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Abstract  
 

Brain perfusion and normal blood brain barrier integrity are reduced early in Alzheimer’s 

disease (AD). We performed single nucleus RNA sequencing of vascular cells isolated from 

AD and control brains to characterise pathological transcriptional signatures. We found that 

endothelial cells (EC) are enriched for expression of genes associated with susceptibility to 

AD. EC transcriptional signatures identified mechanisms for impaired b-amyloid clearance. 

Evidence for immune activation was found with upregulation of interferon signalling genes in 

EC and in pericytes (PC). Transcriptional signatures suggested dysregulation of vascular 

homeostasis and angiogenesis with upregulation of pro-angiogenic signals (HIF1A) and 

metabolism in EC, but downregulation of homeostatic growth factor pathways (VEGF, EGF, 

insulin) in EC and PC and of extracellular matrix genes in fibroblasts (FB). Our genomic 

dissection of vascular cell risk gene enrichment suggests a potentially causal role for EC and 

defines transcriptional signatures associated with microvascular dysfunction in AD. 
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Introduction 
 
Alzheimer’s disease (AD) is the most common form of dementia1, characterized by 

extracellular deposits of toxic forms of b-amyloid (Aβ) protein, intracellular neurofibrillary 

tangles (NFTs) and neurodegeneration. Large-scale genomic association studies have 

suggested specific molecular processes responsible for susceptibility to disease2-4. The non-

neuronal cells in which these genes are predominantly expressed are candidates for early 

“causal” roles in the initiation of the pathological cascades of AD5. 

Brain microvasculature appears to play a major role in AD pathophysiology6-8. Cells 

constituting the blood brain barrier (BBB) contribute to the clearance of Aβ and other toxic 

species from the central nervous system (CNS) and allow the selective exclusion of potentially 

inflammatory or toxic blood proteins from the brain and control of immune cell trafficking9. 

Vascular pericytes are responsible for regulating brain perfusion and contribute to the 

regulation of endothelial permeability and immune activation7,10. Multiple in vivo imaging and 

post mortem neuropathological studies, as well as studies of preclinical models, provide 

evidence for impaired regulation of cerebral blood flow and maintenance of the integrity of the 

blood brain barrier (BBB) in early AD11-14. Recent work has begun to elucidate the 

transcriptional mechanisms15-17. 

We have performed an integrated analysis of our own single-nuclei RNA sequencing 

(snRNAseq) data with that from a previously published dataset18 to quantitatively define the 

enrichment of brain microvascular cells for the expression of AD risk genes as a test of their 

potential causal contributions to disease genesis5. We then explored the functional roles of 

AD risk genes by assessing functional enrichment of genes co-expressed with them in 

vascular cells. Differential expression and gene co-expression analyses allowed 

characterisation of specific genes and pathways altered in AD. A cell-cell communication 

analysis further defined signalling mechanisms supporting vascular homeostasis and 

angiogenesis that are impaired with AD. Together, our results provide a transcriptomic 
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mechanistic description for major features of the vascular pathophysiology observed in vivo 

with AD. 

 

Results 

Endothelial cells are enriched in genes associated with genetic risk for AD 

Our analyses were based on data from 57 different brain samples from donors with AD 

(n=31) or non-diseased controls (NDC, n=26). Fluorescence-activated sorting (FACS) of 

nuclei isolated before snRNAseq removed neuronal and oligodendrocyte nuclei to achieve a 

better representation of the less abundant brain cell types of interest. Data was integrated 

using LIGER19 and clustered with UMAP20 (Figure 1A). AD and NDC donor nuclei and nuclei 

from different datasets, brain regions and sexes were well-mixed after integration (Figure S1). 

Nuclei numbers did not differ significantly between AD and the NDC samples. Feature plots 

of canonical cell markers identified major brain cell types in the integrated dataset (Figure S2). 

Endothelial cells (EC) expressed marker genes FLT1, VWF, NOSTRIN (Figure S3A), CLDN5 

and IFI2717,21 (Figure 1C). Specific expression of COL1A1, COL12A1, COL6A1 (Figure S3B) 

and COL5A1 was used to identify fibroblasts (FB) (Figure 1C). A separate, heterogeneous 

cluster of vascular mural cell nuclei expressed PDGFRB, RGS5 and GRM8 (characteristic of 

PC17) (Figure S3C) and ACTA2 and MYH11 (highly expressed in smooth muscle cells 

(SMC)17) (Figure 1C). To distinguish PC from SMC nuclei, we re-clustered the EC, FB and 

vascular mural cell (PC and SMC) nuclei from the total dataset (Figure 1B) to separate those 

expressing high levels of ACTA2 and MYH11 with very low levels of RGS5 and GRM8 

(corresponding to SMC) from those expressing high levels of RGS5 and GRM8 with very low 

levels of ACTA2 and MYH11 (corresponding to PC) (Figure 1C and S4). We confirmed our 

cluster annotations by demonstrating significant mutual overrepresentations of our cluster 

markers and those reported previously in human17 (Figure S5A) and mouse17,21 (Figure S5B) 

single nuclei or single cell RNA sequencing studies. To further characterize the identity of the 

FB population, we tested the overrepresentation of previously described meningeal and 
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perivascular FB markers15 and found that our FB markers were more significantly enriched in 

perivascular fibroblast markers (Fisher’s exact test (FET) for overrepresentation:  perivascular 

FB markers, p = 2.82x10-77; meningeal FB markers, p = 6.36x10-19).  

Well-annotated genes associated with genetic risk of AD2-4 were expressed in nuclei from 

all four vascular cell types (Figure 1F): 52/61 AD risk genes tested were found in at least one 

of the vascular cells studied, although less than half of these genes were expressed in 5% or 

more of nuclei (EC, 21/61; FB, 21/61; SMC, 17/61; PC, 19/61). 14/61 of these genes were 

expressed in at least 5% of the nuclei across all four cell types (ADAM10, APOE, CD2AP, 

CELF1, CLU, CNTNAP2, FERMT2, IQCK, MEF2C, PICALM, SORL1, SPPL2A, USP6NL, 

WWOX).  

We employed MAGMA.Celltyping to test for the significance of the enrichment of vascular 

nuclei across the larger set of genomic loci associated with AD5. First, we analysed a dataset 

that included all the canonical cell types of the brain (Figure S6-S8). This showed that the AD 

risk gene expression enrichment is greatest in microglia, as has been reported previously5 

(Figure 1D). Vascular cells also were relatively enriched, albeit less than microglia. To partition 

enrichment amongst the individual vascular cell types, the analysis was repeated with vascular 

cell data alone. Only EC were significantly enriched for expression of AD risk genes (Figure 

1E). Brain small vessel disease and MRI brain white matter hyperintensities (WMH) are 

associated with risk of AD22,23. To test whether risks for small vessel disease were responsible 

for the EC enrichment for AD genetic risk, we re-assessed enrichment for the latter after 

statistically controlling for WMH risk gene expression24. The results remained virtually 

unchanged (Figure 1E): the genetic risk for AD associated to the EC transcriptome thus 

appears to be independent of that for WMH. However, when the analysis was repeated after 

controlling for the microglial enrichment, the vascular enrichment largely disappeared, 

suggesting that similar AD risk gene sets are enriched in microglia and vascular (Figure 1D). 

