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ABSTRACT

Whole-brain tractograms generated from diffusion MRI
digitally represent the white matter structure of the brain
and are composed of millions of streamlines. Such trac-
tograms can have false positive and anatomically implausible
streamlines. To obtain anatomically relevant streamlines and
tracts, supervised and unsupervised methods can be used for
tractogram clustering and tract extraction. Here we propose
FiberNeat, an unsupervised streamline clustering and tract
filtering method. FiberNeat takes an input set of streamlines
that could either be unlabeled clusters or labeled tracts. In-
dividual clusters/tracts are projected into a latent space using
nonlinear dimensionality reduction techniques, such as t-SNE
and UMAP, to find spurious and outlier streamlines. In addi-
tion, outlier streamline clusters are detected using DBSCAN
and then removed from the data in streamline space. Quan-
titative comparisons with expertly delineated tracts show the
promise of the approach. This approach can be deployed as a
filtering step after tracts are extracted.

Index Terms— Tractography, Clustering, t-SNE, UMAP

1. INTRODUCTION

The structural architecture of the brain can be computation-
ally reconstructed from a diffusion magnetic resonance imag-
ing (MRI) [1] dataset using tractography algorithms [2]. Trac-
tography algorithms exploit the direction and paths of water
diffusion in neural connections of the brain to generate digital
neural pathways, otherwise called streamlines. Streamlines
are thus used as a computational approximation of the brain’s
white matter fibers. Tractography algorithms often generate
streamlines that are false positives or anatomically implausi-
ble, such as streamlines that loop, that have sharp curves and
angles, or that terminate prematurely in white matter, or con-
nect anatomically implausible regions of the brain [3], [4].

In the past two decades, researchers have used both su-
pervised and unsupervised white matter tract segmentation
methods to reduce the number of false positive streamlines
in the data. The unsupervised category focuses on cluster-
ing methods [5], [6] that divide whole-brain tractograms into
clusters of streamlines that are spatially similar in shape and
size. Resultant clusters often suffer from spurious stream-
lines or poor alignment with neuroanatomical definitions of
the tracts. Furthermore, these clusters are unlabeled and can
have sub-clusters within one cluster. The supervised category
consists of white matter tract segmentation methods that are
trained with pre-labeled datasets. Automatic traact segmen-
tation methods include ROI-based [7], atlas-based [8], [9],
and deep learning-based methods [10]. Although such super-
vised methods result in labeled streamlines that match their
anatomical tract definitions, they can still produce spurious
streamlines due to biases stemming from limitations of the
prior anatomical reference, subject variability, and tractogra-
phy reconstruction issues. Moreover, different tract segmen-
tation methods may rely on different definitions of the same
tracts [11].

In this paper, we propose FiberNeat, a method which
uses dimensionality reduction techniques t-SNE (t-distributed
stochastic neighbor embedding) [12] and UMAP (uniform
manifold approximation and projection) [13] to find and
remove outlier streamlines in latent space 1. The input to
FiberNeat is a set of streamlines that can either be unlabeled
clusters or labeled tracts. It populates an N × N square
distance matrix by calculating pair-wise distances among
all N streamlines in the cluster/tract using the streamline
based minimum direct-flip distance (MDF) metric [6]. We
chose MDF distance metric as a solution to the inconsistent
streamline orientation problem. The distance matrix is fed
to nonlinear dimensionality reduction methods, i.e., t-SNE or

1Mapping high-dimensional data to a latent space refers to transforming
complex forms of raw data into a simpler, lower-dimensional representation
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UMAP, to project data into 2D space. In 2D space, spatially
close streamlines are placed together and spurious stream-
lines are placed far from others. Hence, it becomes easier
to visually and algorithmically filter out outlier clusters in
the latent space. FiberNeat uses the density-based clustering
method DBSCAN [14] to computationally label clusters in
2D space. It only keeps the streamlines of the largest clusters
and removes small outlier clusters of streamlines. We use
labels of streamlines to filter out the outlier streamlines in
streamline-space. FiberNeat is an unsupervised algorithm
that does not require any anatomical reference atlas or la-
beled training data. It is data-driven and takes the subject’s
own anatomy into consideration for filtering.

