ***: p≤0.001, ****: p≤0.0001. (C) 
Tested mutants highlighted on an NP monomer from the RNP helical model. (D) Untreated 
BUNV RNPs and (E) BUNV RNPs treated with 20 μg of RNase A, visualized using negative 
staining EM. Scale bars: 50 nm. 
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Supplementary 1
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Figure S1. Proposed models of NP organisation within orthobunyavirus RNP. (A) monomer-

based ‘beads on a string’ and (B) tetramer-based helix alongside the crystal structure of 

tetrameric BUNV NP.
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Figure S2. Purification of BUNV. (A) SDS-PAGE analysis showed an increased concentration of 

virus after pelleting through a sucrose cushion, with high purity and removal of BSA 

contaminants. M = marker, S1 = supernatant pre-purification, S2 = clarified supernatant pre-

purification, C = cushion post-purification, V = resuspended viral pellet. (B) Negative staining 

EM confirmed purity and abundance of virions. Scale bar: 100 nm.
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Supplementary 3
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Figure S3. Methods of BUNV RNP release, examined by negative staining. (A) Sucrose washes 

were not reproducible and often failed to lyse virions. (B) Washing with detergent was 

effective at disrupting virions but produced a high level of background signal. (C) Freeze/thaw 

was highly effective for release of viral RNPs. From top to bottom, insets show mostly intact 

virus, debris attributed to disrupted viral membranes, RNPs spilling from their parent virus and 

discrete RNPs released from virions. Scale bars: 100 nm.



Supplementary 4
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Figure S4. BUNV RNP purification. (A) Fractionation and western blotting showed the location 

of RNPs within a continuous density gradient (asterisk). (B) Representative micrograph showing 

abundant, purified BUNV RNPs (left), and the effectiveness of the Relion autopicking tool for 

selecting particles (right).



Supplementary 5

Figure S5. Putative polymerase molecules within BUNV RNP preparations. During analysis of 

negatively stained BUNV RNPs, a population of large structures with resemblance to viral 

polymerases was found, often in association with RNP filaments. Scale bars: 50 nm.
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Supplementary 6

Figure S6. Visualization of purified BUNV RNPs after buffer exchange into different 
conditions. (A) TNE with no salt. (B) TNE with 25 mM NaCl. (C) TNE with 50 mM NaCl. (D) TNE 

with addition of MgCl2. (E) TNE with addition of DTT. (F) TNE with KCl substituted for NaCl. (G) 

TNE with addition of antisera. (H) TNE pH 6.4. (I) TNE pH 8.0. Scale bars: 50 nm.



Supplementary 7

Figure S7. BUNV RNP length measurements. (A) Schematic of discrete RNP 

tracing. Scale bar: 100 nm. (B) Tracing the lengths of filaments revealed 

three distinct populations corresponding to S, M and L genomic segments. 

Insets show representative S, M and L RNPs and their lengths. Scale bars: 50 

nm
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Figure S8. FSC curve of the sub-tomogram average. Resolution is 20 Å at an FSC 

cut-off 0.5.

Supplementary 8



Figure S9. AFM imaging of RNPs on mica in liquid. (A) AFM image of RNP with digital 

zooms displaying helical features. (B) High resolution AFM image of RNP. (C) Correlation 

average along the length of a digitally straitened protein using a 20 nm reference section of 

the RNP in (A) (n = 80). (D) Correlation average using the 20 nm reference section with Y-

inverted (n = 80). All scale bars: 10 nm.
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Supplementary 10

Figure S10. Schematic illustration of the image processing of cryo-EM data.
Blue volumes denote the classes taken forwards to further processing.
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Supplementary 11

Figure S11. Unbiased processing of BUNV RNP cryo-EM data. Classification with a cylinder 

reference showed a clear helix in the absence of any symmetry or reference bias.
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Figure S12. BUNV RNP cryo-EM averages. (A) Asymmetric average of a BUNV RNP 

at 15Å. FSC curves of (B) the asymmetric average and (C) the symmetric average. 

FSC cut-off 0.143.
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RNP symmetric reconstruction = 13 Å
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Supplementary 13
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Figure S13. Generation of a ‘split’ BUNV NP for fitting NP to the BUNV RNP model. (A) 
Illustration of the arrangement of NP within an available tetrameric crystal structure. (B) A full 

NP molecule within the crystal structure with the core of NPB in purple and both arms of NPB in 

red. (C) A ‘split’ NP, comprising the core of NPB (purple) and the arms of neighbouring NPA and 

NPC (red).



Figure S14. Conservation of the ‘split’ BUNV NP. (A) Alignment of available full NP structures 

from different orthobunyaviruses. Our RNP-derived model in blue. The arms are clearly 

flexible. (B) Alignment of ‘split’ NPs from the same orthobunyaviruses as panel A. Our RNP-

derived model in pink. PDB accession codes: 3ZLA, 3ZL9, 4BHH, 4IJS, 4J1J, 4JNG.
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Figure S15. Coulombic surface potential of the helical BUNV NP model. (A) The BUNV RNP 

model has a continuous positively-charged RNA-binding groove pointing towards the inside of 

the RNP. (B) Coulombic surface potential shows electrostatic interactions between lateral 

neighboring NP monomers are unlikely. 
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Figure S16. Comparison of expression of mutant compared to wild type NP. ns: p>0.85, *: p ≤ 

0.05, **: p ≤0.01, ***: p≤0.001, ****: p≤0.0001. 
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Figure S17. The RNA component of BUNV RNPs maintains their helical arrangement. Purified RNPs 

were treated with different amounts of RNase A and visualized using negative staining EM. 

