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Abstract—Deep networks have been recently proposed to
estimate motor intention using conventional bipolar surface
electromyography (sEMG) signals for myoelectric control of
neurorobots. In this regard, deepnets are generally challenged
by long training times (affecting the practicality and calibra-
tion), complex model architectures (affecting the predictability
of the outcomes), a large number of trainable parameters
(increasing the need for big data), and possibly overfitting.
Capitalizing on our recent work on homogeneous temporal
dilation in a Recurrent Neural Network (RNN) model, this
paper proposes, for the first time, heterogeneous temporal
dilation in an LSTM model and applies that to high-density
surface electromyography (HD-sEMG), allowing for decoding
dynamic temporal dependencies with tunable temporal foci. In
this paper, a 128-channel HD-sEMG signal space is considered
due to the potential for enhancing the spatiotemporal resolution
of human-robot interfaces. Accordingly, this paper addresses a
challenging motor intention decoding problem of neurorobots,
namely, transient intention identification. The aforementioned
problem only takes into account the dynamic and transient
phase of gesture movements when the signals are not stabilized
or plateaued, addressing which can significantly enhance the
temporal resolution of human-robot interfaces. This would
eventually enhance seamless real-time implementations. Addi-
tionally, this paper introduces the concept of “dilation foci”
to modulate the modeling of temporal variation in transient
phases. In this work a high number (i.e. 65) of gestures
is included, which adds to the complexity and significance
of the understudied problem. Our results show state-of-the-
art performance for gesture prediction in terms of accuracy,
training time, and model convergence.

Keywords—Human-centered Robotics, Neurorobotics, High
Density sEMG, Temporal Dilation, Recurrent Neural Networks

I. INTRODUCTION

As of 2005, more than 1.6 million people in the United
States were living with the loss of a biological limb. This
population is estimated to double by 2050. Besides, acci-
dents and congenital conditions, some medical conditions
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can lead to amputation, such as cancer, vascular diseases,
diabetes, peripheral arterial diseases [1]. The population
of people who have such conditions is also growing in
an accelerated manner. Thus, the research in fabrication
and seamless control of prostheses is in substantially high
demand. For upper-limb functions, due to the complexity
and diversity of tasks, intuitive and agile (fast in response)
control are technically challenging. Addressing these prob-
lems can help amputees with Activities of Daily Living
(ADLs) beyond essential hand functions. Furthermore, ex-
isting gesture detection algorithms have low accuracy and
high latency, leading to a high rejection rate in commercial
systems [2]–[4].

Surface electromyography (sEMG) has been used ex-
tensively in the literature to implement myoelectric con-
trol of bionic limbs, allowing for peripheral interfacing of
the human motor intention to robotic actions in a non-
invasive manner [5]. Deep learning techniques have been
increasingly used in recent work to decode the complex
human neurophysiological responses to motor commands,
exploiting the rich information present in the sEMG signals.
Deep learning techniques can vary in structure, with linear
and nonlinear temporal/spatial connections between layers.
Convolutional neural networks (CNNs) have been leveraged
in sEMG-based prosthetic studies [6]–[12] because of their
ability to perform localization and to perform weight sharing
through kernel sliding. A CNN model can detect and locate
human neurophysiological features appearing anywhere in a
given segment of muscle-activity signal. Recurrent Neural
Networks (RNNs) have also been used [13]–[17] for the
control of prosthetic systems. An RNN model can capture
the underlying temporal dynamics from sEMG signals since
each hidden cell comprises the information from all previous
hidden cells and the observation of the current timestamp.
Some recent articles (for example [18], [19]), including
our previous work [20], [21], have proposed hybrid models
that leverage the benefits of both CNNs and RNNs for
motor intention detection using sEMG signals. In [20], we
proposed a hybrid approach that achieves high performance
on conventional user-specific and generalized gesture classi-
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fication, with reduced need for re-training and re-calibration.
However, traditional bipolar sEMG signals have challenges
in capturing muscle group activities, due to limited numbers
of sensors and sparse sensor placement. Therefore, the mod-
els still suffer from the lack of versatility and agility. In this
context, versatility refers to the number of gestures which
can be detected for the control of neurorobotic systems,
and agility refers to the corresponding temporal resolution.
Most of the existing literature only uses the plateau phase
of contraction, which is a steady-state phase during highly-
controlled and instructed task conduction when signals does
not represent a dynamic contraction. The use of the steady
segment of the signal results in low temporal resolution,
late reaction, and incorrect classification during transient
phases which can affect the practicality, and intuitiveness. In
this paper we aim to address the aforementioned issues by
proposing a new computational model that can process high-
density surface electromyography (HD-sEMG) signals to
enhance the spatiotemporal resolution of intention decoding.