 

Differential gene expression (DGE) identifies transcriptional signatures of 

dysfunctional angiogenesis in AD 
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We employed a mixed-effects model in MAST25 to discover genes differentially expressed in 

AD relative to NDC for each of the cell types. Greater numbers of genes were downregulated 

(90 genes, EC; 47 genes, FB; 47 genes, PC; FDR 0.1), than upregulated (73 genes, EC; 25 

genes, FB; 25 genes, PC) in EC, FB and PC (Figure 2A-C). We did not find significant 

differentially expressed genes (DEG) in the SMC. 

 

Pathological angiogenic transcriptional signatures in AD  

Proangiogenic HIF1A was overexpressed in EC in AD (Figure 2A). However, the 

expression of multiple functionally related genes (e.g., SPRED2, SHC2, KSR1, RASGRF2, 

DAB2IP, RASAL2, DUSP16, VCL and EGFR) involved in VEGFR2, EGFR and insulin 

receptor-mediated pathways were downregulated. Pathological angiogenic gene expression 

signatures also were found in FB with downregulation of the expression of VEGF, FGF, EGF 

and IGF pathway genes (including SPRED2, DAB2IP and SPTBN1), DTX2, a regulator of 

Notch signalling26 and the sialyltransferase gene, ST3GAL6 (Figure 2B, E). Gene expression 

in PC highlighted a strikingly mixed angiogenic signature with upregulation of the angiogenic 

Wnt/b-catenin signalling pathway and downregulation of EGF/EGFR signalling pathway genes 

including RPS6KA2, ASAP1, MEF2D and EGFR (Figure 2C, F).  

Clues to additional mechanisms responsible for loss of BBB integrity in AD were found 

with the differentially expressed gene signatures. For example, genes contributing to adherens 

junction assembly (VCL, TBCD and PIP5K1C) were variably differentially expressed in EC 

(VCL and TBCD were downregulated, whereas PIP5K1C was upregulated). As noted above, 

Wnt/β-catenin pathway genes, including TCF4 and APC, expression of which also support 

blood brain barrier integrity27, are significantly upregulated with AD in PC. Finally, LAMC1, 

encoding for the gamma laminin subunit, was significantly downregulated in FB.  

 

Differential expression of risk genes with functional roles in amyloid processing and immune 

response in AD 
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Risk genes with functional roles related to amyloid processing were differentially 

expressed in AD. ADAM10, which encodes the constitutive α-secretase that governs non-

amyloidogenic pathway β-amyloid precursor protein processing, was significantly upregulated 

in PC. PICALM, encoding a clathrin assembly protein modulating clearance of Aβ, was 

downregulated in EC. Risk genes related to immune responses also were differentially 

expressed with AD. Increased expression of the inhibitory complement receptor CD46 gene 

and decreased expression of IRAK3, which encodes an IL-1 receptor associated kinase were 

found in PC. In EC, we also found increased expression of IFITM3, which regulates interferon 

pathway inflammatory responses28 and can potentiate gamma secretase activity29. 

 

Co-expression modules for angiogenesis, lysosomal processing and interferon 

activation are differentially regulated with AD  

To identify gene co-expression modules differentially expressed with AD, we first 

performed gene co-expression network analyses separately for EC, FB and PC pooled across 

AD and NDC (MEGENA30). We then determined which gene co-expression modules were 

differentially associated with AD (limma31). SMC were not included in this analysis because of 

the relatively low number of nuclei available for analysis and consequent sparse co-expression 

representation. Our results defined cell-specific gene regulation pathways associated with AD. 

 

Reduced expression of co-expression modules enriched for angiogenesis and vascular 

homeostasis  

Although fold-changes varied, expression of modules enriched for multiple angiogenic or 

vascular homeostasis pathways were generally decreased with AD, most prominently for EC 

(Figure 3), e.g., Module 119, which is enriched in the EGF/EGFR signalling pathway (e.g., 

including EGFR, IQSEC1, INPP5D, NEDD4 and IQGAP1) and several hub genes (e.g., the 

G-protein activator and adhesion G protein coupled receptor genes, DOCK9 and ADGRL4, 

respectively, and the hypoxia inducible transcription factor, EPAS1) with roles in 

angiogenesis32,33. Expression also was reduced for module 47, which is enriched in insulin-
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like growth factor 1 receptor (IGF1R) (IGF1R, PSMD5, PSMD1, TSC1, RASAL2) and Ras 

signalling cascade (PSMD5, PSMD1, RASAL2) genes. Expression of several genes in module 

47 with recognised functional roles in angiogenesis (e.g., RASAL2 and PALD134) were 

significantly independently downregulated in AD.  

While the fold-changes were relatively low, FB modules functionally related to vascular 

homeostasis also were significantly downregulated, e.g., Module 2, which was significantly 

enriched in NOTCH signalling genes (Figure 3E), including NOTCH1 and NOTCH2, as well 

as the regulators of NOTCH expression26, ARRB1 and DTX2, both of which also were 

independently significantly differentially reduced in expression with AD. Module 2 also is 

significantly enriched in genes individually downregulated in AD (FET adjusted p=1.28x10-8). 

Some of them (SPRED2, DAB2IP, ARRB1, SPTBN1) encode for proteins that are 

downstream components of several growth factor signalling pathways (e.g., FGFR1-4, 

VEGFR2, EGFR) or genes for components (COL5A1 and COL1A2) of the extracellular matrix 

(ECM)35. Angiogenesis pathway enriched modules were downregulated in PC, as well, e.g., 

module 19 (Figure 3F), in which several genes showing individually significantly reduced 

expression in AD (EGFR, ZBTB16, IRAK3, TMTC1, MAOA) and genes involved in EGFR 

signalling (EGFR, MAPK1, FOXO3) are found or module 15, which is enriched in PI3K-Akt 

signalling pathway genes (ANGPT2, COL6A2, DDIT4, COL6A1, BCL2, PDGFA, PPP2R3B, 

PPP2R3A) genes36. A recent report has shown the Angpt2 knock out potentiates BBB leakage 

in a preclinical Ab mouse model37. 

