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Abstract 18 

Recent advances in single-cell sequencing technologies have enabled simultaneous 19 

measurement of multiple cellular modalities, including various combinations of transcriptome, 20 

genome and epigenome. However, comprehensive profiling of the histone post-translational 21 

modifications that influence gene expression at single-cell resolution has remained limited. 22 

Here, we introduce EpiDamID, an experimental approach to target a diverse set of chromatin 23 

types by leveraging the binding specificities of genetically engineered proteins. By fusing Dam 24 

to single-chain variable fragment antibodies, engineered chromatin reader domains, or 25 

endogenous chromatin-binding proteins, we render the DamID technology and all its 26 

implementations compatible with the genome-wide identification of histone post-translational 27 

modifications. Importantly, this enables the joint analysis of chromatin marks and 28 

transcriptome in a variety of biological systems at the single-cell level. In this study, we use 29 

EpiDamID to profile single-cell Polycomb occupancy in mouse embryoid bodies and provide 30 

evidence for hierarchical gene regulatory networks. We further demonstrate the applicability 31 

of this method to in vivo systems by mapping H3K9me3 in early zebrafish embryogenesis, 32 

and detect striking heterochromatic regions specifically in the notochord. Overall, EpiDamID 33 

is a new addition to a vast existing toolbox for obtaining systematic insights into the role of 34 

chromatin states during dynamic cellular processes.  35 
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 43 

Introduction 44 

Histone post-translational modifications (PTMs) are an important aspect of chromatin structure 45 

and gene regulation. The addition of these chemical groups to histone tails can modulate the 46 

accessibility to the underlying DNA and form a binding platform for myriad downstream 47 

effector proteins. Amongst others, this can result in the shielding or recruitment of transcription 48 

factors (TFs) to promoters and enhancers. As such, histone PTMs play key roles in a multitude 49 

of biological processes, including lineage specification (e.g., Juan et al., 2016; Nicetto et al., 50 

2019; Pengelly et al., 2013), cell cycle regulation (e.g., Hirota et al., 2005; W. Liu et al., 2010), 51 

and response to DNA damage (e.g., Rogakou et al., 1998; Sanders et al., 2004).  52 

 53 

Over the past decade, antibody-based DNA-sequencing methods, such as chromatin 54 

immunoprecipitation followed by sequencing (ChIP-seq), Cleavage Under Target and Release 55 

Under Nuclease (CUT&RUN) (Skene & Henikoff, 2017), and related techniques (Schmid et 56 

al., 2004), have provided valuable insights into the function of histone PTMs in a variety of 57 

biological contexts. However, the general requirement of high numbers of input cells 58 

consequently provides a population-average view of the assayed histone PTM that belies the 59 

complexity of many biological systems. As a response, several low-input methods have been 60 

developed that can assay histone PTMs in individual cells (Ai et al., 2019; Hainer et al., 2019; 61 

Harada et al., 2019; Ku et al., 2019; Rotem et al., 2015; Zeller et al., 2021). While these single-62 

cell methods offer a first understanding of the epigenetic heterogeneity between cells, it 63 

remains challenging to establish a direct link to other measurable outputs such as transcription 64 

or cellular state. Recently, a variety of single-cell multi-modal techniques have been developed 65 

that can simultaneously probe one or multiple aspects of gene regulation in conjunction with 66 

transcription in individual cells (Angermueller et al., 2016; Argelaguet et al., 2019; J. Cao et 67 

al., 2018; Clark et al., 2018; Moudgil et al., 2020; Rooijers et al., 2019; Xiong et al., 2021; Zhu 68 

et al., 2019, 2021). These techniques thus provide a way to link gene regulatory mechanisms 69 

to transcriptional output and cellular state in an unprecedented manner.  70 

 71 
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We recently developed scDam&T-seq, a method that can assay both transcription and DNA-72 

protein contacts in single cells by combining single-cell DamID and CEL-Seq2 (Rooijers et al., 73 

2019). DamID-based techniques attain specificity by tagging a protein of interest (POI) with 74 

the E. coli Dam methyltransferase, which will methylate adenines in a GATC motif in the 75 

proximity of the POI (Filion et al., 2010; Vogel et al., 2007). DamID is especially suited for 76 

obtaining information from individual cells, because DNA-protein contacts are recorded 77 

directly on the DNA in the living cell, and sample processing is particularly efficient with little 78 

loss of material. However, since Dam cannot be tagged directly to a post-translationally 79 

modified proteins by genetic engineering, this has precluded the use of any DamID methods 80 

for studying these epigenetic marks. 81 

 82 

Here, we present EpiDamID, an extension of existing DamID-based protocols for the study of 83 

histone PTMs that can be applied in single cells. In EpiDamID, Dam is fused to a targeting 84 

domain with specific affinity for the histone PTM of interest. These targeting domains can be 85 

either a) full-length proteins with endogenous binding affinity, b) protein domains from known 86 

chromatin binders (Kungulovski et al., 2014, 2016; Vermeulen et al., 2007), or c) modification-87 

specific intracellular antibodies (mintbodies) (Sato et al., 2013, 2016; Tjalsma et al., 2021) 88 

(Fig. 1A). Since this approach is an adaptation that can be applied to any DamID protocol, it 89 

provides all advantages that the DamID toolbox has to offer and makes them available to the 90 

study of chromatin modifications. This includes the possibility to perform (live) imaging of Dam-91 

methylated DNA (Altemose et al., 2020; Borsos et al., 2019; Kind et al., 2013), tissue-specific 92 

study of model organisms without cell isolation via Targeted DamID (TaDa) (Southall et al., 93 

2013), DamID-directed proteomics (Wong et al., 2021), multi-modal single-molecule 94 

sequencing (Cheetham et al., 2021), (multi-modal) single-cell sequencing studies (Altemose 95 

et al., 2020; Borsos et al., 2019; Kind et al., 2015; Rooijers et al., 2019), and the processing 96 

of samples with extremely little starting material (Borsos et al., 2019). 97 

 98 

We first validated the specificity of EpiDamID by targeting many different chromatin types in 99 

populations of human RPE-1 cells. To demonstrate the potential of EpiDamID, we then 100 

implemented the previously developed scDam&T-seq method (Rooijers et al., 2019) in mouse 101 

embryonic stem cells (mESCs) and obtained high-quality single-cell histone PTM profiles for 102 

selected targeting constructs. Next, we leveraged this single-cell resolution to study the 103 

Polycomb mark H3K27me3 and its relationship to transcription in mouse embryoid bodies 104 

(EBs), an in vitro differentiation system that mimics aspects of embryonic development 105 

(Desbaillets et al., 2000). We identified distinct Polycomb-regulated and Polycomb-106 

independent hierarchical TF networks covering both lineage-specific and ubiquitous functions. 107 

Finally, we developed a protocol to assay cell type-specific patterns of the heterochromatic 108 
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mark H3K9me3 in the zebrafish embryo and discovered broad domains of heterochromatin 109 

specific to the notochord. Together, these results show that EpiDamID provides a versatile 110 

tool that can be easily implemented in diverse biological settings to obtain histone PTM profiles 111 

of individual cells. 112 

 113 

Results 114 

Targeting domains specific to histone modifications mark distinct chromatin types with 115 

EpiDamID 116 

The conventional DamID approach involves genetically engineering a POI to the bacterial 117 

methyltransferase Dam (Fig. 1A). In this study, we adapted the DamID method to detect 118 

histone PTMs by fusing Dam to one of the following: 1) full-length chromatin proteins, 2) tuples 119 

of well-characterized reader domains (Kungulovski et al., 2014, 2016; Vermeulen et al., 2007), 120 

or 3) single-chain variable fragments (scFv) also known as mintbodies (Sato et al., 2013, 2016; 121 

Tjalsma et al., 2021)  (Fig. 1A). Such constructs have been previously successfully applied in 122 

microscopy, proteomics and ChIP experiments (Sato et al., 2013, 2016, 2021; Tjalsma et al., 123 

2021; Villaseñor et al., 2020). The different constructs were categorized based on their targets 124 

into the following chromatin types: accessible, active, heterochromatin, and Polycomb. This 125 

approach is henceforth referred to as EpiDamID, and the construct fused to Dam as the 126 

targeting domain. We generated various expression constructs for each of the different 127 

targeting domains, testing promoters (HSP, PGK), orientations (Dam-POI, POI-Dam) and two 128 

versions of the Dam protein (Dam, Dam126) (Supplementary Table 1). The choice of promoter 129 

influences the expression level of the Dam-POI, whereas the orientation may affect access of 130 

the POI to its target. In the Dam126 mutant, the N126A substitution reduces its binding affinity 131 

to the DNA and consequently diminishes off-target methylation (Park et al., 2018; Szczesnik 132 

et al., 2019). We introduced the Dam constructs by viral transduction in hTERT-immortalized 133 

RPE-1 cells and performed DamID2 followed by high-throughput sequencing (Markodimitraki 134 

et al., 2020). To validate our data with an orthogonal method, we generated antibody ChIP-135 

seq of various histone modifications.  136 

 137 

The DamID samples were filtered on sequencing depth and information content (IC), a 138 

measure of the amount of signal in the data compared to the background genome-wide 139 

distribution of mappable fragments (Methods). IC is a valuable metric for determining overall 140 

sample quality and signal-to-noise levels (Fig. S1A-B). The IC additionally showed that tuples 141 

of reader domains fused to Dam perform better than single domains, in agreement with a 142 

recent study employing similar domains for proteomics purposes (Villaseñor et al., 2020) (Fig. 143 

S1A-B). Therefore, only data from the triple reader domains were included in further analyses. 144 

 145 
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Visualization of all filtered DamID samples by uniform manifold approximation and projection 146 

(UMAP) shows that EpiDamID mapping allows for identification of distinct chromatin types 147 

(Fig. 1B). Genome-wide DamID signal correlates well with antibody ChIP-seq signal of the 148 

same chromatin target (Fig. 1C and S1C). Importantly, DamID samples do not group based 149 

on construct type, promoter, Dam type, sequencing depth, or IC (Fig. S1D-E), indicating that 150 

those properties are separate from target specificity. To further compare DamID with ChIP-151 

seq, we calculated enrichment over relevant genomic regions (genes or ChIP-seq 152 

peaks/domains). Cumulative signal shows excellent concordance between the methods and 153 

displays the expected patterns for all targets (Fig. 1D-F, left), as do example regions along the 154 

linear genome (Fig. 1D-F, right). It was previously reported that use of the Dam126 mutant 155 

improves signal quality compared to the use of wildtype (WT) Dam (Szczesnik et al., 2019). 156 

Indeed, we observed markedly improved sensitivity and reduced background methylation with 157 

the mutant Dam126 compared to WT Dam in our data (Fig. S1F-G).  158 

 159 

Finally, we further validated the correct nuclear localization of Dam-marked chromatin with 160 

microscopy by immunofluorescent staining of endogenous histone PTMs and DamID 161 

visualization using m6A-Tracer protein (Kind et al., 2013; Schaik et al., 2020) (Fig. 1G). 162 

 163 

Together, these results show that EpiDamID specifically targets histone PTMs and enables 164 

identification of their genomic distributions by next-generation sequencing.  165 

 166 

Detection of histone PTMs in single mouse embryonic stem cells with EpiDamID 167 

We next sought to establish whether the EpiDamID approach could be used to achieve single-168 

cell profiles. To this end, we generated clonal, inducible mESC lines for each of the following 169 

targeting domains fused to Dam: H4K20me1 mintbody, H3K27me3 mintbody, and the 170 

H3K27me3-specific CBX7 protein domain (3x tuple). While H4K20me1 is enriched over the 171 

gene body of active genes (Shoaib et al., 2021), the heterochromatic mark H3K27me3 is 172 

enriched over the promoter of developmentally regulated genes until the appropriate moment 173 

of their activation during differentiation (Boyer et al., 2006; Riising et al., 2014). As controls, 174 

we included an H3K27me3mut mintbody construct whose antigen-binding ability is abrogated 175 

via a point mutation in the third complementarity determining region of the heavy chain (Tyr105 176 

to Phe), and a published mESC line expressing untethered Dam (Rooijers et al., 2019). Using 177 

these cell lines, we followed the scDam&T-seq protocol to generate 442 to 1,402 single-cell 178 

samples per construct. After filtering on the number of unique GATCs and IC, we retained 283 179 

to 855 samples with high-quality DamID signal (Fig S2A-C). For the subsequent analyses, we 180 

also included a published dataset of Dam fused to RING1B (Rooijers et al., 2019) as an 181 

example of a full-length chromatin reader targeting Polycomb chromatin with DamID. All of 182 
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these constructs contained the WT Dam, as we found that the reduced activity of Dam126 183 

was insufficient to produce high-quality single-cell signal (data not shown). 184 

 185 

Dimensionality reduction on the resulting single-cell datasets revealed that the samples 186 

primarily separated based on chromatin type (Fig. 2A), indicating that the various targeting 187 

domains result in specific methylation. To further confirm the specificity of the constructs, we 188 

used mESC H3K27me3 (ENCSR059MBO) and H3K9ac (ENCSR000CGP) ChIP-seq 189 

datasets from the ENCODE portal (Davis et al., 2018) and generated our own mESC 190 

H4K20me1 ChIP-seq dataset. For all single cells, we computed the enrichment of single-cell 191 

counts within H3K27me3, H3K9ac and H4K20me1 ChIP-seq domains. These results show a 192 

strong enrichment of EpiDamID counts within domains for the corresponding histone PTMs 193 

