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Abstract

Proteins ensure their biological functions by interacting with each other, and
with other molecules. Determining the relative position and orientation of protein
partners in a complex remains challenging. Here, we address the problem of ranking
candidate complex conformations toward identifying near-native conformations.
We propose a deep learning approach relying on a local representation of the protein
interface with an explicit account of its geometry. We show that the method is able
to recognise certain pattern distributions in specific locations of the interface. We
compare and combine it with a physics-based scoring function and a statistical pair
potential.

1 Introduction

Protein-protein interactions play a central role in virtually all biological processes. Reliably predicting
who interacts with whom in the cell and in what manner would have tremendous implications for
bioengineering and medicine. Hence, a lot of effort has been put into the development of methods for
docking proteins against each other and identifying the most probable 3D arrangements they form in
vivo. While highly efficient algorithms can exhaustively sample the space of candidate conformations
(Ritchie and Venkatraman, 2010), correctly evaluating and ranking these conformations remains
challenging. In this work, we investigate the possibility of discriminating near-native complex
conformations from decoys by exploiting local 3D-geometrical and physico-chemical environments
around interfacial residues. Our motivation is that the number of known protein-protein complex
structures is fairly limited. Breaking down these structures into interfacial residue-centred local
environments allows training on a much larger set of labelled data.

We propose Deep Local Analysis (DLA)-Ranker, a deep learning-based approach predicting whether
a candidate complex conformation is acceptable or not. To do so, it applies 3D convolutions to a
set of locally oriented residue-centred cubes representing the interface between the proteins (Fig.
1). We orient the cubes by defining local frames based on the common chemical scaffold of amino
acid residues in proteins (Pagès et al., 2019). This representation guarantees that the neural network
output is invariant to the global orientation of the input conformation while fully accounting for the
relative orientation of the central residue with respect to its neighbours.
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Figure 1: A) Representation of the interface as an ensemble of cubes. Each cube is labelled S, C, R,
depending on the position of the central residue within the interface. B) Architecture of DLA-Ranker
neural network.

2 Related works

A few of 3D convolutional neural network-based approaches have been developed to evaluate docking
conformations (Renaud et al., 2021; Wang et al., 2020). Contrary to our approach, they intend
to represent the whole interface as one single voxelized 3D grid without defining any local frame.
Since this representation is sensitive to the orientation of the candidate conformation, and standard
3D convolutional filters are not rotationally invariant nor equivariant, the output may change upon
rotation of the input in an uncontrolled fashion. To limit this effect, (Renaud et al., 2021) performed
rotational data augmentation. Some other works have proposed alternative representations such as
graphs (Wang et al., 2021; Cao and Shen, 2020) or point clouds (Eismann et al., 2021). By contrast
to our local-based approach, they adopt a global perspective by assessing the quality of the interface
(Wang et al., 2021) or even the complex (Cao and Shen, 2020; Eismann et al., 2021) as a whole.
Representing the input conformation as a graph (Cao and Shen, 2020; Wang et al., 2021) renders the
prediction rotationally invariant, but the information of the relative orientations of the atoms in the
structure is lost. In the point cloud-based method (Eismann et al., 2021), the authors eliminate the
need for rotational data augmentation by using tensor field network layers where the convolutional
filters are decomposed into series of spherical harmonics.

3 Method

DLA-Ranker takes as input a cubic volumetric map centred and oriented on a given interfacial residue
(Fig. 1a). Any residue displaying a change in solvent accessibility upon complex formation is
considered as part of the interface. We used NACCESS (Hubbard and NACCESS, 1993) with a
probe radius of 1.4 Å to compute residue solvent accessibility. To build the map, we adapted the
method proposed in (Pagès et al., 2019). The atomic coordinates of the input conformation are first
transformed to a density function. The density d at a point ~v is computed as

d(~v) =
∑

i≤Natoms

exp
[
−
(~v − ~ai

σ

)2]
ti, (1)