However, despite the decreased expression of modules enriched for many angiogenic 

pathways central to angiogenesis with AD, we also found modules enriched in metabolic 

pathways supporting angiogenesis in EC and PC and extracellular matrix genes in FB, the 

expression of which was increased in AD. Module 661, the top upregulated module in AD, 

includes TPI1 that encodes for the triosephosphate isomerase, an enzyme implicated in 

glycolysis and gluconeogenesis38. Module 41, the expression of which is increased with AD, 

includes genes encoding for the acyl-CoA dehydrogenase that executes the first step of the 

β-oxidation of fatty acids (ACAD8, ACADS) and genes of the butanoate metabolism pathway 
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(BDH2, ACSM3, and ACADS)39, both of which are highly upregulated in AD. Module 12, also 

increased in expression with AD, is amongst several in EC that were enriched for pathways 

coding for proteins of the mitochondrial respiratory chain complexes, including ATP5PF, 

ATP5PD, ATP6 NDUFB10 and NDUFS3. The most highly upregulated module in PC, module 

512, was enriched in oxidative phosphorylation genes (NDUFA4L2, ATP5MC2, ATP5F1D) 

and for lipid metabolism pathway genes (PDHA1, PRKAB1)40,41. Fibroblasts play a central role 

in the development of the basement membrane. Extracellular matrix collagen genes (COL3A1, 

COL5A2, COL5A3, COL11A1, COL21A1), the fibronectin 1 gene (FN1), proteoglycan and 

glycosaminoglycan metabolism-related genes (CHSY3, GXYLT2, GPC6, CHST15, TIAM1, 

KDR, PLCE1, COL21A1, FLNB, ANK3, TP53) were enriched in modules upregulated with AD 

in FB, e.g., in branches of modules 128, 135, 164, 408, 488 and 775. Modules 408 and 391, 

also upregulated with AD in FB, were enriched in solute carrier genes involved in nutrient and 

metabolite transfer across the blood brain barrier42. 

 

Increased expression of APOE and lysosomal pathway enriched modules in FB and PC with 

AD 

Module 396, the most highly upregulated module in FB with AD, was enriched in the 

AD risk gene APOE and other cholesterol metabolism-related genes (e.g., AGT), as well as 

genes with individually increased expression in AD that are related to pathways for lytic 

vacuole functions (including CACNG7, VPS28, CTSO, RRAGC, NPC2, GAA, HPS4, CTNS, 

RAB9A, VAMP4, VPS16 and RAB7A). Expression of module 512, which is enriched for lipid 

metabolism (with PDHA1 and PRKAB1) and lysosome (with PSAP, CLTB and CTSF) 

pathways, increased in PC, whereas other lipid processing and metabolic gene pathways 

were downregulated with AD, notably in module 500 (enriched for the sphingolipid signalling 

pathway genes AKT3, MAPK14, PLCB1 and NSMAF). FB modules 2 (enriched for “regulation 

of lipid metabolism by PPAR-a” and “metabolism of lipids and lipoproteins” pathways) and 

modules 468 (enriched for “response to lipid”) and 284 (enriched for the “ABC transporters in 

lipid homeostasis” pathway) also were downregulated with AD.  
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Module enrichments suggest pathological amyloid processing and immune responses in AD 

There was evidence for upregulation of Ab production and immune responses with AD. 

Module 41, which was highly upregulated in EC, contains PSEN2 and APH1A, which encode 

for components of the gamma secretase43. We also found increased expression of interferon-

related co-expression modules in EC (module 661, the most highly upregulated modules 

includes C2 and TRIM5 which is a interferon type I-stimulated gene44) and in PC (module 161 

includes RNASEL, EIF4A3, AAAS and IFIT1) with AD. The most highly upregulated module 

in PC (Module 512) is enriched for pathways for ferroptosis (GPX4, FTH1), which promotes 

release of oxidised lipid species that generate pro-inflammatory damage-associated 

molecular patterns (DAMPs) able to trigger the innate immune system45. However, modules 

enriched for other immune response pathways were downregulated with AD, e.g., EC module 

455, which is enriched for IL-6 signalling (NLK, IL6ST, JAK1), and PC module 19, enriched 

for cytokine signalling, and modules 32 and 500, which are enriched for Toll-like response 

genes. This was most striking for FB, for which the largest number of immune response 

modules differentially expressed was identified (modules 468 and 154 enriched for interferon-

alpha responses, module 2 enriched for the Toll-like receptor 9 (TLR9) cascade, module 169 

enriched for cytokine signalling (IL15, KIT, RAF1) and module 16 enriched for JAK-STAT 

signalling), all of which were downregulated with AD.  

 

Two-layer neighbourhood analysis of risk genes suggests cell-specific mechanisms of 

AD susceptibility 

Cell-specific enrichments for risk genes expression provide insights into the genesis AD5. 

Cell specific co-expression signatures can suggest specific functional roles for the risk genes 

in susceptibility. To explore those relevant to the cerebral microvasculature, we identified 

genes having the most direct expression correlations (those within a two-layer neighbourhood, 

i.e., any gene that is either directly connected to an AD risk gene or through at most one other 

gene) with AD risk genes in the vascular cell-specific co-expression networks generated from 
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both AD and NDC30,46. To discover relationships specifically relevant to disease genesis, we 

determined the overrepresentation of genes differentially expressed with AD in the 

neighbourhoods of each GWAS gene in the cell-specific co-expression networks (Figure 4A).  

AD risk genes PICALM, SORL1 and INPP5D had the largest neighbourhoods (230, 167 

and 121 differentially expressed genes, respectively) in the EC co-expression network. The 

neighbourhood of PICALM was enriched in IL-6 signalling genes (IL6ST, STAT3, JAK1), as 

well as semaphorin (SEMA5A, ARHGEF11, SEMA6D, ITGA1, MYH11, PLXNC1) and NOTCH 

signalling-related genes (TNRC6C, B4GALT1, TFDP2, POFUT1, MAMLD1, TNRC6A). The 

SORL1 neighbourhood also was enriched in genes for pathways involved in immune response 

(e.g., T-cell activation, TYROBP causal network and cytokine response-related pathways) and 

proteoglycan metabolism (chondroitin sulfate biosynthesis and proteoglycan metabolism) 

pathway genes encoding proteins essential for vascular extracellular matrix formation. The 

functional enrichment of the INPP5D neighbourhood showed an overrepresentation of 

individual differentially expressed genes that were downregulated in insulin- and EGF/EGFR-

signalling pathways (Figure 4B).  

 While the co-expression neighbourhoods of AD risk genes WWOX, CLU and CCN2 

expressed in FB (e.g., including individually differentially regulated genes ITPR2, ROBO1, 

LHFPL6 and SLC38A1 [WWOX]; PALD1, ZBTB46, PDZD2, SIL1 [CLU]; SPTBN1, ZMIZ1, 

KLF7, CACNA2D3 [CCN2]) and PC were enriched for genes involved in a range of functions, 

the neighbourhood of WWOX also was enriched in Notch signalling pathway genes and both 

this neighbourhood and that of IQCK were enriched in ECM-related pathways (Figure 4C). In 

PC, the neighbourhood of MEF2C transcription factor (108 genes) (one of the largest) included 

genes involved in the EGF/EGFR signalling pathway (EPS8, MEF2A, MEF2C, PLCE1, RAF1) 

and Toll-like receptor pathways (e.g. MEF2A, PPP2CB, MEF2C and RIPK2) (Figure 4D). 

