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ABSTRACT 

With the breakthrough of chromatin conformation capture technologies in recent years, the 

importance of three-dimensional (3D) genome structure in gene expression, cell function 

regulation, disease occurrence, and development has been gradually recognized. To provide a 

comprehensive visualization of chromatin architecture and other multi-omics data for lung 

cancer research, we have constructed a comprehensive database, LungCancer3D 

(http://www.lungcancer3d.net). This web-based tool focuses on displaying human lung cancer-

related HiC data along with a variety of other publicly available data, such as RNA-seq, scRNA-

seq, ATAC-seq, ChIP-seq, DNA methylation, DNA mutation, and copy number variations. 

Researchers can visualize these diverse multi-omics data directly through the genome browser 

and discover how the genes expression is regulated at diverse levels. For example, we have 

demonstrated that the high expression level of C-MYC in lung cancer may be caused by the 

distant enhancer introduced by the de novo chromatin loops in lung cancer cells to bind the C-

MYC promoter. The integrated multi-omics analyses through the LungCancer3D website can 
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reveal the mechanisms underlying lung cancer development and provide potential targets for 

lung cancer therapy. 

 

INTRODUCTION 

Lung cancer continues to be the leading cause of cancer death worldwide [1]. Global Cancer 

Statistics 2020 showed an 11.4% incidence rate with a death rate of 18% worldwide [1]. 

Although targeted therapies for lung cancer, such as EGFR, have achieved good efficacy in a 

subset of patients, most patients still do not have targeted drugs for treatment [2]. Therefore, 

investigation of the mechanism of lung cancer development is urgently needed. 

Various genomic and epigenomics studies have been utilized to reveal the mechanism 

in lung cancer progression, but the integration of multiple omics data is not effectively conducted 

[3]. Thus, many studies heavily depend on the limited omics data to understand lung cancer 

development. For example, it is still relatively difficult to comprehensively integrate multiple 

omics to study the development of lung cancer, especially the integration of the newly emerging 

HiC omics that detect chromatin interactions and reveal three-dimensional chromatin structure. 

The abnormal 3D structure of chromatin has been shown to promote the progression of 

diseases, including cancer [4]. Previous research also showed that the chromatin loops in lung 

cancer tissues or lung cancer cells differed from normal lung tissue [5]. The formations of 

chromatin loops were reported to regulate gene expression [6]. And the chromatin accessibility 

and DNA methylation affect the formation of chromatin loops [7]. However, how loops regulated 

adjacent genes at the genome-wide level is mainly unclear, and how dysregulated chromatin 

loops contributed to cancer development remains elusive. Studying the 3D chromatin 

architecture may lead to a new point in cancer studies. For example, 3D chromatin architecture 

can be potential therapeutic targets by regulating the formation of loops regulating the critical 

gene expression [8]. Practical tools that display 3D chromatin architecture information with the 

integration of other omics are needed. Several online databases have been developed to 

visualize chromatin interactions, such as 3DIV and 3D Genome Browser [9, 10]. However, none 

of them can show the integrated analysis of multiple omics, especially on lung cancer, such as 

integrating the visualization HiC with other omics data and searching a gene of interest. To 

overcome current limitations, we developed a website database providing users with visualized 

multi-omics data, including gene expression, copy number variation, somatic mutation, miRNA, 

DNA methylation, chromatin open accessibility, and histone modification information (Figure 1). 
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In addition, we also integrated single-cell RNA-seq (scRNA-seq) data for normal human lungs, 

lung cancer, and human lungs without or with COVID-19 infection. The differential analysis 

results between cancer (mainly lung cancer) and normal samples were also displayed. Using 

this comprehensive website database allows users to better utilize genomic and epigenomic 

data to generate a functional interpretation of the identified chromatin interactions or search for 

potential therapeutic targets for future research. 