2. METHODS

Fig. 1. Overview of the FiberNeat method. Panel A shows the
preprocessing step of tractogram clustering. Panel B shows a
cluster of streamlines (B.a and B.c) and visualization of their
MDF distance matrix (B.c). Each streamline is mapped to a
single 2D point using t-SNE (C.a) and clustered over the t-
SNE embedding (C.b). Outlier streamlines are filtered out in
the streamline (C.c).

Input to FiberNeat can be individual clusters from a
whole-brain tractogram or extracted white matter tracts,
where cluster/tract C is a set of N streamlines. C =
{S1, S2, ..., Sn}, Si ∈ C, Si = {s1, s2, ..., sn}, where si
is a 3D vector point. The number of points per streamline
may vary.

The FiberNeat method consists of the following steps:
1. Set all streamlines to have k number of points

2. Populate N × N distance matrix D by calculating pair-
wise MDF distance among all streamlines in the set C.

3. Project streamlines into 2D space using the precomputed
streamline distances D.

• Use either t-SNE or UMAP for the dimensionality re-
duction.

4. Cluster the streamlines in the 2D latent space using DB-
SCAN. Smaller clusters of 2D points are considered out-
liers. Streamlines belonging to the largest cluster in 2D
space are kept in streamline space; streamlines belonging
to the small clusters are removed.
Figure 1 illustrates steps of the FiberNeat method. A is

a preprocessing step, where a whole-brain tractogram (A.a)
is clustered using QuickBundles to obtain a sparse repre-
sentation of the tractogram (A.b, A.c). B and C are the
main steps of FiberNeat. We project individual clusters into
lower dimensional space using t-SNE (B, C). We take an
individual cluster of streamlines (B.a, B.c) and calculate pair-
wise streamline distances within that cluster (B.c) using the
streamline-based MDF distance metric [6]. The MDF dis-
tance metric takes into account that streamlines traversing
the brain in the same direction can be saved with opposite
orientation. This step calculates a direct distance between
two streamlines with their default orientation and a distance
between a streamline and a streamline with a flipped orien-
tation and selects the minimum of two. We provide t-SNE
with this pre-calculated distance matrix as it embeds rel-
evant information on similarities and differences between
pairs of streamlines. As both t-SNE and UMAP are manifold
learning approaches for non-linear dimensionality reduction,
t-SNE could also be replaced by UMAP in this case. While
the former captures and preserves local structure, the latter
aims to preserve both local and global structure in the data.
Streamlines are projected into 2D space by t-SNE (C.a) and
the results are then clustered using the density-based clus-
tering method, DBSCAN (C.b). This helps to visually and
algorithmically locate outlier streamlines, as those tend to
be placed and clustered together (C.b). Class 0 and 2 show
outlier streamlines and are filtered out from the initial clus-
ter (B.b) in streamline space (C.c). The entire process is
completely unsupervised with no external information pro-
vided about anatomy. Visually, (C.c) agrees well with the
expected trajectory of the arcuate fasciculus bundle in the left
hemisphere of the brain.

3. RESULTS

We show results on data from a 26-30 year-old male HCP (the
Human Connectome Project) [15] participant, scanned with
90 diffusion weighting directions and 6 b=0 acquisitions. Dif-
fusion weighting consisted of 3 shells of b=1000, 2000, and
3000 s/mm2. Tractogram was generated using deterministic
local tracking. In Figure 2A, we show results on four clusters
selected from all clusters of whole-brain tractogram given by
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Fig. 2. Part A, first row shows 4 initial clusters, the second
row shows clusters manually cleaned by an expert. The third
and fourth rows show clusters cleaned by FiberNeat t-SNE
and FiberNeat UMAP, respectively. Part B shows the quanti-
tative comparison of FiberNeat t-SNE and FiberNeat UMAP
clusters with expert’s cleaned clusters. Shape similarity score
(SM) and bundle minimum distance (BMD) are calculated be-
tween clusters.