 

Pathological growth factor and ECM signalling between vascular cells with AD 

We applied CellChat to identify differentially expressed receptor-ligand pairs responsible 

for cell-cell signalling (both autocrine and paracrine) in AD47. 759 potential ligand-receptor 
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pairs implicating 48 distinct signalling pathways were identified amongst genes expressed EC, 

PC and FB (Figure 5). We first focused on assessment of interaction pairs that involved DEG 

and pathways enriched in co-expression modules specifically with AD. The analysis provided 

insight into mechanisms contributing to dysregulated angiogenesis with AD. Several VEGF-

related signalling pairs were detected only in NDC. Signalling via INHBA (FB/PC) – ACVR1B 

and ACVR1A (EC) also was found only in NDC. By contrast, evidence for TGFB3 (EC) – 

TGFBR1_R2 (FB) and the TGFB3 (EC) – ACVR21B_TGFBR2 (FB) signalling was found only 

in AD samples. 

Growth factor signalling important for angiogenesis and vascular homeostasis also was 

generally decreased with AD. Receptor expression for the EGF(EC/PC)-EGFR(EC/PC), 

EGF(EC/PC) - EGFR_ERBB2(PC), NTF3(FB/PC) - NTRK3(FB) communication pairs was 

reduced. Decreased expression of FB LAMC1 should reduce autocrine and EC/PC CD44 

signalling. Increased expression of CD46 in PC with AD may modulate NOTCH signalling in 

an autocrine manner (CD46 (PC)- JAG1(PC))48. Autocrine NEGR1(FB)- NEGR1(FB) 

signalling also increases in AD. Vascular cell interactions with the ECM were reduced with 

decreased integrin expression on EC affecting multiple ligand-receptor communication pairs: 

COL1A2 (EC/FB) - ITGB1 (EC), COL1A2 (FB) -ITGA2 (EC), COL4A1 (FB/PC) - ITGA2 (EC) 

or COL4A2 (EC/FB) - ITGB1 (EC), COL4A4 (PC) - ITGA2_ITGB1(PC) and COL6A3 (FB) - 

ITGA2_ITGB1 (EC). Both lower EC and PC integrin and FB laminin expression in AD also 

should reduce the many laminin-ECM interactions identified (LAMC1 (FB) - ITGA1_ITGB1 

(EC/PC) - ITGA2_ITGB1 (EC), LAMA3 (EC) - ITGA2_ITGB1(EC), LAMA4 (FB/PC) - 

ITGA2_ITGB1(EC), LAMB1 (FB) - ITGA2_ITGB1(EC), LAMC1 (FB) - ITGA2_ITGB1 (EC/PC), 

LAMC3 (EB/PC) - ITGA2_ITGB1 (EC), LAMC3 (FB/PC) - ITGA2_ITGB1 (EC/PC), LAMC1 

(FB) - ITGA6_ITGB1(EC/PC), LAMC1 (FC) - ITGA7_ITGB1 (EC/PC)). 

 

Expression of vascular endothelial angiogenic pathway genes is related to Ab plaque 

and phosphorylated Tau (pTau) load 
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To explore how vascular transcriptomic pathology may evolve over the course of AD, we 

performed an exploratory analysis of gene expression as a regression of the individual brain 

regional Aβ and pTau densities in the 24/57 brain samples used in the analyses above for 

which quantitative IHC was available. We limited this regression analysis to the EC, the most 

abundant of the cell populations, to minimise Type I errors. We found 28 genes were 

significantly (adjusted p<0.1) differentially expressed with greater brain regional Aβ plaque 

density and 75 genes differentially expressed with greater pTau density. Genes showing 

significant regression with Aβ density in EC were enriched in VEGF signalling pathway 

components (CYFIP1, PXN, CTNNA1, CALM1). By contrast, genes that showed significant 

regression against pTau were enriched in EGFR, IGF1R and insulin receptor signalling 

pathways (PPP2R5E, NF1, CALM1, DUSP16, AP2M1, RBX1).  

 

Discussion 

Brain vascular structural pathology and physiological dysfunction is characteristic of both 

preclinical models expressing brain Ab and of AD13,49. We found that, although EC, SMC and 

PC all express AD risk genes, EC appear to be uniquely significantly enriched amongst 

vascular cells, suggesting a quantitatively more important role in “causally” mediating AD 

susceptibility. Our results provided evidence that pathological regulation of angiogenic gene 

expression contributes to the early vascular impairments in AD: we found upregulation of the 

pro-angiogenic HIF1A and increased expression of mitochondrial oxidative and fatty acid 

oxidation genes, metabolic drivers of angiogenesis50, in conjunction with downregulation of 

vascular developmental and homeostatic pathways involving EGF/EGFR, VEGF/VEGFR and 

insulin and IGF signalling in EC and PC and reduced expression of laminin and collagen IV 

genes in FB. The correlation of these expression differences in angiogenic growth factor 

pathways in EC with both the Aβ plaque and pTau burden suggests that impairments of 

vascular growth factor pathway signalling worsen progressively through the course of the 

disease. Analyses of cell-cell communication provided novel evidence for decreased signalling 
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though VEGFR2 and components of the ECM to EC, decreased expression of the LDLR 

pathway for clearance of Aβ from the CNS by EC, interferon pathway activation and increased 

inflammatory responses in EC and PC. Together, these processes would be expected to 

reduce clearance of Aβ while also, via inflammatory activation, increasing pathological Aβ 

production and processing29. Specific evidence for this was found with upregulation in EC of 

PSEN2 and APH1A, which encode for components of the gamma secretase. 

A recent preprint also reported that GWAS risk genes were enriched in EC and vascular 

mural cells and suggested an “evolutionary shift” of AD risk gene expression from a singular 

predominance in microglia in the mouse to microglial and vascular cells in humans15. Our 

analysis extends this by showing that, among vascular cells, risk genes associated with AD 

are enriched significantly in EC, suggesting an involvement of EC in the early genesis of AD5. 

Moreover, we showed that the risk genes enriched for expression in EC overlap substantially 

with those in microglia (Figure 1D).  

Co-expression and two-layer neighbourhood analyses provided insights into some 

possible functional roles for proteins encoded by AD risk genes expressed in the vascular 

cells. For example, our results showed lower expression of PICALM in EC with AD, suggesting 

a mechanism by which vascular clearance of Αβ is reduced in AD27,51. Functionally less well 

characterised AD GWAS genes, WWOX and IQCK, have large neighbourhoods in the FB and 

PC co-expression networks associated with enrichment for pathways supporting maintenance 

of BBB integrity9. Finally, INPP5D had consistently one of the largest two-layer 

neighbourhoods across the vascular cell types, whereas the enriched pathways associated 

with them were cell type specific (e.g., EGF/EGFR in EC and ECM components in FB).  

