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ABSTRACT  

Epigenetic “clocks” based on DNA methylation (DNAme) are the most robust and widely employed aging biomarker. 
They have been built for numerous species and reflect gold-standard interventions that extend lifespan. However, 
conventional methods for measuring epigenetic clocks are expensive and low-throughput. Here, we describe 
Tagmentation-based Indexing for Methylation Sequencing (TIME-Seq) for ultra-cheap and scalable targeted methylation 
sequencing of epigenetic clocks and other DNAme biomarkers. Using TIME-Seq, we built and validated inexpensive 
epigenetic clocks based on genomic and ribosomal DNAme in hundreds of mice and human samples. We also discover 
it is possible to accurately predict age from extremely low-cost shallow sequencing (e.g., 10,000 reads) of TIME-Seq 
libraries using scAge, a probabilistic age-prediction algorithm originally applied to single cells. Together, these methods 
reduce the cost of DNAme biomarker analysis by more than two orders of magnitude, thereby expanding and 
democratizing their use in aging research, clinical trials, and disease diagnosis. 
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INTRODUCTION  

Aging “clocks” are highly accurate, machine learning-derived biomarkers trained to predict age or age-
associated phenotypes. Both physiological measurements4,5 and biomolecules6-8 have been used to develop clocks, and 
they are becoming increasingly common in basic research and clinical studies. However, methods to measure clocks that 
are inexpensive and scalable are lacking, limiting their use in large cohort studies such as clinical trials of age-related 
disease. 

The most robust and widely used aging clocks are based on DNA cytosine methylation (DNAme) and are 
interchangeably referred to as DNAme clocks or epigenetic clocks. These clocks comprise sets of CpGs (usually dozens 
to hundreds) and corresponding algorithms that use methylation levels to predict age. Epigenetic clocks have been built 
for humans9-11, mice1,3,12, and a multitude of other mammals13-16, and they have been shown to reflect interventions that 
are canonically associated with longevity17, accelerated aging18, and even cellular rejuvenation19,20. While much focus 
has been put on developing more accurate clocks, clocks in different organisms, or clocks trained to predict aging-
adjacent phenotypes11,21, very little work has been done to make the use of epigenetic clocks more experimentally 
tractable.  

Epigenetic clocks have been predominantly built and assayed using methylation microarray (e.g. Illumina 
MethylationEPIC BeadChip22) or Reduced Representation Bisulfite Sequencing23 (RRBS). While these approaches 
measure hundreds of thousands to millions of CpGs, making them useful for biomarker discovery, they are expensive 
and low throughput, costing hundreds of dollars per sample and requiring laborious and expensive DNA preparation.  

To address this limitation, we developed Tagmentation-based Indexing for Methylation Sequencing (TIME-Seq) 
for scalable and inexpensive targeted methylation sequencing of DNAme biomarkers. We use TIME-Seq to cheaply and 
rapidly build epigenetic clocks from hundreds of mice and validate these clocks on independent cohorts of longitudinally 
tracked mice. Using a recently reported algorithm for epigenetic age analysis in single cells24, we discover it is possible 
to predict age with similar accuracy as traditional clocks from shallow-sequenced TIME-Seq libraries, dramatically 
reducing the sequencing depth needed to predict age. Finally, we applied TIME-Seq to study ribosomal DNA 
methylation variation in over 600 humans and built an epigenetic clock from libraries enriched for human clock loci. By 
decreasing cost more than two orders of magnitude and expediting large-scale experiments, TIME-Seq enables more 
widespread use of DNAme clocks and other epigenetic biomarkers.  

RESULTS  

We designed TIME-Seq, a novel targeted sequencing method to build and measure DNAme-based biomarkers 
(e.g., epigenetic clocks) for low-cost in hundreds to thousands of samples. TIME-Seq leverages barcoded and bisulfite 
(BS)-resistant Tn5-transposomes to rapidly index sample DNA for a pooled library preparation (Fig. 1a), which 
streamlines large-scale experiments and minimizes the cost of consumables (Table S1). After tagmentation and pooling, 
methylated end-repair (5-methyl-dCTP replaces dCTP) is performed, and pools are prepared for in-solution 
hybridization enrichment using biotinylated-RNA baits (Fig. S1a-e). Unlike BS-compatible single-cell indexing 
approaches25, we designed barcoded TIME-Seq adaptors to be short (38-nt) for optimal enrichment efficiency since 
longer adaptors are more likely to daisy-chain with off-target DNA26 (Fig. S1f-h). Baits are produced in-house from 
single-stranded oligonucleotide libraries (Fig. S1a and Table S2), providing inexpensive enrichments from a regenerable 
source. After BS conversion of captured DNA and indexed-PCR amplification of each pool, Illumina short-read 
sequencing is performed (Fig. S2) and sample reads are demultiplexed based on pool and Tn5-adaptor indexes. From 
mapped reads, a matrix of methylation values for CpGs in each sample is used to train or readout a DNAme biomarker. 

To assess TIME-Seq, we performed a pilot experiment using 100 nanograms (ng) of blood DNA from 12 mice 
across 4 age groups (Fig. 1b). Pools were enriched using baits targeting a previously described epigenetic clock in 
ribosomal DNA (rDNA) repeats27. Samples efficiently demultiplexed from each pool (Fig. 1c) and DNA methylation 
was accurately measured (Fig. 1d) with high correlation (R=0.9) between replicate CpG levels (Fig. 1e and Fig. S3a) 
and with deep coverage at targeted epigenetic clock loci from less than 600,000 reads (Fig. 1f). In comparison with 
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RRBS libraries of the same samples, TIME-Seq libraries had substantially higher overlap with target clock CpGs (Fig. 
1g). Age prediction using an existing RRBS-based rDNA clock, however, showed only moderate correlation with age 
in our pilot (R=0.53; Fig. S3b), possibly due to the differences in CpG coverage between TIME-Seq and RRBS at several 
clock loci (Fig. S3c). 

Figure 1. TIME-Seq enables highly multiplexed targeted methylation sequencing for biomarker discovery and 
measurement. a, Schematic of the TIME-Seq library preparation for highly multiplexed targeted methylation sequencing 
to build and measure DNA methylation (DNAme)-based biomarkers. b, TIME-Seq pilot experimental design using mouse 
blood DNA from 4 age groups and preparing 2 replicates of each sample with rDNA baits (version 1) as well as RRBS 
libraries to be sequenced as a fraction of a Illumina MiSeq sequencing run. c, Demultiplexed reads from the 12-sample 
replicate TIME-Seq pools. d, Mean CpG methylation from reads mapped to the mouse ribosomal DNA meta-locus in TIME-
Seq pools. Unmethylated lambda phage DNA control is represented as a diamond. e, Percent methylation from reads 
mapped to ribosomal DNA meta-locus in replicate 1 and replicate 2 in CpGs with coverage at least 125. Correlation from  
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To build a more accurate rDNA clock compatible with TIME-Seq, enrichment baits tiling the entire rRNA 
promoter and coding regions were designed and used to enrich TIME-Seq libraries from 191 mouse blood DNA samples 
(ages 2-35 months, 182 passed quality filters) in pools of 47-48 (Fig. 2a). Pools were combined and sequenced on an 
Illumina MiSeq for a per-sample cost of less than five US dollars (USD) (see Table S3 for sequencing costs). The 
majority of demultiplexed reads (Fig. 2b) from each sample (57-80%) mapped to the rDNA repeat meta-locus (Fig. 2c), 
resulting in high coverage for each sample at rDNA CpGs (Fig. 2d). Mean methylation levels from each sample (Fig. 
2e) significantly increased with age (Fig. S4a) and were the main source of variance between samples based on principal 
component analysis (PCA) (Fig. S4b-c). Age was noticeably associated with variance in the second principal component 
(Fig. 2f), consistent with high age correlation for individual CpGs (Fig. 2g). To train the age prediction model, samples 
were split approximately 80:20 into training and testing sets (Fig. 2h) and a mostly-ridge (a=0.07) elastic net regression 
was applied (Fig. S4d). Age predictions using the resulting 187 CpG TIME-Seq rDNA (TS-rDNA) clock showed high 
correlation with age (training, R=0.97; testing, R=0.94) and a median absolute error (MedAE) of only 1.86 months in 
the testing samples (Fig. 2i). To build a clock that could be applied to both TIME-Seq and RRBS samples, we trained a 
model from TIME-Seq data using only CpGs with high coverage in RRBS data1 (Fig. 2j). This clock showed high age 
correlation (R=0.87) in RRBS data and reflected the longevity benefit of caloric restriction. These data serve as a proof-
of-concept for TIME-Seq as a robust, low-cost, and high throughput epigenetic age prediction method. 

Most aging clocks are built from non-repetitive loci such as CpG islands in gene promoters or other gene 
regulatory elements28. We sought to build a clock from non-repetitive loci and designed baits to target CpGs that were 
previously reported to have high age-correlation in mouse blood1 and multi-tissue clocks3,12 (Fig. 2k and Fig. S4e). These 
baits—termed mouse discovery (MD) baits—were used to enrich five TIME-Seq pools made from 201 mouse blood 
DNA samples (186 passed quality filters). Target loci were enriched with 71% median mapped reads on-target (Fig. 
S4f). As expected, methylation levels of many of the target CpGs in the dataset had high correlation—both positive and 
negative—with age (Fig. 2l). The same training strategy (Fig. 2m and Fig. S4g) was applied to build a robust epigenetic 
clock, with high age-correlation (training, R=0.98; testing, R=0.91) and a MedAE of only 1.68 months (Fig. 2n). Like 
RRBS- and Illumina microarray-based clocks, the 173 CpG TIME-Seq blood (TS-blood) clock has CpGs with both 
positive and negative age trajectories (Fig. 2o). This experiment further validates TIME-Seq for cheap, scalable, and 
accurate age prediction and demonstrates the versatility of the approach. 