High-density surface electromyography (HD-sEMG) has
attracted considerable attention in recent years because it
encodes distributed activities of motor units across the
muscles and the gradient of changes in time and space,
which are critical factors for distinguishing intended motor
tasks. HD-sEMG signals are noninvasively collected from a
large number of electrodes arranged in a two-dimensional
array. The dense placement (e.g., 5-10mm inter-electrode
space) of electrodes in a 2D grid describes the muscle
activities both as a function of time and topologically (in
space) for the muscle group. Some recent efforts have
been conducted to utilize various representations of HD-
sEMG signals for detecting human intention. Examples are
as follows: time-domain representation [22]–[24], image-
based muscle activity heatmap representation [19], [22],
[25], and motor unit action potentials (MUAPs) and the
corresponding spike trains derived through decomposition
of HD-sEMG [26]–[28]. In the literature noted above, HD-
sEMG has shown ability to secure high accuracy. However,
there are some critical limitations, as follows: (a) signals are
often down-sampled to reduce the volume of high-density
information in some (not all) cases, (b) relatively low number
of classified gestures (< 27 gestures) are considered, (c) low
number of subjects is included, and (d) the plateaued phases
of contraction is considered under controlled environments
and long signal windows. In this paper, we utilize a new
open dataset (see Section II-A), and specifically address
the transient-phase decoding problem for a high number of
gestures using a novel algorithm proposed in this work. We
conduct a comprehensive comparative study to support state-
of-the-art results.

Despite the diversity of model structures (CNNs, RNNs,
or hybrid models), the literature suffers from the most
common deep-learning problems, including long training
times, vanishing/exploding gradients, and short dependen-

cies. Furthermore, these models suffer from traditional deep
learning limitations, such as requiring large training sets to
classify a large number of classes and to avoid overfitting.
Therefore, we previously proposed homogeneous temporal
dilation of a hybrid LSTM-CNN model by injecting dilation
into the LSTM module [21]. This allows for modeling
longer temporal dependencies, thereby mitigating vanish-
ing/exploding gradients. At the same time, it makes the
structure less complex, allowing the training time to be 20
times faster than existing counterparts.

In this paper, we are taking the next fundamental step
by proposing nonlinear heterogeneous temporal dilation of a
pure LSTM network to further explore the benefits of various
modes of dilation. In the proposed nonlinear temporal dila-
tion, the skipped LSTM cells exponentially increase within
each layer, broadening the receptive field of the model for
capturing longer and more diverse temporal dependencies.
Additionally, we analyze the impact of dilation focus (see
Fig. 4), which varies the connection density of the LSTM
cells along the temporal dimension. Furthermore, we train
and test on the transient phase of each repetition, which
contains only 10% of the signal length. We also investigate
the effect of different window lengths, and we achieve the
best model performance with a window size of 200ms. The
six contributions of this paper are summarized below:

Contribution 1: This paper proposes heterogeneous tem-
poral dilation, for the first time, which introduces nonlinear-
ity in the skip connections of LSTM cells to increase the
reach and variety of temporal dependencies. The nonlinear
dilation further alleviates deep learning problems such as
vanishing/exploding gradients and long training times.

Contribution 2: The proposed dilated model powerfully
and successfully predicts a high number (65) of gestures,
achieving 80% accuracy and enhancing the model versatility
and robustness.

Contribution 3: The gesture prediction task is designed
for detecting the transient phases (10% of the signal length
from each repetition) which significantly enhances the agility
and temporal resolution.

Contribution 4: The concept of dilation foci is proposed
and implemented for the first time, adding one more degree
of freedom to the proposed deepnet model, modulating the
model’s temporal reach, which is beneficial for adaptability.

Contribution 5: The analysis of varying window sizes
found the best model performance (82% median accuracy)
when the window size is 200ms (which is lower than the
real-time requirement of 300ms in prosthesis control [29]).