Innate immune responses are central to AD pathogenesis and progression but have not 

been well defined in the microvasculature to date29,52. We found evidence for cell-specific 

differences in vascular inflammatory responses to AD in EC with upregulation of interferon 

signalling genes in EC. PC also appear to play a role in vascular inflammatory mediation of 

early AD. Recently identified risk genes CD46, encoding a serine protease which mediates 
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inactivation of complement proteins, and IRAK3, encoding a homeostatic mediator of innate 

immune responses53 were upregulated and downregulated, respectively, in PC.  

However, the most strikingly differentially expressed gene sets in AD are involved in 

angiogenesis and vascular homeostasis. VEGF/VEGFR and insulin signalling pathways54 in 

EC and EGF/EGFR signalling in EC and PC were downregulated with AD55 and negatively 

correlated with Aβ pathology, despite upregulation of other genes (e.g. HIF1A) associated with 

pro-angiogenic regulation28. These results add to prior evidence of dysfunctional angiogenesis 

in AD16,43,49. We have extended descriptions by showing that, despite angiogenic signals (e.g., 

upregulation of HIF1A) and metabolic adaptations, major downstream effector pathways fail 

to respond at the transcriptional level. 

Previous reports also have implicated dysfunction of both EC and PC in AD56. Our 

observations emphasise the extent to which pathology of FB also contribute to vascular 

abnormalities in AD, with NOTCH signalling as a candidate mechanism central for this. 

Multiple genes encoding for ECM components were downregulated in FB, which should 

contribute to BBB dysfunction57,58, impair angiogenesis35 and lead to altered expression of 

tight junction proteins in EC58 via reduced signalling between ECM proteins in FB and integrins 

in EC59. 

Although we have made a number of novel observations, our analyses had limitations 

which need to be addressed in future work. Our data was generated from nuclei from multiple 

brain regions and thus could address robustly only those transcriptomic differences that were 

common to all of these regions in AD, even given that we took the confound of brain region 

into account as a fixed effect in the statistical models. A second limitation was that we 

assessed the total extracted populations of nuclei without seeking to identify and separately 

study cells expressed from specific vascular anatomic zones15,17. Nevertheless, the high 

overlap of our cellular markers and the cellular markers from human and mouse brain vessel-

associated cells in previous reports provides some confidence that all major cell types were 

represented. Third, like other recent studies, our conclusions are based on relatively sparse 

(10X Genomics Single Cell 3’ Gene Expression assay) sequencing of the nuclear transcriptome, 
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which may be biased relative to those from the whole cell, potentially reducing the power to 

detect transcripts from some genes60. Use of larger numbers of nuclear and co-expression-

based analyses, which rely less on detection of absolute expression levels than do single gene 

differential expression analyses, may have reduced the impact of this although the impact of 

this limitation, but this is difficult to assess without future, more comprehensive transcriptional 

analyses of the whole cells.  

Impairment of angiogenesis and vascular homeostasis, reduced endothelial Αβ clearance 

with reduced expression of PICALM and increased production of Αβ by EC with upregulation 

of interferon (IFITM3) and g-secretase component genes all will act to increase toxic Αβ 

concentrations in the brain29. The extraordinary length of the brain capillary network (~650 km) 

and its large surface area (~120 cm2/g) suggest that even small relative effects could 

contribute substantially to increasing the overall Aβ burden in the CNS61. The identification of 

significant EC enrichment in AD risk genes also suggests that their specific contribution to 

inflammatory activation and reduced Αβ clearance are early, potentially “causal” factors in the 

onset of sporadic, late onset AD. Our work suggests specific mechanisms by which small 

vessel disease from many causes (e.g., metabolic disease, hypertension, smoking) could 

potentiate early AD and  add to the rationale for AD prevention through interventions for control 

of modifiable cardiometabolic risk factors62. More generally, our results suggest that EC 

therapeutic targets related to angiogenic, inflammatory and Αβ clearance pathways deserve 

prioritisation in the search for treatments able to slow or prevent the onset of AD. 
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Methods 

Data for this study was generated from cortical brain tissue processed locally as we 

described earlier63 or from that described and made available publicly previously18.  

 

Local tissue access and snRNA sequencing 

Brain cortical tissue sequencing 

Local tissue access and data generation was carried out in accordance with the Regional 

Ethics Committee and Imperial College Use of Human Tissue guidelines. Tissues and 

processing were described previously63. Cases were selected from the London 

Neurodegeneration (King’s College London) and Parkinson’s UK (Imperial College London) 

Brain Banks. Entorhinal and somatosensory cortex from 6 non-diseased control (NDC) cases 

(Braak stage 0-II) and 6 AD cases (Braak stage III-VI) were used (total of 24 brain samples). 

Brains used for this study excluded cases with clinical or pathological evidence for small vessel 

disease, stroke, cerebral amyloid angiopathy, diabetes, Lewy body pathology (TDP-43), or 

other neurological diseases. Where the information was available, cases were selected for a 

brain pH greater than 6 and all but one had a post mortem delay of less than 24 hr.  

 

Table 1: Cohort information for locally processed samples 
 M:F ratio Age at death 

(yrs, mean 
+/- SD) 

Post mortem 
delay (hr, 
mean +/- SD) 

RIN 
(mean 
+/- SD) 

Non-diseased 
controls (Braak 0-II) 

4:2 79.3 +/- 6.5 18 +/- 6.9  4.9 +/- 2.0 

Alzheimer’s disease 
(Braak III-VI) 

4:2 81 +/- 6.8 22.1 +/- 15.9 7.1 +/- 0.7 

 
 
Immunohistochemistry 

Immunohistochemical staining was performed on formalin-fixed paraffin-embedded 

sections from homologous regions of each brain used for snRNASeq locally. Standard 

immunohistochemical procedures were followed using the ImmPRESS Polymer (Vector 

Laboratories) and SuperSensitive Polymer-HRP (Biogenex) kits (Table 2). Briefly, 
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endogenous peroxidase activity and non-specific binding was blocked with 0.3% H2O2 and 

10% normal horse serum, respectively. Primary antibodies were incubated overnight at 4°C. 

Species-specific ImmPRESS or SuperSensitive kits and DAB were used for antibody 

visualization. Counter-staining for nuclei was performed by incubating tissue sections in 

haematoxylin (TCS Biosciences) for 2 min. AD pathology was assessed by Ab plaque (4G8, 

BioLegend 17-24) and pTau (AT8, NBS Biologics) staining.  

 

Table 2. List of antibodies and immunostaining methods  

Antigen  Antibody Dilution  
Antigen 
Retrieval  

IHC Staining Kit 

Ab 
4G8 

BioLegend 

(800702) 

1:15,000 

Citrate 

Buffer, in 

Steamer 

Supersensitive 

Kit 

pTau 
AT8 

Invitrogen 

(MN1020) 

1:1,600 

Citrate 

Buffer, in 

Steamer 

Supersensitive 

Kit 

 
 

Labelled tissue sections were imaged using a Leica Aperio AT2 Brightfield Scanner (Leica 

Biosystems). Images were analysed using HALO software (Indica Labs, Version 2.3.2989.34). 

