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ABSTRACT

With the breakthrough of chromatin conformation capture technologies in recent years, the
importance of three-dimensional (3D) genome structure in gene expression, cell function
regulation, disease occurrence, and development has been gradually recognized. To provide a
comprehensive visualization of chromatin architecture and other multi-omics data for lung
cancer research, we have constructed a comprehensive database, LungCancer3D

(http://www.lungcancer3d.net). This web-based tool focuses on displaying human lung cancer-

related HiC data along with a variety of other publicly available data, such as RNA-seq, SCRNA-
seq, ATAC-seq, ChlP-seq, DNA methylation, DNA mutation, and copy number variations.
Researchers can visualize these diverse multi-omics data directly through the genome browser
and discover how the genes expression is regulated at diverse levels. For example, we have
demonstrated that the high expression level of C-MYC in lung cancer may be caused by the
distant enhancer introduced by the de novo chromatin loops in lung cancer cells to bind the C-

MYC promoter. The integrated multi-omics analyses through the LungCancer3D website can
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reveal the mechanisms underlying lung cancer development and provide potential targets for

lung cancer therapy.

INTRODUCTION

Lung cancer continues to be the leading cause of cancer death worldwide [1]. Global Cancer
Statistics 2020 showed an 11.4% incidence rate with a death rate of 18% worldwide [1].
Although targeted therapies for lung cancer, such as EGFR, have achieved good efficacy in a
subset of patients, most patients still do not have targeted drugs for treatment [2]. Therefore,

investigation of the mechanism of lung cancer development is urgently needed.

Various genomic and epigenomics studies have been utilized to reveal the mechanism
in lung cancer progression, but the integration of multiple omics data is not effectively conducted
[3]. Thus, many studies heavily depend on the limited omics data to understand lung cancer
development. For example, it is still relatively difficult to comprehensively integrate multiple
omics to study the development of lung cancer, especially the integration of the newly emerging

HiC omics that detect chromatin interactions and reveal three-dimensional chromatin structure.

The abnormal 3D structure of chromatin has been shown to promote the progression of
diseases, including cancer [4]. Previous research also showed that the chromatin loops in lung
cancer tissues or lung cancer cells differed from normal lung tissue [5]. The formations of
chromatin loops were reported to regulate gene expression [6]. And the chromatin accessibility
and DNA methylation affect the formation of chromatin loops [7]. However, how loops regulated
adjacent genes at the genome-wide level is mainly unclear, and how dysregulated chromatin
loops contributed to cancer development remains elusive. Studying the 3D chromatin
architecture may lead to a new point in cancer studies. For example, 3D chromatin architecture
can be potential therapeutic targets by regulating the formation of loops regulating the critical
gene expression [8]. Practical tools that display 3D chromatin architecture information with the
integration of other omics are needed. Several online databases have been developed to
visualize chromatin interactions, such as 3DIV and 3D Genome Browser [9, 10]. However, none
of them can show the integrated analysis of multiple omics, especially on lung cancer, such as
integrating the visualization HiC with other omics data and searching a gene of interest. To
overcome current limitations, we developed a website database providing users with visualized
multi-omics data, including gene expression, copy humber variation, somatic mutation, miRNA,

DNA methylation, chromatin open accessibility, and histone modification information (Figure 1).
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In addition, we also integrated single-cell RNA-seq (ScRNA-seq) data for normal human lungs,
lung cancer, and human lungs without or with COVID-19 infection. The differential analysis
results between cancer (mainly lung cancer) and normal samples were also displayed. Using
this comprehensive website database allows users to better utilize genomic and epigenomic
data to generate a functional interpretation of the identified chromatin interactions or search for

potential therapeutic targets for future research.

MATERIALS AND METHODS
Website development and data source

Our registered website is www.lungcancer3d.net. UCSC mirror package was downloaded and

installed on our web server by method browserSetup (genome browser in the cloud
introduction) [11]. MariaDB was used on the backend to support the data structure. Apache
HTTP server was used for cross-platform web services. BigWig file format is the basic file
format recognized by MariaDB. Currently, our webpage only supports human genome assembly
hg19, which was also downloaded from UCSC website. The raw data related to human lung
cancer studies were downloaded from public databases and described in Table 1 [12] [13] [14]
[15] [16] [17][18] [19] [20] [21] [22] [23] [24] [25] [26] [27].