QuickBundles. The first row shows the initial four clusters.
The second row shows clusters cleaned manually by a trained
neuroanatomist, using visualization tools in DSI Studio [16]
and DIPY [17]. We keep them as a ground truth to compare
performance of FiberNeat t-SNE and FiberNeat UMAP. The
third and fourth rows show clusters filtered using FiberNeat
with t-SNE and UMAP embedding, respectively. In Fig-
ure 2B, a quantitative comparison of FiberNeat t-SNE and
FiberNeat UMAP’s filtered clusters with expert cluster clean-
ing is shown. Here, SM stands for shape similarity score [9]
among two clusters and BMD stands for bundle-based mini-
mum distance [18] between clusters. SM scores range from
0 to 1, where 0 implies least shape similarity between two
clusters/tracts and 1 means highest shape similarity. BMD
calculates streamline-based distance between clusters in mm.
A lower value of BMD implies that two clusters are closer
and more similar in shape and streamline count. FiberNeat
t-SNE’s filtered clusters have higher shape similarity and

lower BMD distance with expert’s cleaned clusters except
for cluster C3. FiberNeat UMAP’s output for C3 has higher
shape similarity and lower BMD distance with an expert’s
cleaned cluster C3. Overall, qualitatively and quantitatively
FiberNeat t-SNE performs better than FiberNeat UMAP.

4. DISCUSSION

Tractography data is unstructured complex data that is often
linearly non-separable. It becomes extremely difficult to per-
fectly separate outliers from clusters corresponding to known
anatomical tracts in the streamline space. t-SNE and UMAP
are both manifold learning approaches for non-linear dimen-
sionality reduction. Clustering based on t-SNE and UMAP
embedding of tractography makes it easier to separate stream-
line clusters and outliers. Some researchers caution against
clustering the t-SNE embedding space, at least for some appli-
cations, due to metric distortions. t-SNE a stochastic method
and could generate different embeddings in different runs for
the same data and parameters. It does not preserve the global
metric structure and favors the preservation of the local struc-
ture only. t-SNE can sometimes disconnect/split parts of the
data by putting them in separate clusters. This repelling ef-
fect of t-SNE is advantageous in our application as we want
to untangle streamlines that are otherwise very closely knit-
ted together in the original space, as seen in Figure 1C.a. The
stochastic nature of t-SNE does not affect our approach as
we do not use embedding again, for further data analytics. It
is used once per input dataset and the method is invariant to
where clusters are placed or what the global distance among
clusters is. t-SNE does extreme dimensionality reduction by
going directly to 2D space as opposed to other dimensional-
ity reduction methods that provide options to project data into
n>2 dimensions. But in our case, a streamline is k×3 D, and
going to 2D is not an extreme dimensionality reduction. We
also provide an option to use UMAP embedding instead of t-
SNE. Theoretically, UMAP should give superior performance
relative to t-SNE. UMAP tries to preserve both local and most
of the global structure in the data. UMAP can map data to la-
tent spaces with any number of dimensions and does not need
the pre-dimensionality reduction step such as PCA or an au-
toencoder. Hence, UMAP can project data on n components
and is not limited to 3D or 2D embeddings (as required by
t-SNE). UMAP is computationally faster than t-SNE. How-
ever, in our experiments, we find t-SNE to outperform UMAP.
This could be because the nature of the problem we are solv-
ing takes advantage of the data splitting/repelling property of
t-SNE to find outlier streamlines in streamline sets that hard
to distinguish in the original brain’s 3D space. Further work
is needed to evaluate the method on more tracts, and diverse
datasets (in terms of age, diagnosis, and scanning protocol).
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5. CONCLUSION

In this paper, we introduce FiberNeat, a method to clean
streamline clusters and tracts. It takes clusters/tracts of
streamlines as input and projects them into a latent space
using dimensionality reduction techniques. A single stream-
line has a k × 3 shape where k is the number of points on
the streamline and k could vary per streamline. A stream-
line cluster or a tract contains N streamlines. It becomes
difficult to find clusters of spurious streamlines in the stream-
line space. FiberNeat calculates the MDF distance among
all streamlines of the cluster/tract and populates an N × N
matrix. This precomputed streamline distance matrix is given
to either t-SNE and UMAP to project streamline data into 2D
space. In the 2D space, it becomes easier to detect outlier
streamlines. FiberNeat applies DBSCAN clustering in 2D
space. Smaller clusters are removed from the original data
in the streamline space. We tried FiberNeat with t-SNE and
UMAP on several same clusters of streamlines and found
FiberNeat t-SNE to perform better than FiberNeat UMAP
both qualitatively and quantitatively. FiberNeat can be used
as a post-processing step in tract segmentation methods to aid
better tractometry [9].
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