(Fig. 2B-D), indicating that the methylation patterns are specific for their respective chromatin 194 

targets, even at the single-cell level. We further validated the approach by combining single-195 

cell samples per construct to obtain in silico population data, and computed the enrichment 196 

over H3K27me3 ChIP-seq domains (Fig. 2E) and active gene bodies (Fig. 2F) for the 197 

Polycomb-targeting constructs and H4K20me1, respectively. This illustrates that the 198 

combined signal, as well as the signal of the best single-cell samples, is strongly enriched 199 

over genomic regions of the corresponding histone PTM. Contrary to the H3K27me3 200 

construct, its mutated mintbody control, H3K27me3mut, shows little enrichment over 201 

H3K27me3 ChIP-seq domains (Fig. 2B and Fig. S2D) further corroborating the specificity of 202 

the EpiDamID approach. Besides the average enrichment patterns, the specificity of the signal 203 

is also observed at individual loci in both the in silico populations and single cells (Fig. 2G-H 204 

and Fig. S2E). 205 

 206 

These results collectively demonstrate that both mintbodies and protein domains can be used 207 

to map histone PTMs in single cells with the EpiDamID approach. 208 

 209 

Joint profiling of Polycomb chromatin and gene expression in mouse embryoid bodies 210 

To exploit the benefits of simultaneously measuring histone PTMs and transcriptome, and to 211 

test the potential of the method to capture chromatin dynamics, we chose to profile Polycomb 212 

in mouse EBs. We targeted the two main Polycomb repressive complexes (PRC) with 213 

EpiDamID using the full-length protein RING1B and H3K27me3-mintbody fused to Dam. 214 

RING1B is a core PRC1 protein that mediates H2AK119 ubiquitylation (de Napoles et al., 215 

2004; H. Wang et al., 2004), and H3K27me3 is the histone PTM deposited by PRC2 (R. Cao 216 

et al., 2002; Czermin et al., 2002; Kuzmichev et al., 2002; Müller et al., 2002). Both PRC1 and 217 

PRC2 have key roles in gene regulation during stem cell differentiation and early embryonic 218 
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development (see (Piunti & Shilatifard, 2021) and (Blackledge & Klose, 2021) for recent 219 

reviews on this topic).  220 

 221 

To assay a diversity of cell types at different time points, we harvested EBs for scDam&T-seq 222 

at day 7, 10 and 14 post aggregation, next to ESCs grown in 2i/LIF (Fig. 3A). In addition to 223 

RING1B and H3K27me3-mintbody, we included the untethered Dam protein for all time points 224 

as a control for chromatin accessibility. Collectively, we obtained 2,943 cells that passed both 225 

DamID and transcriptome thresholds (Fig. S3A). Based on the transcriptional readout, we 226 

identified eight distinct clusters across all time points (Fig. 3B). We next integrated the EB 227 

transcriptome data with the publicly available mouse embryo atlas (Pijuan-Sala et al., 2019) 228 

to confirm the correspondence of the EB cell types with early mouse development, and guide 229 

cluster annotations (Fig. S3B-C).  The results indicated the presence of both pluripotent and 230 

more differentiated cellular states, including epiblast, endoderm, and mesoderm lineages. 231 

Notably, the DamID readout alone was sufficient to consistently separate cells on chromatin 232 

type (Fig. 3C) and to distinguish between the pluripotent and more lineage-committed cells 233 

(Fig. 3D-E). Thus, the chromatin profiles in individual cells display cell type-specific patterns 234 

of chromatin accessibility and Polycomb association. Prompted by this observation, we trained 235 

a linear discriminant analysis (LDA) classifier to assign an additional 1,543 cells with poor 236 

transcriptional data to cell type clusters, based on their DamID signal (Fig. S3D-E). 237 

 238 

We next sought to define the set of genes that is Polycomb-regulated in the EB system. First, 239 

we determined the H3K27me3 and RING1B signal at the promoter region of all genes 240 

(Methods) and compared these two readouts across the clusters. This confirmed good 241 

correspondence between H3K27me3 and RING1B profiles (Fig. S3F-G), albeit with a slightly 242 

higher signal amplitude for RING1B (Fig. S3G). This difference between RING1B and 243 

H3K27me3 may be biological (e.g., differential binding sites or kinetics) and/or technical (e.g., 244 

the use of a full-length protein versus a mintbody to target Dam). Nonetheless, because of the 245 

overall similarity between the two profiles, we decided to classify high-confidence Polycomb 246 

targets as having both H3K27me3 and RING1B enrichment in at least one of the EB clusters 247 

(excluding cluster 7 due to the relatively low number of cells) or in the previous ESC data set 248 

(Methods). We identified 9,159 Polycomb-regulated targets across the entire dataset, in good 249 

concordance with a previous study in mouse development (Gorkin et al., 2020) (Fig. S3H). 250 

These results validate the quality of the EpiDamID data and underscore the potential of the 251 

method to derive cell type-specific chromatin profiles from complex tissues.            252 

 253 

Next, we intersected the cluster-specific transcriptome and DamID data to relate gene 254 

expression patterns to Polycomb associations. Based on the known role of Polycomb in gene 255 
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silencing, differential binding of PRC1/2 to genes is expected to be associated with changes 256 

in expression levels of these genes. As exemplified in Fig. 3F-G, the cell type-specific 257 

expression of Tal1, a master regulator in hematopoiesis, in cluster 6 is indeed associated with 258 

an absence of H3K37me3 and RING1B exclusively in this cluster, whereas strong Polycomb 259 

occupancy over the Tal1 promoter is evident in all other clusters. For presentation purposes, 260 

we display only the most prominent pluripotent cluster (3) and omit the other pluripotent 261 

clusters (2, 5, and 7), which had very similar characteristics. The negative association of 262 

Polycomb binding with gene expression is apparent for all PRC targets that are upregulated 263 

in the hematopoietic cluster (Fig. S3I-J). In addition, unsupervised clustering of H3K27me3 264 

and RING1B promoter occupancy across cell clusters shows variation in signal between target 265 

genes as well as between cell types, indicating dynamic regulation of these targets within the 266 

EB system (Fig. 3H). Moreover, the subset of Polycomb targets that shows variable PRC 267 

occupancy is typically more highly expressed in the clusters where Polycomb is absent (Fig. 268 

3I). Collectively, these data illustrate the strength of the EpiDamID approach to capture 269 

transcription and chromatin dynamics during differentiation in a single integrated method.  270 

 271 

Polycomb-regulated transcription factors form separate regulatory networks 272 

After confirming the validity of the EpiDamID approach in measuring Polycomb dynamics 273 

during differentiation, we next focused on the Polycomb targets based on their function. We 274 

found that TF genes are over-represented within the Polycomb target genes (Fig. S4A), in line 275 

with previous observations (Boyer et al., 2006). Nearly half of all TF genes in the genome 276 

(761/1689) is bound by Polycomb in at least one cluster. In addition, genes encoding TFs 277 

generally accumulate higher levels of H3K27me3 and RING1B compared to other protein-278 

coding genes (Fig. S4B). In line with an important role in lineage specification, Polycomb-279 

controlled TFs are expressed in a cell type-specific pattern, as opposed to the more 280 

constitutive expression across cell types for Polycomb-independent TFs (Fig. S4C-D). 281 

Accordingly, the Polycomb-controlled TFs are enriched for Gene Ontology (GO) terms 282 

associated with animal development (Fig. S4E). 283 

 284 

The enriched Polycomb targeting of developmentally regulated TF genes inspired us to further 285 

investigate the role of Polycomb in TF network hierarchies. We used SCENIC to systematically 286 

identify target genes that are associated with the expression of TFs (Aibar et al., 2017; van de 287 

Sande et al., 2020). SCENIC employs co-expression patterns as well as binding motifs to link 288 

TFs to their targets, together henceforth termed “regulons” (per SCENIC nomenclature). We 289 

identified 285 “activating” regulons after filtering (Fig. 4A and Methods). Notably, while 290 

regulons and their activity were found independently of RNA-based cluster annotations, we 291 
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observed excellent recapitulation of cluster-specific transcriptional networks, confirming that 292 

SCENIC-identified regulon activity holds information on cellular identity (Fig. 4A).  293 

 294 

Based on the expression modules identified with SCENIC, we first sought to determine how 295 

overall regulon activity correlates to Polycomb binding. As illustrated for the homeobox TF 296 

gene Msx1, we found that regulon activity is generally anti-correlated with Polycomb 297 

association of both the TF gene (red dot) and its Polycomb-controlled target genes (boxplots, 298 

65% of all MSX1 targets) (Fig. 4B-C). We wondered whether there is a general preference for 299 

Polycomb-controlled TFs to target genes that themselves are regulated by Polycomb. This is 300 

indeed the case: while Polycomb-controlled TFs have a similar number of target genes 301 

compared to other TFs (Fig. S4F), the expression of the targets is much more frequently 302 

controlled by Polycomb than would be expected by chance (Fig. 4D). This effect is even 303 

stronger when considering the subset of targets that is exclusively regulated by Polycomb TFs 304 

(Fig. S4G). Using the transcriptional network provided by SCENIC, we also identified 305 

upstream TFs that control the expression of the regulon TFs (Fig. 4E). Similar to the target 306 

genes, the regulators of Polycomb-controlled TFs also tend to be Polycomb-controlled (Fig. 307 

4F). Moreover, the fractions of Polycomb-controlled upstream regulators and downstream 308 

targets are correlated (Fig. 4G), indicating consistency in the level of Polycomb regulation 309 

across at least three layers of the TF network. Since Polycomb plays an important role in cell 310 

type specification, we evaluated whether this strict Polycomb control in the network was 311 

exclusive to lineage-specific genes. By clustering TFs into lineage-specific and unspecific 312 

groups based on their expression pattern (Fig. S4H), we found that, while this trend was 313 

especially strong for the lineage-specific genes, the consistency of Polycomb regulation in the 314 

network was a feature for other, unspecific, genes as well (Fig. S4I). These results suggest 315 

that Polycomb-associated hierarchies exist, forming relatively separate networks isolated from 316 

other gene regulatory mechanisms, and that this phenomenon extends beyond lineage-317 

specific genes alone.  318 

 319 

Together, the above findings demonstrate that single-cell EpiDamID can be successfully 320 

applied in complex developmental systems to gather detailed information on cell type-specific 321 

Polycomb regulation and its interaction with transcriptional networks. 322 

 323 

Implementation of EpiDamID during zebrafish embryogenesis  324 

As presented above, DamID is a method that requires insertion of the Dam fusion protein into 325 

the biological system of interest. Genetic engineering of cell lines offers the advantage of many 326 

powerful in vitro differentiation systems, exemplified by our work in EBs. Contrastingly, it has 327 

proven challenging to apply DamID as a tool to study embryogenesis in transgenic vertebrate 328 
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model organisms. To overcome this limitation, we previously established a protocol that 329 

introduces DamID into mouse preimplantation embryos via microinjections in the zygote 330 

(Borsos et al., 2019; Pal et al., 2021). Here, we sought to implement a similar strategy to apply 331 

EpiDamID during zebrafish development.  332 

 333 

To establish the system, we profiled heterochromatin marked by H3K9me3 in single cells. 334 

H3K9me3 is reprogrammed during the early stages of development in several species (Laue 335 

et al., 2019; Mutlu et al., 2018; Rudolph et al., 2007; Santos et al., 2005; C. Wang et al., 2018) 336 

and the deposition of this mark coincides with decreased developmental potential (Ahmed et 337 

al., 2010). It was previously shown in zebrafish that H3K9me3 is largely absent before the 338 

maternal-to-zygotic transition (MZT) due to the presence of maternal smarca2 mRNA. Upon 339 

zygotic transcription, degradation of smarca2 results in a gradual increase of H3K9me3 from 340 

MZT up to shield stage [6 hours post-fertilization (hpf)] (Laue et al., 2019). However, it remains 341 

unclear whether the H3K9me3 distribution undergoes further remodeling after this stage, and 342 

whether its establishment differs across cell types during development. 343 

 344 

To address these questions and to test EpiDamID in a zebrafish developmental context, we 345 

used the MPHOSPH8 chromodomain targeting H3K9me3 (Kungulovski et al., 2014), which 346 

we validated for EpiDamID in RPE-1 cells (Fig. 1B, F). We injected Dam-Mphosph8 mRNA 347 

into the yolk at 1-cell stage (Fig. 5A) and optimized the mRNA concentrations to obtain 348 

scDam&T-seq data of high quality (data not shown). We separately injected Dam-Mphosph8 349 

to profile H3K9me3, and untethered Dam to profile chromatin accessibility. Embryos were 350 

collected at the 15-somite stage, which comprises a wide diversity of cell types corresponding 351 

to all germ layers. We generated 2,127 single-cell samples passing both DamID and CEL-352 

Seq2 thresholds (Methods). To validate the specificity of the obtained H3K9me3 signal, we 353 

combined the DamID data of all cells in an in silico whole-embryo sample and compared this 354 

to the published H3K9me3 ChIP-seq data of 6-hpf embryos (Laue et al., 2019), which showed 355 

good concordance (Fig. S5.1A). These data confirm that we have established an orthogonal 356 

non-transgenic approach to generate high-resolution genome-wide profiles of 357 

heterochromatin during zebrafish development.  358 

 359 

Broad domains of notochord-specific H3K9me3 enrichment revealed by scDam&T-seq 360 

Analysis of the single-cell transcriptome data resulted in 22 clusters of diverse cell types (Fig. 361 

5B), which we annotated according to expression of known marker genes (Fig. S5.1B). We 362 

performed dimensionality reduction based on the DamID signal and observed a clear 363 

separation of cells according to their Dam construct, and to a lesser extent on their cell type 364 