Table 1. Description of the human lung cancer related multi-omics datasets included in

LungCancer3D website

o Displayed
Category Description Dataset
format
GSM2322544
Normal lung
GSM2322545
Cancer lung A549 ENCSR444WCZ
Large cell lung cancer ENCSR346DCU
HiC Ovarian clear cell adenocarcinoma GSM3392700 biginteract
Normal Ovarian clear cell
_ GSM2322546
adenocarcinoma
Pancreatic carcinoma ENCSR440CTR

Normal Pancreatic carcinoma GSM2322547
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GSM2322548
GSM2322549
GSM2322550
GSM1902607
GSM1902608
GSM1902609
GSM1902610
GSM1902611
GSM1902612
GSM1902613
GSM1902614
GSM1902602
Normal Prostate AD cells GSM1902603
GSM1902604
GSM3967118
GSM3967119
GSM3967120
GSM3967121
GSM3560407
GSM3560408
GSM1551618
GSM1551619
GSM1551620
Chronic_Lymphocytic_Leukemia GSM1551621
GSM1551622
GSM1551623
GSM3560408
GSM3567145
GSM3567146
GSM3567147
GSM3567148
Normal Glioblastoma GSM2828825

Prostate adenocarcinoma

Acute_Myeloid_Leukemia

Normal Acute_Myeloid_Leukemia

Glioblastoma
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GSM2828826
Skin cancer ENCSR312KHQ
Endorcrin-sensitive Breast Cancer GSM1631185
Normal cell for breast cancer GSM1631184
Mammary ductal carcinoma ENCSR549MGQ
Hepathocellular carcinoma GSM2825569
GSM2825570
Normal Hepathocellular carcinoma GSM1419086
Normal lung ENCSRO45GTF bigWig
RNA-seq
Cancer lung A549 ENCSRO0OOCON
ATAC- Normal lung ENCSR647A0Y o
bigWig
seq Cancer lung A549 ENCSRO032RGS
GSM1006882
GSM906395
GSM1220283 o
Normal lung bigWig
ENCSR842LST
ENCSR218YUS
ENCSR975GDL
ChlP-seq
ENCSR000DYD
SRX2267497
Cancer lung A549 bigWig
SRX1476397
SRX471983
DRX15231
LUAD somatic mutations bedDetail
LUSC somatic mutations bedDetail
GDC- LUAD copy number bed
TCGA
TCGA LUSC copy number bed
LUAD DNA methylation bigBed
LUSC DNA methylation bigBed
Single Normal lung GSE171524 o
bigwig

cell RNA- Adenocarcinoma GSE131907
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seq COVID-19 lung GSE171524

Data retrieval and processing
HiC

Twelve processed HiC datasets involving 9 cancers were obtained from the website of 3D-

Genome Interaction Viewer & database (3DIV, http://kobic.kr/3div/download). Each dataset

included the signal enrichment over background of each identified HiC loop. For each pairwise
comparison between normal tissue cells and tumor cells, we applied fold change threshold of

1.5 to identify the differential loops that specifically exist in each sample.

RNA-seq

Raw sequencing fastq files of RNA-seq datasets were downloaded from the ENCODE
database, which contain transcriptome data from human lung tissue and lung cancer cells A549.
Self-defined Perl pipeline was applied to remove adaptors and low-quality reads with QC < 20
and length < 75bp. Tophat was used to map the reads to hgl9 reference genome. The

duplicated mapped reads were removed by Picard (version 2.25.0).

These uniquely mapped reads were further processed to identify the differentially
expressed genes (DEGs) between human lung and lung cancer cells A549 using Cufflinks
(version 2.2.1) with three filters: at least one group FPKM > 1; g < 0.05; log2 fold change > 1.5.
These identified DEGs were split into 10 files according to the gradient of g value and fold
change and converted to bigWig files. The genes with negative fold change were shown in
different shades of blue. Those with positive fold change were shown in different shades of red.
The genes that were not differentially changed were shown in grey. For differentially changed

genes, the smaller the g values are, the darker the colors are.

ATAC-seq

Five paired-end ATAC-seq datasets (3 for A549 cancer cell line, 2 for normal lung tissue) were
downloaded from the ENCODE database. TrimGalore (version 0.6.6) was used to trim the
reads. Bowtie (version 1.2.2) was used to map the reads and suppress all alignments if more

than 1 exist. Picard (version 2.25.0) and samtools (version 1.7) were used to remove the
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duplicated and unmapped reads with default settings, respectively. The mapped reads were
extended to 100bp. Normalized ATAC-seq data was divided into normal lung and cancer cells
A549 groups. Data in each group was averaged with Wiggletools (v1.2.2) “mean” function.
Differential peaks between normal lung and A549 were identified using bigWigCompare, a tool
in Deeptools (v3.3.2), with 200bp bin size. The output bedGraph file were filtered with log2 fold
change >1 or <-1 cutoff and were split into two files according to negative or positive fold
change. The positive differential peaks were displayed in red and the negative ones were

displayed in blue.