 

MATERIALS AND METHODS 

Website development and data source 

Our registered website is www.lungcancer3d.net. UCSC mirror package was downloaded and 

installed on our web server by method browserSetup (genome browser in the cloud 

introduction) [11]. MariaDB was used on the backend to support the data structure. Apache 

HTTP server was used for cross-platform web services. BigWig file format is the basic file 

format recognized by MariaDB. Currently, our webpage only supports human genome assembly 

hg19, which was also downloaded from UCSC website. The raw data related to human lung 

cancer studies were downloaded from public databases and described in Table 1 [12] [13] [14] 

[15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27].  

Table 1. Description of the human lung cancer related multi-omics datasets included in 

LungCancer3D website 

Category Description Dataset 
Displayed 

format 

HiC 

Normal lung 
GSM2322544 

bigInteract 

GSM2322545 

Cancer lung A549 ENCSR444WCZ 

Large cell lung cancer ENCSR346DCU 

Ovarian clear cell adenocarcinoma GSM3392700 

Normal Ovarian clear cell 

adenocarcinoma 
GSM2322546 

Pancreatic carcinoma ENCSR440CTR 

Normal Pancreatic carcinoma GSM2322547 
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GSM2322548 

GSM2322549 

GSM2322550 

Prostate adenocarcinoma 

GSM1902607 

GSM1902608 

GSM1902609 

GSM1902610 

GSM1902611 

GSM1902612 

GSM1902613 

GSM1902614 

Normal Prostate AD cells 

GSM1902602 

GSM1902603 

GSM1902604 

Acute_Myeloid_Leukemia 

GSM3967118 

GSM3967119 

GSM3967120 

GSM3967121 

Normal Acute_Myeloid_Leukemia 
GSM3560407 

GSM3560408 

Chronic_Lymphocytic_Leukemia 

GSM1551618 

GSM1551619 

GSM1551620 

GSM1551621 

GSM1551622 

GSM1551623 

GSM3560408 

Glioblastoma 

GSM3567145 

GSM3567146 

GSM3567147 

GSM3567148 

Normal Glioblastoma GSM2828825 
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GSM2828826 

Skin cancer ENCSR312KHQ 

Endorcrin-sensitive Breast Cancer GSM1631185 

Normal cell for breast cancer GSM1631184 

Mammary ductal carcinoma ENCSR549MGQ 

Hepathocellular carcinoma GSM2825569 

  GSM2825570 

Normal Hepathocellular carcinoma GSM1419086 

RNA-seq 
Normal lung ENCSR045GTF bigWig 

Cancer lung A549 ENCSR000CON   

ATAC-

seq 

Normal lung ENCSR647AOY 
bigWig  

Cancer lung A549 ENCSR032RGS 

ChIP-seq 

Normal lung 

GSM1006882 

bigWig 

GSM906395 

GSM1220283 

ENCSR842LST 

ENCSR218YUS 

ENCSR975GDL 

Cancer lung A549 

  

bigWig  

ENCSR000DYD 

SRX2267497 

SRX1476397 

SRX471983 

DRX15231 

GDC-

TCGA 

LUAD somatic mutations 

TCGA  

bedDetail 

LUSC somatic mutations bedDetail 

LUAD copy number bed 

LUSC copy number bed 

LUAD DNA methylation bigBed 

LUSC DNA methylation bigBed 

Single 

cell RNA-

Normal lung GSE171524 
bigwig 

Adenocarcinoma GSE131907 
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seq COVID-19 lung GSE171524 

 

Data retrieval and processing  

HiC 

Twelve processed HiC datasets involving 9 cancers were obtained from the website of 3D-

Genome Interaction Viewer & database (3DIV, http://kobic.kr/3div/download). Each dataset 

included the signal enrichment over background of each identified HiC loop. For each pairwise 

comparison between normal tissue cells and tumor cells, we applied fold change threshold of 

1.5 to identify the differential loops that specifically exist in each sample.  

 

RNA-seq 

Raw sequencing fastq files of RNA-seq datasets were downloaded from the ENCODE 

database, which contain transcriptome data from human lung tissue and lung cancer cells A549. 