where ~ai is the position of the ith atom, σ is the width of the Gaussian kernel and is set to 1Å, and
ti is a vector of dimension 169 encoding some characteristics of the protein atoms. Namely, the
first 167 dimensions correspond to the atom types that can be found in amino acids (without the
hydrogens), and the 2 other dimensions correspond to the two partners, the receptor and the ligand.
Then, the density is projected on a 3D grid comprising 24x24x24 voxels of side 0.8Å. For the nth
residue, the (~x, ~y, ~z) directions and the origin of the map are defined by the position of the atom Nn,
and the directions of Cn−1 and Cαn with respect to Nn (Pagès et al., 2019). Thanks to this local
frame definition, the map not only is invariant to the candidate conformation initial orientation but
also provides information about the atoms and residues relative orientations.
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The network architecture comprises three 3D convolutional layers (Fig. 1b). We trained it to perform
the classification task of predicting whether a given interfacial residue is part of an acceptable (or
better) docking conformation or an incorrect one, according to CAPRI criteria (Lensink et al., 2017).
Depending on the location of the residue at the interface, we expect very different geometrical and
physico-chemical environments. For instance, the map computed for a residue deeply buried in the
interface will be much more dense than that computed for a partially solvent-exposed residue at the
rim. This motivated us to explicitly give some information to the network about the location of the
input residue. To do so, we classified the interfacial residues in three substructures, the support, the
core and the rim (Fig. 1a), as defined in (Levy, 2010). We one-hot encode the input residue class in a
vector u and append it to the embedding (or fingerprint) derived from the convolutional layers (Fig.
1b). The support-core-rim classification previously proved useful for the prediction and analysis of
protein-protein and protein-DNA interfaces (Laine and Carbone, 2015; Raucci et al., 2018; Corsi
et al., 2020).

We compiled our train, validation and test sets from two complete cross-docking experiments
performed on about 400 proteins (Dequeker et al., 2019; Lopes et al., 2013) using the rigid-body
coarse-grained docking tool MAXDo (Sacquin-Mora et al., 2008). We efficiently screened 27 millions
docking conformations with INTBuilder (Dequeker et al., 2017) and the rigidRMSD library (Popov
and Grudinin, 2014), and we systematically evaluated their quality with respect to the experimentally
resolved complex structures available in the Protein Data Bank (Berman et al., 2002). To build our
training set, we extracted 3 902 acceptable or better conformations and 6 038 incorrect conformations
coming from 312 protein pairs (Fig. S1). The unbound forms of the proteins or their close homologs
(≥ 70% sequence identity) were used for docking in about half of the pairs. We trained 5 models over
20 epochs following a 5-fold cross-validation procedure (Fig. S2). We minimised the binary cross
entropy loss function using the Adam optimiser with a learning rate of 0.001 in TensorFlow (Abadi
et al., 2015). We explored about 10 different architectures, by varying the number of convolutional
layers, the number of neurons in the fully connected layers, and the dropouts. The calculations were
performed on workstations with GPU: NVIDIA GeForce RTX 3090 (24 GB RAM) and CPU: AMD
Ryzen 9 5950X. The generation of the interface cubes for a complex takes 1.46s on average, and their
evaluation 0.23s.

For each input interfacial residue, the DLA-Ranker network outputs a score comprised between 0 and
1. If the score is higher than 0.5, we consider that the network classified the residue as belonging to a
near-native (acceptable or better) conformation, incorrect otherwise. To evaluate an entire candidate
conformation, DLA-Ranker averages the individual residue scores over the interface. Hence, the
predicted quality Q of conformation C is expressed as

QC =
1

|IC |
∑

rk∈IC

Sk, (2)

where IC is the ensemble of interfacial residues and Sk is the score predicted by the network for the
input 3D grid centred on the residue rk.

4 Results

We assessed the ability of DLA-Ranker to correctly rank candidate conformations on a test set of
20 protein pairs that were not seen during the training (Table S1). For each complex, we selected
the 1 000 best-scored conformations according to the physics-based scoring function implemented
in MAXDo (very similar to ATTRACT scoring function (Zacharias, 2003)) and evaluated them
using DLA-Ranker. For most of the pairs, DLA-Ranker assigned high Q scores to the near-native
conformations and is able to discriminate them from the incorrect ones (Fig. S3). We further ranked
the conformations using a consensus of the 5 trained DLA-Ranker models. To do so, we first ordered
the conformations according to the Q scores computed from each trained model. Then, we discretised
the ranks into 7 bins, namely top1, top5, top10, top50, top100, top200, top1000, and lexicographically
ordered these labels. DLA-Ranker put a near-native conformation in the first place for two thirds of
the protein pairs (Fig. 2A). It achieved better performance than MAXDo in 11 cases. A particularly
difficult case for both MAXDo and DLA-Ranker is the pair 1rkc_A:1ydi_A. Combining DLA-Ranker
with the pair potential CIPS (Nadalin and Carbone, 2018) allowed enriching the top 200 subset for
that pair in near-native conformations, and overall improved the results (Fig. 2B).
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Figure 2: A-B. Ranking results per protein pair. For each pair, we report whether some near-native
conformations were found in the top 1, 5, ..., 200 out of a total of 1 000 conformations generated and
selected by MAXDo. A coloured cell indicates the presence of at least one acceptable conformation
in the corresponding topX. The pink color corresponds to MAXDo while the blue color corresponds
to DLA-Ranker (A) or DLA-Ranker combined with CIPS (B). For each topX, the yellow dot indicates
the pair with the highest enrichment factor. The PDB ids are coloured according to the magnitude of
the conformational change between the docked forms and the bound forms. Green: none or small.
Orange: medium. Red: large. C. Comparison between different methods. The SCR, SC and CR
DLA-Ranker models were trained and tested on all interfacial residues, only those in the support and
core, or only those in the core and rim, respectively. D. Best-ranked candidate conformations for the
1ku6_B homodimer. The reference complex structure is in black, the docked receptor in grey, the
ligand conformation selected by MAXDo in pink and that selected by DLA-Ranker in blue.