ChlP-seq

Eleven single-end ChlP-seq datasets (5 for cancer cells A549, 6 for normal lung tissue) were
retrieved from the ENCODE and the GEO databases generated from studies of CTCF-binding,
H3K27Ac madification, and H3K27me3 modification. Self-defined Perl pipeline was used to filter
reads with QC < 20 and length < 50bp. Bowtie, Picard and samtools were used to map and
deduplicate reads. The mapped reads were extended to 300bp. The differential peaks were

identified and displayed as described above.

ScRNA-seq

Three scRNA-seq datasets were downloaded from the GEO database. A scRNA-seq data from
normal lung atlas was uploaded within two tracks: ‘10x’, sequencing by 10x Genomics and ‘facs’
sequencing by smartseq2. A scRNA-seq data from lethal COVID-19 atlas was displayed with
two tracks: ‘normal’ and ‘covid’. A scRNA-seq data from lung adenocarcinoma was showed with
seven tracks: ‘normal lung’, ‘tumor lung’, ‘normal lymph node’, ‘metastatic lymph node’,
metastatic brain tissue’, ‘pleural fluid’, and ‘advanced stage tumor lung’. Raw counts data were
first separated into different tracks. For the data in each track, we separated cells by their
defined cell subtypes, and calculated the FPKM for each gene in each sub-cell-type. The cutoff
of FPKM was set to 1. Different cell types in a track were displayed by different colors and the
FPKM was displayed by the height of that transcript. All of the above steps were achieved using
R (version:4.0) scripts. Then, we obtained chromosome, start and end positions of each
transcript from ensembl database using reference ‘gencode.v35lIift37.annotation.gtf’ with
python3 scripts. For COVID-19 data, we identified DEGs between normal and COVID-19
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samples, and for lung adenocarcinoma data, we identified DEGs between normal lung and
cancer lung; and normal lymph node with metastatic lymph node. DEG was calculated using

log2 fold change of patients sample vs. normal samples with cutoff of 1.5.

Somatic mutation (SNP)

The somatic point mutation data was from GDC-TCGA Lung Adenocarcinoma (LUAD) and Lung
Squamous Cell Carcinoma (LUSC) cohorts (https://xenabrowser.net/datapages/). Data was
preprocessed according to MuSE somatic variant calling workflow. The original alignments were
performed using the human reference genome hg38. The tool LiftOver from UCSC Genome
browser was used to convert genome coordinates from hg38 assembly to hg19. Mutations with

genome coordinates that failed in conversion were excluded from final visualization.

Copy number variation

Copy number variation data for LUAD and LUSC were downloaded from GDC-TCGA database
(https://xenabrowser.net/datapages/). The original alignments were performed using the human
reference genome hg38. The genome coordinates were converted to hgl9 assembly using the
same method as described above. Currently copy number variation fragments from each

sample (patient) are separately presented.

Methylation

DNA methylation data for LUAD and LUSC were downloaded from GDC-TCGA database
(https://xenabrowser.net/datapages/). Beta value (the ratio of the intensity of the methylated
bead type to the combined locus intensity) between 0 to 1 was used to indicate methylation
level in these datasets. The beta values from 400 patients were averaged and multiplied by
1000 to fit the bigBed format. Locations of probes were mapped back to hg1l9 genome using
reference files provided by TCGA (https://tcga-xena-hub.s3.us-east-
1.amazonaws.com/download/probeMap%2FilluminaMethyl450 hgl9 GPL16304_TCGAlegacy)

Data display
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The mapped reads from RNA-seq, ATAC-seq, and ChlIP-seq datasets were converted from bam
format to bigwig by genomeCoverageBed and bedGraphToBigWig. To make datasets from
different samples with different sequencing depth comparable, normalized bigWig files for RNA-
seq, ATAC-seq, and ChiIP-seq datasets were generated by bamCoverage (version 3.5.1) using
RPKM. Track information (track name, label name, data type, etc.) for the genome browser
were stored in file trackDb.ra which was saved in the MySQL root data directory. Track
information were uploaded to mysql table hg19.trackDb_NEW with hgTrackDb, a tool provided
by UCSC Genome Browser. Tracks were displayed in different file formats, biginteract, bigWig,
bigBed and bedDetail, depending on the data type.