Self-defined Perl pipeline was applied to remove adaptors and low-quality reads with QC < 20 

and length < 75bp. Tophat was used to map the reads to hg19 reference genome. The 

duplicated mapped reads were removed by Picard (version 2.25.0).  

These uniquely mapped reads were further processed to identify the differentially 

expressed genes (DEGs) between human lung and lung cancer cells A549 using Cufflinks 

(version 2.2.1) with three filters: at least one group FPKM > 1; q < 0.05; log2 fold change > 1.5. 

These identified DEGs were split into 10 files according to the gradient of q value and fold 

change and converted to bigWig files. The genes with negative fold change were shown in 

different shades of blue. Those with positive fold change were shown in different shades of red. 

The genes that were not differentially changed were shown in grey. For differentially changed 

genes, the smaller the q values are, the darker the colors are. 

 

ATAC-seq  

Five paired-end ATAC-seq datasets (3 for A549 cancer cell line, 2 for normal lung tissue) were 

downloaded from the ENCODE database. TrimGalore (version 0.6.6) was used to trim the 

reads. Bowtie (version 1.2.2) was used to map the reads and suppress all alignments if more 

than 1 exist. Picard (version 2.25.0) and samtools (version 1.7) were used to remove the 
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duplicated and unmapped reads with default settings, respectively. The mapped reads were 

extended to 100bp. Normalized ATAC-seq data was divided into normal lung and cancer cells 

A549 groups. Data in each group was averaged with Wiggletools (v1.2.2) “mean” function. 

Differential peaks between normal lung and A549 were identified using bigWigCompare, a tool 

in Deeptools (v3.3.2), with 200bp bin size. The output bedGraph file were filtered with log2 fold 

change >1 or <-1 cutoff and were split into two files according to negative or positive fold 

change. The positive differential peaks were displayed in red and the negative ones were 

displayed in blue. 

 

ChIP-seq  

Eleven single-end ChIP-seq datasets (5 for cancer cells A549, 6 for normal lung tissue) were 

retrieved from the ENCODE and the GEO databases generated from studies of CTCF-binding, 

H3K27Ac modification, and H3K27me3 modification. Self-defined Perl pipeline was used to filter 

reads with QC < 20 and length < 50bp. Bowtie, Picard and samtools were used to map and 

deduplicate reads. The mapped reads were extended to 300bp. The differential peaks were 

identified and displayed as described above. 

 

ScRNA-seq 

Three scRNA-seq datasets were downloaded from the GEO database. A scRNA-seq data from 

normal lung atlas was uploaded within two tracks: ‘10x’, sequencing by 10x Genomics and ‘facs’ 

sequencing by smartseq2. A scRNA-seq data from lethal COVID-19 atlas was displayed with 

two tracks: ‘normal’ and ‘covid’. A scRNA-seq data from lung adenocarcinoma was showed with 

seven tracks: ‘normal lung’, ‘tumor lung’, ‘normal lymph node’, ‘metastatic lymph node’, 

metastatic brain tissue’, ‘pleural fluid’, and ‘advanced stage tumor lung’. Raw counts data were 

first separated into different tracks. For the data in each track, we separated cells by their 

defined cell subtypes, and calculated the FPKM for each gene in each sub-cell-type. The cutoff 

of FPKM was set to 1. Different cell types in a track were displayed by different colors and the 

FPKM was displayed by the height of that transcript. All of the above steps were achieved using 

R (version:4.0) scripts. Then, we obtained chromosome, start and end positions of each 

transcript from ensembl database using reference ‘gencode.v35lift37.annotation.gtf’ with 

python3 scripts. For COVID-19 data, we identified DEGs between normal and COVID-19 
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samples, and for lung adenocarcinoma data, we identified DEGs between normal lung and 

cancer lung; and normal lymph node with metastatic lymph node. DEG was calculated using 

log2 fold change of patients sample vs. normal samples with cutoff of 1.5.   