(Fig. 5C-D). As described for EpiDamID in EBs, cluster-specific DamID profiles allowed us to 365 
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employ the LDA classifier to recover a further 705 cells (Fig. S5.2C). Notably, the MPHOSPH8 366 

samples of hatching gland (cluster 1, he1.1 expression) and notochord (cluster 2, col9a2 367 

expression) segregated strongly from the other cell types (Fig. 5D), implying differences in 368 

their single-cell H3K9me3 profiles. Subsequently, we combined all single-cell DamID data per 369 

cluster to obtain cell type-specific H3K9me3 patterns (Fig. 5E). We observed clear differences 370 

in the genomic profiles, most notably the appearance of large domains of H3K9me3 371 

enrichment in the notochord, and overall lower levels of H3K9me3 in the hatching gland (Fig. 372 

5E and Fig. S5.1D). These differences are largely consistent between individual cells (Fig. 5E, 373 

heatmaps). In conclusion, with EpiDamID we are able to capture cell type-specific epigenetic 374 

profiles for individual cells of the 15-somite zebrafish embryo.  375 

 376 

Next, to more systematically identify and characterize regions of differential H3K9me3 377 

enrichment between cell clusters, we performed ChromHMM (Ernst & Kellis, 2012, 2017) 378 

(Methods). The approach uses the H3K9me3 signal per cluster to annotate genomic segments 379 

as belonging to different H3K9me3 “states” characterized by the clusters in which the segment 380 

is enriched. We included the 12 cell clusters with sufficient cells (containing >30 cells per 381 

construct) and identified five H3K9me3 states across the genome. These represented: A) 382 

three states of constitutive H3K9me3 with different enrichment levels [A1-A3], B) notochord-383 

specific H3K9me3 enrichment, and C) constitutive depletion of H3K9me3 (Fig. 5F-G). State A 384 

(A1-3) chromatin forms broad domains (Fig. S5.1E) that together comprise 27% of the 385 

genome (Fig. S5.1F) and, as expected for H3K9me3-associated chromatin regions, are 386 

characterized by sparser gene density and lower gene activity compared to the H3K9me3-387 

depleted state C (Fig. 5H). Moreover, state A1 is strongly enriched for zinc-finger transcription 388 

factors (Fig. S5.1G), which are known to be demarcated by H3K9me3 in other species (Hahn 389 

et al., 2011). The notochord-specific state B has similar characteristics to states A1-A3 (Fig. 390 

5H, S5.1E-F), yet exhibits broader consecutive regions of H3K9me3 enrichment (Fig. 5G and 391 

S5.1E) and an even lower active gene density (Fig. 5H). Despite the size of the notochord-392 

specific H3K9me3 domains and their features typical of repressive chromatin, we could not 393 

relate them back to differences in tissue-specific gene expression (Fig. S5.1H). 394 

 395 

One of the known functions of H3K9me3 chromatin is the repression of transposable elements 396 

(Bulut-Karslioglu et al., 2014; S. Liu et al., 2014; Mosch et al., 2011). Indeed, it was previously 397 

observed in zebrafish that nearly all H3K9me3 domains in early embryos are associated with 398 

repeats (Laue et al., 2019). We therefore determined whether distinct repeat classes were 399 

over-represented in each H3K9me3 ChromHMM state (Fig. S5.2A). This analysis revealed a 400 

strong enrichment of several repeat classes in state A1, including LTR and tRNA. To further 401 

discriminate within the classes, we looked into all repeat types with at least 100 genomic 402 
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copies. In addition to the most prominent enrichment of LTR repeats, state A1 showed a high 403 

frequency of pericentromeric satellite repeats SAT-1 and BRSATI (Fig. 5I), in line with the 404 

known occupancy of H3K9me3 at pericentromeric regions in diverse species. We postulated 405 

that the enrichment of repeats found within state A1, as opposed to A2 and A3, could be due 406 

to elevated signal at these loci, as a result of active targeting for H3K9me3- mediated 407 

silencing. Inspection of the DamID patterns indeed showed a clear increase of signal centered 408 

on specific repeat regions in state A1, and to lesser extents in other states (Fig. S5.2B). In 409 

addition, we investigated whether there are repeats strongly enriched within the notochord-410 

specific state B domains that could potentially explain the existence of these domains. We 411 

found that there are indeed certain repeats specifically enriched within state B (Fig. 5I and Fig. 412 

S5.2C), albeit rarely as conspicuous as the enrichments observed in state A1. It therefore 413 

warrants further study to see whether H3K9me3 is involved in cell type-specific repression of 414 

repetitive genomic regions in notochord.  415 

 416 

Altered expression of chromatin proteins and pronounced nuclear 417 

compartmentalization in notochord 418 

Finally, we took advantage of the combined measurements of transcriptome and epigenetic 419 

profiles to gain insight into cluster-specific expression of known chromatin proteins in relation 420 

to the differential H3K9me3 patterns. We inspected the expression of histone 421 

methyltransferases, demethylases and other chromatin factors across clusters, and did not 422 

detect an upregulation of known H3K9 methyltransferases (setdb2, setdb1a/b, suv39h11a/b, 423 

ehmt2) nor demethylases (kdm4aa/ab/b/c, phf8) in notochord (Fig. S5.2D). Of note, however, 424 

the H3K9- and H3K36-specific demethylase kdm4c was exclusively upregulated in hatching 425 

gland, which could explain the low H3K9me3 levels in this cluster. Moreover, among genes 426 

significantly upregulated in notochord, lmna stood out. This gene encodes the nuclear lamina 427 

protein Lamin A/C that is known to associate with heterochromatin (Gruenbaum & Foisner, 428 

2015) and plays an important structural role in the nucleus (Donnaloja et al., 2020; Gruenbaum 429 

& Foisner, 2015), further suggesting an altered chromatin state in the notochord.  430 

 431 

To directly investigate chromatin state and nuclear organization in these embryos, we 432 

performed confocal imaging of H3K9me3 and DAPI stainings in notochord, brain, and skeletal 433 

muscle. H3K9me3-marked chromatin displayed a typical nuclear distribution in all tissues, 434 

including heterochromatin foci as previously reported (Laue et al., 2019) (Fig. S5.2E). Notably, 435 

the DAPI staining showed markedly more structure in the notochord compared to the other 436 

tissues (Fig. 5J), visible as a clear rim along the nuclear periphery and denser foci within the 437 

nuclear interior. Since DAPI is indicative of AT-rich and generally less accessible DNA, this 438 

suggests a stronger separation between euchromatin and heterochromatin. Together with our 439 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.10.26.465688doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.26.465688
http://creativecommons.org/licenses/by-nc/4.0/


 13 

findings of notochord-specific H3K9me3 domains and differential expression of chromatin 440 

factors, these observations on nuclear organization warrant further study of their contribution 441 

to the structural properties of notochord cells.  442 

 443 

Collectively, the implementation of EpiDamID in zebrafish embryos shows that this strategy 444 

provides a flexible and accessible approach to generate rich single-cell information on the 445 

epigenetic states that underlie biological processes during zebrafish embryogenesis.  446 

 447 

Discussion 448 

Here, we have developed and tested EpiDamID, an adaptation of conventional DamID that 449 

extends its application of profiling DNA-protein contacts to epigenetic marks. EpiDamID 450 

utilizes the binding specificities of genetically encoded mintbodies (Sato et al., 2013, 2016; 451 

Tjalsma et al., 2021), histone PTM-identifying domains (Kungulovski et al., 2014, 2016; 452 

Vermeulen et al., 2007), or full-length chromatin readers to target Dam to specific chromatin 453 

marks. We presented a wide diversity of histone PTM patterns generated after viral 454 

transduction of EpiDamID constructs in RPE-1 cells, and validated the approach through 455 

comparison to genomic profiles generated with ChIP-seq (Fig. 1). A selection of histone PTMs 456 

was chosen to illustrate that EpiDamID yields high-quality single-cell profiles in engineered 457 

mESC lines (Fig. 2), which was further demonstrated by its implementation in an EB 458 

differentiation system (Fig. 3 and 4). Lastly, we showed that single-cell histone PTM profiling 459 

can be achieved in zebrafish embryos (Fig. 5). Joint single-cell quantifications of histone PTMs 460 

and transcriptome enabled the identification of cell types and associated histone PTM profiles 461 

in integrated experiments.  462 

 463 

Advantages of DamID for studying histone PTMs during embryogenesis 464 

Since DamID was first developed (Vogel et al., 2007), a wide range of derivative technologies 465 

have been established (see (Aughey et al., 2019)). This includes the possibility to perform 466 

live-cell imaging of DamID-marked chromatin regions (Altemose et al., 2020; Borsos et al., 467 

2019; Kind et al., 2013), targeted DamID (TaDa) for tissue-specific profiling without cell 468 

isolation or dissection (Marshall & Brand, 2017; Southall et al., 2013), proteomics on DamID-469 

marked genomic regions (Wong et al., 2021), single-cell experiments (Altemose et al., 2020; 470 

Borsos et al., 2019; Kind et al., 2015; Rooijers et al., 2019), and protocols for performing 471 

DamID in living mouse preimplantation embryos (Borsos et al., 2019; Pal et al., 2021). 472 

Moreover, DamID has been successfully established in many model systems including various 473 

mouse and human cell lines and several organisms, including plants, fish, fly and worms 474 

(Aughey et al., 2019). EpiDamID can be implemented in any DamID-based protocol, thereby 475 

offering the possibility to obtain live-cell microscopic, proteomic and genomic measurements 476 
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of histone PTMs in a single integrated toolbox in diverse biological settings. (Kind et al., 2013; 477 

Park et al., 2019). 478 

 479 

The variety of implementations and model systems makes EpiDamID especially suitable to 480 

study histone PTMs in development. The single-cell implementations of DamID—scDamID 481 

and scDam&T-seq—require little sample handling and few enzymatic steps, resulting in 482 

minimal sample loss. This makes them particularly efficient and, as a result, offers the 483 

possibility to individually collect and process all cells belonging to the same tissue (Borsos et 484 

al., 2019). For example, scDam&T-seq with EpiDamID constructs could be used to individually 485 

collect all cells of a single preimplantation mouse embryo and examine epigenetic and 486 

transcriptomic differences that may point towards cell fate commitment. In contrast, state-of-487 

the-art methods require extensive tissue handling prior to signal amplification, preventing 488 

capture and tracking of intra-embryonic variability. Furthermore, the DamID genomic marks 489 

are stable upon deposition, offering the interesting possibility to track ancestral EpiDamID 490 

genomic signatures through mitosis to study inheritance and spatial distribution of epigenetic 491 

states in daughter cells (Kind et al., 2013; Park et al., 2019). This feature adds a temporal axis 492 

to genomic experiments, albeit only for a single cell division due to the dilution of the m6A-print 493 

upon DNA replication. This unique aspect of DamID warrants further exploration, especially in 494 

single-cell multimodal omics experiments.  495 

 496 

DamID as an integrative method for single-cell multi-modal omics 497 

The DamID workflow is suitable for integration with other single-cell protocols to achieve multi-498 

modal measurements (Markodimitraki et al., 2020). The limited handling prior to individual cell 499 

capture offers opportunities to integrate upstream steps of other protocols that are compatible 500 

with the final processing steps of scDamID. Powerful future method integrations may involve 501 

combining scDamID with scChIC-seq (Ku et al., 2019) or sortChIC (Zeller et al., 2021) to 502 

measure two genome-wide profiles in the same cell, or the incorporation of the CITE-seq 503 

approach to obtain quantitative single-cell measurements of protein abundance, 504 

transcriptomics and histone PTM profiles. This latter combination offers the exciting prospect 505 

to study gene expression across the central dogma of gene regulation. 506 

 507 

Chromatin-associated gene regulatory networks in mouse developmental systems 508 

We implemented EpiDamID in EB cultures to investigate the PRC2-deposited H3K27me3 509 

mark alongside the binding of core PRC1 component RING1B, and the role of Polycomb in 510 

transcriptional regulation during differentiation. We observed extensive variability in Polycomb 511 

occupancy across distinct cell types, and, in addition, identified the existence of hierarchical 512 

Polycomb-associated regulatory networks. We speculate that these Polycomb-controlled 513 
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networks ensure robustness of stable maintenance of repression. By establishing the 514 

EpiDamID approach, we have set the stage for similar experiments in more dynamic biological 515 

systems, such as gastruloid cultures or in vivo mouse experiments. EpiDamID can be 516 

performed via mRNA injection to study early development as we have demonstrated here and 517 

previously (Borsos et al., 2019; Pal et al., 2021), or via the establishment of transgenic animals 518 

that conditionally express EpiDamID constructs.  519 

 520 

Structural function of notochord during zebrafish embryogenesis may be supported by 521 

heterochromatin organization in the nucleus 522 

Lastly, we established a protocol to apply EpiDamID in zebrafish embryos. We identified broad 523 

regions of notochord-specific H3K9me3 enrichment with no evident function in cell-type 524 

specific gene silencing. The notochord is an important embryonic structure that serves a 525 

mechanical as well as a cellular signalling function to its surrounding tissues (Corallo et al., 526 

2015). During embryogenesis, notochord cells develop a large vacuole, in which high osmotic 527 

pressure forces the tissue into its characteristic stack-of-coins appearance, and provides 528 

unique mechanical properties essential for the elongation of the embryo. We hypothesize that 529 

notochord-specific domains of H3K9me3 enrichment identified in our study may contribute to 530 

the unique structural properties of these cells, potentially to withstand the strong osmotic 531 

forces acting upon the nucleus. Since H3K9me3 is known to convey nuclear stiffness Click or 532 

tap here to enter text. broad domains of consecutive heterochromatin would be beneficial. 533 