We hypothesized that the cost of age prediction could be even further reduced by applying scAge24—a recently 
described method for epigenetic age prediction in single cells—to shallow-sequenced TIME-seq libraries, which might 
resemble sparse and binary single-cell DNAme data. To test this, we shallow-sequenced 3 MD-enriched TIME-Seq pools 
containing 121 mouse-blood DNA samples (119 passed quality filters; Fig. 3a). Sample reads ranged from 3,610 to 
32,588 (median 11,560; Fig. 3b) with a per-sample cost of just $1.85 (USD). While average methylation levels were 
approximately the same as deep-sequenced data (Fig. S5a), the vast majority of CpGs were only covered by one or a few 
reads (Fig. 3c). To predict age from such low-pass sequencing, scAge leverages existing deep-sequenced methylation 
data to construct linear models for maximum-likelihood age prediction (Fig. 3d). We first applied scAge to shallow-
TIME-Seq data using published RRBS data1,3 as reference. Since TIME-Seq libraries are enriched for age-correlated loci 
in RRBS datasets, there was high intersection (median 49.1%) between model CpGs and shallow-TIME-Seq data 
compared to a more random distribution of sparse data, such as whole-genome single-cell methylation data2 (Fig. 3e). 

coverage at least 50-250 ranged from R=0.86-0.93 (see Fig. S3a). f, Screenshot of IGV browser showing pileups of mapped 
reads in   samples from a TIME-Seq pool (replicate 1) as well as mapped reads from sample 24-3. Reads are colored by 
mismatch, which for cytosines is blue for T (unmethylated) and red for C (methylated). Target Clock CpG coordinates are 
illustrated on the bottom track by black rectangles.  g, Percent of reads directly overlapping target clock CpGs from TIME-
Seq libraries (N=12; mean from 2 replicates) and shallow-sequenced RRBS libraries (N=10).  
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Figure 2. Inexpensive and accurate blood epigenetic clocks trained on a large cohort of mice using TIME-Seq. a, 
Schematic of 191 mouse blood DNA samples (histogram), library preparation, and sequencing for TIME-Seq rDNA 
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Remarkably, we found that age predictions were extremely accurate (Fig. 3f-g and Fig S5b-c) with a correlation 
of R=0.86 (Females, R=0.94; Males, R=0.85) and MedAE of just 2.23 months. Next, we used the deep-sequenced TIME-
Seq data as the reference for scAge, which further improved age correlation (R=0.91; MedAE=2.87; Fig. 3h-i) to a 
similar level as deep sequenced elastic-net-based clocks. To test if this approach is generalizable to other mouse tissues, 
we prepared and shallow-sequenced TIME-Seq libraries from 104 mouse liver samples (ages 3-29 months), finding age 
predictions remarkably accurate using both deep-sequenced TIME-Seq liver data (Fig. 3j and Fig. S5d) and RRBS liver 
data (Fig. S5e-f) as reference. This combination of shallow-TIME-Seq and scAge decreases the cost of age prediction 
by more than 2 orders of magnitude compared to traditional sequencing and epigenetic clock approaches. 

To validate TIME-Seq-based age prediction approaches, we prepared both rDNA- and MD-enriched TIME-Seq 
libraries in two separate experiments using blood DNA from an independent cohort of mice (N=75-93; ages 1.9-32.9 
months). A subset of these mice were tracked longitudinally, assessed using the mouse frailty-index29—a composite 
biomarker of age-related decline—and had blood composition parameters measured (Fig. 4a). The TS-rDNA clock 
(R=0.83; Fig. 4b) and TS-blood clock (R=0.93; Fig. 4c), as well as the combination of scAge and shallow-TIME-Seq 
using both RRBS (R=0.84; Fig. S6a) and the original TIME-Seq data for reference CpGs (R=0.87; Fig. 4d) gave accurate 
age predictions that reflected longitudinal age change. While the TS-rDNA clock had the least accurate predictions, it 
maintained rank-order prediction in many mice from the longitudinal cohort (Fig. S6b), demonstrating an ability to 
measure consistent aging trajectories. Further, mice from The Jackson Labs (JAX)—the same colony as the original 
clock training set—had metrics comparable to the TS-rDNA testing set (JAX mice, R=0.93; Fig. S6c), suggesting that 
inter-colony differences might decrease TS-rDNA clock accuracy even in mice of the same lineage (C57BL/6). Accuracy 
of the rDNA clock also improved when filtering for samples with higher coverage (Fig. S6d), which will help inform 
the target reads-per-sample in future applications. TS-blood clock and scAge predictions were highly correlated with 
each other (R=0.91) and both were less well correlated with rDNA age (Fig. 4e).  

clock training and testing. b, Reads demultiplexed from each rDNA clock pool of 47-48 samples. c, Percent of 
demultiplexed reads from each sample that mapped to the rDNA meta-locus. d, Mean coverage at rDNA meta-locus 
CpGs in rDNA-enriched TIME-Seq libraries. e, Mean CpG methylation from each sample in the four pools. f, 
Principal component (PC) 1 plotted against PC2 values from PCA of rDNA-enriched TIME-Seq libraries. Samples 
are colored by age with grey (young) to red (old). g, Pearson correlation between methylation ratio (0-1) and age at 
individual CpGs across the rDNA meta-locus. h, Histogram of training (N=145; red) and testing (N=37; blue) 
samples used to develop the TIME-Seq rDNA clock. i, TIME-Seq mouse rDNA clock showing age prediction for 
training (red) and testing (blue). Pearson correlation and median absolute error (MedAE) on test are shown in the 
top left corner. j, TIME-Seq-based clock developed using only CpGs with at least 50 coverage in RRBS data used to 
develop the original mouse rDNA clock1. Caloric restricted (CR) mice are represented as red triangles. k, Illustration 
of target loci (circles) from across the mouse genome represented in a chromosome ideogram (PhenoGram). Colors 
represent differing numbers of probes at each target locus (legend, bottom right). l, Pearson correlation between 
individual CpG ratios across chromosomes represented in a Manhattan plot style. Clock loci from three previously 
described mouse clocks are shown colored. m, Histograms of training (N=149; red) and testing (N=37; blue) 
samples for the TIME-Seq mouse blood clock. n, TIME-Seq mouse blood clock showing age prediction for training 
(red) and testing (blue). Pearson correlation and MedAE are shown in the top left corner. o, Linear regression 
models fit to CpG levels across age for each clock CpG, split by clock coefficient sign. Transparency is dependent 
on the absolute value of the coefficient (i.e., CpGs that carry more weight are more opaque).  
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The difference between predicted age from epigenetic clocks and chronological age (∆Age) has been shown to 
correlate with a wide variety of age-associated phenotypes7. To test if TIME-Seq predictions related to other measures 
of health or aging, we compared ∆Ages from each approach to mouse frailty index and blood composition measurements 
(Fig. 4f-g). To control for raw age correlation of each variable (top Fig. 4f and Fig. S6e), measurements from each mouse 
were subtracted by the median value of that variable in similar aged animals—abbreviated ∆Medage(blood) and 
∆Medage(FI). ∆Medage(blood) values were not correlated with ∆Ages from the deep-sequenced clocks, suggesting blood 
cell composition is not driving predictive variance. However, ∆Medage(blood) values from the parameters with significant 
age correlations, mean platelet volume (MPV), neutrophil percent (NE %), and lymphocyte percent (LY %) were also 
significantly correlated with scAge ∆Ages in the same direction.  

Figure 3. Ultra-cheap age prediction with scAge from shallow sequencing of TIME-Seq libraries. a, Schematic of 
shallow sequencing of 121 MD-enriched TIME-Seq libraries. b, Demultiplexed read number from each shallow 
sequenced sample. c, Histogram of CpG coverages in shallow sequenced samples. d, Schematic of the scAge 
framework for maximum likelihood age prediction from shallow TIME-Seq methylation data. e, Percent of scAge 
model CpGs covered in each shallow sequenced TIME-Seq library and a previously reported single-cell methylation 
dataset2. f, Pearson correlation and MedAE from scAge-based age prediction using reference RRBS data (Thompson 
et al., 2018). CpGs in each sample were ranked by the absolute value of their correlation with age (based on deeply 
sequenced data), and only the top N percentile was used for maximum likelihood prediction at each point. The red 
line indicates the percentile presented in (g). g, Age predictions from scAge in shallow-sequenced TIME-Seq libraries 
(N=119) using RRBS reference data (top 30% age-associated CpGs). Pearson correlations are shown in the top left 
corner. h, Pearson correlation and MedAE from scAge-based age prediction of the top N percentiles of CpGs using 
deep-sequenced, MD-enriched TIME-Seq data as reference (data used for Fig. 2k-o). The red line indicates the 
percentile presented in (i). i, scAge predictions from shallow-TIME-Seq data using deep-sequenced TIME-Seq data 
(100% of CpGs) as models. Pearson correlations are shown in the top left corner. j, scAge predictions from 104 
shallow-sequenced liver samples using deep-sequenced TIME-Seq liver data as model CpGs (100% of CpGs). Pearson 
correlations are shown in the top left corner. 
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Since frailty index is also highly correlated with age and indicative of age-related decline, we hypothesized that 
∆Ages might be positively correlated with ∆Medage(FI) values (i.e., mice that are more frail for their age are also 
predicted older). However, when comparing ∆Medage(FI) to ∆Ages (Fig. 4g), we found no correlation with any TIME-
Seq prediction method. While further investigation will be needed to delineate the association of blood composition and 
frailty with epigenetic age predictions, this analysis demonstrates the usefulness of TIME-Seq in assessing large cohorts 
with paired data.  