 

Somatic mutation (SNP) 

The somatic point mutation data was from GDC-TCGA Lung Adenocarcinoma (LUAD) and Lung 

Squamous Cell Carcinoma (LUSC) cohorts (https://xenabrowser.net/datapages/).  Data was 

preprocessed according to MuSE somatic variant calling workflow. The original alignments were 

performed using the human reference genome hg38. The tool LiftOver from UCSC Genome 

browser was used to convert genome coordinates from hg38 assembly to hg19. Mutations with 

genome coordinates that failed in conversion were excluded from final visualization. 

 

Copy number variation 

Copy number variation data for LUAD and LUSC were downloaded from GDC-TCGA database 

(https://xenabrowser.net/datapages/). The original alignments were performed using the human 

reference genome hg38. The genome coordinates were converted to hg19 assembly using the 

same method as described above. Currently copy number variation fragments from each 

sample (patient) are separately presented. 

 

Methylation 

DNA methylation data for LUAD and LUSC were downloaded from GDC-TCGA database 

(https://xenabrowser.net/datapages/). Beta value (the ratio of the intensity of the methylated 

bead type to the combined locus intensity) between 0 to 1 was used to indicate methylation 

level in these datasets. The beta values from 400 patients were averaged and multiplied by 

1000 to fit the bigBed format. Locations of probes were mapped back to hg19 genome using 

reference files provided by TCGA (https://tcga-xena-hub.s3.us-east-

1.amazonaws.com/download/probeMap%2FilluminaMethyl450_hg19_GPL16304_TCGAlegacy)

. 

Data display 
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The mapped reads from RNA-seq, ATAC-seq, and ChIP-seq datasets were converted from bam 

format to bigwig by genomeCoverageBed and bedGraphToBigWig. To make datasets from 

different samples with different sequencing depth comparable, normalized bigWig files for RNA-

seq, ATAC-seq, and ChIP-seq datasets were generated by bamCoverage (version 3.5.1) using 

RPKM. Track information (track name, label name, data type, etc.) for the genome browser 

were stored in file trackDb.ra which was saved in the MySQL root data directory. Track 

information were uploaded to mysql table hg19.trackDb_NEW with hgTrackDb, a tool provided 

by UCSC Genome Browser. Tracks were displayed in different file formats, bigInteract, bigWig, 

bigBed and bedDetail, depending on the data type. 

 

RESULTS 

To demonstrate the applications of LungCancer3D, we utilized the C-MYC region as an 

example to show the integrated HiC data with other multi-omics data. 

 

HiC analysis of human normal lungs, lung cancer cells, and other types of cancer 

To visualize the dysregulated chromatin loops in human lung cancer, we analyzed the HiC 

results of normal human lungs and lung cancer cells (A549 cells), respectively. Differential loops 

between A549 cells and lung cells are identified and displayed (Figure 2A). In addition, we 

found that there are cancer-specific loops around C-MYC, a representative gene (Figure 2B). C-

MYC, a well-known oncogenic transcription factor, was frequently induced in many types of 

tumors [28] [29]. Thus, these specifically enriched C-MYC-associated loops in lung cancer cells 

suggest a potential effect of loops on the C-MYC expression.   

To investigate if these specifically enriched C-MYC-associated loops in human lung cancer 

are conserved in other types of cancer, we analyzed HiC results in other types of cancer, 

including lung large cell cancer, breast cancer, pancreatic carcinoma, and prostate 

adenocarcinoma, and so on. Of note, the C-MYC-associated loops showed the tissue-specific 

patterns though there was a certain similarity among these loops of human lung cancer cells 

(A549) and pancreatic carcinoma (Figures 2C). Thus, these results indicated that the regulatory 

mechanism of loops in the C-MYC expression was tissue-specific.  

HiC and CTCF ChIP-seq analyses of human normal lungs and lung cancer cells 
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To examine if there are some chromatin structure proteins (e.g., CTCF) bound on these loop 

terminals, we next analyzed the CTCF ChIP-Seq of human normal lungs and lung cancer cells 

(A549 cells) (Figure 3A). Interestingly, CTCF ChIP-Seq showed that CTCF was bound on the C-

MYC-associated loop terminals (Figure 3B). Considering CTCF is a typical chromatin structure 

protein to form chromatin loops, these analysis results provided the theoretical formation of 

chromatin loops.  