Additional support for this possibility is provided by our observation of consistently increased 534 

mRNA levels of the lmna gene, encoding Lamin A/C, in notochord cells. Lamin A/C is a 535 

constituent of the nuclear lamina (NL), a filamentous network lining the inner nuclear 536 

membrane (Gruenbaum & Foisner, 2015) that is directly connected to the cytoskeleton via 537 

transmembrane proteins in the LINC complex (Crisp et al., 2006). Of note, the A-type Lamins 538 

are specifically responsible for modulating nuclear structure and rigidity (Donnaloja et al., 539 

2020). Finally, the existence of an altered chromatin state in notochord is further supported by 540 

the observation that DAPI-stained DNA forms more clearly segregated structures in notochord 541 

cells compared to other cell types, implying a stronger separation between euchromatin and 542 

heterochromatin. These findings warrant further investigation into the nature of notochord 543 

heterochromatin and its role in supporting the structural properties of this tissue.  544 

  545 

Limitations  546 

The limitations of EpiDamID are similar to those of DamID in general. In order to generate 547 

histone PTM profiles with EpiDamID, a construct encoding for the Dam-fusion protein needs 548 

to be expressed in the system of interest. This may involve a substantial time investment 549 

depending on the system of choice. Then, to achieve optimal signal over noise, the conditions 550 
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to be optimized generally differ dependent on the properties of the Dam-fusion protein. For 551 

cell lines, it typically involves establishing a conditional expression system and performing a 552 

number of experiments to test for optimal induction times. For microinjection experiments, it 553 

requires optimizing mRNA concentrations that are injected in the zygote. The optimal mRNA 554 

concentration to achieve best signal-to-noise ratio depends on the histone PTM of interest 555 

and the developmental stage of choice. Finally, due to the in vivo expression and consequent 556 

roaming of the Dam-POI in the nucleus, spurious methylation gradually accumulates in 557 

unspecific, mostly accessible, chromatin regions. The degree of accumulated background 558 

signal differs substantially between different Dam-POIs, yet interferes most with proteins that 559 

reside within active chromatin. This can be overcome either computationally through 560 

normalization to the untethered Dam protein or the implementation of Dam mutants with 561 

decreased affinity for DNA. Unfortunately, we found that the reduced enzymatic activity of 562 

these mutants (Dam126 and others, data not shown) results in insufficient m6A-events for high-563 

quality single-cell profiling. Further adaptation of the Dam protein to achieve an enzyme with 564 

combined full enzymatic activity and reduced DNA-binding affinity may further improve the 565 

quality of EpiDamID profiles in single cells.  566 

 567 

We expect that the study of chromatin associations in the context of dynamic cellular states 568 

will provide better understanding of the occurrence and identity of the events that shape 569 

chromatin-regulated gene expression, as well as functions outside of transcription. 570 

 571 
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Figure legends 609 

 610 

Figure 1. Targeting domains specific to histone modifications mark distinct chromatin 611 

types with EpiDamID 612 

A, Schematic overview of EpiDamID concept compared to conventional DamID. 613 

B, UMAP of DamID samples, colored by targeting construct. The abbreviations MB, PD and 614 

F indicate what type of EpiDamID construct is used. MB: mintbody; PD: protein domain; F: full 615 

protein. 616 

C, UMAPs as in A, colored by correlation with selected ChIP-seq samples. 617 

D-F, Left, average DamID and ChIP-seq enrichment plots over genomic regions of interest. 618 

Signal (log2OE) is normalized for untethered Dam or input, respectively. Regions are gene 619 

bodies for H3K9ac and H4K20me1 (D), and ChIP-seq domains for H3K9me3 (E) and 620 

H3K27me3 (F). 621 

D-F, Right, genome browser view of ChIP-seq and DamID enrichment (log2OE) 622 

corresponding to left panels. The data shown in D-F represents the combined data of all 623 

samples of each targeting domain. 624 

G, Confocal images of nuclear chromatin showing DAPI, immunofluorescent staining against 625 

an endogenous histone modification, and its corresponding EpiDamID construct visualized 626 

with m6A-Tracer. Top: H3K9ac, bottom: H3K9me3. 627 

 628 

Figure 2: Detection of histone PTMs in single mouse embryonic stem cells with 629 

EpiDamID 630 

A, UMAP based on the single-cell DamID readout of all single-cell samples. Samples are 631 

colored according to the targeting domain. The abbreviations MB, PD and F indicate what type 632 

of EpiDamID construct is used. MB: mintbody; PD: protein domain; F: full protein. 633 

B-D, DamID UMAP as in A, colored by the enrichment of counts within H3K27me3 ChIP-seq 634 

domains (B), H3K9ac ChIP-seq peaks (C), and H4K20me1 ChIP-seq domains (D). Count 635 

enrichment was computed as the fraction of GATC counts that fell within the regions, relative 636 

to the total fraction of genomic GATC positions inside these domains.  637 

E, Average signal over H3K27me3 ChIP-seq domains of CBX7 and H3K27me3 targeting 638 

domains and full-length RINGB1B protein. 639 

F, Average signal over the TSS of the top quartile active genes (as measured by H3K9ac 640 

ChIP-seq signal) of the H4K20me1 targeting domain.  641 

E-F, Top: in silico populations normalized for Dam; Bottom: five of the best single-cell samples 642 

(bottom) normalized only by read depth.  643 

G-H, Signal of various marks over the HoxD cluster and neighboring regions. ChIP-seq data 644 

is normalized for input control. The DamID tracks show the Dam-normalized in silico 645 
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populations of the various Dam-fusion proteins, while heatmaps show the depth-normalized 646 

single-cell data of the fifty richest cells. The red bar around 74.7 Mb indicates the HoxD cluster. 647 

In H, the left red bar indicates the Lnp gene, the right bar indicates the Mtx2 gene. 648 

 649 

Figure 3. Joint profiling of Polycomb chromatin and gene expression in mouse 650 

embryoid bodies 651 

A, Schematic showing the experimental design. 652 

B, UMAP of samples based on CEL-Seq2 readout, colored by cluster.  653 

C-D, UMAP of samples based on DamID readout, colored by construct (C) and cluster (D).  654 

E, Transcriptomic UMAP (left) and DamID UMAP (right), colored by expression of pluripotency 655 

marker Dppa5a.  656 

F, Transcriptomic UMAP (left) and DamID UMAP (right), colored by expression of 657 

hematopoietic regulator Tal1.  658 

G, Genomic tracks of H3K27me3 and RING1B DamID signal per cluster at the Tal1 locus. 659 

H, Heatmaps showing the H3K27me3 (left) and RING1B (right) DamID signal of all identified 660 

PRC targets for transcriptional clusters 3, 0, 1, 6, and 4. PRC targets are ordered based on 661 

hierarchical clustering. 662 

I, Fold-change in expression of Polycomb targets between clusters where the gene is PRC-663 

associated and clusters where the gene is PRC-free. 664 

 665 

Figure 4. Polycomb-regulated transcription factors form separate regulatory networks 666 

A, Heatmap showing SCENIC regulon activity per single cell. Cells (columns) are ordered by 667 

transcriptional cluster; regulon (rows) are ordered by hierarchical clustering. The black and 668 

white bar on the left indicates whether the regulon TF is a PRC target (black) or not (white). 669 

B, Example of the relationship between expression and Polycomb regulation for the MSX1 670 

regulon. The pie chart indicates the percentages of Polycomb-controlled or Polycomb-671 

independent target genes (blue and grey, respectively). Left: boxplots showing target gene 672 

expression (averaged Z-score) per cluster for all target genes. Middle and right: boxplots 673 

showing the H3K27me3 and RING1B DamID signal at the TSS per cluster for the Polycomb-674 

controlled target genes. The expression and DamID signal of Msx1 is indicated with a red 675 

circle.  676 

C, Genomic tracks of H3K27me3 and RING1B DamID signal per cluster at the Fgf10 locus, 677 

one of the target genes of MSX1.  678 

D, Boxplots showing the fraction of Polycomb-controlled target genes, split by whether the TF 679 

itself is Polycomb-controlled.  680 
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E, Schematic of the regulatory network, indicating the relationship between a regulon TF 681 

(white hexagon), its upstream regulators (colored hexagons), and its downstream targets 682 

(colored hexagons/circles). 683 

F, Boxplots showing the fraction of Polycomb-controlled upstream regulators, split by whether 684 

the regulon TF is Polycomb-controlled.  685 

G, Scatter plot showing the relationship between the fraction of Polycomb-controlled targets 686 

and regulators of a regulon TF. Regulon TFs that are PRC controlled are indicated in blue; 687 

regulon TFs that are PRC independent are indicated in grey. Correlation was computed using 688 

Spearman’s rank correlation. 689 

 690 

Figure 5. Notochord-specific H3K9me3 enrichment in the zebrafish embryo 691 

A, Schematic representation of the experimental design and workflow. 692 

B, UMAP based on the transcriptional readout of all single-cell samples passing CEL-Seq2 693 

thresholds (n = 3902). 694 

C, UMAP based on the genomic readout of all single-cell samples passing DamID thresholds 695 

(n = 2833). Samples are colored by transcriptional cluster (left) and Dam-targeting domain 696 

(right). 697 

D, Expression of the hatching gland marker he1.1 (left) and the notochord marker col9a2 698 

(right) projected onto the DamID UMAP. 699 

E, Genomic H3K9me3 signal over chromosome 17. Top track: H3K9me3 ChIP-seq signal 700 

normalized for input control from the 6-hpf embryo, taken from Click or tap here to enter text.. 701 

Remaining tracks: Combined single-cell DamID MPHOSPH8 data normalized for the Dam 702 

control for clusters 0-2. 703 

F, Heatmap showing the cluster-specific average H3K9me3 enrichment over all domains 704 

called per ChromHMM state. Only clusters with >30 single-cell MPHOSPH8 and Dam samples 705 

were used for the ChromHMM (i.e., clusters 0-11). Per state, the domains have been clustered 706 

using hierarchical clustering.  707 

G, Genomic H3K9me3 signal over a part of chromosome 8 for clusters 0-2. The colored 708 

regions at the bottom of each track indicate the ChromHMM state. 709 

H, Gene density of all genes (top) and expressed genes (bottom) per state. 710 

I, Enrichment of repeats over all different ChromHMM states. Only repeats having at least 100 711 

copies throughout the genome and an enrichment 2 in at least one state are shown. 712 

Enrichment is computed as the observed number of repeats in a state compared to the 713 

expected number based on the genome coverage of that state. Example repeats are 714 

indicated. 715 

J, Representative confocal microscopy images of DAPI staining in cryosections of notochord 716 

(left), brain (middle), and skeletal muscle (right) of 15-somite zebrafish embryos. 717 
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 718 

Figure S1. Technical validation of EpiDamID data 719 

A-B, Average enrichment over genomic regions of interest for TAF3 (A) and CBX7 (B) DamID. 720 

Left: data generated by fusing Dam to a single protein domain; Right: data generated by fusing 721 

Dam to a trimer of the same protein domain. Sample lines are colored by their Information 722 

Content (IC).  723 

C, Clustered heatmap showing the correlation between DamID and ChIP-seq samples. 724 

Correlations were computed using Spearman’s rank correlation. 725 

D, UMAPs of samples, colored by construct properties. 726 

E, UMAPs of samples, colored by DamID-seq depth and Information Content. 727 

F, Left, average DamID and ChIP-seq enrichment plots over genomic regions of interest. 728 

Signal is normalized for untethered Dam and input, respectively. Regions are the TSS of 729 

genes for H3K9ac (top), gene bodies for H4K20me1 (middle), and ChIP-seq domains for 730 

H3K27me3 (bottom). 731 

F, Right, genome browser view of ChIP-seq and DamID enrichment corresponding to left 732 

panels. The data shown in D-F represents the combined data of all samples of a particular 733 

targeting domain. 734 

 735 

Figure S2: Detection of histone PTMs in single mouse embryonic stem cells with a 736 

single-cell implementation of EpiDamID 737 

A, Density plot indicating the distribution of the number of unique GATCs detected for each 738 

cell line. The dashed line indicates the threshold used for data filtering. 739 

B, Density plot indicating the distribution of the Information Content (IC) after filtering on depth 740 

for each cell line. The dashed line indicates the threshold used for data filtering. 741 

C, Overview of the number (top) and percentage (bottom) of samples retained after filtering 742 

on depth and IC. 743 

D, Average signal over H3K27me3 ChIP-seq domains of H3K27me3 and H3K27me3mut 744 

mintbodies. Top: in silico populations normalized for Dam; Bottom: five of the best single-cell 745 

samples (bottom) normalized by read depth. 746 

E, Signal of H3K27me3mut and Dam control over the HoxD cluster and neighboring regions. 747 

The DamID track show the Dam-normalized in silico populations of H3K27me3mut, while the 748 

heatmaps show the depth-normalized single-cell data of the fifty richest cells for H3K27me3mut 749 

and Dam. The red bar around 74.7 Mb indicates the HoxD cluster.  750 

 751 

Figure S3. Validation and characterization of scDam&T-seq data in mouse embryoid 752 

bodies 753 
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A, Overview of the number (top) and percentage (bottom) of remaining samples after 754 

application of DamID and/or CEL-Seq2 filtering. 755 

B, UMAPs of samples based on the integration of our EB transcription data with single-cell 756 