The following image analysis macros were used for the study: area quantification macro 

(amyloid), multiplex macro (pTau).  

 

Nuclei isolation and enrichment for lower abundancy cell populations  
 
Local processing of the fresh frozen entorhinal and somatosensory cortical tissue blocks 

began with sectioning to 80 μm on a cryostat and grey matter separated by scoring the tissue 

with sharp forceps to collect ~200 mg grey matter in an RNAse-free Eppendorf tube. Nuclei 

from NDC and AD samples were isolated in parallel using a protocol based on Krishnaswami 

et al. (2016)64. All steps were carried out on ice or at 4°C. Tissue was homogenized in a 2 ml 

glass douncer containing homogenization buffer (0.1% Triton-X + 0.4 U/μl RNAseIn + 0.2 U/μl 

SUPERaseIn). The tissue homogenate was centrifuged at 1000 g for 8 min, and the majority 
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of supernatant removed without disturbing the tissue pellet. Homogenised tissue was filtered 

through a 70 μm filter and centrifuged in an Optiprep (Sigma) density gradient at 13,000 g for 

40 min to remove myelin and cellular debris. The nuclei pellet was washed and filtered twice 

in PBS buffer (PBS + 1% BSA + 0.2 U/ml RNAseIn). Isolated nuclei were labelled in 

suspension in 1 ml PBS buffer with 1:500 anti-NeuN antibody (Millipore, MAB377, mouse) and 

1:250 anti-Sox10 antibody (R&D, AF2864, goat) for 1 hr on ice. Nuclei were washed twice 

with PBS buffer and centrifuged at 500 g for 5 min. Nuclei were incubated with Alexa-fluor 

secondary antibodies at 1:1000 (goat-anti-mouse-647 and donkey-anti-goat-488) and Dapi 

(1:1000) for 30 min on ice, and washed twice. Nuclei were FACS-sorted on a BD Aria II, using 

BD FACSDiva software, gating first for Dapi +ve nuclei, then singlets and then Sox10- and 

NeuN-negative nuclei. A minimum of 150,000 double-negative nuclei were collected. 

We also isolated nuclei, from adjacent localizations of the same tissue samples as 

described above, which were not subjected to the FACS-enrichment step but were directly 

processed for single nucleus capture and snRNA sequencing as described in the following 

section. In this way, we obtained an unbiased representation of all the brain cell types. The 

resulting dataset was used for the analysis described in the “Enrichment of brain cell types in 

AD and WMH GWAS signal” section. 

Sorted nuclei were centrifuged at 500 g, resuspended in 50 μl PBS buffer and counted on 

a LUNA-FL Dual Fluorescence Cell Counter (Logos Biosystems, L20001) using Acridine 

Orange dye to stain nuclei. Sufficient nuclei were added for a target of 7,000 nuclei for each 

library prepared. Barcoding, cDNA synthesis and library preparation were performed using 

10X Genomics Single Cell 3’ Gene Expression kit v3 with 8 cycles of cDNA amplification, after 

which up to 25 ng of cDNA was taken through to the fragmentation reaction and a final 

indexing PCR was carried out to 14 cycles. cDNA concentrations were measured using Qubit 

dsDNA HS Assay Kit (ThermoFisher, Q32851), and cDNA and library preparations were 

assessed using the Bioanalyzer High-Sensitivity DNA Kit (Agilent, 5067-4627). Samples were 

pooled to equimolar concentrations and the pool sequenced across 24 lanes of an Illumina 

HiSeq 4000 according to the standard 10X Genomics protocol. The snRNAseq data will be 
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made available for download from the Gene Expression Omnibus (GEO) database 

(https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE160936. 

 

Single Nuclei RNA Sequence Analyses 

Processing of FASTQ files  

Locally generated snRNASeq data were pre-processed using 10X Genomics Cell 

Ranger. Illumina sequencing files were aligned to the genomic sequence (introns and exons) 

using GRCh38 annotation in Cell Ranger v3.1. Nuclei were identified above background by 

the Cell Ranger software.  

 

Quality control, dataset integration, dimension reduction and clustering 

Feature-barcode matrices from CellRanger produced corresponding to the local dataset 

produced as described above were jointly processed with the feature-barcode matrices from 

a previously published dataset18. that were downloaded from the Gene Expression Omnibus 

(accession number GSE148822). Together, the two datasets were generated from 57 brain 

samples. Quality control (QC), dataset integration, dimension reduction and clustering were 

performed using the Nextflow pipeline nf-core/scflow65.  

QC was performed separately on each sample. Nuclei that had less than 200 features 

were excluded, whereas for the higher feature filtering criterion, an adaptive threshold was 

estimated in each sample, which was four median absolute deviations above the median 

feature number in the sample. Nuclei with more than 5% of mitochondrial gene counts were 

also excluded. Only genes that had at least one count in 5 nuclei per sample were retained. 

The QC also included an ambient RNA profiling using the EmptyDrops package66 using default 

parameters. Finally, multiple identification was performed using DoubletFinder67 using 10 

principal components based on the 2000 most variable features and a pK value of 0.005.  

Sample integration was performed using the Liger package (v1.0.0)19 incorporated in the 

nf-core/scflow pipeline (v0.7.1)65. The k value was optimized at 20 and the lambda value at 5. 

3000 genes were employed in the integration process. The integration threshold was 0.0001 
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and the maximum number of performed iterations was set to 100. The normalized cell factors 

from the integrated dataset were then used as an input for dimension reduction and clustering, 

which was performed using UMAP20. Clustering was performed with the Leiden method using 

a resolution parameter of 0.00001 and a k value of 50.  

Cell-type identification of clusters was performed by plotting canonical cell markers using 

the FeaturePlot function in Seurat (v3.2.3)68. To efficiently separate the vascular mural cells, 

we isolated the ECs and the vascular mural cell clusters and re-ran the steps of the integration, 

dimension reduction and clustering. Cluster specific genes were identified using the 

FindMarkers function in Seurat (using the MAST method25 with the function arguments set to 

default). To validate the cell-type specificity of the clusters and their identity, we compared the 

top 100 cluster markers of our dataset with the top 100 cluster markers of the same cell types 

from previously published human and mouse datasets17,21 using an overrepresentation 

analysis.  

 

Overrepresentation analysis 

Overrepresentation analysis was performed to determine if the overlap between two gene 

sets is significantly higher that if it occurred by chance. This was done using with the 

"enrichment" function of the R package bc3net (v1.0.4) (https://github.com/cran/bc3net), 

which performs a Fisher’s exact test (FET). The p values associated with the Fisher's exact 

test correspond to the probability that the overlap between the two gene sets and has occurred 

by chance. 