 

HiC, CTCF ChIP-seq, and RNA-seq analyses of human normal lungs and lung cancer 

cells 

To investigate if these dysregulated chromatin loops in human lung cancer were associated with 

the changed gene expression, we further analyze the transcriptome profiles of human normal 

lungs and lung cancer cells (A549 cells) (Figure 4A). As we expected, the C-MYC expression 

was highly induced in human lung cancer cells, positively associated with the loop (Figure 4B). 

These results suggest that the potential positive effect of these loops on the C-MYC expression. 

 

HiC, CTCF ChIP-seq, RNA-seq, and ATAC-seq analyses of human normal lungs and lung 

cancer cells 

To study if open chromatin regions were correlated to loop formations and gene expression, we 

integrated the ATAC-seq of human normal lungs and lung cancer cells (A549 cells) (Figure 5A). 

As open chromatin allows functional protein binding and is associated with gene expression, it is 

expected the chromatin accessibility to be observed where loops form around these changed 

genes. As expected, we observed that the chromatin accessibility of A549 cells was enhanced 

compared with normal lung cells at both ends of the C-MYC-associated loops (Figure 5B). More 

interestingly, while A549 cells had ATAC-seq peaks at both ends of the C-MYC-associated loop 

terminals, normal lung cells only had the peaks at one terminal near to the C-MYC promoter 

region, not in the distant region. These results raised the hypothesis that the open chromatin 

regions, specifically in human lung cancer cells, allowed the structure protein (e.g., CTCF) to 

bind and form the new chromatin loop, thereby increasing the C-MYC expression.    
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HiC, CTCF ChIP-seq, RNA-seq, ATAC-seq, and H3K27ac ChIP-seq analyses of human 

normal lungs and lung cancer cells 

To understand how genes differentially expressed in lung cancer were affected by the 

specifically enriched loops, we further analyzed H3K27Ac ChIP-Seq of human normal lung cells 

and lung cancer cells (A549 cell line) since H3K27Ac is a typical marker of transcriptional 

activation (Figure 6A). At the terminal of C-MYC-associated loops near its promoter region, both 

normal and tumor cells have similar binding profiles of H3K27Ac. However, the H3K27Ac level 

at that other end of the loop is significantly higher in A549 cells than normal lung cells, 

suggesting that the loop may bridge the distant enhancer to the C-MYC promoter to promote C-

MYC gene expression (Figure 6B). Furthermore, these H3K27Ac peaks were in these open 

regions indicated by the ATAC-Seq peaks. These results indicated that the induced C-MYC 

gene expression is due to the enriched loops specifically in lung cancer, which can bridge the 

distant transcription activation complex to bind on the target gene promoter, resulting in the 

downstream gene activation.  

 

HiC, CTCF ChIP-seq, RNA-seq, ATAC-seq, H3K27ac ChIP-seq, SNP and methylation 

analyses of human normal lungs and lung cancer cells 

DNA methylation had been considered to be a regulator of loop formation [30]. In detail, loop 

formation can be decreased with a high methylation level due to the packed chromosome. 

Therefore, we further analyzed and visualized DNA methylation to investigate the relationship 

between loop formation and methylation level (Figure 7A). Unexpectedly, the methylation level 

did not change in lung cancer samples compared to normal lung cells at both ends of C-MYC-

associated loops (Figure 7B). These results further support the hypothesis that the open 

chromatin regions, specifically in human lung cancer cells, allowed the structure protein (e.g., 

CTCF) to bind and form the new chromatin loop, thereby increasing the C-MYC expression.    

Some long-range interaction between SNPs and targeted genes had been revealed [31]. 