RNA-seq mouse embryonic data Click or tap here to enter text., colored by reference-annotated 757 

cell type (i), EB-annotated cluster (ii), atlas embryonic day (iii) and EB day (iv). For atlas 758 

integration, the day 0 (i.e., mESC) time point was excluded. 759 

C, Average expression of known marker genes. Expression was standardized over single-760 

cells and the per-cluster average was computed. 761 

D, Bar plots showing the number of cells per cluster assigned by Seurat (i.e. based on 762 

transcriptional readout) or the LDA classifier (i.e. based on DamID readout). 763 

E, Confusion plots showing the performance of the LDA classifier during training, for each 764 

construct. 765 

F, Correlation between the combined H3K27me3 and RING1B DamID signal at the TSS of all 766 

genes per transcriptional cluster. 767 

G, Correlation of combined H3K27me3 and RING1B DamID signal at the TSS of all genes. 768 

Data of all single-cell samples passing DamID thresholds was combined for each construct. 769 

H, Overlap between a published set of PRC targets during mouse development Click or tap here 770 

to enter text. and our PRC targets. Significance of the overlap was computed with a Chi-squared 771 

test. 772 

I, Boxplots showing the expression (averaged Z-score) of genes identified as significantly 773 

upregulated in cluster 6.  774 

J, Boxplots showing the H3K27me3 (left) and RING1B (right) DamID signal at the TSS of the 775 

subset of genes shown in I that are PRC targets. 776 

 777 

Figure S4. Characterization of the Polycomb-regulated regulatory network 778 

A, Venn diagram showing the overlap between PRC-controlled protein-coding genes (blue) 779 

and transcription factors (TF) (grey) in the context of all protein-coding genes (white). The 780 

significance of the overlap between PRC targets and TFs was computed using a Chi-squared 781 

test. 782 

B, Boxplots showing the maximum observed H3K27me3 and RING1B DamID signal across 783 

transcriptional clusters for PRC-controlled TFs (grey) and the remaining PRC-controlled 784 

protein-coding genes (white). 785 

C, Quantification of variability in gene expression of PRC-regulated and PRC-independent 786 

TFs (only expressed genes are included). Boxplots show variance over mean across all single 787 

cells. Significance was computed using a Mann-Whitney-U test. 788 
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D, Clustered heatmaps showing mRNA expression (averaged Z-score) per cluster, of 789 

Polycomb-regulated TFs (left) and Polycomb-independent TFs (right). Only expressed genes 790 

are included in this plot. 791 

E, The ten most significant Biological Process GO terms between PRC-controlled and PRC-792 

independent TFs. 793 

F, Number of targets of each regulon TF, split by whether or not the TF is PRC-regulated. 794 

Difference between categories was tested with a Mann-Whitney-U test. 795 

G, Top: Venn diagram displaying the overlap between genes that are targets of a PRC-796 

controlled TF (blue) and genes that are targets of a PRC-independent TF (grey). 797 

G, Bottom: Bar plot showing the fraction of targets in each category that is PRC-regulated. 798 

H, Clustered heatmap showing mRNA expression (averaged Z-score) per cluster, of all 799 

regulon TFs, grouped by lineage-specific or non-specific genes. TFs are annotated as PRC-800 

controlled (black) or PRC independent (white).  801 

I, Scatter plot showing the relationship between the fraction of Polycomb-controlled targets 802 

and regulators of a regulon TF. Regulon TFs that are PRC controlled are indicated in blue; 803 

regulon TFs that are PRC independent are indicated in grey. Regulon TFs are split based on 804 

the groups indicated in H. Correlation was computed using Spearman’s rank correlation. 805 

 806 

Figure S5.1: Characterization of transcriptomic clusters and associated genomic 807 

H3K9me3 enrichments  808 

A, Comparison of our data with a published H3K9me3 ChIP-seq dataset of the 6-hpf zebrafish 809 

embryo Click or tap here to enter text.. All single-cell MPHOSPH8 and Dam samples were 810 

combined to generate an in silico whole-embryo data set; DamID data is the log2OE of 811 

MPHOSPH8 signal over Dam is shown; ChIP-seq is the log2OE of H3K9me3 over input 812 

control. 813 

B, Expression of marker genes over all clusters, ordered by cell type. The average single-cell 814 

Z-scores are shown. 815 

C, Confusion plots showing the performance of the LDA classifier during training, for each 816 

construct. 817 

D, Genomic H3K9me3 signal over chromosome 14. For clusters 0-2, the cluster-specific signal 818 

(color) is compared to the combined signal from all other clusters (black). Each set indicates 819 

the overlay, where overlapping regions are colored grey. 820 

E, Distribution of domain sizes per ChromHMM state and for states A1-3 combined.  821 

F, Total genomic coverage per ChromHMM state.  822 

G, PANTHER protein-class enrichments Click or tap here to enter text. for genes found in state A1 823 

(top) and B (bottom). 824 
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H, H3K9me3 enrichment at differentially expressed genes for each cluster. Each boxplot 825 

shows for upregulated, downregulated and stable genes the H3K9me3 signal of the 826 

corresponding cluster and the combined signal of the complementary clusters. The 827 

significance of the difference in H3K9me3 was tested with a Mann-Whitney-U test, *** 828 

indicates a p-values smaller than 0.001, ** a p-value smaller than 0.01, * a p-value smaller 829 

than 0.1, and n.s. a p-value larger than 0.1. 830 

 831 

Figure S5.2: Characterization of repeat content, expression of chromatin factors and 832 

nuclear localization of H3K9me3 chromatin 833 

A, Enrichment of repeats per class for all ChromHMM states. Enrichment is computed as the 834 

observed number of repeats within a state relative to the expected number based on the 835 

genome coverage of each state. 836 

B, H3K9me3 enrichment at Gypsy-169-I_DR repeats across ChromHMM states. The 837 

heatmaps show the enrichment per individual repeat instance, while the line plot shows the 838 

average enrichment per state. 839 

C, Enrichment of repeats in ChromHMM states as in Figure 5I. Only repeats having at least 840 

100 copies throughout the genome and an enrichment 1.5 in state B are included. 841 

Enrichment is computed as the observed number of repeats in a stated compared to the 842 

expected number based on the genome coverage of that state. 843 

D, Expression of various chromatin factors across clusters 0-11. The left heatmap shows the 844 

average single-cell expression (Z-score); the right heatmaps shows the fraction of cells in each 845 

cluster with at least one transcript of each gene. Only factors that are expressed in at least 846 

10% of cells of at least one cluster are shown. 847 

F, Representative images of H3K9me3 staining in cryo-sections of notochord (left), brain 848 

(middle), and skeletal muscle (right) in 15-somite embryos. 849 

 850 

  851 
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Methods 852 

 853 

Chromatin immunoprecipation followed by high-throughput sequencing 854 

Mouse embryonic stem cells and hTERT-immortalized RPE-1 cells were cultured following 855 

ATCC instructions. ChIP-seq was performed as described previously (Collas, 2011), with the 856 

following adaptations. Cells were harvested by trypsinization, and chemically crosslinked with 857 

fresh formaldehyde solution (1% in PBS) for 8 minutes while rotating at room temperature. 858 

Crosslinking was quenched with glycine on ice and sample was centrifuged at 500 g for 10 859 

min at 4 °C. Pellet was then resuspended in lysis buffer for 5 min on ice and sonicated as 860 

follows: 16 cycles of 30 s on / 30 s off at max power (Bioruptor Diagenode), and centrifuged 861 

at 14,000 rpm at 4 °C for 10 min. The chromatin in supernatant was treated with RNase A for 862 

30 min at 37 °C, and Proteinase K for 4 hours at 65 °C to reverse crosslinks, then cleared 863 

using DNA purification columns and eluted in nuclease-free water. Chromatin was incubated 864 

with antibodies (see below), after which Protein G beads (ThermoFisher #88847) were added 865 

for antibody binding. After successive washing, samples were cleared using DNA purification 866 

columns, eluted in nuclease-free water, and measured using a Qubit fluorometer. Libraries 867 

were prepared according to the Illumina TruSeq DNA LT kit and sequenced on the Illumina 868 

HiSeq 2500 following manufacturer's protocols. Up to 50 ng of immunoprecipitated chromatin 869 

was used as input for library preparation. Antibodies used were: anti-H3K4me3 Abcam 870 

ab8580, anti-H3K9ac Abcam ab4441, anti-H3K9me3 Abcam ab8898, anti-H3K27me3 Merck 871 

Millipore 07-449, anti-H3K36me3 Active Motif 61902, anti-H4K20me1 Abcam ab9051. 872 

 873 

Lentiviral DamID construct design and production 874 

The constructs for mintbodies, chromatin binding domains, and full-length protein constructs 875 

were fused to Dam in both possible orientations under the control of the auxin-inducible degron 876 

(AID) system (Kubota et al., 2013; Nishimura et al., 2009) with either the hPGK or HSP 877 

promoter, and cloned into the pCCL.sin.cPPT.ΔLNGFR.Wpre lentiviral construct (Amendola 878 

et al., 2005) by standard cloning procedures. Lentivirus was produced as previously described 879 

(Amendola et al., 2005) and the PGK viruses were concentrated approximately 40-fold using 880 

Amicon Ultra-15 centrifugal filter units (Merck #UFC910024), the HSP expressed viruses were 881 

used unconcentrated.  882 

 883 

Bulk DamID2 884 

hTERT-RPE1 cells were grown in DMEM/F12 (Gibco) containing 10% FBS (Sigma F7524 lot 885 

BCBW6329) and 1% Pen/Strep (Gibco) in 6-well plates. At 30% confluence, cells were 886 

transduced with 1500 μL total volume unconcentrated lentivirus, amounts ranging between 887 
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20-1500 μL unconcentrated lentivirus (or 0.1-40 μL concentrated) in the presence of 10 μg/mL 888 

polybrene. Cells were collected for genomic DNA isolation (Wizard, Promega) 48 h after 889 

transduction. Dam methylation levels were checked by m6A-PCR as previously described (de 890 

Luca & Kind, 2021; Vogel et al., 2007) and sequenced following the DamID2 protocol (Markodimitraki 891 

et al., 2020). 892 

 893 

Immunofluorescent staining and confocal imaging 894 

Viral transduction was performed as described above for bulk DamID2, with the exception that 895 

RPE-1 cells were grown on glass coverslips. Two days after transduction, cells were washed 896 

with PBS and chemically crosslinked with fresh formaldehyde solution (2% in PBS) for 10 897 

minutes at RT, permeabilized (with 0.5% IGEPAL® CA-630 in PBS) for 20 minutes and 898 

blocked (with 1% bovine serum albumin (BSA) in PBS) for 30 minutes. All antibody incubations 899 

were performed in final 1% BSA in PBS followed by three PBS washes at RT. Incubation with 900 

primary antibody against the endogenous histone modification as well as purified m6A-Tracer 901 

protein (Schaik et al., 2020) (recognizing methylated DNA) was performed at 4 °C for 16 hours 902 

(overnight), followed by anti-GFP (against m6A-Tracer protein) incubation at RT for 1 hour, and 903 

secondary antibody incubations at RT for 1 hour. The final PBS wash was simultaneously an 904 

incubation with DAPI at 0.5 μg/mL for 2 min, followed by a wash in MilliQ and sample mounting 905 

on glass slides using VECTASHIELD Antifade mounting medium (Vector Laboratories). 906 

Primary antibodies: anti-H3K9ac abcam ab4441 (rabbit) at 1:1000, anti-H3K9me3 abcam 907 

ab8898 (rabbit) at 1:300, anti-GFP Aves GFP-1020 (chicken) at 1:1000. Secondary 908 

antibodies: AlexaFluor anti-chicken 488 at 1:500 and anti-rabbit 647 at 1:500. Imaging was 909 

performed on a Leica SP8 confocal microscope with a 63x (NA 1.40) oil-immersion objective. 910 

Images were processed in Imaris 9.3 (Bitplane) by baseline subtraction. Additional 911 

background correction was done with a 1-μM Gaussian filter for the images of Dam-CBX1 912 

m6A-Tracer and H3K9me3 stainings. 913 

 914 

Generation of mouse embryonic stem cell lines 915 

The various stable clonal F1 hybrid mESC lines for the initial single cell experiments were 916 

created by lentiviral co-transduction of pCCL-EF1-Tir1-IRES-puro and pCCL-hPGK-AID-917 

Dam-POI constructs with a 4:1 ratio in a EF1-Tir1-IRES-neo mother line (Rooijers et al., 918 

2019), after which the cells were selected for 10 days on 0.1% gelatine coated 10-cm dishes 919 

in 60% Buffalo Rat Liver (BRL)-conditioned medium containing 0.8 μg/mL puromycin (Sigma 920 

P9620), 250 μg/mL G418 (ThermoFisher 11811031) and 0.5 mM IAA. Individual puromycin 921 

resistant colonies were handpicked and tested for the presence of the constructs by PCR 922 

using Dam specific primers fw-ttcaacaaaagccaggatcc and rev-gacagcggtgcataaggcgg.  923 
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 924 

The clonal F1 hybrid knock-in cell lines were CRISPR targeted in a mother line carrying Tir1-925 

Puro in the TIGRE locus (Zeng et al., 2008). For all CRISPR targeting, cells were cultured on 926 

gelatin-coated 6-wells in 60% BRL conditioned medium to 70-90% confluency and transfected 927 

with Lipofectamin3000 (Invitrogen L3000008) according to the supplier protocol with 2 μg 928 

donor vector and 1 μg Cas9/guide vector. At 24 h after transfection the cells were split to a 929 

gelatin-coated 10-cm dish and antibiotic selection of transfected cells is started 48 h after 930 

transfection. Cells were selected with 60% BRL conditioned medium containing 0.8 µg/mL 931 

puromycin for the Tir1 knock-in and 2.5 µg/mL blasticidin (Invivogen) for the AID-Dam knock-932 

in lines. After 5-10 days of selection, individual colonies were manually picked and screened 933 

by PCR for the correct genotype. 934 

 935 

All CRISPR knockin lines were made in a Tir1-TIGR mother line that was generated by co-936 

transfection of Cas9-gRNA plasmid pX330-EN1201(Addgene plasmid #92144) and donor 937 

plasmid pEN396-pCAGGS-Tir1-V5-2A-PuroR TIGRE (Addgene plasmid #92142) (Nora et al., 938 