 

Enrichment of brain cell types in AD and WMH GWAS signal 

GWAS summary statistics for AD3 and WMH (a radiological manifestation of small vessel 

disease)24 were tested for enrichment in brain cell types using the MAGMA.Celltyping 

(v1.0.1)5,69 and MungeSumstats (v1.1.24)70 packages. First, summary statistics were 

appropriately formatted using MungeSumstats for use with MAGMA.Celltyping. Then, SNP 

associations from the summary statistics were mapped to genes using the map.snps.to.genes 
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function of MAGMA.Celltyping. Next, as described for the default workflow of 

MAGMA.Celltyping, genes with low variability between the cell clusters were dropped using 

the drop_uninformative_genes and then quantile groups for each cell type were prepared 

using the prepare.quantile.groups function.  

We first calculated the enrichment in AD and WMH GWAS signal across all the brain cell 

types on the dataset that had not been subjected to the FACS enrichment step to remove 

neurons and oligodendrocytes (see “Nuclei isolation and enrichment for lower abundancy cell 

populations” section) (Figure 1D and S9A, respectively). This was performed using the 

calculate_celltype_associations function with default parameters and the “linear” enrichment 

mode. This analysis was repeated after controlling for the microglial enrichment of the GWAS 

signal. Next, we calculated the enrichment in AD and WMH GWAS signal on each of the 

vasculature-associated cell types (EC, FB, PC and SMC) (Figure 1E and S9B, respectively). 

Finally, we assessed if the enrichment of the vasculature-associated cell types in our dataset 

in AD GWAS signal changed after controlling for the enrichment in WMH GWAS signal. For 

this, we re-ran the calculate_celltype_associations function for the AD summary statistics and 

the SNP-to-gene mapping of the WMH GWAS (that was calculated earlier with the 

map.snps.to.genes function) in the genesOutCOND argument of the function.  

 

Differential gene expression analysis  

DGE analysis was performed using MAST (v1.18.0). The transcriptomic alterations in AD 

vs NDC samples were assessed separately in each cell type by means of a zero-inflated 

regression analysis using a mixed-effects model. The use of a mixed-effects model is 

particularly important in the context of snRNAseq DGE analyses to account for the 

pseudoreplication bias that would otherwise be observed if a fixed-effects-only model was 

employed71. The model specification was zlm(~diagnosis + (1|sample) + cngeneson + pc_mito 

+ sex + brain_region, sca, method = "glmer", ebayes = F). The fixed effect term pc_mito 

accounts for the percentage of counts mapping to mitochondrial genes. The term cngeneson 

is the cellular detection rate. Each nuclei preparation was considered as a distinct sample for 
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the mixed effect. Models were fit with and without the dependent variable and compared using 

a likelihood ratio test. Units for differential expression are defined as log2 fold difference in AD 

vs NDC nuclei. The inclusion of a “dataset” term in the model was not necessary because the 

inclusion of the brain region term completely accounted for it. In the subset of samples that 

corresponded to the dataset produced in our laboratory, we also performed an exploratory 

regression analysis of gene expression against the two histopathological features (using pTau 

or Ab as markers) using MAST. The model specification was zlm(~histopath_marker + 

(1|sample) + cngeneson + pc_mito + sex + brain_region, sca, method = "glmer", ebayes = F). 

In this case, units for differential expression are defined as log2 fold difference/% pTau positive 

cells (or log2 fold difference/% Ab plaque area), i.e., a one unit change in 

immunohistochemically-defined pTau (or Ab plaque) density is associated with one log2-fold 

change in gene expression. In both MAST analyses, genes expressed in at least 10% of nuclei 

from each cell type were tested. Genes with an adjusted p-value <0.1 were defined as 

meaningfully differentially expressed.  

 

Gene ontology and pathway enrichment analysis 

The gene ontology (GO) enrichment and the pathway enrichments analysis were carried 

out using the R package enrichR (v 3.0), which uses Fisher's exact test (Benjamini-Hochberg 

FDR < 0.1)72. Genesets with minimum and maximum genes of 10 and 500 respectively were 

considered. To improve biological interpretation of functionally related gene ontology and 

pathway terms and to reduce the number of redundant gene sets, we first calculated a pairwise 

distance matrix using Cohen’s kappa statistics based on the overlapping genes between the 

enriched terms and then performed hierarchical clustering of the enriched terms73.  

 

Gene co-expression analysis 

Gene co-expression modules and hub-genes were identified separately for each cell type 

using the MEGENA (v1.3.7) package30. MEGENA constructs a hierarchy of co-expression 
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modules with larger (“parent”) that are further divided into subset (“children”) modules. 

“Children” modules are subsets of the “parent” ones and have higher numbers as names than 

their “parents”. To reduce the effect of noise, due to the sparsity of the expression matrix in a 

snRNAseq experiment, a sample-level pseudo-bulking was performed by summing the raw 

counts of all the nuclei in a sample. Genes expressed in at least 50% of the samples were 

used as input. The MEGENA pipeline then was applied using default parameters, using 

Pearson’s correlations and a minimum module size of 10 genes. Parent modules were 

produced from which a sub-set of genes form smaller child modules. The co-expression 

module hierarchy was represented graphically using Cytoscape software (Mac OS version 

3.8.0)74 (Figure 3A-C). 

 

Gene Set Enrichment Analyses (GSEA) 

AUCell75 (R package v1.6.1) was used to quantify the enrichment of the co-expression 

modules in our nuclei. Normalised data was processed in AUCell using 

the AUCell_buildRankings function. The resulting rankings, along with the gene lists of 

interest, were then put into the function AUCell_calcAUC (aucMaxRank set to 5% of the 

number of input genes).  

The statistical comparison of the enrichment of the co-expression modules in our AD 

nuclei vs the NDC nuclei was performed using the limma package in R31. The module 

enrichment matrix was log2-normalized. The default configuration of the limma package was 

employed with the following linear model (which corresponds to the model employed in the 

DGE analysis with MAST package): ~diagnosis+nFeature+pc_mito+brain_region+sex, where 

nFeatures is the total number of distinct features expressed in each nucleus (to account for 

the fact that nuclei that express a higher number of features may have higher AUCell scores). 

We also corrected for a potential pseudoreplication bias71, by using the duplicateCorrelation 

function of the limma package with the sample as the “blocking” variable.  

 

Cell-cell communication analysis 
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Cell-cell communication analysis was performed using CellChat v0.5.547. CellChat 

employs a curated database of potential signalling ligand-receptor pairs from the literature. 