In addition, some SNPs within the non-coding region may also regulate loop formation, 

modulating downstream gene expression [32]. Therefore, we also integrated lung cancer-

associated SNPs obtained from GDC-TCGA into the browser for users to generate further 

interpretation (Figure 7B). SNPs on the outer sides of the loop ends for C-MYC located on the 

coding region for POU5F1B and GSDMC, indicating an interplay between these SNPs and 

loops. 
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HiC, CTCF ChIP-seq, RNA-seq, ATAC-seq, H3K27ac ChIP-seq, and single-cell RNA-seq 

analyses of human normal lungs and lung cancer cells 

As loops may regulate gene expressions as shown in the bulk RNA-seq result, we wonder if 

they are associated with gene expressions in certain cell types. We also wonder whether 

COVID-19 affection will induce lung cancer-related gene expression. Therefore, we analyzed 

single-cell data for human normal lungs, lung adenocarcinoma, lungs with COVID-19 infection 

(Figure 8A). By comparing gene expression between lung cancer and normal lungs, we found 

that genes related to lung cancer, such as C-MYC, had much higher expressions in many types 

of cells (including EPC cells, smooth muscle cells, Pericytes cells) of lung cancer patients 

(Figures 8B). However, the C-MYC gene did not have a higher expression in COVID-19 infected 

patients (Figure 8C), which indicates that the potential impact of COVID-19 infection on lung 

cancer may not be correlated to C-MYC.  

 

DISCUSSION 

Here we built a UCSC browser-based website database, LungCancer3D, to meet the increasing 

needs for 3D chromatin architecture studies and multi-omics data analyses. The website 

database currently displays 10 different multi-omics data, including HiC-loops, RNA-seq, 

snRNA-seq, ATAC-seq, CTCF ChIP-seq, H3K27AC ChIP-seq, H3K27me3 ChIP-seq, DNA 

methylation, CNVs, and SNP mutations. We utilized the C-MYC gene in lung cancer cells as an 

example to demonstrate the directly visualizing these multiple omics data and found that its 

induced expression in lung cancer cells might be caused by the de novo loop formation bridging 

the distant enhancer to bind on its promoter region.  

The most significant advantage of multi-omics analyses is to explicate that the 

differential changes (e.g., H3K27Ac ChIP-seq peak) identified in one omics data with the 

systematic considering of other layers of molecular changes, helping reveal the mechanisms 

unbiasedly. For example, the increased H3K27Ac binding (H3K27Ac ChIP-seq peak) at non-

coding genome regions is frequently neglected by researchers since they are hard to link to 

gene expression regulation. However, with the HiC-identified chromatin loops in these regions 

and the nearby ATAC-Seq and CTCF ChIP-seq peaks, the increased H3K27Ac binding at non-

coding genome regions can be linked to the target gene, which is C-MYC. Therefore, the 

primary function of our website of the current version is to help users directly visualize multi-

omics data.  
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The C-MYC gene is a typical oncogene in many types of cancer [33]. A previous study 

illuminated that the duplication of the C-MYC enhancer region caused the upregulation of C-

MYC [29]. Unlike these previous findings, our observation from LungCancer3D showed that an 

enhancer-promoter interaction might be due to the formation of a new loop that only exists in 

lung cancer, which brought an enhancer region to bind the C-MYC promoter. We also observed 

that the de novo non-promoter loop terminal in lung cancer with increased H3K27Ac histone 

bindings had relatively decreased bindings of H3K27me3 histone. Thus, histone methylation 

and acetylation may correlate with loop formation. We also found some lung cancer somatic 

mutations near C-MYC. These SNPs are in the genomic region of the POU5F1B and GSDMC 

genes. Previous studies report that Caspase-8 cut GSDMC at D365 amino acid in cancer [34] 

[35], thus remodeling the chromatin architecture. Since the loops formed in lung cancer are 

different from those in other cancers, such as breast cancer or duct cancer. It suggested that a 

site that represses the formation of this lung cancer loop may specifically target lung cancer 

cells. A closer study on these SNPs may help researchers identify a novel site for target 

therapy.  