2017). The Tir1-puro clones were screened for the presence of Tir1 by PCR from the CAGG 939 

promoter to Tir1 with the primers fw-cctctgctaaccatgttcatg and rev-tccttcacagctgatcagcacc, 940 

followed by screening for correct integration in the TIGRE locus by PCR from the polyA to the 941 

TIGRE locus with primers fw-gggaagagaatagcaggcatgct and rev-accagccacttcaaagtggtacc. 942 

The Tir1 expression is further confirmed by Western blot using a V5 antibody (Invitrogen R960-943 

25). 944 

 945 

A knock-in of AID-Dam in the N-terminus of the RINGB1B locus was made by co-transfection 946 

of a donor vector carrying the blasticidin-p2A-HA-mAID-Dam cassette flanked by 2 500bp 947 

homology arms of the endogenous RING1B locus (pHom-BSD-p2A-HA-mAID-Dam) and 948 

p225a-RING1B spCas9-gRNA vector (sgRNA: 5’gctttttattcctagaaatgtctc3’) as described 949 

above. Picked clones were screened for correct integration by PCR with primers from Dam to 950 

the RING1B locus outside the targeting construct; fw-gaacaacaagcgcatctggc and rev-951 

tcctcccctaacctgcttttgg. Presence of the RING1B wildtype allele was checked by PCR with 952 

primers fw-tcctcccctaacctgcttttgg and rev-gccttgcctgcttggtttg. The H3K27me3 mintbody 953 

coupled to ER-mAID-Dam was knocked into the Rosa26 locus by co-transfection of pHom-954 

ER-mAID-V5-Dam-scFv_H3K27me3-P2A-BSD-Hom donor vector and p225a-Rosa26 955 

spCas9-RNA vector (sgRNA: gtccagtctttctagaagatgggc) as described above. Picked clones 956 

were screened for correct integration by PCR from a sequence adjacent to the Rosa homology 957 

arm to the Rosa26 locus with primers fw- gaactccatatatgggctatg and rev-cttggtgcgtttgcgggga. 958 

The untethered mAID-Dam was knocked into the Rosa26 locus by co-transfection with the 959 

pHom-ER-mAID-V5-Dam-P2A-BSD-Hom donor vector and p225a-Rosa26 spCas9-RNA 960 
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vector (sgRNA: gtccagtctttctagaagatgggc) as described above. Picked clones were screened 961 

for correct integration by PCR with the same primers as for the Dam-H3K27me3 mintbody 962 

knock-in line. 963 

 964 

All clones with correct integrations were furthermore screened for their level of induction upon 965 

IAA removal by m6A-PCR evaluated by gel electrophoresis (de Luca & Kind, 2021; Vogel et al., 2007), 966 

followed by DamID2 sequencing in bulk (Markodimitraki et al., 2020), to select the clone with 967 

a correct karyotype and the best signal to noise ratio of enrichment over expected regions or 968 

chromatin domains. Finally, the best 3-4 clones were selected for testing of IAA removal timing 969 

in single cells by DamID2. 970 

 971 

Mouse embryonic stem cell culture and induction of Dam-fusion proteins 972 

F1 hybrid 129/Sv:Cast/Eij mouse embryonic stem cells (mESCs) were cultured on irradiated 973 

primary mouse embryonic fibroblasts (MEFs), in mESC culture media CM+/+ defined as 974 

follows: G-MEM (Gibco) supplemented with 10% FBS (Sigma F7524 lot BCBW6329), 1% 975 

Pen/Strep (Gibco), 1x GlutaMAX (Gibco), 1x non-essential amino acids (Gibco), 1x sodium 976 

pyruvate (Gibco), 0.1 mM β-mercaptoethanol (Sigma) and 1000 U/mL ESGROmLIF (EMD 977 

Millipore ESG1107). Cells were split every 3 days and medium was changed every other day. 978 

Expression of the Dam-POI constructs was suppressed by addition of 0.5 mM indole-3-acetic 979 

acid (IAA; Sigma, I5148). Lines were tested routinely for mycoplasma. 980 

 981 

When plated for targeting or genomics experiments, cells were passaged at least 2 times in 982 

feeder-free conditions, on plates coated with 0.1% gelatin, grown in 60% BRL-conditioned 983 

medium, defined as follows and containing 1 mM IAA: 40% CM+/+ medium and 60% of CM+/+ 984 

medium conditioned on BRL cells. For timed induction of the constructs the IAA was washed 985 

out at different clone specific optimized times before single cell sorting. 986 

 987 

Embryoid body differentiation and induction of Dam-fusion proteins 988 

For EB differentiation, the stable knock-in F1ES lines were cultured for 2 weeks on plates 989 

coated with 0.1% gelatin, grown in 2i+LIF ES cell culture medium defined as follows: 48% 990 

DMEM/F12 (Gibco) and 48% Neurobasal medium (Gibco), supplemented with 1x N2 (Gibco), 991 

1x B27 supplement + vitamin A (Gibco), 1x non-essential amino acids, 1% FBS, 1% 992 

Pen/Strep, 0.1mM β-mercaptoethanol, 1 μM PD0325901 (Axon Medchem, PZ0162-5MG), 3 993 

μM CHIR99021 (Tocris, SML1046-5MG), 1000 U/mL ESGRO mLIF. EB differentiation was 994 

performed according to ATCC protocol. On day 1 of differentiation, 2x10^6 cells were grown 995 

in suspension on a non-coated bacterial 10-cm dish with 15 mL CM +/- (with β-996 

mercaptoethanol, without LIF) and 0.5 mM IAA. On day 2, half the cell suspension was divided 997 
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over five non-coated bacterial 10-cm dishes each containing 15mL CM+/- medium and 0.5 998 

mM IAA. Plates were refreshed every other day. EBs were harvested at day 7, 10, and 14. 999 

Two days before single-cell sorting, the EBs were grown in CM+/- medium containing 1 mM 1000 

IAA, and induced as follows: 6 h without IAA (RING1B); 20 h without IAA and 7 h with 1 μM 1001 

4OHT (Sigma SML1666) (Dam-H3K27me3-mintbody); 7 h without IAA and 4 h with 1 μM 1002 

4OHT (untethered Dam). The EBs were evaluated by brightfield microscopy and hand-picked 1003 

for further handling (see below). 1004 

 1005 

FACS for single-cell experiments 1006 

FACS was performed on BD FACSJazz or BD FACSInflux Cell Sorter systems with BD 1007 

Sortware. mESCs and EBs were harvested by trypsinization, centrifuged at 300 g, 1008 

resuspended in medium containing 20 μg/mL Hoechst 34580 (Sigma 63493) per 1x106 cells 1009 

and incubated for 45 minutes at 37°C. Prior to sorting, cells were passed through a 40-μm cell 1010 

strainer. Propidium iodide (1 μg/mL) was used as a live/dead discriminant. Single cells were 1011 

gated on forward and side scatters and Hoechst cell cycle profiles. Index information was 1012 

recorded for all sorts. One cell per well was sorted into 384-well hard-shell plates (Biorad, 1013 

HSP3801) containing 5 μL of filtered mineral oil (Sigma #69794) and 50 nL of 0.5 μM barcoded 1014 

CEL-Seq2 primer (Markodimitraki et al., 2020; Rooijers et al., 2019). In the EB experiment, 1015 

the knock-in mESC lines were cultured alongside on 2i+LIF medium and included as a 1016 

reference at each timepoint. 1017 

 1018 

Single-cell Dam&T-seq 1019 

The scDam&T-seq protocol was performed as previously described in detail (Markodimitraki 1020 

et al., 2020), with the adaptation that all volumes were halved to reduce costs. Liquid reagent 1021 

dispension steps were performed on a Nanodrop II robot (Innovadyne Technologies / BioNex). 1022 

Addition of barcoded adapters was done with a mosquito LV (SPT Labtech). In short, after 1023 

FACS, 50 nL per well of lysis mix (0.07% IGEPAL, 1 mM dNTPs, 1:50,000 ERCC RNA spike-1024 

in mix (Ambion, 4456740)) was added, followed by incubation at 65 °C for 5 min. 100 nL of 1025 

reverse transcription mix (1× First Strand Buffer and 10 mM DTT (Invitrogen, 18064-014), 2 U 1026 

RNaseOUT Recombinant Ribonuclease Inhibitor (Invitrogen, 10777019), 10 U SuperscriptII 1027 

(Invitrogen, 18064-014)) was added, followed by incubation at 42 °C for 2 h, 4 °C for 5 min and 1028 

70 °C for 10 min. Next, 885 nL of second strand synthesis mix (1× second strand buffer 1029 

(Invitrogen, 10812014), 192 μM dNTPs, 0.006 U E. coli DNA ligase (Invitrogen, 18052019), 1030 

0.013 U RNase H (Invitrogen, 18021071), 0.26 U E. coli DNA polymerase (Invitrogen)) was 1031 

added, followed by incubation at 16 °C for 2 h. 250 nL of protease mix was added (1× NEB 1032 

CutSmart buffer, 1.0 mg/mL Proteinase K (Roche, 000000003115836001)), followed by 1033 

incubation at 50 °C for 10 h and 80 °C for 20 min. Next, 115 nL of DpnI mix (1× NEB CutSmart 1034 
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buffer, 0.1 U NEB DpnI) was added, followed by incubation at 37 °C for 6 h and 80 °C for 1035 

20 min. Finally, 50 nL of 0.5uM DamID2 adapters were dispensed (final concentrations 25 1036 

nM), followed by 400 nL of ligation mix (1× T4 Ligase buffer (Roche, 10799009001), 0.13U T4 1037 

Ligase (Roche, 10799009001)) and incubation at 16°C for 16 hrand 65°C for 10 min. Contents 1038 

of all wells were pooled and the aqueous phase was recovered by centrifugation and transfer 1039 

to clean tubes. Samples were purified by incubation for 10 min with 0.8 volumes magnetic 1040 

beads (CleanNA, CPCR-0050) diluted 1:7 with bead binding buffer (20% PEG8000, 2.5 M 1041 

NaCl), washed twice with 80% ethanol and resuspended in 8 μl of nuclease-free water before 1042 

in vitro transcription at 37 °C for 14 h using the MEGAScript T7 kit (Invitrogen, AM1334). 1043 

Library preparation was done as described in the CEL-Seq2 protocol with minor adjustments 1044 

(Hashimshony et al., 2016). Amplified RNA (aRNA) was purified with 0.8 volumes beads as 1045 

described above, and resuspended in 20 μL of nuclease-free water, and fragmented at 94 °C 1046 

for 90 sec with the addition of 0.25 volumes fragmentation buffer. Fragmentation was stopped 1047 

by addition of 0.1 volumes of 0.5 M EDTA pH 8 and quenched on ice. Fragmented aRNA was 1048 

purified with beads as described above, and resuspended in 12 μl of nuclease-free water. 1049 

Thereafter, library preparation was done as previously described (Hashimshony et al., 2016) 1050 

using up to 7 μL or approximately 150 ng of aRNA, and 8-10 PCR cycles depending on input 1051 

material. Libraries were sequenced on the Illumina NextSeq500 (75-bp reads) or 1052 

NextSeq2000 (100-bp reads) platform. 1053 

 1054 

Zebrafish 1055 

All animal experiments were conducted under the guidelines of the animal welfare committee 1056 

of the Royal Netherlands Academy of Arts and Sciences (KNAW). Adult zebrafish (Danio rerio) 1057 

were maintained and embryos raised and staged as previously described (Aleström et al., 2019; 1058 

WESTERFIELD & M., 2000). 1059 

 1060 

Collection of zebrafish samples and FACS 1061 

Tübingen longfin (wild type) pairs were set up and the following morning, approximately 1 nL 1062 

of 1 ng/μL Dam-Mphosph8 mRNA or 0.5 ng/μL Dam-Gfp mRNA was injected into the yolk at 1063 

the 1 cell stage. Embryos were slowed down overnight at 23°C and the following morning all 1064 

embryos were manually dechorionated. At 15-somite stage, embryos were transferred to 2-1065 

mL Eppendorf tubes and digested with 0.1% Collagenase type II from Cl. Histolyticum (Gibco) 1066 

in Hanks Balanced Salt Solution without Mg2+/Ca2+ (Thermofisher) for 20-30 mins at 32°C with 1067 

constant shaking. Once embryos were noticeably digested, cell solution was spun at 2000 g 1068 

for 5 min at room temperature and the supernatant was removed. Cell pellet was resuspended 1069 

with TrypLE Express (Thermofisher) and digested for 10 min at 32°C with constant shaking. 1070 

Cell solution was inactivated with 10% Fetal Bovine Serum (Thermofisher) in Hanks Balanced 1071 
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Salt Solution without Mg2+/Ca2+ and filtered through a 70-μmcell strainer (Greiner Bio-One). 1072 

Cells were pelleted at 2000g 5min room temperature and washed twice with 10% Fetal Bovine 1073 