Contribution 6: The proposed heterogeneous dilation
shortens the training time by more than 20 times over regular
RNN models.
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II. MATERIAL AND METHODS

A. Data Acquisition Process

In order to design a robust, light-weight, and efficient
prosthesis control interface that can support versatile ADLs
beyond essential hand functions, this paper is based on a
high-quality HD-sEMG database that includes 65 isometric
hand gestures with different Degrees of Freedom (DoFs)
recently published in the scientific data of Nature [30]. The
movements consist of 16 1-DoF finger and wrist gestures,
41 2-DoF compound gestures of fingers and wrist, and
eight multi-DoF gestures of grasping, pointing, and pinching.
The database was collected from 20 healthy participants,
14 males and six females, with wide-ranging ages between
25 and 57 years old (mean: 35 years old). We only use
the signals from 19 subjects because the data from subject
5 is not available. The HD-sEMG signals were recorded
using a Quattrocento (OT Bioelettronica) biomedical am-
plifier system through two 8 × 8 electrode grids (a total
of 128 channels) with a 10mm inter-electrode distance, at
a sampling rate of 2048 Hz. The two grids were positioned
on the dorsal (outer forearm) and the volar (inner forearm)
of the upper forearm. The recording was performed in a
differential manner, where the channel i signal is the signal
difference between electrode i+1 and electrode i, to reduce
common-mode noise. Each subject was asked to perform
each gesture for five repetitions before switching to the next
one. Each repetition lasts for five seconds, followed by an
equal-duration rest. Fig. 1 shows muscle-activity heatmaps
from the two 8 × 8 electrode grids (inner and outer forearm)
for the best-performing subject. Due to space limitations, we
only show 16 out of the 65 gestures, and choose the simplest
most visually intuitive examples. We show the heatmaps for
the two grids, for a total of 32 heatmaps. It can be observed,
for instance, that for Movement 2 ”ring finger: bend”, which
is an extension of the little finger, more muscle activity is
observed on the outer forearm (which contains the extensors)
than on the inner forearm. Independent forces from each
finger and the wrist were utilized to assist the temporal re-
labeling in aligning the movement labels with the segments
of the hand gestures once they have reached a plateau. This
paper uses the labels before the temporal adjustment to
include the transient phase. In our experiments, repetitions 1,
3, and 4 are used for training and the remaining repetitions
2 and 5 are used to test the trained model.

B. Data Preprocessing

In this work, we define the length of the transient phase
by averaging the corresponding force signals of each gesture
across all subjects. For instance, the force signals of the
“ring finger: bend” movement were measured by the strain
gauge on the ring finger. The length of the transient phase
of a 2-DoF or multi-DoF gesture is the average length of
the transient phases indicated by the corresponding force

signals measured by multiple strain gauges. The HD-sEMG
signals of each repetition have been truncated after 0.5 secs
to capture the computed transient phase average. Fig. 2
shows the 0.5-second transient phases (indicated by dashed
lines) of the corresponding force signals of Movement 1
(1-DoF), Movement 26 (2-DoF), and Movement 61 (multi-
DoF). In the next step, this paper scales up the signal
magnitudes using Min-Max normalization only based on
training data, followed by Mu-law transformation [31] on
each data scalar in a logarithmic and nonlinear manner.
Mu-law transformation is applied as can be seen in (1)
to enhance the discriminability of the information from
different channels.

F (xt) = sign(xt)
ln(1 + µ|xt|)
ln(1 + µ)

. (1)

In (1), xt denotes each data scalar and µ = 2048. We
conduct signal windowing and evaluate the effect of varying
window sizes in compliance with the real-time implemen-
tation standards in myoelectric control [29], [32]–[35]. We
investigate sliding short window sizes of 100ms, 200ms, and
300ms with the same step size of 10ms. Each short window
is a data point for training the model. As a result, the model
input has a shape of 204 × 128 for a 100ms window, 409
× 128 for a 200ms window, and 614 × 128 for a 300ms
window. 128 is the number of channels (two 8 × 8 grids).
Thus, for a 200ms window size, we are feeding only 20
minutes of calibration/training data to the model for each
subject. It is commendable that a 65-class model can work
with such little data, which enhances the practicality and
reduces the need for extensive calibration.