RESULTS

To demonstrate the applications of LungCancer3D, we utilized the C-MYC region as an

example to show the integrated HiC data with other multi-omics data.

HiC analysis of human normal lungs, lung cancer cells, and other types of cancer

To visualize the dysregulated chromatin loops in human lung cancer, we analyzed the HiC
results of normal human lungs and lung cancer cells (A549 cells), respectively. Differential loops
between A549 cells and lung cells are identified and displayed (Figure 2A). In addition, we
found that there are cancer-specific loops around C-MYC, a representative gene (Figure 2B). C-
MYC, a well-known oncogenic transcription factor, was frequently induced in many types of
tumors [28] [29]. Thus, these specifically enriched C-MYC-associated loops in lung cancer cells

suggest a potential effect of loops on the C-MYC expression.

To investigate if these specifically enriched C-MYC-associated loops in human lung cancer
are conserved in other types of cancer, we analyzed HiC results in other types of cancer,
including lung large cell cancer, breast cancer, pancreatic carcinoma, and prostate
adenocarcinoma, and so on. Of note, the C-MYC-associated loops showed the tissue-specific
patterns though there was a certain similarity among these loops of human lung cancer cells
(A549) and pancreatic carcinoma (Figures 2C). Thus, these results indicated that the regulatory

mechanism of loops in the C-MYC expression was tissue-specific.

HiC and CTCF ChlIP-seq analyses of human normal lungs and lung cancer cells
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To examine if there are some chromatin structure proteins (e.g., CTCF) bound on these loop
terminals, we next analyzed the CTCF ChIP-Seq of human normal lungs and lung cancer cells
(A549 cells) (Figure 3A). Interestingly, CTCF ChIP-Seq showed that CTCF was bound on the C-
MYC-associated loop terminals (Figure 3B). Considering CTCF is a typical chromatin structure
protein to form chromatin loops, these analysis results provided the theoretical formation of

chromatin loops.

HiC, CTCF ChlP-seq, and RNA-seq analyses of human normal lungs and lung cancer
cells

To investigate if these dysregulated chromatin loops in human lung cancer were associated with
the changed gene expression, we further analyze the transcriptome profiles of human normal
lungs and lung cancer cells (A549 cells) (Figure 4A). As we expected, the C-MYC expression
was highly induced in human lung cancer cells, positively associated with the loop (Figure 4B).

These results suggest that the potential positive effect of these loops on the C-MYC expression.

HiC, CTCF ChlP-seq, RNA-seq, and ATAC-seq analyses of human normal lungs and lung

cancer cells

To study if open chromatin regions were correlated to loop formations and gene expression, we
integrated the ATAC-seq of human normal lungs and lung cancer cells (A549 cells) (Figure 5A).
As open chromatin allows functional protein binding and is associated with gene expression, it is
expected the chromatin accessibility to be observed where loops form around these changed
genes. As expected, we observed that the chromatin accessibility of A549 cells was enhanced
compared with normal lung cells at both ends of the C-MYC-associated loops (Figure 5B). More
interestingly, while A549 cells had ATAC-seq peaks at both ends of the C-MYC-associated loop
terminals, normal lung cells only had the peaks at one terminal near to the C-MYC promoter
region, not in the distant region. These results raised the hypothesis that the open chromatin
regions, specifically in human lung cancer cells, allowed the structure protein (e.g., CTCF) to

bind and form the new chromatin loop, thereby increasing the C-MYC expression.
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HiC, CTCF ChlP-seq, RNA-seq, ATAC-seq, and H3K27ac ChlP-seq analyses of human

normal lungs and lung cancer cells

To understand how genes differentially expressed in lung cancer were affected by the
specifically enriched loops, we further analyzed H3K27Ac ChlP-Seq of human normal lung cells
and lung cancer cells (A549 cell line) since H3K27Ac is a typical marker of transcriptional
activation (Figure 6A). At the terminal of C-MY C-associated loops near its promoter region, both
normal and tumor cells have similar binding profiles of H3K27Ac. However, the H3K27Ac level
at that other end of the loop is significantly higher in A549 cells than normal lung cells,
suggesting that the loop may bridge the distant enhancer to the C-MYC promoter to promote C-
MYC gene expression (Figure 6B). Furthermore, these H3K27Ac peaks were in these open
regions indicated by the ATAC-Seq peaks. These results indicated that the induced C-MYC
gene expression is due to the enriched loops specifically in lung cancer, which can bridge the
distant transcription activation complex to bind on the target gene promoter, resulting in the

downstream gene activation.