 

Figure 4. Validation of TIME-Seq age predictions in longitudinally tracked mice and late-life dietary interventions. a, 
Experimental schematic for validation of TIME-Seq age prediction methods in an independent cohort of mice with 
longitudinal timepoints, paired frailty index, and blood composition data. b-d, TIME-Seq age predictions in two 
independent validation library preparations using (b) TIME-Seq mouse rDNA (TS-rDNA) clock, (c) TIME-Seq mouse 
blood (TS-blood) clock, and (d) scAge predictions from shallow-TIME-Seq data (shallow-TS + scAge) using deep-TIME-
Seq data (original MD-enriched libraries shown in Fig. 2) as reference. Lines connect the same mouse at two different 
ages. Pearson correlations and n values are shown in the top left corner.  e, Correlation between age predictions in the 
validation sets from all three approaches. f, Pearson correlation and significance matrix between ∆Age from each 
approach and ∆Medage(blood), i.e., the difference in median value from similar aged mice for each blood measurement. 
Color and size of each circle represent the Pearson correlation and p-value significance, respectively. WBC = white blood 
cell count (1000 cells/µl), NE (%) = percent of neutrophils, LY (%) = percent of lymphocytes, MO (%) = percent of 
monocytes, EO (%) = percent of eosinophils, BA (%) = percent of basophils, RBC = red blood cell count (106/µl), Hb = 
hemoglobin (g/dL), HCT = hematocrit, MCV = mean corpuscular volume (fL), MCH = mean corpuscular hemoglobin 
(pg), MCHC = mean corpuscular hemoglobin concentration (g/dL), RDW = red blood cell distribution width, PLT = 
platelets (1000 cells/µl), MPV = mean platelet volume (fL) g, ∆Medage(FI), i.e., the difference in frailty index for each 
mouse from the median frailty index from similar aged mice, plotted against ∆Age from each approach. Pearson 
correlations and p-values are shown above each graph.  h, Schematic of late-life dietary interventions and blood collection. 
AL = ad libitum (N=14, black); MetR = methionine restriction (N=15, blue); 40% CR = 40% caloric restriction (N=10,  
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To test if TIME-Seq predictions could detect interventions that moderately extend lifespan in late-life, we 
measured epigenetic age in the blood of mice that were 40% caloric restricted (CR) or methionine restricted (MetR) for 
six months starting at 22-24 months of age (Fig. 4h). While TS-rDNA clock predictions from samples in these cohorts 
were largely accurate (Fig. 4i), the treated mice ∆Ages were not significantly different from mice fed ad libitum (AL) 
(Fig. S6f). This contrasts with the negative ∆Ages of lifelong CR mice using the RRBS-TS-rDNA clock (see Fig. 2j) 
and suggests a more drastic intervention might be needed to detect shifting age trajectories with the TS-rDNA clock in 
late-life mice. MD-enriched TIME-Seq libraries were also prepared and both deep and shallow sequenced. CR mice 
were predicted significantly younger than AL mice using the TS-blood clock (Fig 4j; ANOVA, p=0.02), though there 
was no difference between the MetR and AL groups, similar to frailty index analysis (Fig. S6g). While the pattern of 
age prediction using scAge resembled TS-blood clock predictions, none of the groups were statistically significant in 
comparison (Fig. 4k). These data demonstrate that TIME-Seq-based age predictions can detect even short-term longevity 
interventions started in late life. 

Next, we applied TIME-Seq to predict age in blood DNA samples from a large cohort of humans30,31 (N=656; 
Fig. 5a) using hybridization baits that targeted human rDNA repeats or human discovery (HD) baits targeting 11 human 
clocks28. rDNA-enriched TIME-Seq libraries showed considerable variation in average methylation across reads mapped 
to a human rDNA meta-locus (8.5%-61.7%; Fig. 5b), which exceeds the variation for mice and did not correlate with 

red). Colors carry on to panels (i-j) i, TS-rDNA clock predictions in intervention mice. TS-blood clock (j) and shallow-
TS + scAge (k) predictions represented as a boxplot. Analysis of variance (ANOVA) was used to assess difference 
between groups. ANOVA p-values for group comparisons are shown above data.  

 

 

Figure 5. TIME-Seq accurately predicts age in hundreds of human samples. a, Histogram of age colored by sex in the 
human DNA samples (N=656) used for TIME-Seq library preparations. b, Average methylation at human ribosomal DNA 
meta-locus. Points are colored by sex. Males (N=285), blue; Females (N=369), red. c, Boxplot of Pearson correlations 
between age and CpG methylation ratios in human (red) and mouse (blue) ribosomal repeat meta-locus from TIME-Seq 
data. d, Mean coverage of enriched CpGs from target human clock loci in HD-enriched TIME-Seq libraries. e, Pearson 
correlation between age and DNA methylation at CpGs across the human genome presented in Manhattan-plot style. CpGs 
that are colored are from each of the 11 target clocks. f, Human TS-blood clock built using the top 200 samples, filtered by 
number of reads on-target. Pearson correlation and median absolute error (MedAE) on test are shown in the top left corner. 
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age and sex (Fig. 5b). Since there is high copy number variation of rDNA in humans32, the methylation variation might 
result from hypermethylated repeats used to suppress rRNA dosage in individuals with more rDNA copies. Individual 
human rDNA CpGs had lower age-correlation than the mouse rDNA-enriched TIME-Seq data (Fig. 5c), and we could 
not produce an accurate epigenetic clock (defined as R>0.8)7 from human rDNA (Fig. S7a). HD-enriched TIME-Seq 
libraries had high enrichment of target CpGs (Fig. 5d) with a noticeable age-correlation in the second and third principal 
components (Fig. S7b) and age correlated CpGs across the genome (Fig. 5e). Like rDNA, this dataset had lower age-
correlation than the analogous mouse dataset, perhaps due to the more restricted age range (majority of samples were 
aged 40-60 years). While age prediction models from the entire dataset produced only moderate results (Fig. S7c), we 
built a clock from 200 samples with the highest on-target read number (testing, R=0.84; Fig. 2f). These data exemplify 
the scale that TIME-Seq enables, and refinement of human clocks to improve accuracy from broader age-ranges is the 
subject of ongoing research.  

DISCUSSION 

DNA methylation-based biomarkers are increasingly ubiquitous tools for both clinical and basic research as well 
as disease diagnosis, but they have been expensive and laborious, precluding the analysis of large cohorts. TIME-Seq is 
a flexible and scalable targeted sequencing approach that decreases costs for methylation biomarkers by more than two 
orders of magnitude. Using TIME-Seq, we built and validated epigenetic clocks to predict age from hundreds of mice 
and human samples in over 2000 unique libraries. This scale was enabled by immediate sample barcoding that facilitates 
low-cost, pooled library preparation compatible with efficient hybridization-based enrichment and bisulfite conversion. 
Compared to traditional RRBS library preparations, which can take anywhere from 4-9 days33 and cost upwards of $30-
$50 per sample, TIME-Seq libraries cost only $0.65 per sample (see Table S1) and take only 1-1.5 days to complete. 
Further, input DNA for TIME-Seq (100 ng) is the same as standard RRBS libraries and 3-5 times less than DNAme 
microarray, enabling longitudinal measurement of epigenetic age from low-yield DNA extractions such as a mouse 
cheek bleed.   

Using a combination of shallow-TIME-Seq and scAge, we discovered that it is possible to predict age in bulk 
samples from ten thousand sequencing reads or less. We applied scAge with both deep-sequenced RRBS and TIME-Seq 
data as reference, finding both capable of highly accurate age prediction in mouse blood and liver. Using scAge in 
combination with TIME-Seq library preparation and shallow sequencing reduces the cost of accurate age prediction 
more than 200-fold. While targeted approaches have been described for clock analysis34-36, such as pyrosequencing or 
digital PCR, these methods are more expensive and less scalable than TIME-Seq predictions—both elastic-net-based 
clocks and using scAge. Further, their reliance on low-CpG clocks (e.g., 3-15 CpGs) limits their biological relevance to 
the small set of measured loci. TIME-Seq is flexible and capable of high enrichment of thousands to tens-of-thousands 
of CpGs. 

In the current study, we rationally designed baits to target loci that had high correlation with the target phenotype 
(i.e., age). However, when such data is not available, more genomic area might be enriched to identify CpGs with high-
correlation relative to the phenotype of interest (e.g., metabolic syndrome, cancer, or frailty). These libraries would be 
more costly to sequence initially, however, the baits could be downscaled once model CpGs were discovered, requiring 
fewer reads per sample to attain a readout to the biomarker. This separation of more expensive biomarker discovery from 
low-cost measurement will be key to the widespread adoption and routine use of DNAme biomarkers as well as those 
based on other biomolecules8,37.  