Representative micrographs of (A) untreated BUNV RNPs, (B) BUNV RNPs treated with 2 μg of RNase 

A and (C) BUNV RNPs treated with 20 μg of RNase A. (D) Western blotting against BUNV NP of the 

different samples imaged by negative stain EM. Scale bars: 100 nm in main and 50 nm in insets. 
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Figure S18: Comparison of BUNV and HTNV RNPs. (A) Side by side comparison of helical HTNV and 

BUNV RNPs. HTNV PDB accession code: 6I2N. (B) A side by side comparison of BUNV and HTNV NP. 

(C) Alignment of BUNV (blue) and HTNV (orange) NPs, with HTNV NP homotypic binding residues 

highlighted in red. 
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Table S1: Helical model NP-NP interactions as defined by PDBePISA. 

Helical model interactions
## Structure 1 Dist. [Å] Structure 2

Hydrogen 
bonds

1 C:THR 62[ N ] 3.53 D:ILE 2[ O ]

2 C:THR 62[ OG1] 2.94 D:ILE 2[ O ]

3 C:LEU 63[ N ] 3.76 D:GLU 3[ OE2]

4 C:ASN 64[ N ] 3.76 D:GLU 3[ OE2]

5 C:ASN 64[ N ] 3.16 D:LEU 4[ O ]

6 C:LYS 45[ NZ ] 2.47 D:HIS 7[ O ]

7 C:LYS 214[ NZ ] 2.73 D:GLU 173[ OE2]

8 C:ARG 223[ NH2] 3.66 D:PRO 174[ O ]

9 C:ARG 223[ NH2] 3.73 D:GLU 178[ OE2]

10 C:GLU 58[ OE2] 3.19 D:ILE 2[ N ]

11 C:THR 62[ O ] 3.59 D:LEU 4[ N ]

12 C:ASN 64[ O ] 3.14 D:PHE 6[ N ]

13 C:ASN 217[ O ] 2.99 D:LYS 175[ NZ ]

Salt Bridges
1 C:LYS 214[ NZ ] 2.73 D:GLU 173[ OE2]

2 C:ARG 223[ NH2] 3.73 D:GLU 178[ OE2]

3 C:GLU 58[ OE1] 3.93 D:MET 1[ N ]

Table S1



3ZLA tetramer interactions
## Structure 1 Dist. [Å] Structure 2

Hydrogen 
bonds

1 B:LEU 4[ N ] 3.31 A:THR 62[ O ]
2 B:PHE 6[ N ] 2.95 A:ASN 64[ O ]
3 B:GLN 168[ NE2] 2.63 A:PHE 229[ O ]
4 B:ILE 2[ O ] 3.16 A:THR 62[ N ]
5 B:ILE 2[ O ] 3.19 A:THR 62[ OG1]
6 B:LEU 4[ O ] 3.05 A:ASN 64[ N ]
7 B:PHE 6[ O ] 2.97 A:GLY 66[ N ]
8 B:ASP 8[ OD2] 3.39 A:ARG 40[ NH1]
9 B:GLU 178[ OE2] 3.50 A:ASN 217[ N ]

Salt Bridges 1 B:ASP 8[ OD2] 3.39 A:ARG 40[ NH1]

Table S2. Tetrameric model (pdb: 3ZLA) NP-NP interactions as defined by PDBePISA. 

Table S2



## Structure 1 Dist. [Å] Structure 2

Hydrogen 
bonds

3 C:LEU 63[ N ] 3.76 D:GLU 3[ OE2]

4 C:ASN 64[ N ] 3.76 D:GLU 3[ OE2]

6 C:LYS 45[ NZ ] 2.47 D:HIS 7[ O ]

7 C:LYS 214[ NZ ] 2.73 D:GLU 173[ OE2]

8 C:ARG 223[ NH2] 3.66 D:PRO 174[ O ]

9 C:ARG 223[ NH2] 3.73 D:GLU 178[ OE2]

10 C:GLU 58[ OE2] 3.19 D:ILE 2[ N ]

13 C:ASN 217[ O ] 2.99 D:LYS 175[ NZ ]

Salt Bridges
1 C:LYS 214[ NZ ] 2.73 D:GLU 173[ OE2]

2 C:ARG 223[ NH2] 3.73 D:GLU 178[ OE2]

3 C:GLU 58[ OE1] 3.93 D:MET 1[ N ]

Helical model only

Table S3. BUNV NP helical model NP-NP interactions as defined by PDBePISA. Highlighted in 

red: mutants tested in the mini-replicon assay.

Table S3