III. MODEL STRUCTURE

Based on our previous research and recent literature, it
should be mentioned that for smaller numbers of gestures
and the steady-phase of contraction, deep neural networks
can achieve high performance when given large datasets.
However, deep structures and the need for large datasets are
two primary factors leading to complex model architectures
and long training times. Motivated by this issue, and capi-
talizing on our recent work on linear dilation of RNNs, in
this paper we propose heterogeneous temporal dilation, for
the first time, aiming at adding longer, nonlinear, and more
diverse temporal reach to the LSTM model. This paper also
proposes one new degree of freedom, dilation focus, to the
model structure, indicating the skewness of the connection
density of the dilated LSTM cells on each layer.

A. Regular Baseline Model and Dilated Baseline Model

In this paper, we compare the model performance of
the proposed heterogeneously dilated model with two base-
line models, a regular LSTM model (see Fig. 3a) and
a homogeneously dilated LSTM model. (See Fig. 3b for
the dilated baseline model). The study using the regular
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Fig. 1: 32 muscle-activity heatmaps associated with 16 1-DoF movements from the best-performing subject ( 15). Each
gesture has two heatmaps (forearm extensor and flexor). Each heatmap is an 8 × 8 grid, consisting 64 electrodes.

baseline model evaluates the effect of any dilation, while
the study on the dilated baseline model compares the effect
of different temporal dilation strategies (homogeneous vs.
heterogeneous). In this work, for consistency, the regular
baseline model consists of four LSTM layers, each having
a number of LSTM cells equal to window size × sample
rate (e.g., 409 LSTM cells for a 200ms window) and
128 hidden units. The 128 hidden units of the last LSTM
cell of the fourth LSTM layer are fed into the classifier
(i.e., a fully connected neural net which fuses the decoded
information for gesture prediction). The classifier contains
three fully connected layers, sequentially including 64, 32,
and 65 nodes, to conduct gesture prediction. The dilated
baseline model has a similar architecture to the regular
baseline model, but the 3rd-order homogeneous dilation
is injected into the LSTM layers. Refer to our previous
work [21] for more details on the homogeneous model and
the aggressiveness of temporal dilation. Early stopping (a
common technique to prevent overfitting in the literature
[16], [36], [37]) with a patience factor of 30 is used. This
means that the model will stop training after 30 iterations
past the point at which the accuracy has plateaued.

B. Heterogeneous Dilation and Dilation Focus

Compared with the homogeneous dilation that has vertical
aggressiveness within each layer, in heterogeneous dilation,
we examine different aggressiveness horizontally within the
second layer. The number of skipped LSTM cells between
two connected cells exponentially increases/decreases, de-
termined by the dilation focus. In a left-focused model (see

Fig. 4a), the model is divided into three equal-length time
segments. The number of skipped cells (denoted as Nk)
of each time segment can be derived from an exponential
function shown in (2).

Nk = n · (2k − 1), k = 1, 2, 3 (2)

k denotes the k-th time segment, and n represents the max-
imum number of skip connections given the time segment.
In a right-focused model (see Fig. 4c), the model is also
segmented into three equal parts on the time axis. The
number of the skipped cells of each time segment can be
calculated from the same exponential function but with k in
the reverse order. In a middle-focused model (see Fig. 4b),
we first find the median cell of each layer, and then divide the
LSTM model into two submodels, each having three equal-
length (one-sixth of the window size) time segments. The
submodel on the left is equivalent to a right-focused dilated
model, whereas the submodel on the right is equivalent to
a left-focused dilated model. Early stopping with a patience
factor of 30 is again used.

TABLE I: Model descriptions.

ID Name

1 4-Layer, Regular Baseline Model

2 4-Layer, Dilated Baseline Model

3 4-Layer, Heterogeneous Dilation, Left Focus

4 4-Layer, Heterogeneous Dilation, Middle Focus

5 4-Layer, Heterogeneous Dilation, right Focus
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(a)

(b)

(c)

Fig. 2: This figure shows the corresponding forces of three
gestures with different DoFs on each repetition. The dashed
lines indicate the end (0.5 seconds) of transient phases. Force
indices 0-5 denote strain gauges on index finger, middle fin-
ger, ring finger, little finger, thumb finger flexion/extension,
thumb finger abduction/adduction, respectively. Line colors
denote five different repetitions. (a) Little finger force of
little finger bend gesture; (b) Ring finger force and thumb
forces of ring finger bend and thumb down gesture; (c) All
five fingers forces of palmar grasp gesture.