Being designed for maximal cost and labor efficiency, TIME-Seq has the same trade-offs as other Tn5-based 
library preparations, and DNA samples that are improperly quantified tend to drop-out due to either over- or under-
tagmentation. This limitation might be addressed using on-bead tagmentation38 that controls for variation in starting 
DNA amount. Ultimately, strategies for high-throughput DNA extraction and normalization, combined with an 
automated TIME-Seq library preparation could facilitate thousands of samples being processed by a scientist in a few 
days and enable low-cost population-scale age predictions or DNAme biomarker survey. 
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METHODS 

Animal assessments 

 All mouse experiments were approved by the Institutional Animal Care and Use Committee of the Harvard 
Medical Area Standing Committee on Animals. Male and female C57BL/6Nia mice were obtained from the National 
Institute on Aging (NIA, Bethesda, MD), and group housed (3-4 mice per cage) at Harvard Medical School in ventilated 
microisolator cages with a 12:12 hour light cycle, at 71°F with 45-50% humidity. Mouse blood samples (150-300 µl) 
were collected in anesthetized mice (3% isoflurane) from the submandibular vein into tubes containing approximately 
10% by-volume of 0.5M EDTA. Blood was spun at 1500 RCF for 10 minutes and plasma removed. Blood cell pellets 
were stored frozen at -80ºC. For validation experiments, a sub-sample of whole blood was processed with the Hemavet 
950 (Drew Scientific) to give 20 whole blood count parameters. Frailty was assessed using the mouse clinical frailty 
index29, a non-invasive assessment of 31 health deficits in mice. For each item, mice were scored 0 for no deficit, 0.5 for 
a mild deficit, and 1 for a severe deficit. Scores were added and divided by 31 to give a frailty index between 0 and 1, 
where a higher score indicates a greater degree of frailty. For more details see http://frailtyclocks.sinclairlab.org. 200 
mouse (C57BL/6N) ocular-vein blood samples were collected by researchers at The Jackson Laboratory’s Nathan Shock 
Center (Bar Harbor, Maine) according to methods described previously39. These samples were used for TIME-Seq clock 
training and testing, as well as shallow-sequencing analysis.  

Late-life dietary interventions 

Male and female C57BL/6Nia mice were obtained from the NIA at 19 months of age and housed at the Harvard 
T.H. Chan School of Public Health (Boston, MA). Mice were group housed 3-4 per cage for the duration of the study in 
static isolator cages at 71°F with 45–50% humidity, on a 12:12 hour light-dark (07:00am–07:00 pm) cycle. After arrival, 
mice were fed a control diet (Research Diets, New Brunswick, NJ) until the start of the study. Mice were then randomized 
to one of three groups: ad libitum diet, methionine restriction (0.1% methionine) or 40% CR. CR was started in a stepwise 
fashion decreasing food intake by 10% per week until they reached 40% CR at week 4. CR intake was based upon ad 
libitum intake. Mice were monitored weekly for bodyweights and food intakes. Fasting blood samples (4-6h) were taken 
at sacrifice (after 6 months on the diet) by cardiac puncture. Approximately 200 µl of whole blood in 1 µl of 0.5 mM 
EDTA was collected. The tube was spun, and the plasma removed. The remaining blood pellet was frozen at -80ºC until 
further analysis. Custom mouse diets were formulated at Research Diets (New Brunswick, NJ; catalog #’s A17101101 
and A19022001). 

DNA extraction and quantification 

100-300 µl of pelleted mouse whole blood (plasma removed) was resuspended in 1mL of red blood cell (RBC) 
lysis buffer (155 mM NH4Cl, 12 mM NaHCO3, 0.1 mM EDTA, pH 7.3), incubated for 10 minutes on ice, and 
centrifuged at 2000 RCF for 5 minutes. Pelleted cells were resuspended in 1.5mLs of RBC lysis buffer and spun twice 
before being lysed in 800 µl TER (50 mM Tris-HCl pH8, 10 mM EDTA, 40 µg/mL RNase A) with 50 µl of 10% SDS 
added. Lysates were incubated at 37ºC to allow for RNA degradation and then 50 µl of 20 mg/mL proteinase K was 
added and samples were incubated overnight at 65ºC. To purify DNA, 500 µl of 1:5 diluted (dilution buffer: 20% PEG 
8000, 2.5 M NaCl, 10 mM Tris-HCl pH8, 1 mM EDTA, 0.05% Tween-20) SPRI DNA binding beads were added to 
each sample, and they were incubated with rotation for 30 minutes at room temperature. Tubes were then placed on 
magnetic racks to capture SPRI beads, and the beads were washed with 1 mL of ice-cold 80% ethanol twice. DNA was 
eluted in 75 µl of 10mM Tris-HCl (pH 8). Purified DNA was quantified using the qubit double-stranded DNA broad 
range kit (Catalog No. Q32850, ThermoFisher) and diluted to 10 ng/µl for TIME-Seq reactions. To check for 
contaminants, a subset of samples from each extraction were assessed by nanodrop.  

Human blood DNA samples 

Human blood DNA came from a cohort of individuals participating in the HANDLS study (Healthy Aging in 
Neighborhoods of Diversity across the Life Span), a longitudinal fixed cohort study of 3,720 community-dwelling 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.10.25.465725doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465725
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

African American and white adults aged 30-64 in Baltimore, MD, USA31. Methods for selection criteria, sample 
collection, extraction of DNA from blood, and more are described in previous publications30,31,40. Purified aliquots of 
DNA from 675 individuals were received and used for this study. HANDLS is approved by the National Institutes of 
Health Institutional Review Board (IRB; 09AG248). All participants provided written informed consent. The work done 
with these samples including data storage, analysis, and handling are approved by the IRB of the Harvard Faculty of 
Medicine (IRB21-0693). 

Tn5 transposase purification 

Tn5 transposase was purified according to a protocol originally described in Nguyen Ba et al. (pre-print)41, which 
is based on published protocols42 with several adjustments to increase yield. Briefly, 1 mL of overnight culture containing 
pTXB1-Tn5 (Addgene plasmid #60240) was used to inoculate 1 L of ZYM-505 growth media containing 100 µg/mL 
ampicillin and 0.001% polypropylene glycol (L14699-AE, Alfa Aesar). After the culture was grown for 4 hours at 37ºC, 
IPTG (0487-10G, VWR) was added to 0.25 mM, and the culture was grown for an additional 4 hours at 18ºC. The 
culture was centrifuged at 25,000 RPM for 25 minutes, and the pelleted culture was flash-frozen in liquid nitrogen before 
being stored overnight at -80ºC. The pellet was thawed on ice, resuspended in 10 mL of HEGX buffer (20mM HEPES-
KOH pH 7.2, 0.8 M NaCl, 1mM EDTA, 10% glycerol, 0.2% Triton X-100) with a Roche protease inhibitor 
(SKU11697498001, Millipore Sigma), and 1% w/v of pre-dissolved (50% w/v) octyl-thioglucoside (O-130-5 Gold Bio) 
was added to help lysis. After a 10-minute incubation on ice, 100 mL of HEG-X was added, and the lysate was transferred 
to a glass beaker for sonication on the 550 Sonic Dismembrator (ThermoFisher) using 15 cycles (15 seconds on, 30 
seconds off) on 70% duty and power 7. The sonicated lysate was pelleted at 30,000 RPM for 30 minutes at 4ºC. The 
supernatant was transferred to a clean beaker with a stir bar, placed on a magnetic stir plate, and 10% PEI was added 
dropwise while stirring to remove excess bacterial DNA. After 15 minutes, PEI and precipitated DNA were removed by 
spinning the mixture at 30,000 RPM for another 30 minutes at 4ºC. The lysate was added to 2 chromatography columns 
(7321010, BioRad) packed with 25 mL each of chitin resin (S6651S, NEB) and equilibrated with 100 mL of HEG-X 
each. The supernatant was added to the columns in equal proportion and allowed to flow through, before the column was 
washed with 30 column volumes of HEG-X. To elute the purified Tn5, 25 mLs of HEG-X with 100 mM DTT was added 
to each column and 10 mLs was allowed to flow through before sealing the column and letting it stand for 44 hours. 27 
mL of elution was collected, and a Bradford assay (23200, ThermoFisher) was used to quantify protein. The elution was 
then concentrated to 20 mL using Amplicon Ultra 30 kDA filters (UFC900308, Millipore Sigma) and dialyzed in a Slide-
A-Lyzer (66212, ThermoFisher) cassette with 1 L dialysis buffer (50 mM HEPES-KOH, pH 7.2 0.8M NaCl, 0.2 mM 
EDTA, 2 mM DTT, 20% glycerol).  After two rounds of dialysis totaling 24 hours, the eluted protein was removed, 
aliquoted into 1 mL microcentrifuge tubes, and flash frozen in liquid nitrogen before being stored at -80ºC. The final 
concentration of purified protein was 1.5 mg/mL, and we estimate that 1L of culture produced enough Tn5 for 
approximately 16,000 TIME-Seq reactions with 100 ng of DNA per sample.  

Activation of TIME-Seq Tn5 

Oligonucleotides (oligos) were ordered from IDT and HPLC purified except for TIME-Seq indexed adaptors 
and hybridization blocking oligos. To anneal TIME-Seq adaptors, 100 µM TIME-Seq adaptor B containing a 5-bp 
internal barcode and (separately) 100 µM methylated adaptor A were combined in equal volume with the 100 µM Tn5 
reverse ME oligo. Enough methylated A adaptor was annealed to be added in equal proportion with each indexed adaptor 
B. Oligos were denatured at 95ºC for 2 minutes and then ramped down to 25ºC at 0.1ºC/s. The annealed oligos were 
then diluted with 85% glycerol to 20 µM, and the methylated A adaptor, indexed TIME-Seq B adaptor, and 50% glycerol 
were combined in a ratio of 1:1:2. The resulting 10µM adaptors were combined in equal volume with purified Tn5 (1.5 
mg/mL), mixed thoroughly by pipetting 20 times, and incubated at room temperature for 50 minutes. Activated 
transposomes were stored at -20ºC and no loss of activity has been observed up to 8 months. 
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 To test activity of TIME-Seq transposomes, 100 ng of human genomic DNA (11691112001, Roche) was 
tagmented in 25 µl reactions by adding 12.5 µl of 2X tagmentation buffer (20mM Tris-HCl pH 7.8, 10 mM 
dimethylformamide, 10 mM MgCl2) using 1.5 µl of each barcoded transposome. After reactions were incubated at 55ºC 
for 15 minutes, STOP buffer (100mM MES pH5, 4.125M guanidine thiocyanate 25% isopropanol, 10mM EDTA) was 
added to denature Tn5 and release DNA. To assess tagmentation, 90% of each reaction was run in separate lanes of a 
1% agarose gel at 90 volts (V) for 1 hour. The gel was stained with 1x SYBR gold (S11494, ThermoFisher) in Tris-
Acetate-EDTA (TAE) buffer, and DNA fragment size was determined using a ChemiDoc (Bio-Rad) for gel imaging. 
The remaining DNA was pooled, cleaned up using a DNA Clean & Concentrator-5 (D4013, Zymo) kit, and the DNA 
was amplified with barcoded TIME-Seq PCR primers. Amplified pools were spiked into sequencing runs to assess 
relative barcode activity when new transposase was activated.  