Overall, DLA-Ranker performance seem to be independent from the extent of conformational change
between the docked protein forms and the bound forms (Fig. 2A-B, label colors). For instance, one of
the cases where it performs very well, the 1ku6_B homodimer, displays a substantial rearrangement
(Fig. 2D). Finally, we investigated the influence of the definition of the interface on the results (Fig.
2C), by training and testing models on only the support and core (SC) interfacial residues, or only
the core and rim (CR). The CR model yielded the best overall performance, and allowed to retrieve
near-native conformations in the top 5 for almost all protein pairs (see also Fig. S4) .

5 Discussion

In this work, we have investigated the possibility of evaluating complex candidate conformations
by learning local 3D atomic arrangements at the interface. We have implemented a deep learning
based approach that does not require rotational data augmentation, and that is sensitive to the relative
orientations of the protein residues. We have shown that the method can help to improve the
discrimination between near-native and incorrect conformations and could be useful in combination
with more classical scoring functions. Our best results are based on a local representation of the
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interface and a distribution of patterns that the machine identifies at specific locations of the interface.
The next tasks will be to more systematically explore the hyperparameter space, and to assess the
performance of the method on a larger set of complexes. We will also address the issue of the
multiple usage of protein surfaces. Indeed, two proteins may interact through different binding
modes, depending on the context (presence of other chains for instance). The choice of one relevant
binding mode, or the accounting for multiple binding modes is a difficult question. We envision many
applications for the local-environment-based approach we propose, including the identification of
physiological interfaces and the prediction of mutational outcomes on binding affinity.
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A Appendix

Table S1: PDB codes for the test set. The biological assembly ids are given in parenthesis. The
extent of conformational rearrangement between the docked protein forms and the bound forms was
assessed by the interface root-mean-square deviation (I-RMSD), computed on the Cα atoms and after
superimposition; none: the bound forms were used for docking, small: I-RMSD ≤ 1.5Å, medium:
1.5Å < I-RMSD < 2.2Å, and large: I-RMSD ≥ 2.2Å.

Receptor Ligand Complex Rearrangement

1ku6_B 1ku6_B 1fsc_A:A (1) medium
1wsu_A 1wsu_C 1wsu_A:B (1) small
1li1_F 1m3d_E 1li1_F:E (1) small
1yy9_D 1ck4_B 2b2x_H:A (1) large
1li1_C 1m3d_A 1li1_C:B (1) small
1li1_C 1m3d_B 1li1_C:B (1) small
1m3d_H 1m3d_H 1m3d_H:G (2) small
1ezx_C 2r9p_E 2r9p_A:E (1) medium
1rkc_A 1ydi_A 2hsq_A:A (3) large
2c63_D 2c74_A 2c63_D:C (2) small
2c63_A 2c74_A 2c63_A:B (1) small
2vp7_A 2vp7_A 2yyr_A:B (1) medium
1m3d_G 1m3d_H 1m3d_G:H (2) none
1m3d_G 1m3d_L 1m3d_G:L (2) none
1li1_A 1m3d_D 1li1_A:B (1) small
2c9w_A 2jz3_C 2c9w_A:C (1) small
2z3q_B 2z3q_C 2z3q_B:A (1) small
1m3d_D 1m3d_F 1m3d_D:F (1) none
1i7x_B 1i7x_C 1i7x_B:C (1) none
3cwb_F 3cwb_P 3cwb_F:C (1) small
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Figure S1: Cumulative distributions of positives (acceptable or better conformations) and negatives
(incorrect conformations) in the training set.
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Figure S2: Validation ROC (on top) and PR (at the bottom) curves for 5 x 3 DLA-Ranker models. The
models were trained and validated on entire interfaces (A), on the subset of core and rim interfacial
residues (B), or on the subset of support and core interfacial residues (C).
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Figure S3: Distributions of DLA-Ranker Q scores computed for the test set conformations. We report
the scores computed by one of the 5 DLA-Ranker trained models. The overall distributions are shown
on top, and the per-protein-pair distributions below.
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Figure S4: Ranking results per protein pair. A. DLA-Ranker trained and validated on core and rim
residues only (DLA-Ranker-CR), B. DLA-Ranker-CR combined with CIPS, C. DLA-Ranker trained
and validated on support and core residues only (DLA-Ranker-SC), D. DLA-Ranker-SC combined
with CIPS. The color codes are the same as in Fig. 1.
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