Serum (Thermofisher) in Hanks Balanced Salt Solution without Mg2+/Ca2+. Hoechst 34580 at 1074 

a final concentration of 16.8 ug/mL was added to the cell solution and incubated for 30 mins 1075 

at 28°C in the dark. Solution was then filtered through a 40-μmcell strainer (Greiner Bio-One), 1076 

and propidium iodide was added at a final concentration of 5 ul/ml. FACS was performed on 1077 

BD FACSInflux as described above, retaining only cells in G2/M phase based on Hoechst 1078 

DNA content. Plates were processed for scDam&T-seq as described above. 1079 

 1080 

Immunofluorescent staining and confocal imaging of zebrafish embryos 1081 

Embryos at 15-somite stage were fixed in 4% PFA (Sigma) for 2 h at RT, followed by washes 1082 

in PBS. Embryos were then washed three times in 4% sucrose/PBS and allowed to equilibrate 1083 

in 30% sucrose/PBS at 4°C for 3-5 h. Embryos were suspended in Tissue Freezing Medium 1084 

(Leica) orientated in the sagittal plane and frozen with dry ice. Blocks were sectioned at 8 μm 1085 

and slides were rehydrated in PBS, treated with -20°C pre-cooled acetone for 7 min at -20°C, 1086 

washed three times with PBS and digested with Proteinase K (Promega) at a final 1087 

concentration of 10 ug/mL for 3 min, washed 1x PBS and incubated in blocking buffer (10% 1088 

Fetal Bovine Serum, 1% DMSO, 0.1% Tween20 in PBS) for 30 min. Primary antibody was 1089 

diluted in blocking buffer and slides incubated overnight at 4°C. Slides were washed the 1090 

following day and incubated with the appropriate AlexaFluor secondary antibodies (1:500), 1091 

DAPI (0.5 μg/mL) and Phalloidin-TRITC (1:200) diluted in blocking buffer for 1 h at RT. Slides 1092 

were washed, covered with glass coverslips with ProLong Gold Antifade Mountant 1093 

(Thermofisher) and imaged at 63X with a LSM900 confocal with AiryScan2 (Zeiss). Images 1094 

were viewed and processed in Imaris 9.3 (Bitplane) and Adobe Creative Cloud (Adobe). 1095 

Primary antibody: anti-H3K9me3 abcam ab8898 at 1:500 (Chandra et al., 2012). 1096 

 1097 

Processing DamID and scDam&T-seq data 1098 

Data generated by the DamID and scDam&T-seq protocols was largely processed with the 1099 

workflow and scripts described in (Markodimitraki et al., 2020) (see also 1100 

www.github.com/KindLab/scDamAndTools). The procedure is described in short below. 1101 

 1102 

Demultiplexing 1103 

All reads are demultiplexed based on the barcode present at the start of R1 using a reference 1104 

list of barcodes. In the case of scDam&T-seq data, the reference barcodes contain both 1105 

DamID-specific and CELseq-specific barcodes and zero mismatches between the observed 1106 

barcode and reference are allowed. In the case of the population DamID data, the reference 1107 
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barcodes only contain DamID-specific barcodes and one mismatch is allowed. The UMI 1108 

information, also present at the start of R1, is appended to the read name.  1109 

 1110 

DamID data processing 1111 

DamID reads are aligned using bowtie2 (v. 2.3.3.1) (Langmead & Salzberg, 2012) with the following 1112 

parameters: “--seed 42 --very-sensitive -N 1”. For human samples, the hg19 reference 1113 

genome is used; for mouse samples, the mm10 reference genome; and for zebrafish samples 1114 

the GRCz11 reference genome. The resulting alignments are then converted to UMI-unique 1115 

GATC counts by matching each alignment to known strand-specific GATC positions in the 1116 

reference genome. Any reads that do not align to a known GATC position or have a mapping 1117 

quality smaller than 10 are removed. In the case of bulk DamID samples, up to 64 unique 1118 

UMIs are allowed per GATC position, while up to 4 unique UMIs are allowed for single-cell 1119 

samples to account for the maximum number of alleles in G2. Finally, counts are binned at 1120 

the desired resolution. 1121 

 1122 

CELseq data processing 1123 

CELseq reads are aligned using tophat2 (v. 2.1.1) (Kim et al., 2013) with the following 1124 

parameters: “--segment-length 22 --read-mismatches 4 --read-edit-dist 4 --min-anchor 6 --min-1125 

intron-length 25 --max-intron-length 25000 --no-novel-juncs --no-novel-indels --no-coverage-1126 

search --b2-very-sensitive --b2-N 1 --b2-gbar 200”. For mouse samples, the mm10 reference 1127 

genome and the GRCm38 (v. 89) transcript models are used. For zebrafish samples, the 1128 

GRCz11 reference genome and the adjusted transcript models published by the Lawson lab 1129 

(Lawson et al., 2020) are used. Alignments are subsequently converted to transcript counts 1130 

per gene with custom scripts that assign reads to genes similar to HTSeq’s (Anders et al., 1131 

2015) htseq-count with mode “intersection_strict”. 1132 

 1133 

Processing of ChIP-seq data 1134 

External ChIP-seq datasets were downloaded from the NCBI GEO repository and the 1135 

ENCODE database (Davis et al., 2018). The external ChIP-seq data used in this manuscript 1136 

consists of: H3K9ac ChIP-seq in mESC (ENCSR000CGP), H3K27me3 ChIP-seq in mESC 1137 

(ENCSR059MBO), and H3K9me3 ChIP-seq in 6-hpf zebrafish embryos (Laue et al., 1138 

2019) (GSE113086). Internal and external ChIP-seq data were processed in an identical 1139 

manner. First reads were aligned using bowtie2 (v. 2.3.3.1) with the following parameters: “--1140 

seed 42 --very-sensitive -N 1”. Indexes for the alignments were then generated using 1141 

“samtools index” and genome coverage tracks were computed using the “bamCoverage” utility 1142 

from DeepTools (v. 3.3.2) (Ramírez et al., 2016) with the following parameters: “--1143 

ignoreDuplicates --minMappingQuality 10”. For marks that exist in broad domains in the 1144 
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genome, domains were called using MUSIC (Harmanci et al., 2014) according to the 1145 

suggested workflow (https://github.com/gersteinlab/MUSIC). For marks that form narrow 1146 

peaks in the genome, peaks were called using MACS2 (v. 2.1.1.20160309) using the “macs2 1147 

callpeak” utility with the following parameters: “-q 0.05”. 1148 

 1149 

Computing the Information Content (IC) of DamID samples 1150 

The Information Content (IC) of a DamID sample is a measure of how much structure is in the 1151 

detected methylation signal. It is essentially an adaptation of the RNA-seq normalization 1152 

strategy called PoissonSeq (Li et al., 2012). Its goal is to compare the obtained signal to a 1153 

background signal (the density of mappable GATCs), identify regions where the signal is 1154 

similar to background, and finally compare the amount of total signal (i.e. total GATC counts) 1155 

to the total signal in background regions. The IC is the ratio of total signal over background 1156 

signal and can be used to filter out samples that contain little structure in their data. 1157 

 1158 

As an input, we use the sample counts binned at 100-kb intervals, smoothened with a 250-kb 1159 

gaussian kernel. The large bin size and smoothing are necessary when working with single-1160 

cell samples that have very sparse and peaky data and would otherwise be difficult to match 1161 

to the background signal. As a control, we use the number of mappable GATCs in the same 1162 

100-kb bins, similarly smoothened. We subsequently remove all genomic bins that do not have 1163 

any observed counts in the sample. Our starting data is then 𝑋, a matrix with size (𝑛, 𝑘), where 1164 

𝑛 is the number of genomic bins and 𝑘 is the number of samples. Since we are comparing 1165 

one experimental sample with the control, 𝑘 is always 2. 𝑋𝑖𝑗  denotes the number of counts 1166 

observed in the 𝑖th bin of the 𝑗th sample. We first compute the expected number of counts for 1167 

each 𝑋𝑖𝑗  based on the marginal probabilities of observing counts in each bin and in each 1168 

sample: 1169 

𝑑 =∑∑𝑋𝑖𝑗

𝑘

𝑗=1

𝑛

𝑖=1

 1170 

 1171 

𝑝 =∑𝑋𝑗 𝑑⁄

𝑘

𝑗=1

= (𝑝1…𝑝𝑛)
𝑇 1172 

 1173 

𝑞 =∑𝑋𝑖 𝑑⁄

𝑛

𝑖=1

= (𝑞1, 𝑞2) 1174 

 1175 

𝐸 = 𝑑(𝑝 ∙ 𝑞) 1176 
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 1177 

Where 𝑑 is the total sum of 𝑋𝑖𝑗 ; 𝑝𝑖 is the marginal probability of observing counts in bin 𝑖; 𝑝𝑗 is 1178 

the marginal probability of observing counts in sample 𝑗; and 𝐸 is the matrix of size (𝑛, 𝑘) 1179 

where entry 𝐸𝑖𝑗 is the expected number of counts in bin 𝑖 for sample 𝑗, computed as 𝑝𝑖𝑞𝑗𝑑.  1180 

 1181 

We subsequently compute the goodness of fit of our predictions compared to the actual counts 1182 

per bin: 1183 

𝑔 =∑
𝑋𝑗 − 𝐸𝑗
𝐸𝑗

𝑘

𝑗=1

 1184 

 1185 

Where 𝑔𝑖  is the measure of how well the predictions of 𝐸𝑖 match the observed counts in 𝑋𝑖  in 1186 

bin 𝑖 . The better the prediction, the closer 𝑔𝑖  is to zero, indicating that the signal of the 1187 

experimental sample closely resembles the background in bin 𝑖. Next, an iterative process is 1188 

performed where in each step a subset of the original bins is chosen that exclude bins with 1189 

extreme values of 𝑔. Specifically, all bins with a goodness of fit in the top and bottom 5 th 1190 

percentiles are excluded to progressively move towards a stable set of bins where the sample 1191 

resembles the background. After each iteration, the chosen bins are compared to the previous 1192 

set of bins and when this has stabilized, or when the maximum number of iterations is reached, 1193 

the procedure stops. In practice, convergence is usually reached after only a couple of 1194 

iterations. The IC is then computed for the experimental sample as the ratio of its summed 1195 

total counts to the sum of counts observed in the final subset of bins.  1196 

 1197 

Population DamID data filtering and analyses 1198 

The population DamID samples were filtered based on a depth threshold of 100,000 UMI-1199 

unique GATC counts and an IC of at least 1.1. Per Dam-construct, the best samples based 1200 

on the IC were maintained. Samples were normalized for the total number of counts using 1201 

reads per kilobase per million (RPKM). Normalization for Dam controls was performed by 1202 

adding a pseudo count of 1, taking the per bin fold-change with Dam, and performing a log2-1203 

transformation, resulting in log2 observed-over-expected (log2OE) values. The UMAP 1204 

presented in Figure 1B was computed by performing principal component analysis (PCA) on 1205 

the RPKM-normalized samples (20-kb bins) and using the top components for UMAP 1206 

computation in python with custom scripts. For the correlations presented in Figure 1C and 1207 

S1C, the RPKM-normalized DamID values were normalized for the density of mappable 1208 

GATCs and log-transformed. The Spearman’s rank correlation was then computed with the 1209 

input-normalized ChIP-seq values of the various marks. 1210 

 1211 
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Single-cell DamID data filtering and analyses 1212 

Filtering and normalizing scDamID data 1213 

Single-cell DamID samples were filtered based on a depth and an IC threshold. For the mouse 1214 

samples, these thresholds were 3,000 unique GATCs and an IC within the range of 1.5 to 7 1215 

(the upper threshold removes samples with very sparse profiles); for zebrafish, these 1216 

thresholds were 1,000 unique GATCs and an IC within the range of 1.2 to 7. For the zebrafish 1217 

samples, chromosome 4 was excluded when determining depth and IC (and in all downstream 1218 

analyses) since the reference assembly of this chromosome is poor and alignments unreliable. 1219 

The quality of scDam&T-seq samples is determined separately for the DamID readout and the 1220 

CEL-Seq2 readout. To preserve as much of the data as possible, we used all samples passing 1221 

DamID thresholds for analyses that relied exclusively on the DamID readout. Wherever single-1222 

cell data was used, samples were normalized for their total number of GATCs, scaled by a 1223 

factor 10,000, and log-transformed with a pseudo-count of 1, equivalent to the normalizations 1224 

customarily performed for single-cell RNA-seq samples. To generate in silico populations 1225 

based on single-cell samples, the binned UMI-unique counts of all single-cells were combined 1226 

and normalization was performed equivalent to population DamID samples.  1227 

 1228 

scDamID UMAPs 1229 

The UMAPs presented in Fig. 2A, Fig. 3C and Fig. 5C were computed by performing PCA on 1230 

the depth-normalized single-cell samples and using the top components for UMAP 1231 

computation. Since in EBs inactivation of chromosome X can coincides with a strong 1232 

enrichment of H3K27me3/RING1B on that chromosome, we depth-normalized these samples 1233 

using the total number of GATCs on somatic chromosomes. For the zebrafish samples, 1234 

chromosome 4 was completely excluded from the analysis. For the mouse UMAPs, the single-1235 

cell data were binned at a resolution of 10-kb intervals, while for the zebrafish UMAPs, the 1236 

resolution was 100 kb. Notably, when the first principal components showed a strong 1237 

correlation to sample depth, it was excluded. 1238 

 1239 

Single-cell count enrichment 1240 

Figures 2B-D show the enrichment of counts in ChIP-seq domains for all single-cell mESC 1241 

samples. The count enrichment is equivalent to the more well-known Fraction Reads in Peaks 1242 