Biotin-RNA bait design and production 

Mouse and human discovery baits were designed to enrich for previously described epigenetic clock CpGs1,3,12,28 
using mm10 and hg19 genomic coordinates. Using bedtools43 (v2.28.0), regions around each target CpG were first 
expanded 125 base pairs (bps) up- and downstream (bedtools slop) and overlapping loci were merged (bedtools merge). 
Next, 110 bp bait windows were defined every 20 bps in the region (bedtools window) and the baits were intersected 
(bedtools intersect) with a file containing RepeatMasker (http://www.repeatmasker.org) annotated regions to identify 
baits overlapping repetitive DNA regions. Next, the FASTA sequence of each bait was gathered (bedtools getfasta), and 
blat (version 35) was used to get the copy number for each bait with options, -fastMap -maxIntron=50 -stepSize=5 -
repMatch=2253 -minScore=40 -minIdentity=0. Using custom R (v. 4.0.2) scripts, information was gathered from the 
output files from each probe including the percent of each nucleotide, the overlap with repeats, and the bait copy number 
as determined by blat. Baits were automatically filtered that had overlap with repeats, however, each locus that had none 
or very few (< 4) baits after filtering were inspected manually and, if the blat copy number was low (< 10), baits were 
added back, either to the exact locus or shifted slightly to avoid the annotated repeat. In preliminary biotin-RNA 
hybridization experiments (data not shown), we noticed that baits with high or low percentage T (less than 8% or greater 
than 30%) had low coverage, possibly due to stalling of the RNA polymerase while incorporating biotin-UTP. Therefore, 
when more than half the baits at a target locus had a percent T greater than 30% or lower than 8%, the reverse complement 
strand was captured instead for all baits at the locus.  

To design enrichment baits for mouse and human rDNA, FASTA sequences were prepared from GeneBank 
accessions BK000964.3 (mouse) and U13369.1 (human) according to previously described methods27 by moving the 
last 500 bps of each sequence (rDNA promoter) to be in front of the 5’ external transcribed spacer (ETS). From the 
region comprising the promoter to the 3’ ETS (mouse, 13,850bps; human, 13,814bps), 110-nt baits were designed using 
the bedtools window function to create baits every 20bps. Version 1 rDNA baits used in the pilot and targeting the 
original rDNA clock were designed to specifically enrich rDNA clock CpGs27 using the same approach described for 
non-repetitive clock CpGs (i.e., 250bp windows were merged and 110-nt baits were designed to tile the regions).  

The sequence of each bait set was appended with a promoter (Sp6 or T7) for in vitro transcription (IVT), as well 
as a promoter-specific reverse priming sequence that contained a BsrDI restriction enzyme motif. Bait sets containing 
Sp6 and T7 promoters were ordered together in a single-stranded DNA oligo pool (Twist), and pools were resuspended 
to 10 ng/µl. Bait sets were amplified in reactions containing 12.5 µl of 2X KAPA HiFi HotStart Polymerase Mix 
(7958927001, Roche), 0.75 µl of each 10 µM primer, and 0.5 µl of the bait pool using the following thermocycler 
program: initial denaturation, 95ºC for 3 min; 10 cycles amplification, 98ºC for 20 seconds, 61ºC (Sp6) or 58ºC (T7) for 
15 seconds, 72ºC for 15 seconds; a final elongation for 1 minute at 72ºC. Amplified DNA was cleaned up using a Clean 
& Concentrator-5 kit (D4013, Zymo) and then digested with 1 µl BsrDI (R0574S, NEB) at 65ºC for 30 minutes. This 
reaction was again purified with a Clean & Concentrator-5 kit, and IVT reactions were set up according to the HiScribe™ 
T7 (E2040S, NEB) or Sp6 (E2070S, NEB) High Yield kits using half of the cleaned DNA template for each reaction 
and storing the rest at -80ºC. All ribonucleotides were added to a final concentration of 5mM, including a 1:4 ratio of 
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biotin-16-UTP (BU6105H, Lucigen) to UTP at 5 mM. After the reactions were incubated for 16 hours overnight at 37ºC, 
25 µl of nuclease free water and 2 µl of DnaseI (M0303S, NEB) were added to degrade the DNA template. RNA was 
purified using the 50 µg Monarch® RNA Cleanup Kit (T2040S, NEB). The concentration of RNA was measured using 
Qubit RNA BR Assay Kit (Q10210, ThermoFisher) and the size of RNA was measured using an RNA ScreenTape 
(5067-5576, Agilent) on an Agilent Tapestation.  

While the yield from each DNA amplification and IVT reaction varies depending on the size and composition 
of the bait sets, we estimate that 1,000-10,000 hybridization reactions-worth of bait could be produced from just 1 single-
stranded oligo pool. For TIME-Seq libraries of 48-64 samples, this could enrich tens to hundreds of thousands of 
samples. Another advantage of this approach is that baits can be easily shared with other researchers, either the ssDNA 
template, amplified DNA, or prepared biotin-RNA.   

TIME-Seq library preparation 

For TIME-Seq library preparations, samples were organized into relatively even pools, and 10 µl of DNA (10 
ng/µl, 100 ng total) from each sample was distributed into separate wells of strip tubes (or 96-well plates) for 
tagmentation. 100 ng of unmethylated lambda phage DNA (D1521, Promega) was tagmented with each pool. Lambda 
DNA that came through at a low percentage of demultiplexed reads served to estimate bisulfite conversion efficiency. 
To tagment samples, 12.5 µl of 2X tagmentation buffer (20mM Tris-HCl pH 7.8, 10mM dimethylformamide, 10mM 
MgCl2) was added to each sample. Next, 2.5 µl of uniquely indexed TIME-Seq transposome was added, and the reaction 
was immediately mixed by pipetting 20 times. Once transposome was added to each sample in a pool, the samples were 
placed at 55ºC for 15 minutes. After incubation, 7 µl of STOP buffer (100mM MES pH5, 4.125M guanidine thiocyanate 
25% isopropanol, 10mM EDTA) was added, pools were vortexed and pulse spun in a centrifuge, and the reaction was 
incubated at 55ºC for an additional 5 minutes.  

After stopping the reactions, samples from each pool were combined into a single tube, typically a 5 mL Lo-
bind tube (0030122348, Eppendorf) or 15 mL falcon tube (229410, Celltreat), and 118 µl per sample of DNA Binding 
Buffer (D4004-1-L, Zymo) was added. Pools were then applied to Clean & Concentrate-25 (D4033, Zymo) columns. If 
the volume of the pool exceeded 5 mL, each pool was passed in equal volume through 2 separate columns. After 2 
washes, pools were eluted in 41 µl (typically yielding 39 µl after elution) and 1 µl was removed to assess tagmentation 
fragment size and yield by D5000 ScreenTape (Catalog No. 5067- 5588, Agilent) on an Agilent Tapestation.  

For methylated end-repair, eluted pools were combined with 5 µl of NEB Buffer 2, 5 µl of 5mM dNTPs 
containing 5-methyl-dCTP (N0356S, NEB) instead of dCTP, and 2 µl of Klenow Fragment (3'→5' exo-) (M0212L, 
NEB). The reactions were incubated at 37ºC for 30 minutes and then cleaned up with a Clean and Concentrate-5 column 
(Zymo). To elute pools, 6 µl of heated elution buffer was applied to the column and incubated for 1 minute before being 
spun. Eluted DNA was then passed through the column a second time, yielding approximately 5 µl for the hybridization 
enrichment reaction. If the pool exceeded 50 samples, the pool would be cleaned with a Clean and Concentrate-25 
column, eluted in 30 µl, and concentrated to 5 µl with a SpeedVac Concentrator (Eppendorf). 

For each pool, DNA, RNA, and hybridization mixtures were prepared in separate strip tubes (1 per pool). On 
ice, DNA mixtures were prepared by adding 5 µl of concentrated tagmented DNA from each pool, 3.4 µl of 1µg/µl 
mouse cot-1 (18440016, ThermoFisher) or human cot-1 (15279011, ThermoFisher), and 0.6 µl of 100 µM TIME-Seq 
hybridization blocking primers (IDT). RNA mixtures were prepared on ice by combining 4.25 µl of nuclease free H2O 
with 1 µl of Superase•In RNase inhibitor (AM2696, ThermoFisher), mixing, and then adding 0.75 µl (750 ng total) of 
the biotin-RNA baits. Hybridization mixtures were kept at room temperature and comprised 25 µl 20X SSPE (AM9767, 
ThermoFisher), 1 µl 0.5 M EDTA, 10 µl 50X Denhardt’s Buffer (1% w/v Ficoll 400, 1% w/v polyvinylpyrrolidone, 1% 
w/v bovine serum albumin), and 13 µl of 1% SDS. Once the mixtures were prepared for each pool, the DNA mixtures 
were placed in a thermocycler and incubated for 5 minutes at 95ºC. Next, the thermocycler cooled to 65ºC, and the 
hybridization mix was added to the thermocycler. After 3 minutes at 65ºC, the RNA mix was added to the thermocycler 
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and incubated for 2 minutes at 65ºC. Next, the thermocycler lid was opened and, keeping all tubes in the thermocycler 
well, 13 µl of heated hybridization buffer was transferred to the RNA baits mixture, followed by 9 µl of the denatured 
TIME-Seq pooled DNA. This step was done quickly to limit temperature change during transfer, typically with a 
multichannel pipette for multiple pools. The combined mixtures were pipetted to mix 3-5 times, capped, and the 
thermocycler lid was closed. The hybridization reaction was then incubated at 65ºC for 4 hours.  