HiC, CTCF ChlP-seq, RNA-seq, ATAC-seq, H3K27ac ChlP-seq, SNP and methylation

analyses of human normal lungs and lung cancer cells

DNA methylation had been considered to be a regulator of loop formation [30]. In detail, loop
formation can be decreased with a high methylation level due to the packed chromosome.
Therefore, we further analyzed and visualized DNA methylation to investigate the relationship
between loop formation and methylation level (Figure 7A). Unexpectedly, the methylation level
did not change in lung cancer samples compared to normal lung cells at both ends of C-MYC-
associated loops (Figure 7B). These results further support the hypothesis that the open
chromatin regions, specifically in human lung cancer cells, allowed the structure protein (e.g.,

CTCF) to bind and form the new chromatin loop, thereby increasing the C-MYC expression.

Some long-range interaction between SNPs and targeted genes had been revealed [31].
In addition, some SNPs within the non-coding region may also regulate loop formation,
modulating downstream gene expression [32]. Therefore, we also integrated lung cancer-
associated SNPs obtained from GDC-TCGA into the browser for users to generate further
interpretation (Figure 7B). SNPs on the outer sides of the loop ends for C-MYC located on the
coding region for POU5F1B and GSDMC, indicating an interplay between these SNPs and

loops.
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HiC, CTCF ChIP-seq, RNA-seq, ATAC-seq, H3K27ac ChIP-seq, and single-cell RNA-seq

analyses of human normal lungs and lung cancer cells

As loops may regulate gene expressions as shown in the bulk RNA-seq result, we wonder if
they are associated with gene expressions in certain cell types. We also wonder whether
COVID-19 affection will induce lung cancer-related gene expression. Therefore, we analyzed
single-cell data for human normal lungs, lung adenocarcinoma, lungs with COVID-19 infection
(Figure 8A). By comparing gene expression between lung cancer and normal lungs, we found
that genes related to lung cancer, such as C-MYC, had much higher expressions in many types
of cells (including EPC cells, smooth muscle cells, Pericytes cells) of lung cancer patients
(Figures 8B). However, the C-MYC gene did not have a higher expression in COVID-19 infected
patients (Figure 8C), which indicates that the potential impact of COVID-19 infection on lung

cancer may not be correlated to C-MYC.

DISCUSSION

Here we built a UCSC browser-based website database, LungCancer3D, to meet the increasing
needs for 3D chromatin architecture studies and multi-omics data analyses. The website
database currently displays 10 different multi-omics data, including HiC-loops, RNA-seq,
snRNA-seq, ATAC-seq, CTCF ChlP-seq, H3K27AC ChlIP-seq, H3K27me3 ChIP-seq, DNA
methylation, CNVs, and SNP mutations. We utilized the C-MYC gene in lung cancer cells as an
example to demonstrate the directly visualizing these multiple omics data and found that its
induced expression in lung cancer cells might be caused by the de novo loop formation bridging

the distant enhancer to bind on its promoter region.

The most significant advantage of multi-omics analyses is to explicate that the
differential changes (e.g., H3K27Ac ChIP-seq peak) identified in one omics data with the
systematic considering of other layers of molecular changes, helping reveal the mechanisms
unbiasedly. For example, the increased H3K27Ac binding (H3K27Ac ChiIP-seq peak) at non-
coding genome regions is frequently neglected by researchers since they are hard to link to
gene expression regulation. However, with the HiC-identified chromatin loops in these regions
and the nearby ATAC-Seq and CTCF ChIP-seq peaks, the increased H3K27Ac binding at non-
coding genome regions can be linked to the target gene, which is C-MYC. Therefore, the
primary function of our website of the current version is to help users directly visualize multi-

omics data.
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The C-MYC gene is a typical oncogene in many types of cancer [33]. A previous study
illuminated that the duplication of the C-MYC enhancer region caused the upregulation of C-
MYC [29]. Unlike these previous findings, our observation from LungCancer3D showed that an
enhancer-promoter interaction might be due to the formation of a new loop that only exists in
lung cancer, which brought an enhancer region to bind the C-MYC promoter. We also observed
that the de novo non-promoter loop terminal in lung cancer with increased H3K27Ac histone
bindings had relatively decreased bindings of H3K27me3 histone. Thus, histone methylation
and acetylation may correlate with loop formation. We also found some lung cancer somatic
mutations near C-MYC. These SNPs are in the genomic region of the POU5F1B and GSDMC
genes. Previous studies report that Caspase-8 cut GSDMC at D365 amino acid in cancer [34]
[35], thus remodeling the chromatin architecture. Since the loops formed in lung cancer are
different from those in other cancers, such as breast cancer or duct cancer. It suggested that a
site that represses the formation of this lung cancer loop may specifically target lung cancer
cells. A closer study on these SNPs may help researchers identify a novel site for target

therapy.