(FRiP) metric, but has been normalized for the expected fraction of counts within the domains 1243 

based on the total number of mappable GATCs covered by these domains. In other words, if 1244 

the domains cover 50% of the mappable GATCs in the genome and we observe that 70% of 1245 

a sample’s counts fall within these domains, the count enrichment is 0.7 / 0.5 = 1.4. 1246 

 1247 

Single-cell CELseq data filtering and analyses 1248 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.10.26.465688doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.26.465688
http://creativecommons.org/licenses/by-nc/4.0/


 36 

Filtering CELseq data 1249 

Single-cell data sets were evaluated with respect to the number of unique transcripts, 1250 

percentage mitochondrial reads, percentage ERCC-derived transcripts and the percentage of 1251 

reads coming from unannoted gene models (starting with “AC” or “Gm”) and appropriate 1252 

thresholds were chosen. For the EB data, the used thresholds were 1,000 UMI-unique 1253 

transcripts, <7.5% mitochondrial transcripts, <1% ERCC-derived transcripts, and <5% 1254 

transcripts derived from unannotated gene models. In addition, a small group of cells 1255 

(29/6,554  0.4%) from different time points, which formed a cluster that could not be 1256 

annotated and was characterized by high expression of ribosomal genes, was removed from 1257 

further analyses. For the zebrafish data, the used thresholds were  1,000 UMI-unique 1258 

transcripts and <5% ERCC-derived transcripts. Only genes observed in at least 5 samples 1259 

across the entire dataset were maintained in further analyses. The quality of scDam&T-seq 1260 

samples is determined separately for the DamID readout and the CEL-Seq2 readout. To 1261 

preserve as much of the data as possible, we used all samples passing CEL-Seq2 thresholds 1262 

(independent of DamID quality) for transcriptome-based analyses. 1263 

 1264 

Analysis of CELseq data with Seurat and Harmony 1265 

Single-cell transcription data was processed using Seurat (v3) (Stuart et al., 2019). First, 1266 

samples were processed using the “NormalizeData”, “FindVariableFeatures”, “ScaleData”, 1267 

and “RunPCA” commands with default parameters. Subsequently, batch effects relating to 1268 

processing batch and plate were removed using Harmony (Korsunsky et al., 2019) using the 1269 

“RunHarmony” command, using a theta=2 for the batch variable and theta=1 for the plate 1270 

variable. Clustering and dimensionality reduction were subsequently performed with the 1271 

“FindNeighbors”, “FindClusters” and “RunUMAP” commands. Differentially expressed genes 1272 

per cluster were found using the “FindAllMarkers” command. 1273 

 1274 

Integration with external single-cell datasets 1275 

The EB data was integrated with part of the single-cell mouse embryo atlas published by 1276 

(Pijuan-Sala et al., 2019). The data was loaded directly into R via the provided R package 1277 

“MouseGastrulationData”. One data set per time point was included (datasets 18, 14, 19, 16, 1278 

17, corresponding to embryonic stages E6.5, E7.0, E7.5, E8.0, E8.5, respectively). The atlas 1279 

data and our own data was integrated using the SCTransform (Hafemeister & Satija, 2019) and 1280 

the anchor-based intragration (Stuart et al., 2019) functionalities from Seurat. First, all data 1281 

was normalized per batch using the “SCTransform” command. All data sets were then 1282 

integrated using the “SelectIntegrationFeatures”, “PrepSCTIntegration”, 1283 

“FindIntegrationAnchors”, and “IntegrateData”, as per Seurat documentation. 1284 
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 1285 

SCENIC 1286 

We used SCENIC  (Aibar et al., 2017) on the command line according to the documentation 1287 

provided for the python-based scalable version of the tool (pySCENIC) (van de Sande et al., 1288 

2020). Specifically, we ran “pyscenic grn” with the parameters “--method grnboost2”; “pyscenic 1289 

ctx” with the parameters “--all_modules”; and “pyscenic aucell” with the default parameters. 1290 

We used the transcription factor annotation and the transcription factor motifs (10 kb +/- of the 1291 

TSS) provided with SCENIC. This yielded 414 activating regulons. We subsequently filtered 1292 

regulons based on the expression of the regulon as a whole (at least 50% of cells having an 1293 

AUCell score > 0 within at least one Seurat cluster) and based on the expression of the regulon 1294 

transcription factor (detected in at least 5% of cells in at least one cluster) to retain only high 1295 

confidence regulons. This resulted in 285 remaining activating regulons. However, repeating 1296 

all analyses with the unfiltered set of regulons yielded the same trends and relationships.  1297 

 1298 

Linear Discriminant Analysis (LDA) classifier to assign samples to transcriptional 1299 

clusters based on DamID signal 1300 

In both the EB results and the zebrafish results, we noticed that there was a substantial 1301 

number of cells that passed DamID thresholds, but that had a poor CEL-Seq2 readout. Since 1302 

most of our analyses rely on the separation of cells in transcriptional clusters (i.e. cell types) 1303 

and cells with a poor CEL-Seq2 readout cannot be included in the clustering, these cells 1304 

cannot be used in downstream DamID-based analyses. However, we noticed that the 1305 

separation of different cell types was recapitulated to a considerable extent in low-1306 

dimensionality representations of the DamID readout (see the DamID-based UMAPs in Fig. 1307 

2A and Fig. 3D). Since cell-type information is captured in the DamID readout, we reasoned 1308 

that a classifier could be trained based on cells with both good DamID and CEL-Seq2 readouts 1309 

to assign cells with a poor CEL-Seq2 readout to transcriptional clusters based on their DamID 1310 

readout.  1311 

 1312 

To this end, we implemented a Linear Discriminant Analysis (LDA) classifier as described 1313 

below. 1314 

 1315 

Data input and preprocessing 1316 

As in input for the classifier, we used the binned DamID data of all samples passing DamID 1317 

thresholds and the transcriptional cluster labels of these samples (samples with a poor CEL-1318 

Seq2 readout had the label “unknown”). The DamID data was depth-normalized (as described 1319 

above) and genomic bins that contained fewer than 1 mappable GATC motif per kb were 1320 

excluded, resulting in a matrix of size N x M, where N is the number of samples and M is the 1321 
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number of remaining genomic bins. For the EB data, a bin size of 10 kb was used, while a bin 1322 

size of 100 kb was used for the zebrafish data. Subsequently, the pair-wise correlation was 1323 

computed between all samples, resulting in a correlation matrix of size N x N. This 1324 

transformation had two reasons: First, it served as a dimensionality reduction, since N << M. 1325 

Second, it resulted in a data type that effectively describes the similarity of a sample with all 1326 

other samples, including samples without a cluster label. Consequently, during the training 1327 

phase, the classifier can indirectly use the information of these unlabeled samples to learn 1328 

about the overall data structure. We found that using the correlation matrix (N x N) as an input 1329 

for the classifier yielded much better results than using the original matrix (N x M).  1330 

 1331 

To train the LDA classifier, we used two thirds (~66%) of all samples with cluster labels (i.e. 1332 

with a good CEL-Seq2 readout). Since the number of cells per cluster varied extensively, we 1333 

randomly selected two thirds of the samples per cluster and thereby ensured that all clusters 1334 

were represented in both training and testing. The training data thus consisted of the 1335 

correlation matrix of size Ntrain x N and a list of sample labels of size Ntrain, where Ntrain is the 1336 

number of samples used for training. Consequently, we retained one third (~33%) of labelled 1337 

samples to test the performance of the LDA classifier, consisting of the correlation matrix of 1338 

size Ntest x N and a list of sample labels of size Ntest, where Ntest is the number of samples used 1339 

for testing. In summary, this split the samples into three groups: one group for training, one 1340 

group for testing, and the group of unlabeled samples. 1341 

 1342 

Training the classifier 1343 

For the implementation of the LDA classifier, we used the “LinearDiscriminantAnalysis” 1344 

function provided in the Python (v. 3.8.10) scikit-learn toolkit (v. 0.24.2). The number of 1345 

components was set to the number of transcriptional clusters minus one and the LDA classifier 1346 

was trained using the training samples.  1347 

 1348 

Testing the performance 1349 

To test the performance, the trained LDA classifier was used to predict the labels of the training 1350 

set of samples. Predictions with a probability larger than 0.5 were maintained, while 1351 

predictions with a lower probability were discarded (and the corresponding cells were thus not 1352 

labelled). The predicted labels were subsequently compared to the known labels (Fig. S3E, 1353 

S5.1C). In general, we found a very good performance for clusters with many cells, while the 1354 

performance tended to be lower for clusters with few cells. This is as expected, since the 1355 

number of samples for these clusters was also very low during training. 1356 

 1357 

Predicting cluster labels for unlabeled samples 1358 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.10.26.465688doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.26.465688
http://creativecommons.org/licenses/by-nc/4.0/


 39 

After establishing that the performance was satisfactory, the LDA was retrained, this time 1359 

using all labelled samples. The actual performance on the unlabeled data is likely higher than 1360 

the performance on the test data, since the number of samples used for the final training is 1361 

notably higher. Finally, the cluster labels were predicted for the unlabeled samples. Once 1362 

again, only predictions with a probability higher than 0.5 were maintained. Figure S3D shows 1363 

the number of EB samples that were attributed to each cluster using the LDA classifier, as 1364 

well as the number of samples that could not be attributed (“unassigned”). 1365 

  1366 

Defining PRC targets 1367 

First, we identified for each gene the region of 5 kb upstream and 3 kb downstream of the 1368 

TSS. Only protein-coding genes and genes for non-coding RNA were considered. When the 1369 

TSS domains of two genes overlapped, they were merged if the overlap was >4 kb, otherwise 1370 

the two domains were split in the middle of the overlap. This resulted in 30,356 domains 1371 

covering a total of 35,814 genes. Subsequently, for all single-cells, the number of observed 1372 

GATC counts within each domain was determined. In silico populations per transcriptional 1373 

cluster were generated by combining the counts of all cells belonging to each cluster per 1374 

DamID construct. The in silico population counts were subsequently RPKM-normalized, using 1375 

the total number of GATC counts on the somatic chromosomes of the combined single-cell 1376 

samples as the depth (i.e. also counts outside the domains). Normalization for Dam controls 1377 

was performed for the H3K27me3 and RING1B data per transcriptional cluster by adding a 1378 

pseudo count of 1, taking the fold-change with Dam, and performing a log2-transformation, 1379 

resulting in log2 observed-over-expected (log2OE) values. The correlation of the resulting 1380 

H3K27me3 and RING1B values per cluster is shown in Figure S3F. We subsequently 1381 

determined PRC targets as those genes that showed H3K27me3 and RING1B log2OE values 1382 

>0.35 in at least one cluster. PRC targets were defined based on the in silico population of the 1383 

H3K27me3 and RING1B data of the mESC cells (Fig. 2) and the EB clusters, excluding cluster 1384 

7. Cluster 7 was excluded, because it consisted of relatively few cells and the combined data 1385 

was consequently sparse.  1386 

 1387 

ChromHMM of zebrafish in silico populations 1388 

In order to determine regions that were characterized by H3K9me3-enrichment in specific 1389 

(sets of) cell types in the zebrafish embryo, we made use of ChromHMM (v. 1.22) (Ernst & Kellis, 1390 

2012, 2017). As input, we used the in silico H3K9me3 signal (log2OE) of all clusters that had at 1391 

least 30 cells passing DamID thresholds for both Dam and MPHOSPH8 (clusters 0-11). The 1392 

genome-wide signal at a resolution of 50 kb was used and the values were binarized based 1393 

on a threshold of log2OE > 0.35. Bins that had fewer than 1 mappable GATC per kb were 1394 

given a value of 2, indicating that the data was missing. As in all other analysis, chromosome 1395 
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4 was excluded. The binarized values of clusters 0-11 were provided as input for the 1396 

ChromHMM and the results were computed using the “LearnModel” function using the 1397 

following parameters: -b 50000 -s 1 -pseudo. The number of ChromHMM states was varied 1398 

from 2 to 10 and for each result the differences between the states (based on the emission 1399 

probabilities) were inspected. We found that a ChromHMM model with 5 states was optimal, 1400 

since this yielded the most diverse states and increasing the number of states just added 1401 

redundant states with similar emission probabilities.  1402 

 1403 

Repeat enrichment in ChromHMM states 1404 

The RepeatMasker repeat annotations for GRCz11 were downloaded from the UCSC 1405 

Genome Browser website (https://genome.ucsc.edu/). The enrichment of repeats within each 1406 

ChromHMM state was computed either for repeat classes as a whole (Fig. S5.2A) or for 1407 

individual types of repeats (Fig. 5I and S5.2C). To compute the enrichment of a repeat 1408 

class/type in a ChromHMM state, the fraction of repeats belonging to that class/type that fell 1409 

within the state was computed and normalized for the fraction of the genome covered by that 1410 

state. In other words, if we observe that 70% of a certain repeat falls within state B and state 1411 

B covers 7% of the genome, then the repeat enrichment is 0.7 / 0.07 = 10. 1412 

 1413 

GO term and PANTHER protein classs enrichment analysis 1414 

GO term and PANTHER (Mi et al., 2013) protein class enrichment analyses were performed 1415 

via de Gene Ontology Consortium website (http://geneontology.org/). For Figure S4E, the list 1416 

of PRC-regulated TFs was used as a query and the list of all TFs as a reference to determine 1417 

enriched Biological Process GO terms. Only the top 10 most significant terms are shown. For 1418 

Figure S5.1G, the list of genes in ChromHMM state A1 or B was used as a query and the list 1419 

of genes in all ChromHMM states as a reference to determine enriched PANTHER protein 1420 

classes. All hits are shown. 1421 

 1422 

  1423 
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