To capture biotin-RNA:DNA hybrids, 125 µl of streptavidin magnetic beads were washed three times in 200 µl 
of binding buffer (1M NaCl, 10mM Tris-HCl pH 7.5, 1 mM EDTA) and resuspended in 200 µl of binding buffer. With 
the reaction still in the thermocycler, the streptavidin beads were added to the reactions and then quickly removed to 
room temperature. The reactions were rotated at 40 RPM for 30 minutes to allow for biotin-streptavidin binding and then 
placed on a magnetic separation rack (20-400, Sigma-Aldrich) until the solution was clear. Next, the beads were 
resuspended in 500 µl of hybridization wash buffer 1 (1X SSC, 0.1% SDS) and incubated at room temperature for 15 
minutes. The beads were separated again on the magnetic separation rack and quickly resuspended in 500 µl of pre-
heated 65ºC wash buffer 2 (0.1X SSC, 0.1% SDS), then incubated for 10 minutes at 65ºC. This step was repeated for a 
total of 3 heated washes. On the final wash, beads were magnetically separated, resuspended in 22 µl of 0.1N NaOH, 
and immediately removed to a MAXYMum Recovery PCR tube (PCR-02D-L-C, Axygen Scientific). After 10 minutes, 
beads were separated and 21 µl of the eluted DNA from each pool was moved to a new MAXYMum Recovery PCR 
tube.  

Bisulfite conversion was done using the EpiTect Fast Bisulfite Conversion Kit (59824, Qiagen). The volume of 
the eluted DNA was adjusted to 40 µl using nuclease free water, 85 µl of Bisulfite Solution was added, followed by 15 
µl of the DNA Protect Buffer, and the solution was mixed thoroughly. Bisulfite conversion and clean-up proceeded 
according to standard kit instruction. DNA was eluted in 23 µl of kit elution buffer. The initial elution was passed through 
the column a second time.  

PCR amplification was done in a 50 µl reaction containing 23 µl of the eluted DNA, 1 µl of 25 µM P7 indexed 
primer, 1 µl of 25µM P5 indexed primer, and 25 µl NEB Q5U 2X Master Mix. Reactions were amplified with the 
following program: initial denaturation at 98ºC for 30 second; 19 cycles of 98ºC for 30 seconds, 65ºC for 30 seconds, 
and 72ºC for 1 minute; a final elongation at 72ºC for 3 minutes. After PCR reactions were finished, they were cleaned 
using 1.8X CleanNGS SPRI Beads (CNGS005, Bulldog-Bio). Library fragment size and yield was assessed using a 
D1000 (5067-5582, Agilent) or High Sensitivity D1000 ScreenTape (5067-5584, Agilent) on an Agilent Tapestation. 
Pools were combined for sequencing.   

Sequencing 

TIME-Seq library sequencing requires two custom sequencing primers for read 2 (Tn5 index) and index read 1 
(i7 index), which were spiked into standard primers for all sequencing runs. Most deep-sequenced TIME-Seq libraries 
were sequenced on an Illumina MiSeq using a 150 cycle MiSeq v3 kit (MS-102-3001, Illumina) or on a NextSeq 500 
using a 150 cycle NextSeq High (20024907, Illumina) or Mid (20024904, Illumina) Output v2.5 kit. The following read 
protocol was used for 150 cycle kits: read 1, 145-153 cycles; i7 index read, 8 cycles; i5 index read (if needed), 8 cycles; 
read 2, 5 cycles. This custom read protocol helps maximize sequencing efficiency and decrease cost, since the fragment 
size of amplified TIME-Seq libraries were typically 80-200bps and sequencing with larger kits results in a large portion 
of overlapping (unused) cycles. Optimization experiments, smaller deep-sequenced pools, and shallow sequencing data 
were typically generated by sequencing on a MiSeq using a MiSeq Reagent Micro v2 kit (MS-103-1002, Illumina) using 
standard paired-end and dual indexed read cycle numbers. The human HD-enriched data was generated by sequencing 
on a NovaSeq 6000 using a 200 cycles NovaSeq 6000 SP Reagent Kit v1.5. High GC genome from Deinococcus 
radiodurans was spiked into sequencing runs in different proportions (1-3% on MiSeq, 10% on NovaSeq, and 15-20% 
on NextSeq) to increase base diversity and improve sequencing quality44. For specific information on sequencing for 
each experiment, including cost and the number of samples, see Table S3.  

Sequenced read demultiplexing and processing  
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TIME-Seq pools were demultiplexed using sabre (https://github.com/najoshi/sabre) to identify the internal Tn5 
barcode with no allowed mismatches and separate reads into unique FASTQ files for each sample. Cutadapt (version 
2.5) was used to trim adaptors (PE: -G AGATGTGTATAAGAGANAG -a CTNTCTCTTATACACATCT -A 
CTNTCTCTTATACACATCT; SE option: -a CTNTCTCTTATACACATCT). Reads were mapped using Bismark45 
(version v0.22.3; options -N 1 --non_directional) to bisulfite converted genomes (bismark_genome_prepararation) 
mm10, hg19 (iGenomes, Ilumina) or custom rDNA loci (see bait design methods), and reads were subsequently filtered 
using the bismark function filter_non_conversion (option --threshold 11). This step removes reads that are artificially 
fully methylated during the methylated end-repair (0.5%-3%) of the reads44. Typically, samples with greater than 3-5% 
non-conversion were excluded from analysis since this was indicative of poor tagmentation. Next, the bismark function 
bismark_methylation_extractor was used to call methylation for each sample with options to avoid overlapping reads (-
-no-overlap) in PE sequencing and to ignore the first 10 bps of each read (if SE: --ignore 10 and --ignore_3prime 10; if 
PE: --ignore_r2 10 --ignore_3prime_r2 10 as well), which precludes bias from methylated cytosines added in the Tn5 
insertion gap during end-repair. Bisulfite conversion efficiency was assessed from unmethylated lambda DNA mapped 
to the BS-converted Enterobacterphage lambda genome (iGenomes, Ilumina) and was generally ≥99%. 

Epigenetic clock training, testing, and analysis in validation cohort data 

 R (version 4.0.2) was used for all data analysis, including data organization, clock training and testing, and 
applying clocks to validation data. For clock training, methylation and coverage data were taken from bismark.cov files 
(output of bismark_methylation_extractor) for each sample and arranged into a data matrix with samples (rows) and 
CpGs (columns). For TS-rDNA clock training, the methylation matrix was filtered to comprise only CpGs with high 
coverage (≥ 200) in greater than 90% of samples at each CpG in the coverage matrix. For the mouse and human discovery 
datasets, CpGs were filtered to have at least coverage 10 in 90% of the samples.  

 To build epigenetic clocks from deep-sequenced TIME-Seq data, samples were randomly taken from discrete 
age groups (e.g., 25-55 weeks for mice) in approximately 80:20 training to testing ratio. Penalized regression models 
were built to predict age from methylation matrixes with the R package glmnet46 with alpha set to 0.05 (elastic net, 
mostly ridge). Clocks were trained to predict age in units of weeks for mice and years for humans. After models were 
trained, they were applied to the testing set using the predict function in R. The model from a split with high Pearson 
correlation and low median error in the testing set was selected for application to the independent validation cohorts. 
This same process was applied to build the RRBS-TS-rDNA clock, filtering for CpGs in TIME-Seq data that had 
minimum coverage of 50 in the RRBS mouse blood clock dataset1. Mouse clocks were applied to validation and 
intervention data by organizing bismark.cov files into a methylation matrix comprising only the clock CpGs, summing 
the weighted methylation (e.g., methylation ratios [0-1] x clock CpG coefficient) for each sample, and adding the model’s 
intercept. When a clock locus was not covered in a sample that passed quality filters, the missing value was replaced by 
the average DNAme percent for all other samples at that CpG.  

scAge-based epigenetic age predictions from shallow TIME-Seq  

To obtain accurate epigenetic age predictions from shallow TIME-seq data, we employed the use of the recently 
introduced scAge framework24. Unlike to the original scAge application in single-cell data, all methylation values from 
shallow sequencing were retained unmodified (i.e., without introducing a forced binarization step for fractional 
methylation values). We used bulk blood- and liver-specific methylation matrices to compute linear regression equations 
and Pearson correlations between methylation level and age for each CpG within a particular training set. These 
equations were in the form: 

𝑓!"#(𝑎𝑔𝑒) = 𝑀𝑒𝑡 = 𝑚!"# ∗ 	𝑎𝑔𝑒 + 𝑏!"#  

where age is treated as the independent variable predicting methylation, and m and b are the slope and intercept of the 
CpG-specific regression line, respectively. This enabled the creation of reference linear association metrics between 
methylation level and age for each CpG covered in the training datasets. Five separate training datasets were used to 
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compute epigenetic ages in shallow sequencing data: (1) Bulk blood RRBS methylation profiles from 50 normally-fed 
C57BL/6J mice from the Thompson et al. (2018) study across 1,202,751 CpG sites; (2) Bulk liver RRBS methylation 
profiles from 29 normally-fed C57BL/6J mice from the Thompson et al. (2018) study across 1,042,996 CpG sites; (3) 
Bulk blood RRBS methylation profiles from 153 normally-fed C57BL/6J mice from the Petkovich et al. (2017) study 
across 1,918,766 CpG sites; (4) Bulk blood TIME-seq methylation profiles from 120 normally-fed C57BL/6J mice from 
the present study across 6,884 CpG sites; and (5) Bulk liver TIME-seq methylation profiles from 103 normally-fed 
C57BL/6J mice from the present study across 12,480 CpG sites. Methylation values from the Thompson et al. (2018) 
study were concatenated to the positive strand, as described in the original study.  