In the future, besides paying more attention to the study of 3D chromatin architecture 

changes at the level of multiple omics, we will continue optimizing our website. We will increase 

the size of each omics data by combining and analyzing more datasets and allowing users to 

upload their data to our website in either raw data format or processed data format. In addition, 

we will add functions that analyze the differential gene expression, differential peaks, and 

differential loops and allow users to download them and other data. The goal is to construct a 

website database with tools for users to generate differential data in multiple omics and a 

comprehensive dataset for lung cancer study. 

 

DATA AVAILABILITY  

LungCancer3D is publicly available at http://www.lungcancer3d.net to all users. All these 

datasets were downloaded from online databases and were described in Table 1. 
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Figure 1. Overview of multi-omics data available at the website and examples of data 

integration. The left column shows the description of each track. The middle is the browser’s 

screenshot at the chromatin around lung-cancer-associated differential loops near the oncogene 

C-MYC. The right column is the functional interpretation of what each track can present. Users 

can utilize several combinations from different tracks to generate information related to 

chromatin interaction. (Created with BioRender.com) 

Figure 2. The C-MYC-associated loops between normal and tumoral cells. Hi33C results for 

normal lung cells and A549 cell. (A) Loops that are specifically formed in A549 cells and human 

lungs. (B) Cancer-specific loops around C-MYC. (C) C-MYC-associated loops are specifically 

formed in different tumors.  

Figure 3. CTCF protein was bound to the terminals of the C-MYC-associated loops. (A) 

CTCF_lung and CTCF_A549 represent CTCF ChIP-seq results for normal lung samples and 

A549 cells, respectively. The height of each bar indicates normalized coverage of extended 

reads at each locus. Different colors within each track indicate replicates. (B) CTCF peaks at 

both ends of loops around C-MYC.  

Figure 4. The C-MYC-associated loops enriched in human lung cancer cells are positively 

related to its increased gene expression. (A) RNASeq_lung and RNASeq_A549 track represent 

RNA-seq results for normal lung samples and A549 cells, respectively. The height of each bar 

indicates normalized reads coverage at each locus. Different colors within each track indicate 
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replicates. DEG_rnaSeq shows differentially expressed genes, with red for increased 

expression in lung cancer, grey for decreased expression in lung cancer, height for fold change. 

(B) C-MYC has significantly increased expression levels in lung cancer with differential loops 

around it. 

Figure 5. The C-MYC-associated loops enriched in human lung cancer cells are in the de novo 

non-promoter open chromatin regions. (A) ATACSeq_lung and ATACSeq_A549 track represent 

ATAC-seq results for normal lung samples and A549 cells, respectively. The height of each bar 

indicates normalized coverage of extended reads at each locus. Different colors within each 

track indicate replicates. (B) At the left end of the differential loop around C-MYC, tumor 

samples have significantly higher chromatin accessibility than normal samples. At the right end, 

only the tumor sample has some peaks, indicating open chromatin regions.  

Figure 6. The C-MYC-associated loops enriched in human lung cancer cells have the de novo 

binding of H3K27Ac on the non-promoter loop terminal. (A) H3K27Ac_lung and H3K27Ac_A549 

represent H3K27Ac ChIP-seq results for normal lung samples and A549 cells, respectively. The 

height of each bar indicates normalized coverage of extended reads at each locus. (B) At the 

left end of the cancer-specific loop around C-MYC, normal and tumoral samples have similar 

H3K27Ac levels. At the right end, only the tumor sample has a peak. 

Figure 7. There are no changes in the methylation and SNP in the genomic region of the C-

MYC-associated loops enriched in human lung cancer cells. (A) The methylation level of tumor 

cells in LUAD and corresponding normal tissues. The bar height indicates averaged beta value * 

1000. (B) Examination of methylation or SNP around the C-MYC-related differential loops.  

Figure 8. single-cell transcriptome is correlated with cancer-specific loops. (A) from top to the 

bottom, DEGs of normal lung, lung cancer and COVID-19 patients single-cell samples. Height 

indicates fold change and color represents cell type. (B) C-MYC is a differentially expressed 

gene in many types of cells of lung cancer patients. (C) C-MYC is not a DEG in any types of 

cells of COVID-19 patients.  
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