IV. EXPERIMENTS AND RESULTS

A. Experiment Models

Following the previously explained model structures, we
perform a comprehensive analysis on five LSTM-based
models listed in Table I. Model 1 is a regular 4-layer LSTM
network. Model 2 adds 3rd-order homogeneous dilation,
skipping 7 out of every 8 cells on the second layer. (Refer
to [21] for details on the upper layers.) Based on model 2, we
extend to models 3-5, where we replace the homogeneously
dilated second layer with the three versions of heterogeneous
dilation. We adapt the heterogeneous dilation only on one
layer because experiments showed that applying dilation of
the same focus on too many layers results in an overall
condensing of information in one area and too much loss
in the other areas, therefore affecting the performance. A
left-focused dilation is used on the second layer of model 3,
a middle-focused dilation is used on model 4 and a right-
focused dilation is used on model 5. We train user-specific
models for each of the 19 subjects.

(a)

(b)

Fig. 3: (a) Regular baseline model where all LSTM cells
are connected; (b) Dilated baseline model with first-order
dilation.

(a)

(b)

(c)

Fig. 4: (a) Left-focused model where the highest connection
density is at the beginning timestamps; (b) middle-focused
model where the highest connection density is at the mid-
dle timestamps; (c) right-focused model where the highest
connection density is at the end timestamps.

B. Results and Statistical Analysis

To demonstrate the influence of our proposed model struc-
tures on accuracy and training speed, we perform statistical
analysis on all previously mentioned models across all 19
subjects. We first perform D’Agostino-Pearson test for nor-
mality, which validates our comparisons of the experiment
results using paired t-tests. The significance threshold for
p-value is 0.05. We also applied Bonferroni correction to
the observed p-values, a commonly used method for a
more conservative result by reducing the probability of false
positives. Markers are used in the comparisons to identify
significance levels, based on the Bonferroni-corrected p-
values as following: (a) The ns marker (for not significant)
denotes corrected p-values between 0.05 and 1; (b) The *
marker denotes corrected p-values between 0.01 and 0.05;
(c) ** denotes corrected p-values between 0.001 and 0.01;
(d) *** denotes corrected p-values between 0.0001 and
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(a)

(b) (c)

Fig. 5: (a) Accuracy box plots of models using 100ms
window size, (b) 200ms window, (c) 300ms window

.

0.001; and (e) **** denotes corrected p-values smaller than
0.0001. In Fig. 5, we show the comparisons of model
performances using box plots. As can be seen, the dilated
models are consistently performing better than the base
models, demonstrating the power of dilation in terms of
prediction accuracy. Among the dilated versions, the middle-
focused heterogeneous dilation model (model 4) shows the
best result. In Table II, we list the median accuracy of each
model for different window sizes to present more clearly
that the middle-focused heterogeneous dilation model gives
the best accuracy across all the models. Out of all the
experiments, we got the best performance of 82.006% using
the middle-focused heterogeneous dilation structure and the
200ms window size. In Fig. 5b, we added the t-test results
between the homogeneous dilation model and the middle-
focused heterogeneous dilation model and we observed that
the differences between them are statistically significant.
This evidence shows that our proposed structure has the
potential to increase accuracy while enhancing the model’s
generalizability and adaptability on transient-phase data.

Similarly, we compare the number of iterations for con-
vergence in training the model, which we define as the
number of iterations required for the validation accuracy to
reach 95% of the final best accuracy using the same method
previously presented. We show in Table III that the dilated

TABLE II: Model accuracy.
XXXXXXXXWindow

Model 1 2 3 4 5

100ms 73.6% 77.9% 75.6% 80.1% 75.6%

200ms 69.3% 79.0% 78.9% 82.0% 77.0%

300ms 66.2% 79.5% 78.4% 80.2% 78.4%

TABLE III: Number of converge iterations.
XXXXXXXXWindow

Model 1 2 3 4 5

100ms 87 47 55 40 48

200ms 131 32 36 42 37

300ms 127 36 37 26 29

models require less iterations to converge. In particular, for
models with window sizes of 100ms and 300ms, the middle-
focused model achieves fastest convergence.