We intersected individual methylation profiles of shallow TIME-seq data with the reference datasets, producing 
a set of n common CpGs shared across both datasets. For each shallow sample, we filtered these n CpGs based on the 
absolute value of their correlation with age (|r|) in the reference data, selecting the most age associated CpGs in every 
sample. We opted to use a percentile-based approach to select informative CpGs for predictions, which takes into account 
differential coverage across samples. Furthermore, this enabled more consistent correlation distributions among shallow 
TIME-Seq profiles of different coverage. 

For each selected CpG per sample, we iterated through age in steps of 0.1 months from a minimum age to a 
maximum age value. We chose -20 months and 60 months, respectively, to encompass a wide range of possible 
predictions without artificially bounding outputted predicted values. We observed in our testing that all predictions 
generated by scAge for these data were within this generous range and not near the extremes. Using the linear regression 
formula calculated per individual CpG in a reference set, we computed the age-dependent predicted methylation, 
𝑓!"#(𝑎𝑔𝑒), which by the nature of the data normally lies between 0 or 1. If this predicted value was outside of the range 
(0, 1), it was instead replaced by 0.01 or 0.99 depending on the proximity to either value. This ensured that predicted 
bulk methylation values were bounded in the unit interval, corresponding to a biologically meaningful range between 
fully unmethylated and fully methylated.  

Next, we computed the probability of observing a particular methylation state at every age in the given range 
based on the reference linear model estimate. For this, we calculated the absolute value of the distance between the 
observed methylation fraction in the shallow sample and the estimated methylation value from the reference linear 
model. Next, we subtracted this absolute distance from 1; hence, the closer the observed value is from that predicted by 
the linear model, the higher the probability of observing this state at a particular age. This provided an age-dependent 
probability for every common CpG retained in the algorithm.  

Lastly, assuming that all CpGs in a particular sample are independent from each other, the product of each of 
these CpG-specific probabilities will be the overall probability of the observed methylation pattern: 𝑃(𝑎𝑔𝑒) =  
∏ 𝑃𝑟$(𝑎𝑔𝑒)%
$&' , where k represents individual CpGs. We then found the maximum of that product among different ages 

(i.e., to find the most probable age for observing that particular methylation pattern). To do this, we compute the sum 
across CpGs of the natural logarithm of the individual age-dependent probabilities, preventing underflow errors when 
many CpGs are considered. This gave us ∑ 𝑙𝑛(𝑃$(𝑎𝑔𝑒))%

$&'  for each age step. By harnessing the relationship of 
methylation level and age at many CpGs, these logarithmic sums provide a single likelihood metric for every age step 
within the defined bounds. We picked the age of maximum likelihood as our predictor of epigenetic age for a particular 
shallow TIME-Seq sample. 

DATA AVAILABILITY 

Raw FASTQ sequencing data will be deposited to NCBI Sequence Read Archive (SRA) and organized in a BioProject. 

CODE AVAILABILITY 

Code for demultiplexing and read processing as well as analysis of clocks and scAge prediction will be provided on 
Github.  
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SUPPLEMENTAL FIGURES 

 

Figure S1. Biotinylated-RNA bait production and initial hybridization enrichment testing. a, Schematic of steps 
involved in production of biotin-RNA baits from single-stranded oligo pools for target enrichment in TIME-Seq libraries. 
The percent of reads overlapping target RRBS mouse rDNA clock CpGs (b) and an IGV browser screenshot of mapped-
read pileups (c) using version 1 rDNA baits for enrichment of a TIME-Seq pool. Reads on-target (d) and mouse RRBS 
blood clock (Petkovich et al., 2017) CpG coverage (e) using mouse-blood specific baits in a pilot experiment targeting non-
repetitive clock loci. Dotted line represents coverage cut-off of 10. Pools in both rDNA and blood clock pilot enrichments 
were sequenced with approximately 1 million paired end (PE) reads each in pools of 16 samples. f, Adaptor design schematic 
for comparison of TIME-Seq adaptors with longer barcoded adaptors. Comparison of on-target reads in short TIME-Seq 
and long cytosine-depleted adaptor designs for both mouse blood clock (g) and (h) rDNA (version 1) baits enrichments 
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Figure S2. Final TIME-Seq library and sequencing schematic. Schematic representation of final library structure (top) 
and Illumina sequencing (bottom) steps required to sequence TIME-Seq libraries. Index read 1 and Read 2 primers are 
custom primers. 

 

 

CAAGCAGAAGACGGCATACGAGAT[ i7 ]AAGCAGTGGTATCAACGCAGATCTGGGTGGAGGGTGGDDDDDAGATGTGTATAAGAGACAG

AATGATACGGCGACCACCGAGATCTACAC[i5]TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTGTCTCTTATACACATCTHHHHHCCACCCTCCACCCAGATCTGCGTTGATACCACTGCTT[i7]ATCTCGTATGCCGTCTTCTGCTTG

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG

Read 1 (145-153 cycles)

CTGTCTCTTATACACATCTGACGCTGCCGACGA[ i5 ]GTGTAGATCTCGGTGGTCGCCGTATCATT

CAAGCAGAAGACGGCATACGAGAT[ i7 ]AAGCAGTGGTATCAACGCAGATCTGGGTGGAGGGTGGDDDDDAGATGTGTATAAGAGACAG

CCACCCTCCACCCAGATCTGCGTTGATACCACTGCTT

AAGCAGTGGTATCAACGCAGATCTGGGTGGAGGGTGG

Index Read 1 (8 cycles)

Read 2 (at least 5 cycles)

CTGTCTCTTATACACATCTGACGCTGCCGACGA[ i5 ]GTGTAGATCTCGGTGGTCGCCGTATCATT

CAAGCAGAAGACGGCATACGAGAT[ i7 ]AAGCAGTGGTATCAACGCAGATCTGGGTGGAGGGTGGDDDDDAGATGTGTATAAGAGACAG

AATGATACGGCGACCACCGAGATCTACAC

CTGTCTCTTATACACATCTGACGCTGCCGACGA[ i5 ]GTGTAGATCTCGGTGGTCGCCGTATCATT

(Optional) Index Read 2 (8 cycles)

Final Library Structure

Illumina Sequencing (MiSeq Configuration)

CTGTCTCTTATACACATCTGACGCTGCCGACGA[ i5 ]GTGTAGATCTCGGTGGTCGCCGTATCATTCAAGCAGAAGACGGCATACGAGAT[ i7 ]AAGCAGTGGTATCAACGCAGATCTGGGTGGAGGGTGGDDDDDAGATGTGTATAAGAGAYAG AATGATACGGCGACCACCGAGATCTACAC[i5]TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTRTCTCTTATACACATCTHHHHHCCACCCTCCACCCAGATCTGCGTTGATACCACTGCTT[i7]ATCTCGTATGCCGTCTTCTGCTTG
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Figure S3. Pilot-experiment correlation data and age predictions using the Wang and Lemos RRBS rDNA clock. a, 
Replicate correlation from different coverage cutoffs in the rDNA (version 1) pilot experiment. CpG coverage of 125 is 
presented in Figure 1. b, Wang and Lemos (2019) RRBS clock predictions using TIME-Seq data enriched for clock loci. 
Pearson correlation and associated p-value are shown in the top left corner. c, Coverage of each clock locus in the original 
RRBS rDNA clock. CpGs shown in red have mean coverage less than 50. 
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Figure S4. TIME-Seq clock training and testing using rDNA and mouse discovery baits to enrich libraries 
from a large cohort of mice. a, Average percent methylation at rDNA for male (N=123; blue) and female 
(N=68; pink) plotted against age. Pearson correlations and associated p-values are shown in the upper left 
corner. b, Eigenvalues of the first 10 principal components from TIME-Seq rDNA data. c, Principal component 
analysis showing each sample colored by average methylation. d, Metrics (Pearson correlation, left; Spearman 
correlation, middle; MedAE, right) for predicted ages from age prediction models from the testing set in 100 
random splits (80 test:20 train) of rDNA data. e, Histogram of the number of baits overlapping each targeted 
clock CpG in the mouse discovery bait set used to make the TIME-Seq mouse blood clock. f, Percent of mapped 
reads within 1 Kb (+/-) of target loci from 201 mouse blood samples in TIME-Seq libraries enriched with mouse 
discovery baits. g, Metrics (Pearson correlation, left; Spearman correlation, middle, MedAE, right) for age 
predictions in the testing set from 100 random sample splits of 186 samples that passed quality filters when 
developing the TIME-Seq mouse blood clock. 
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Figure S5. Data related to scAge-based shallow-sequencing predictions in TIME-Seq samples. a, Mean CpG 
methylation in shallow sequenced samples plotted against ages and colored by sex. b, scAge prediction statistics using 
Petkovich et al. (2017)1 data as model CpGs.  The red line indicates the percentile chosen to be represented. c, Predictions 
in TIME-Seq samples (N=119) using the top 5% of intersecting CpGs Petkovich et al. (2017) data as reference. Pearson 
correlation is shown in the top left corner. d-e, Prediction statistics in mouse liver samples using deep-sequenced TIME-Seq 
liver libraries (d) or RRBS liver data from Thompson et al. (2018)3 (e) as reference data. The red line indicates the percentile 
chosen to be represented. f, Age predictions in TIME-Seq liver libraries using the top 5% of CpGs from RRBS liver data as 
reference. Overall and sex-specific Pearson correlation coefficients are shown in the top left. 
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Figure S6. Validation of TIME-Seq-based age prediction approaches. a, Predictions from shallow TIME-Seq data using 
scAge with the top 20% of intersecting age-associated CpGs in RRBS data as reference models. Lines connect the same 
mouse at different ages. Pearson correlation is shown in the top left corner. b, Rank order of age prediction using TS-rDNA 
clock for longitudinally tracked mice at the first and second timepoints. Squares are colored by ∆Age (scale shown on the 
left). c-d, TS-rDNA clock predictions colored by the originating colony (c) or average coverage cutoff at clock CpGs (d). 
Pearson correlations are shown in the top left corner. e, Frailty index for mice used in the validation sets plotted against age. 
Pearson correlation is shown in the top left corner. f, Delta age (∆Age) for TS-rDNA clock predictions in intervention 
samples. g, Frailty index for samples in intervention treatment group. Not all intervention mice were assessed for frailty. 
ANOVA p-values for group comparisons are shown above data in panels f and j. 
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Figure S7. TIME-Seq age predictions from rDNA and genomic DNA in hundreds of human samples. a, Prediction 
metrics (MedAE, median absolute error) from the testing set of 100 random 80:20 training to testing splits of the human 
rDNA-enriched TIME-Seq libraries. b, Samples plotted using the second and third principal components from human TIME-
Seq libraries enriched with human discovery baits. Samples are colored by age. c, Predicted age from a regression model 
(not a clock, defined as R>0.8 in the testing set) built to predict age using all samples that passed quality filters in the human 
dataset. Pearson correlations are shown in the top left corner, and MedAE (years) shown in the bottom right. 
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SUPPLEMENTARY TABLES 