Among all these potential ligand-receptor pairs, cell-cell interactions are identified based on 

mass action models, along with differential expression analysis and statistical tests on cell 

groups. The CellChat algorithm with default parameters (unless otherwise specified) was 

applied to the subset of the dataset that corresponded to the ECs, FBs and PCs, separately 

on the AD and NDC samples. The human CellChat database was used for the ligand-receptor 

pairs. Communications that involved less that 100 nuclei were filtered out (using the min.cells 

argument in the filterCommunication function). The ligand-receptor pairs involving genes that 

showed differential expression in AD compared to the NDC nuclei were identified and are 

documented in the text as follows: Ligand (expressing celltype(s)) – Receptor (expressing 

celltype(s)).  
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Figures 

 

Figure 1. Characterisation of cell-type specific transcriptomes and their relative enrichment in 
Alzheimer’s disease risk genes. (A) UMAP plot of the integrated snRNAseq dataset from 57 brain 

samples. (B) UMAP plot after re-integration and clustering of the EC, FB, PC and SMC nuclei in (A), 

allowing discrimination between PC (red) and SMC (cyan) nuclei (EC and FB, grey). (C) Heatmap of 

the average scaled expression of representative marker genes for each cluster. (D) MAGMA.Celltyping 

enrichment of brain nuclei in genomic loci associated with genetic risk for AD. The bars correspond to 

the log10 p value of the enrichment (dark brown, line indicates significance threshold adjusted for all cell 

types). Enrichment of vascular nuclei is reduced after controlling for genes enriched in microglia (dark 
green) (F) MAGMA.Celltyping AD risk gene enrichment of nuclei of the brain vasculature (dark brown 

bar, line indicates significance threshold adjusted for vascular cell types). Enrichment is not changed 

substantially after controlling for the enrichment of genetic loci associated with white matter 

hyperintensities (WMH) (light brown). (H) Dot plot of the average scaled per cluster expression of genes 

previously associated with genetic risk for AD (size, percentage of nuclei per cluster with >1 count; 

colour scale, average scaled gene expression). Abbreviations: AST, astrocytes; EC, endothelial cells; 

FB, fibroblasts; MGL, microglia; NEU, neurons; EN, excitatory neurons; IN, inhibitory neurons; OLG, 

oligodendrocytes; PC/SMC, pericytes and smooth muscle cells. 
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Figure 2 Alzheimer’s disease is associated with dysregulation of vascular homeostasis. Volcano 

plots showing genes differentially expressed in AD relative to NDC in (A) EC, (B) FB and (C) PC. 

Corresponding dot plots of the functional enrichment analysis on the DEG (D-F, (dot size, functional 
enrichment gene set size; colour, FDR).  
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Figure 3 Gene co-expression module hierarchy for (A) EC, (B) FB and (C) PC. Modules that are 

significantly differentially enriched in AD relative to NDC nuclei are represented as points in the graph 

(red, upregulated modules with AD; blue, downregulated modules). (D-F) Heatmaps of odds ratios from 

the functional enrichment analyses for significantly differentially enriched modules in EC (D), FB (E) 

and PC (F) (red, upregulated; blue, downregulated). 
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Figure 4 Exploration differentially expressed genes (DEG, AD vs. NDC) in two-layer 
neighbourhoods of AD risk genes. (A) Dot plot of the overrepresentation of DEG identified in each 

cluster (abscissa) in AD relative to CTR in the 2-layer neighbourhood of each GWAS gene (ordinate) 
(dot size, number of the overlapping genes; colour, adjusted p value).B-D) Functional enrichment of 

prioritized GWAS genes in EC (B), FB (C) and PC (D)(colour scales represent the odds ratio of the 

enrichment). 
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Figure 5 Circular plot of representative results from the cell-cell communication analysis 
(CellChat v0.5.5). The innermost circle links connect the gene symbols of the ligands with their 

corresponding receptors. The link colour denotes the diagnosis specificity (i.e. if a ligand-receptor pair 

was identified only in NDC (blue), only in AD (red) or in both conditions (green). Moving outward, the 

second track of the plot describes whether the gene corresponds to a ligand (black sectors) or a 

receptor (grey) in the communication. Genes that were also identified as differentially expressed with 

AD are highlighted (cyan, downregulated; orange, upregulated). Finally, the cell type where the ligand 

or the receptor gene is expressed is denoted in the outermost track of the plot.  
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Supplementary Figures  
 

 
 
Figure S1. UMAP plots of the integrated snRNAseq dataset (see Figure 1A) by diagnosis (A), sex 
(B) and brain region (EntC, entorhinal cortex; OC, occipital cortex; OTC, occipital temporal cortex; 

SSC, somatosensory cortex) showing that the nuclei were well mixed with respect to these parameters 

after integration 
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Figure S2. UMAP feature plots of canonical cell marker genes for microglia (CD74), astrocytes 
(GFAP), oligodendrocytes (PLP1) and neurons (RBFOX3). 
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Figure S3. UMAP feature plots of marker genes for EC (A), FB (B) and PC and SMC (C). 
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Figure S4. UMAP plot after re-integration and clustering of the EC, FB, PC and SMC nuclei in the 
integrated dataset (A). EC and FB nuclei are coloured in grey. Four subclusters (PC1, PC2, PC3, PC4 

and SMC) correspond to PC and SMC (B). Violin plots of genes previously shown to be specific for PC 

(RGS5 and GRM8) and SMC (ACTA2, MYH11). 
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Figure S5 Dot plots of the overlap between cell markers for EC, FB, PC and SMC previously 
identified for (A) human17 and (B) mouse21 and the cluster markers used in the present study. 
The size of the dots correspond to the overlap between the cluster gene sets and the colour of the dot 

to the adjusted p-value of an overrepresentation Fisher’s exact test.   
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Figure S6 UMAP plot of the snRNAseq dataset that was generated without prior FACS-
enrichment step to remove neurons and oligodendrocytes. AST, astrocytes; EN, excitatory 

neurons; IN, inhibitory neurons; MGL, microglia; OLG, oligodendrocytes; OPC, oligodendrocyte 

progenitor cells; VASC, vascular cells. 
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Figure S7 UMAP plots of the snRNAseq dataset that was generated without prior FACS-
enrichment step (Figure S6) by diagnosis (A), sex (B) and brain region (EntC, entorhinal cortex; 

OC, occipital cortex; OTC, occipital temporal cortex; SSC, somatosensory cortex), showing that the 

nuclei were well mixed with respect to these parameters after integration. 
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Figure S8. UMAP feature plots of canonical cell marker genes in the dataset of Figure S6 and S7 
for microglia (CD74), astrocytes (GFAP), oligodendrocytes (PLP1), oligodendrocyte precursor 
cells (PCDH15), neurons (RBFOX3, GAD2, MIAT, MEG3) and vascular cells (FLT1, RGS5, ACTA2, 
COL1A1). 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.10.27.465860doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.27.465860
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 
 

Figure S9 MAGMA.Celltyping enrichment of brain nuclei in genomic loci associated with genetic 
risk for WMH. The bars correspond to the log10 p value of the enrichment. The dark line marks the 

corrected significance threshold. Only vascular nuclei show enrichment with fully corrected significance 
across the whole dataset.  (F) MAGMA.Celltyping WMH risk gene enrichment of nuclei of the brain 

vasculature showing no significant enrichment for any of the cell types, suggesting that the enrichment 

for genomic loci associated to WMH is equally distributed among them. 
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