Fig. 6 compares training validation accuracies between
the base model and the best performing middle-focused
heterogeneous dilation model with a 200ms sliding window
size for all subjects. The plot shows the progression of
accuracy with training iterations. We can see that the pro-
posed heterogeneous dilation model brings significant and
consistent improvements in accuracy, convergence speed,
and smoother convergence patterns.

V. COMPARATIVE STUDY

In the previous experiments, we compared different RNN
models’ performance (regular and homogeneously dilated
LSTM models) with our proposed model. We observed that
the heterogeneously dilated models with different dilation
foci outperform the other two sequential models in most cir-
cumstances. In this section we conduct a comparative study
to compare the proposed heterogeneously dilated model with
conventional nonsequential deepnets. We compare our best
proposed model (middle focused) with two conventional
deepnets, i.e., a Convolutional Neural Net (CNN) and a
Multilayer Perceptron (MLP). The comparison is based on
a window size of 200ms for consistency. The comparative
study also shows the superiority of the proposed approach in
capturing underlying temporal dynamics and the robustness
and adaptability of heterogeneous dilation in reducing the
model complexity, improving the model convergence, and
shifting the model focus for varying tasks. The CNN model
consists of two CNN blocks, each having a convolutional
layer, a batch normalization layer, and a Parametric Rectified
Linear Unit (PReLU) activation function. The first convolu-
tional layer has 16 filters and the second has 24 filters. Each
layer has a kernel size of 15 × 5. A max-pooling layer with
a kernel size of 2 × 2 is defined between CNN blocks. The
outputs of the last CNN block are flattened and fed to a
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Fig. 6: Validation accuracy per iteration (blue line is the proposed and red line is the conventional technique). (Subject 5
missing from the online database.)

TABLE IV: Results for comparing the proposed heteroge-
neously dilated LSTM model with conventional deepnets.

Average Acc (%) # Parameters

Best (Middle-focused) Model 77.387 538,817

MLP 49.877 6,562,113

CNN 59.561 32,476,265

Note: Acc - Accuracy; # - The number of.

two-layer fully connected classifier for gesture prediction.
The tested MLP model has 128 and 65 nodes on the two
layers. The model comparisons are shown in Table. IV.

Observation 1: With the limited window size and limited
data from the transient phase, both CNN (with an accuracy
of 59.561%) and MLP (with an accuracy of 49.877%) fail
in the gesture prediction task considering the high number
of gestures in this work.

Observation 2: The proposed model has a level of in-
formation modeling and compactness that is not possible
to achieve by CNN or MLP. It should be added that the
trainable parameters of CNN are > 60 times more than the
proposed model, and the number of trainable parameters of
the MLP are > 12 times more than the proposed model.

VI. CONCLUSION

Accuracy and agility of human-robot interfaces are two
critical factors in improving the performance of the current
commercialized prosthesis systems. Deepnets have the po-
tential power of extracting the underlying neurophysiological
features from the muscle activities to classify a high number
of gestures and reach considerably high performance. How-
ever, these models cannot achieve agility due to the struc-
ture complexity, long training time, and vanishing/exploding
gradients, and thus model convergence deteriorates. These
challenges worsen as the classified gestures increase, model
architecture deepens, and the data space grows.

This paper proposes a nonlinear temporal dilation, named
as “heterogeneous dilation”, into the LSTM layers to over-
come the aforementioned issues. We have shown that the
proposed structure significantly improves the training times
and convergence speeds (>20 times faster) when compared
with a non-dilated counterpart LSTM, and boosts the accu-
racy when predicting 65 diverse gestures from each subject
using only transient phase information. This paper brings
research one step closer to real-time implementation of
prosthesis control by training the proposed model only on
the transient phases, using just 10% of information at the
beginning of each repetition. Moreover, the conducted study
on the impact of varying window sizes has found that our
proposed model achieves state-of-the-art performance when
using a sliding window size of 200ms, which is shorter than
the real-time implementation requirement of 300ms. The
introduction of dilation focus to the proposed model adds
another novel degree of freedom into the structure, shifting
the model focus to prioritize the deep observations and hid-
den states of a particular segment of information. Hence, the
heterogeneously dilated model becomes more robust, agile,
and adaptable to various tasks an the transient underlying
neurophysiology changes. The fast speed of convergence for
the proposed model opens the door for ubiquitous outside-
the-lab applications and for researchers who do not have
access to high-performance computers.
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