 

 

 

 

 

 

 

 

 

 

 

 

Table S1: Estimated cost of reagents for TIME-Seq library preparation. Reagents that are estimated to be used in quantities 
that cost less than $0.01 (USD) per sample were excluded from the total cost per sample calculation.  

 

 

 

 

 

 

Step Component Subcomponents Catalog # Cost (USD) Reagent Size / Conc Volume per reaction Samples per reaction
Cost per

sample (USD)

Unmethylated lambda phageDNA - Promega D1521 81 250µg (1µg/µL) 0.1µL Pool (48-64 samples) -

Purified Tn5 transposase (1.5mg/mL) Homemade 300 16mL (1.5mg/mL)

TIME-Seq adaptor B (48-64) 5.38 / barcode 300µL / barcode (100µM)
Methylated Adaptor A 342 0.785 (100µM)
Tn5 reverse Oligo 47 1.4mL (100µM)

2X Tagmentation Buffer See Recipes Homemade - NA 12.5µL -
STOP Buffer See Recipes Homemade - NA 7µL -

Clean and Concentrator-25 - Zymo D4034 75 50 preps NA Pool (48-64 samples) 0.03$
D5000 Reagents 5067-5589 84.87 105 samples 1 unit

D5000 Screen Tapes 2067-5588 198 105 samples 1 unit
NEB Klenow Fragment (3'→5' exo-) + NEB

Buffer 2
- NEB M0212L 196 0.25 (5000U/mL) 2 0.03$

5-methyl-dCTP (See Recipes) N0356S 73 100µL (10mM)
dATP (See Recipes)
dTTP (See Recipes)
dCTP (See Recipes)

Clean and Concentrator-5 Zymo D4013 75 50 preps NA Pool (48-64 samples)
Human Cot-1 DNA - Thermo 15279011 269 500µL (1µg/µL) 3.4µL 0.01$

Adaptor A Blocking Primer 4.82 300µL (100µM)
Adaptor B Blocking Primer 5.38 300µL (100µM)

20xSSPE - Thermo 15591043 76.25 NA 25µL -
0.5M EDTA - Homemade - NA 1µL -

50x Denhardt’s See Recipes Homemade - NA 10µL -
1% SDS - Homemade - NA 13µL -

SUPERase•In™ RNase Inhibitor - Thermo AM2696 164 125µL 1µL 0.03$

Biotin-RNA Bait Pool - Homemade
(Twist IVT Template)

Variable See methods 1µL 0.01$

Streptavidin Magnetic Beads - NEB S1420S 334 5mL (4mg/mL) 125µL 0.17$
Bead Binding Buffer See Recipes Homemade - NA 600µL -

Wash Buffer 1 See Recipes Homemade - NA 500µL -
Wash Buffer 2 See Recipes Homemade - NA 1500µL -

Elution Buffer (0.1NNaOH) - Homemade - NA 25µL -
Bisulfite

Conversion
EpiTect Fast Bisulfite Conversion Kit - Qiagen 59824 236 50 Preps NA Pool (48-64 samples) 0.10$

NEBNext® Q5U® Master Mix NEB M0597L 125 50 reactions 25µL 0.05$
20uM P7 Index [i7] PCRPrimer (HPLC) - 61 100µL (100µM) 1µL -
20uM P5 Index [i5] PCRPrimer (HPLC) - 56 100µL (100µM) 1µL -
CleanNGS SPRI DNA & RNA SPRI Bead

Purification Kit
Bulldog Bio
CNGS005

125 5mL 90µL Pool (48-64 samples) 0.05$

D1000 Reagents 5067-5589 85.15 105 samples 1 unit
D1000 Screen Tapes 2067-5582 198 105 samples 1 unit

Per sample 0.65$
Per pool (48 samples) 31.33$

0.06$

Tapestation D1000

PCR Amplification
and Clean-up

Pool (48-64 samples) 0.06$

Pool (48-64 samples)

-

IDT
Pool (48-64 samples)

Biotin-RNA:DNA
Pull-down

IDT

0.04$176 250µL each (100mM)

2.5µL 0.02$

Blocking Primer Mix 0.6µL

End repair
Methylated End Repair dNTPs Mix (5mM)

TOTAL

Barcoded TIME-Seq transposase
1 sample

Pool (48-64 samples)

Hybridization

Pool (48-64 samples)

Pool (48-64 samples)

IDT

5µLNEB N0446S

Tagmentation

Tapestation D500
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Table S2: Information on Biotinylated-RNA bait pools used for targeted enrichment of TIME-Seq libraries. * = Kb of 
targeted equals the target area is multiplied by copy number. Mean ≈1400 per haploid (C57BL/6 mice); mean ≈400 per 
haploid (Human) 

 

 

 

 

 

Probes Target # unique targets Kb targeted IVT Promoter

Mouse ribosomal DNA v.1 baits Wang and Lemos rDNA blood clock 21 9.5* Sp6

Mouse blood-clock baits Petkovich et al., mouse blood clock 59 15.7 T7

Mouse ribosomal DNA v.2 baits Tiling mouse rDNA meta-locus 1 repetitive 13.8* Sp6

Mouse discovery baits
Thompson et al., multi-tissue mouse clock.

Meer et al., multi-tissue mouse clock.
Petkovich et al., mouse blood clock

854 215 Sp6

Human discovery baits 11 previously described human clocks
(listed in Liu et al.) 1289 324 T7

Human ribosomal DNA baits Tiling human rDNA meta-locus 1 repetitive 13.8* T7
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Table S3: Sample number, sequencing kit, and estimated cost of sequencing for each experiment.   

 

 

 

 

 

 

Experiment # samples Sequencing kit Cost of kit (USD) % of pool Cost per sample (USD)

rDNA (v.1 baits) pilot (Fig. 1 ) 24 MiSeq v3 150 cycle 922.21$ 10% 3.84$

TS-rDNA clock train / test (Fig. 2 ) 191 MiSeq v3 150 cycle 922.21$ 100% 4.75$

TS-blood clock train / test (Fig. 2 ) 198 NextSeq High v2.5 150 cycle 2,866.75$ 100% 14.48$

shallow TIME-Seq + ScAge blood (Fig. 3 ) 121 MiSeq v2 Micro 300 cycle 447.41$ 50% 1.85$

shallow TIME-Seq + ScAge liver (Fig. 3 ) 104 MiSeq v2 Micro 300 cycle 447.41$ 94% 4.04$

TS-rDNA validation set 1 (Fig. 4) 43 MiSeq v3 150 cycle 922.21$ 34% 7.29$

TS-rDNA validation set 2 (Fig. 4) 53 MiSeq v2 Micro 300 cycle 447.41$ 73% 6.16$

TS-blood validation set 1 + 2 (Fig. 4) 81 NextSeq High v2.5 150 cycle 2,866.75$ 26% 9.20$

TS-shallow + ScAge validation set 1 and 2 (Fig. 4) 81 MiSeq v2 Micro 300 cycle 922.21$ 27% 3.07$

TS-rDNA intervention (Fig. 4) 67 MiSeq v2 Micro 300 cycle 447.41$ 82% 5.48$

TS-blood intervention (Fig. 4) 57 NextSeq High v2.5 150 cycle 2,866.75$ 18% 9.05$

TS-shallow + ScAge intervention (Fig. 4) 57 MiSeq v3 150 cycle 922.21$ 12% 2.01$

Human rDNA-enriched libraries (Fig. 5) 654 NextSeq Mid v2.5 150 cycle 1,110.00$ 100% 1.67$

Human HD-enriched libraries (Fig. 5) 608 NovaSeq SP v1.5 200 cycle 2,745.00$ 100% 4.51$

Total unique libraries 2080
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