In the future, besides paying more attention to the study of 3D chromatin architecture
changes at the level of multiple omics, we will continue optimizing our website. We will increase
the size of each omics data by combining and analyzing more datasets and allowing users to
upload their data to our website in either raw data format or processed data format. In addition,
we will add functions that analyze the differential gene expression, differential peaks, and
differential loops and allow users to download them and other data. The goal is to construct a
website database with tools for users to generate differential data in multiple omics and a

comprehensive dataset for lung cancer study.
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Figure 1. Overview of multi-omics data available at the website and examples of data
integration. The left column shows the description of each track. The middle is the browser’s
screenshot at the chromatin around lung-cancer-associated differential loops near the oncogene
C-MYC. The right column is the functional interpretation of what each track can present. Users
can utilize several combinations from different tracks to generate information related to

chromatin interaction. (Created with BioRender.com)

Figure 2. The C-MYC-associated loops between normal and tumoral cells. Hi33C results for
normal lung cells and A549 cell. (A) Loops that are specifically formed in A549 cells and human
lungs. (B) Cancer-specific loops around C-MYC. (C) C-MYC-associated loops are specifically

formed in different tumors.

Figure 3. CTCF protein was bound to the terminals of the C-MYC-associated loops. (A)
CTCF_lung and CTCF_A549 represent CTCF ChlP-seq results for normal lung samples and
A549 cells, respectively. The height of each bar indicates normalized coverage of extended
reads at each locus. Different colors within each track indicate replicates. (B) CTCF peaks at

both ends of loops around C-MYC.

Figure 4. The C-MYC-associated loops enriched in human lung cancer cells are positively
related to its increased gene expression. (A) RNASeq_lung and RNASeq_A549 track represent
RNA-seq results for normal lung samples and A549 cells, respectively. The height of each bar

indicates normalized reads coverage at each locus. Different colors within each track indicate
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replicates. DEG_rnaSeq shows differentially expressed genes, with red for increased
expression in lung cancer, grey for decreased expression in lung cancer, height for fold change.
(B) C-MYC has significantly increased expression levels in lung cancer with differential loops

around it.

Figure 5. The C-MYC-associated loops enriched in human lung cancer cells are in the de novo
non-promoter open chromatin regions. (A) ATACSeq_lung and ATACSeq_A549 track represent
ATAC-seq results for normal lung samples and A549 cells, respectively. The height of each bar
indicates normalized coverage of extended reads at each locus. Different colors within each
track indicate replicates. (B) At the left end of the differential loop around C-MYC, tumor
samples have significantly higher chromatin accessibility than normal samples. At the right end,

only the tumor sample has some peaks, indicating open chromatin regions.

Figure 6. The C-MYC-associated loops enriched in human lung cancer cells have the de novo
binding of H3K27Ac on the non-promoter loop terminal. (A) H3K27Ac_lung and H3K27Ac_A549
represent H3K27Ac ChlP-seq results for normal lung samples and A549 cells, respectively. The
height of each bar indicates normalized coverage of extended reads at each locus. (B) At the
left end of the cancer-specific loop around C-MYC, normal and tumoral samples have similar

H3K27Ac levels. At the right end, only the tumor sample has a peak.

Figure 7. There are no changes in the methylation and SNP in the genomic region of the C-
MY C-associated loops enriched in human lung cancer cells. (A) The methylation level of tumor
cells in LUAD and corresponding normal tissues. The bar height indicates averaged beta value *

1000. (B) Examination of methylation or SNP around the C-MYC-related differential loops.

Figure 8. single-cell transcriptome is correlated with cancer-specific loops. (A) from top to the
bottom, DEGs of normal lung, lung cancer and COVID-19 patients single-cell samples. Height
indicates fold change and color represents cell type. (B) C-MYC is a differentially expressed
gene in many types of cells of lung cancer patients. (C) C-MYC is not a DEG in any types of
cells of COVID-19 patients.
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